
This manuscript is a generally clear description of an extended ocean biogeochemical model 
in the GENIE EMIC. However, a number of equations are wrong, so I recom- mend 
correcting these, rerunning the model, updating the figures, and if needed the text and 
conclusions. While this amounts to major revisions, I am hopeful that a revised manuscript 
would be acceptable.  
 
We would like to thank the reviewer for a very thoughtful and constructive review.  

Major comments: Line 244: “Finally organic matter (D) is made up of K size classes of 
organic matter, each containing id organic nutrient element pools. (Note that strictly 
speaking, detrital organic matter is not explicitly resolved as a state variable in ECOGEM as 
we currently only resolve the production of organic matter, which is passed to BIOGEM and 
held there as a state variable. As a consequence, there is no grazing on detrital organic 
matter in the current configuration of EcoGENIE. We include a description of D and its 
relationships here for completeness and for convenience of notation.” This is in fact a really 
inconvenient notation, because it obscures what happens in the model. See Line 452 below.  

Please see our response to the comment relating to lines 452-455. 

Line 294: “The size of the quota increases with [. . .] the loss of carbon.” First, this statement 
is not true, because in Section 3.2.7 it is pointed out that grazing loss does not affect 
stoichiometry, which is the correct thing to do.  

We have now removed the preferential loss of carbon (through respiration) in response to a 
comment below. As such, we have also removed this statement, which is no longer applies 
to the updated model. 

Secondly, Ikeda et al. (2001, DOI 10.1007/s002270100608) show that the stoichiometry of 
respiration is undistinguishable from the stoichiometry of biomass as well. This incorrect 
representation would lead to quota that are sometimes in excess of Qmax, which would give 
unrealistic artefacts in the nutrient cycling and potentially a violation of mass balance, and 
should therefore be corrected.  

We have removed the independent loss of carbon from the model, as it can indeed violate 
mass balance in some conditions.  

Line 301: This incorrect equation also appears in Geider et al. (1998, Limnol. Oceanogr. 
43:679), although it is given here without attribution. Please use the correct equation from 
Morel (1987, J. Phycol. 23:137) max = himax – (himax – lomax)*(Q- Qmin)/(Qmax-Qmin)  

As is the case for all models, both the Geider and Morel formulations have their issues. It is 
misleading to refer to either one as “correct” or “incorrect”. The Morel model, for example 
predicts that Q=Qmax when µ=µmax. This prediction is clearly refuted for non-limiting 
nutrients by Elrifi & Turpin (1985, J. Phycol., 21, 592–602). For the sake of maintaining 
consistency with Ward et al. (2012), we have chosen to retain the Geider et al. (2007) 
formulation. 

Line 303: The appearance of γFe in the denominator of this equation is incorrect. It would 
make Chl synthesis increase as cells run out of iron, when in fact Chl:C decreases at low 
iron (Sunda and Huntsman 1997, Nature 390:389). A photosynthesis model that reproduces 
this iron limitation effect is given in Buitenhuis and Geider (2010, Limnol. Oceanogr. 55:714)  



Assuming the reviewer means equation 13, The appearance of γFe in the denominator does 
not imply that Chl synthesis increases as cells become Fe limited, because, when Fe is 
limiting, γFe also appears the numerator (via PC and Psat; Equations 9 and 11).  

Section 3.2.6 uses several words that have physiological meanings (limitation term, half 
saturation, inhibition) in a section describing light attenuation. If these sentences in fact deal 
with α (it would help to rename this to αChl), then it should be moved to Section 3.4.3. If it 
deals with light attenuation, it should be made clear how kChl is derived.  

We have rearranged the text accordingly. 

Line 343 : “length scale of 20 m” Is this used to calculate kw or the average value of ktot?  

BIOGEM doesn’t represent Chl, so water attenuates light with a constant optical depth. We 
have modified the text to clarify this. 

“In both BIOGEM and ECOGEM, the incoming shortwave solar radiation intensity is taken 
from the climate component in cGEnIE and varies seasonally (Edwards and Marsh, 2005b; 
Marsh et al., 2011). However, ECOGEM uses a slightly more complex light attenuation 
scheme than BIOGEM, which simply calculates a mean solar (shortwave) irradiance 
averaged over the depth of the surface layer, assuming a clear-water light attenuation scale 
of 20 m (Doney et al., 2006).” 

Line 345: “At the ocean surface” This would be a logical sentence to start the section.  

We have rearranged the text to provide a more logical order to the sentence. 

Between Line 452 and 455 D changes from 6 state variables in ECOGEM to 2 (C contents) 
in BIOGEM. Please explain what happens to the organic nutrient concentrations.  

The ambiguity probably arose through our use of the singular in reference to the POM and 
DOM state-variable/flux vectors (each corresponding to three ECOGEM state-variables). We 
have changed the text to make it clear that there are 3 DOM state-variables and three POM 
fluxes in BIOGEM.  

“The dissolved organic matter vector (D1) includes three explicit tracers that are transported 
by the ocean circulation model and are degraded back to their constituent nutrients with a 
fixed turnover time of λ (= 0.5 years). Particulate organic matter (POM) is not represented 
with explicit state vari- ables in either ECOGEM or BIOGEM. Instead, its implicit production 
in the surface layer (and the corresponding export below the surface layer) is given by…” 

Line 533: It would make more sense to change e.g. the range between Qmin and Qmax, the 
partitioning between POM and DOM and the decay of POM with depth, which have much 
more uncertainty than the unrealistic choice noted in Line 294.  

We have increased QminP (i.e. decreased max biomass C:P ratio) to compensate for the 
removal of C respiration. 

Section 3.2.9: See comment on Line 294.  

We have addressed the choice at line 294 above. 



Figure 5 and Line 595: It is confusing to speak of POC production when there is no state 
variable for POC, and it leads to confusion with primary production. It would be easier to 
understand to speak of POC flux. Given the central importance of POC flux for air-sea CO2 
flux and nutrient distributions, I suggest comparing it to observations (Schlitzer (2004), J. of 
Oceanography 60:53-62, https://lred.uea.ac.uk/web/green-ocean/data)  and including these 
in Figures 3 and 19.  

We have changed the text to describe POC flux rather than production. 

“The relative proportions in which these elements and compounds are exported from the 
surface ocean are regulated by the stoichiometry of biological production. In cGEnIE 
(BIOGEM), carbon 595 and phosphorus production are rigidly coupled through a fixed ratio 
of 106:1, while POFe:POC and CaCO3:POC production ratios are regulated as a function of 
environmental conditions. In ecoGEnIE (ECOGEM), phosphorus, iron and carbon production 
are all decoupled through the flexible quota physiology, which depends on both 
environmental conditions, and the status of the food-web. Only CaCO3:POC production 
ratios are regulated via the same mechanism in the two models (although 600 we decreased 
the average CaCO3:POC ratio in ECOGEM to compensate for the elevated POC production 
relative to POP).” 

We prefer not to use the Schlitzer POC flux dataset. It is based on data assimilation exercise 
in the North Pacific, and it is not clear how well it extrapolates to the global scale. Indeed, 
global estimates for vertical POC are still highly uncertain and even contradictory (see for 
example the discrepancy between Henson et al. doi:10.1029/2011GL046735, 2011 and 
Marsay et al. 10.1073/pnas.1415311112 2015), so we would prefer not to use these data as 
a benchmark of model performance. 

Line 605: Rather than change ECOGEM to reproduce an arbitrary result in BIOGEM, it 
would be much more helpful to compare the CaCO3 export to observations (Lee (2001) 
Limnol. Oceanogr. 46: 1287–1297) and adjust the model to reproduce that.  

The BIOGEM result was not arbitrary. It was from a model systematically calibrated to global 
phosphate and alkalinity measurements. An important aspect of the work here is traceably 
distinguishing the performance of ECOGEM and BIOGEM, so it is important to consistently 
evaluate the former against the latter. 

Line 617: “total oceanic DIC inventory increased by just under 2% from 0.299 mol C” This 
makes no sense. The total oceanic DIC inventory is ∼3.3 Examol.  

Thanks for pointing this out. The ‘Exa’ prefix was omitted in error. 

Line 652 and Figure 17: “The model predicts higher chlorophyll concentrations in the 
Southern Ocean” Figure 17 is inadequate to decide whether this is a reasonable comment to 
make.  

This comment was in reference to Figure 14, which shows higher model chlorophyll 
concentrations in the Southern Ocean, relative to the SeaWiFS data. 

Please have the y-axis range from 10-2 to 10 (values between 10-5 and 10-2 are 
insignificant), put the station names inside the panels, so that the panels can be made 
higher, and include the satellite chl in the figure.  



The y-axis range was chosen to show the dynamic range of the model. Values < 1e-2 are 
indeed insignificant in the observations, but low winter values are an important component of 
the model dynamics. As such, we feel it is important to retain the y-axis range of 1e-5 to 1e1. 

We have added SeaWiFs chlorophyll to the figure. 

If that shows the in situ measurements span the satellite estimates, delete the Dierssen 
reference and rewrite this to reflect the findings of Le Quere et al. (2016, doi:10.5194/bg-13-
4111-2016), that models underestimate SO chl because they underrepresent 
macrozooplankton. Also, after correcting the error on line 303, this may improve/decrease 
SO chl.  

We have plotted SeaWiFS data at the three Southern Ocean sites. The satellite data do 
show a tendency to underestimate in situ observations on the Southern Ocean. We have 
therefore retained the Dierssen reference. 

Figure 18 needs to be described.  

We have added a description. 

“The seasonal cycles of primary production in the surface layer are compared to time-series 
observations in Figure 18. As also indicated in Figure 14, the spatial variance in modelled 
primary production is too low, with primary production overestimated at the most oligotrophic 
site (HOT) and typically underestimated at the most productive sites (esp. the equatorial 
Pacific, NABE and the Ross Sea). In contrast to the lack of spatial variability, the model 
exhibits significant seasonal variation, often in excess of the observed variability (at those 
sites where the seasonal cycle is well resolved).” 

Line 737: “the ecological community conforms to expectations in terms of standing stocks” 
This has not been shown. Comparison to Buitenhuis et al. (2013, doi:10.5194/essd-5-227-
2013) would test this statement. Given the different definition of plankton groups, 
comparison could be made to Fig. 5a.  

We have corrected this statement to read “the ecological community conforms to 
expectations in terms of standing stocks and fluxes, both in terms of large-scale spatial 
distributions, and the seasonal cycles at specific locations (Figures 14 and 17)”. 

Minor comments: Line 85: for the how -> for how Line 143: in terms its -> in terms of its Line 
162: modularised -> modular Line 176: a greater intention to explore long timescale -> the 
intention to explore longer timescale Line 262: the the -> the Line 363: level the -> level of 
the Line 421: The O2:C ratio is in fact >1. Anderson and Sarmiento (1994) find it’s 
∼170/117=1.45, so even 138/106 would be quite low, and it would be helpful to justify it. Line 
439: used equations -> used in equations Line 592: in tropical -> in the tropical Line 636: 
Figures 12 and 13 we -> In Figures 12 and 13 we Line 687: Figure 18 -> Figure 17 Line 690: 
is probably too low -> is too low  

We will correct all these errors in the resubmitted manuscript. Note that the O2:CO2 ratio 
was inverted in error. This has been corrected. 

 

 



Ward et al. present a new, size-based, marine ecosystem module for the EMIC “GENIE”, 
called “ECOGEM”, that is intended to replace the simpler module “BIOGEM”. They compare 
the results of two long-term simulations with these different ecosystem modules.  
 
We would like to thank the reviewer for a very thoughtful and constructive review.  

General Comments  

The manuscript is generally well written; the ECOGEM equations are presented in a 
comprehensible way. Since this module has been used in a previous study (Ward et al. 
2012), I will only comment on the specific use of ECOGEM in GENIE. Specifically, I am 
missing a critical discussion concerning ecosystem complexity versus simplifications in 
GENIE and possible problems related to light attenuation, export production (no prognostic 
variable for POC) and the neglect of physical transport of the ecosystem variables.  

In addition, the results section must be improved as there are several shortcomings (see 
below); some figures are poorly explained.  

Specific Comments  

• title, line 158: please use a consistent terminology: either EcoGEnIE or EcoGENIE  

We have changed to GEnIE and EcoGEnIE throughout. 

• line 21: please rephrase: fisheries is not “life in the ocean”  

Changed to “support almost all life in the ocean, including the fish stocks that provide 
essential nutrition to more than half the human population”. 

• line 25: since the reference is the latest but not the most common or original work, 
please use at least e.g. Hülse et al., 2017  

Changed. 

• Figure 1: a similar figure for cGENIE and not only EcoGENIE would be helpful to 
immediately see the differences in complexity  

The figure currently includes the BIOGEM module (cGEnIE & EcoGEnIE) and the 
ECOGEM module (EcoGEnIE only). This think this should be sufficient for 
understanding the relationship between the two models. 

• sections 3.2.5 Photoacclimation/3.2.6 Light attenuation: Please explicitly state that 
“photoacclimation” will not be relevant in this current ESM setup. The light 
attenuation in “GENIE” is overly simplified by assuming an average irradiance for the 
entire surface mixed layer and zero below. The idea to introduce a variable C:Chl 
ratio is mainly to allow for the development of subsurface chlorophyll maxima that do 
not correspond to phytoplankton biomass (carbon) maxima. Since the model 
resolution is too coarse and mean light levels are assumed, the C:Chl- ratio will not 
vary with depth.  

The C:Chl ratio also varies horizontally, as a function of PAR and nutrient availability. 
We included it to make comparisons to satellite data more meaningful. 



lines 406/407: In my experience a minimum concentration of 1 x10−6 mmol C m−3 is high 
and will affect the results significantly; the variability and signals (like extinction) that might 
become relevant on longer time scales will be smeared out. A smaller value should be used 
at least for future studies.  

Thanks for pointing this out. 

• section 3.3.3 Dissolved organic matter: please explicitly state that export production 
within and below the mixed layer is the same (otherwise the figure caption in Figure 5 
is confusing).  

Changed to “implicit production in the surface layer (and the corresponding export 
below the surface layer) is given by…”. 

• section 4.2 Observations: the references for all observations must be properly 
provided (e.g. WOA09 is not sufficient)  

We now cite references for the GLODAPv2 and WOA data used. We also 
acknowledge the source of the SeaWiFs Chl data in the acknowledgements. 

• section 5 Results: the entire section is presented in a very sloppy way. A few more 
explanations about why differences occur between the results of both model 
configurations or between model and observations are necessary. Please also 
provide the units for all quantities in all figures!  

Units are now included for all figures. We also provide a more complete description 
of the results (e.g. description of Figure 18). 

• section 5.1.1 Global surface values: there is general agreement that primary 
production in the Southern Ocean (the largest HNLC area) is limited by iron, which 
explains the high macronutrient (e.g. phosphate) concentrations. ESMs generally 
overestimate the iron concentrations and thus nutrient uptake in the SO. Although 
the phosphate concentrations in the SO (Fig. 3) are difficult to identify, it seems to 
me that this is the case here, too. Is it true?  

The high surface PO4 concentrations in the SO are likely a consequence of low Fe, 
low irradiance (deep mixing) and cold temperatures. 

• line 683: please be more specific. The general statement “Iron limitation in high 
latitude regions” is wrong. As far as I can deduce from Figure 16, iron limitation 
occurs mainly in the Southern Ocean and the western part of the North Subarctic 
Pacific Ocean.  

Fe limitation is clearly seen in all high latitude regions (especially among the larger 
phytoplankton size classes). We have adjusted the text to highlight this in Figure 16. 

“Iron limitation dominates in high latitude regions, especially among larger size 
classes. Among these larger groups, the upwelling zones appear to be characterised 
by iron-phosphorus co-limitation.” 

• line 711: “costs” should be used here instead of “overheads”.  

Changed. 



• all Figures showing spatial maps: what does the number 10000 on the North 
American continent refer to?  

This was the model integration year. It has been removed from all figures. 
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Abstract. We present an extension to the cGENIE
:::::::
cGEnIE

:
Earth System model that explicitly ac-

counts for the growth and interaction of an arbitrary number of plankton species. The new package

(‘ECOGEM’) replaces the implicit, flux-based, parameterisation of the plankton community cur-

rently employed, with explicitly resolved plankton populations and ecological dynamics. In ECOGEM,

any number of plankton species, with ecophysiological traits (e.g. growth and grazing rates) assigned5

according to organism size and functional group (e.g. phytoplankton and zooplankton) can be incor-

porated at run-time. We illustrate the capability of the marine ecology enabled Earth system model

(‘EcoGENIE
:::::::::
EcoGEnIE’) by comparing results from one configuration of ECOGEM (with eight

generic phytoplankton and zooplankton size classes) to climatological and seasonal observations.

We find that the new ecological components of the model show reasonable agreement with both10

global-scale climatological and local-scale seasonal data. We also compare EcoGENIE
:::::::::
EcoGEnIE

results to a the existing biogeochemical incarnation of cGENIE
::::::
cGEnIE. We find that the result-

ing global-scale distributions of phosphate, iron, dissolved inorganic carbon, alkalinity and oxygen

are similar for both iterations of the model. A slight deterioration in some fields in EcoGENIE

:::::::::
EcoGEnIE (relative to the data) is observed, although we make no attempt to re-tune the overall ma-15

rine cycling of carbon and nutrients here. The increased capabilities of EcoGENIE
::::::::
EcoGEnIE

:
in this

regard will enable future exploration of the ecological community on much longer timescales than

have previously been examined in global ocean ecosystem models and particularly for past climates

and global biogeochemical cycles.

1 Introduction20

The marine ecosystem is an integral component of the Earth system and its dynamics. Photosynthetic

plankton ultimately support almost all life in the ocean, including the fisheries
::
fish

::::::
stocks that provide

essential nutrition to more than half the human population (Hollowed et al., 2013). In addition, the

marine biota determine an important downward flux of carbon, known as the ‘biological pump’.

1



This flux arises as biomass generated by photosynthesis in the well-lit ocean surface sinks into the25

dark ocean interior, where it is remineralised (Hülse et al., 2017)
:::::::::::::::::::
(e.g. Hülse et al., 2017). Modulated

by the activity and composition of marine ecosystems, the biological pump increases the partial

pressure of CO2 at depth and decreases it in the ocean surface and atmosphere, and thus plays a

key role in the regulation of Earth’s climate. For instance, the existence of the biological carbon

pump has been estimated to be responsible for an approximately 200 ppm decrease in atmospheric30

carbon concentration at steady state (Parekh et al., 2006), with variations in its magnitude being cited

as playing a key role in, for example, the late Quaternary glacial-interglacial climate oscillations

(Watson et al., 2000; Hain et al., 2014).

A variety of different marine biogeochemical modelling approaches have been developed in an

attempt to understand how the marine carbon cycle functions and its dynamical interaction with35

climate, and to make both past and future projections. In the simplest of these approaches, the bio-

logical pump is incorporated into an ocean circulation (or box) model without explicitly including

any state-variables for the biota. Such models have been described as models of ‘biogenically in-

duced chemical fluxes’ (rather than explicitly of the biology - and ecology - itself; Maier-Reimer,

1993). They vary considerably in complexity, but can be broadly divided into two categories. In the40

first of these – ‘nutrient-restoring’ – models calculate the biological uptake of nutrients at any one

point at the ocean surface as the flux required to maintain surface nutrient concentrations at observed

values (e.g. Bacastow and Maier-Reimer, 1990; Najjar et al., 1992). The vertical flux is then rem-

ineralised at depth according to some attenuating profile, such as that of Martin et al. (1987). Within

this framework, carbon export is typically calculated from the nutrient flux according to a fixed stoi-45

chiometric (‘Redfield’) ratio (Redfield, 1934). In addition to the availability of a spatially explicit (in

the case of ocean circulation models) observed surface ocean nutrient field, nutrient restoring models

inherently only require a single parameter – the restoring time-scale, and even this parameter is not

critical (as long as the time-scale is sufficiently short that the model closely reproduces the observed

nutrient concentrations). The simplicity of this approach lends itself to being able to focus on a very50

specific part of the ecosystem dynamics, namely the downward transport of organic matter, and was

highly influential particularly during the early days of marine biogeochemical model development

and assessment of carbon uptake and transport dynamics (e.g. Marchal et al., 1998; Najjar et al.,

1992). However, because this approach is based explicitly upon observed values (or modified ob-

servations), they are primarily only suitable for diagnostic and modern steady-state applications and55

are unable to model any deviations of nutrient cycling, and hence of climate, from the current ocean

state.

More sophisticated models of biogenically induced chemical fluxes do away with a direct ob-

servational constraint and instead estimate the organic matter export term on the basis of limiting

factors, such as temperature, light and the availability of nutrients such as nitrogen, phosphorous60

and iron – an approach we will here refer to as ‘nutrient-limitation’. Models based on this approach
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(e.g. Bacastow and Maier-Reimer, 1990; Heinze et al., 1991; Archer and Johnson, 2000) were natu-

ral successors to the early nutrient restoring models and could account for the influence of multiple

limiting nutrients and even implicitly partition export between different functional types (Watson

et al., 2000). Without entraining an explicit dependence on observed surface ocean nutrient distribu-65

tions, these models also now gain much more freedom and with it, a degree of predictive capability.

Additionally, other than plausible values for nutrient half-saturation constants, nutrient-limitation

models make few assumptions that are specifically tied to modern observations, and assume very lit-

tle (if anything) about the particular organisms present. Hence, as long as one makes the assumption

that the marine plankton that existed at some specific time in the past were physiologically similar,70

particularly in terms of fundamental nutrient requirements, there is no apparent reason why nutrient-

limitation models will not be as applicable to much of the Phanerozoic in terms of geological past,

as they are to the present (questions of how suitable they might be to the present in the first place,

aside). Using nutrient-limitation flux schemes, marine biogeochemical cycles have hence already

been simulated for periods such as the mid Cretaceous (Monteiro et al., 2012) and end Permian75

(Meyer et al., 2008), times for which surface nutrient distributions are not known a priori.

The disadvantage of both variants of models of biogenically induced chemical fluxes, is that they

are not able to represent interactions between parts of the ecosystem (e.g. resource competition and

predator-prey interactions), simply because these components and processes are not resolved. Nor

can they address questions involving the addition or loss, such as associated with past extinction80

events, of plankton species and changes in ecosystem complexity and/or structure. They also suffer

from being overly responsive to changes in nutrient availability. In the case of restoring models

this is simply because any change in the target field will be closely tracked. In the case of the

nutrient-limitation models, the lack of an explicit biomass term results in export fluxes changing

instantaneously in response to changing limiting factors. In the real world, by contrast, sufficient85

biomass must first exist, such as in a bloom condition, in order to achieve maximal export. This has

consequences for the how the seasonality of organic matter export is represented. Other restrictions

include the inability to know anything about ecosystem size structure (and, by association, about

particle sinking speed), or the degree of recycling at the ocean surface and hence the partitioning of

carbon into dissolved vs. particulate phases in exported organic matter.90

To allow models to respond to changes in ecosystem structure, and to incorporate some of the ad-

ditional feedbacks and complexities that may be important in determining the future marine response

to continued greenhouse gas emissions (Le Quéré et al., 2005), it has been necessary to explicitly

resolve the ecosystem itself. Such models have been developed across a wide range of complexities

(Kwiatkowski et al., 2014). Among the simplest are ‘NPZD’ type models, resolving a single nutrient,95

homogenous phytoplankton and zooplankton communities, and a single detrital pool (Wroblewski

et al., 1988; Oschlies, 2001). At the other end of the spectrum, more complex models may include

multiple nutrients and several ‘Plankton Functional Types’ (PFTs) (e.g. Aumont et al., 2003; Moore
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et al., 2002; Le Quéré et al., 2005). What links these models is that the living state variables are very

broadly based on ecological guilds (i.e. groups of organisms that exploit similar resources).100

While simple NPZD models are capable of reproducing some of the observed variability in bulk

properties such as chlorophyll biomass and primary production (Schartau and Oschlies, 2003b; Yool

et al., 2013; Ward et al., 2013), their very simplicity precludes the representation of many potentially

important biogeochemical processes and climate feedbacks. Additionally, NPZD models are param-

eterised to represent the activity of diverse plankton communities, with different parameter values105

being required as the ecosystem changes in space and time (Schartau and Oschlies, 2003a; Losa

et al., 2006). In this regard, PFT models may be more generally applicable because they resolve rel-

atively more fundamental ecological processes that may be less sensitive to environmental variability

(Friedrichs et al., 2007). These are the key factors that have motivated the development of more com-

plex models, in which the broad ecological guilds of NPZD models are replaced with more specific110

groups based on ecological and/or biogeochemical function (Aumont et al., 2015; Butenschön et al.,

2016). It is argued that resolving more components of the ecosystem allows the representation of

important climate feedbacks that cannot be accounted for in simpler models (Le Quéré, 2006).

However, alongside their advantages, the current generation of PFT models are faced with two im-

portant and conflicting challenges. Firstly, these complex models contain a large number of param-115

eters that are often poorly constrained by observations (Anderson, 2005). Secondly, although PFT

models resolve more ecological structure than the preceding generation of ocean ecosystem mod-

els, they are rarely general enough to perform well across large environmental gradients (Friedrichs

et al., 2006, 2007; Ward et al., 2010). To these, one might add difficulties in their application to past

climates. PFT models are based on a conceptual reduction of the modern marine ecosystem to its120

apparent key biogeochemical components, such as nitrogen fixation, or opal frustule production (as

by diatoms). The role of diatoms and the attendant cycling of silica quickly becomes moot once one

looks back in Earth history as the origin of diatoms is thought to be sometime early in the Meso-

zoic (252-66 Ma) and they did not proliferate and diversify until later in the Cenozoic (66-0 Ma)

(Falkowski et al., 2004). In addition, the physiological details of each species encoded in the model125

are taken directly from laboratory culture experiments of isolated strains (Le Quéré et al., 2005)

creating a parameter-dependence on modern cultured species, in addition to a structural one.

Recent studies have begun to address these issues by focussing on the more general rules that

govern diversity (rather than by trying to quantify and parameterise the diversity itself). These ‘trait-

based’ models are beginning to be applied in the field of marine biogeochemical modelling (e.g.130

Follows et al., 2007; Bruggeman and Kooijman, 2007), with a major advantage being that they are

able to resolve greater diversity with fewer specified parameters. One of the main challenges of this

approach then is to identify the general rules or trade-offs that govern competition between organ-

isms (Follows et al., 2007; Litchman et al., 2007). These trade-offs are often strongly constrained

by organism size. A potentially large number of different plankton size classes can therefore be pa-135
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rameterised according to well known allometric relationships linking plankton physiological traits

to organism size (e.g. Tang, 1995; Hansen et al., 1997). This approach has the associated advan-

tage that the size composition of the plankton community affects the biogeochemical function of

the community (e.g. Guidi et al., 2009). If one assumes that the same allometric relationships and

trade-offs are relatively invariant with time, then this approach provides a potential way forward to140

addressing geological questions.

In this paper we present an adaptable modelling framework with an ecological structure that can

be easily adapted according to the scientific question at hand. The model is formulated so that all

plankton are described by the same set of equations, and any differences are simply a matter of

parameterisation. Within this framework, each plankton population is characterised in terms
::
of

:
its145

size-dependent traits and its distinct functional type. The model also includes a realistic physiological

component, based on a cell quota model (Caperon, 1968; Droop, 1968) and a dynamic photoacclima-

tion model (Geider et al., 1998). This physiological component increases model realism by allowing

phytoplankton to flexibly take up nutrients according to availability, rather than according to an un-

realistically rigid cellular stoichiometry. Such flexible stoichiometry is rarely included in large-scale150

ocean models, and provides the opportunity to study the links between plankton physiology, ecolog-

ical competition, and biogeochemistry. This model is then embedded within an Earth system model

(cGENIE
::::::
cGEnIE) widely used in addressing questions of past climate and carbon cycling, and the

overall properties of the model system are evaluated.

The structure of this paper is as follows. In Section ??
:
2 we will briefly outline the nature and prop-155

erties of the cGENIE
::::::
cGEnIE

:
Earth system model, focussing on the ocean circulation and marine

biogeochemical modules most directly relevant to the simulation of marine ecology. In Section 3,

we introduce the new ecological model – ECOGEM – that has been developed within the cGENIE

::::::
cGEnIE

:
framework. Section 4 describes the preliminary experiments of ECOGEM, and Section 5

presents results from the new integrated global model (EcoGEnIE) in comparison to observations160

(where available) as well as to the pre-existing biogeochemical simulation of cGENIE
::::::
cGEnIE.

2 The GENIE
::::::
GEnIE/cGENIE

:::::::
cGEnIE Earth system model

GENIE
::::::
GEnIE

:
is an ‘Earth system model of intermediate complexity’ (EMIC) (Claussen et al.,

2002) and is based on a modularised
:::::::
modular framework that allows different components of the

Earth system, including ocean circulation, ocean biogeochemistry, deep-sea sediments and geochem-165

istry, to be incorporated (Lenton et al., 2007). The simplified atmosphere and carbon-centric version

of GENIE
::::::
GEnIE we use – cGENIE

::::::
cGEnIE – has been previously applied to explore and under-

stand the interactions between biological productivity, biogeochemistry and climate over a range

of timescales and time periods (e.g., Ridgwell and Schmidt, 2010; Monteiro et al., 2012; Norris

et al., 2013; John et al., 2014; Gibbs et al., 2015; Meyer et al., 2016; Tagliabue et al., 2016). As is170
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common for EMICs, cGENIE
::::::
cGEnIE features a decreased spatial and temporal resolution in order

to facilitate the efficient simulation of the various interacting components. This imposes limits on

the resolution of ecosystem dynamics to large-scale annual/seasonal patterns in contrast to higher

resolutions often used to model modern ecosystems. However, our motivation for incorporating a

new marine ecosystem module into cGENIE
::::::
cGEnIE

:
is to focus on the explicit interactions between175

ecosystems, biogeochemistry and climate that are computationally prohibitive in higher resolution

models. In other words, our motivation is to include and explore a more complete range of interac-

tions and dynamics within the marine system, at the expense of spatial fidelity and with a greater

::
the

:
intention to explore long timescale and paleoceanographic questions, rather than short-term and

future anthropogenic concerns.180

2.1 Ocean physics and climate model component – C-GOLDSTEIN

The fast climate model, C-GOLDSTEIN features a reduced physics (frictional geostrophic) 3-D

ocean circulation model coupled to a 2-D energy-moisture balance model of the atmosphere and a

dynamic-thermodynamic sea-ice model. Full descriptions of the model can be found in Edwards and

Marsh (2005a) and Marsh et al. (2011).185

The circulation model calculates the horizontal and vertical transport of heat, salinity, and bio-

geochemical tracers via the combined parameterisation for isoneutral diffusion and eddy-induced

advection (Edwards and Marsh, 2005a; Marsh et al., 2011). The ocean model is configured on a

36 ⇥ 36 equal-area horizontal grid with 16 logarithmically spaced z-coordinate levels. The horizon-

tal grid is generally constructed to be uniform in longitude (10� resolution) and uniform in the sine190

of latitude (varying in latitude from ⇠3.2� at the equator to 19.2� near the poles). The thickness of

the vertical grid increases with depth, from 80.8 m at the surface, to as much as 765 m at depth. The

degree of spatial and temporal abstraction in C-GOLDSTEIN results in parameter values that are

not well known and require calibration against observations. The parameters for C-GOLDSTEIN

were calibrated against annual mean climatological observations of temperature, salinity, surface air195

temperature and humidity using the ensemble Kalman filer (EnKF) methdology (Hargreaves et al.,

2004; Ridgwell et al., 2007a). The parameter values for C-GOLDSTEIN used are those reported for

the 16-level model in Table S1 of Cao et al. (2009) under “GENIE16
::::::::
GEnIE16”. C-GOLDSTEIN is

run with 96 time-steps per year. The resulting circulation is dynamically similar to that of classical

GCMs based on the primitive equations but is significantly faster to run and in this configuration per-200

forms well against standard tests of circulation models such as anthropogenic CO2 and CFC uptake,

as well as reproducing the deep ocean radiocarbon (�14C) distribution (Cao et al., 2009).

2.2 Ocean biogeochemical model component – BIOGEM

Transformations and spatial redistribution of biogeochemical compounds both at the ocean surface

(by biological uptake) and in the ocean interior (remineralisation), plus air-sea gas exchange, are han-205

6



dled by the module BIOGEM. In the pre-existing version of BIOGEM the biological (soft-tissue)

pump is driven by an implicit (i.e. unresolved) biological community (in place of an explicit repre-

sentation of living microbial community). It is therefore a nutrient limitation variant of a model of

biogenically induced chemical fluxes, as outlined above. A full description can be found in (Ridgwell

et al., 2007a; Ridgwell and Death, in prep.).210

In this study, we use a seasonally insolation forced, 16-level ocean model configuration, similar

to that of Cao et al. (2009). However, in the particular biogeochemical configuration we use, lim-

itation of biological uptake of carbon is provided by the availability of two nutrients. In addition

to phosphate, we now include an iron cycle following (Tagliabue et al., 2016). This aspect of the

model is determined by a revised set of parameters controlling the iron cycle (Ridgwell and Death,215

in prep.). We also incorporate a series of minor modifications to the climate model component, par-

ticularly in terms of the ocean grid and wind velocity and stress forcings (consistent with Marsh

et al., 2011) together with associated changes to several of the physics parameters. A complete de-

scription and evaluation of the physical and biogeochemical configuration of cGENIE
:::::::
cGEnIE is

provided in (Ridgwell and Death, in prep.).220

3 Ecological model component – ECOGEM

The current BIOGEM module in cGENIE
::::::
cGEnIE

:
does not explicitly resolve the biological com-

munity and instead transforms surface inorganic nutrients directly into export:

• inorganic nutrients production�������!
and export

DOM and remineralised nutrients

This simplification greatly facilitates the efficient modelling of the carbon cycle over long time225

scales, but with the associated caveats of an implicit scheme (as discussed earlier). In ECOGEM,

biological uptake is again limited by light, temperature and nutrient availability, but here it must

pass through an explicit and dynamic intermediary plankton community, before being returned to

DOM or dissolved inorganic nutrients:

• inorganic nutrients production�������! living biomass export����! DOM and remineralised nutrients230

The ecological community is also subject to respiration, mortality and internal trophic interactions,

and will produce both inorganic compounds and organic matter. The structural relationship between

BIOGEM and ECOGEM is illustrated in Figure 1.

In the following section we outline the key state variables directly relating to ecosystem function

(Section 3.1), describe the mathematical form of the key rate processes relating to each state variable235

(Section 3.2) and how they link together (Section 3.3). We will then describe the parameterisation

of the model according to organism size and functional type (Section 3.4). The model equations

are modified from Ward et al. (2012). We provide all the equations used in ECOGEM here, but we
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Figure 1. Schematic representation of the coupling between BIOGEM and ECOGEM. State variables: R =

inorganic element (i.e. resource), B = plankton biomass, OM = organic matter. Subsripts B and E denote

state variables in BIOGEM and ECOGEM, respectively. BIOGEM passes resource biomass R to ECOGEM.

ECOGEM passes rates of change (�) in R and OM back to BIOGEM.

provide only brief descriptions of the parameterisations and parameter value justifications already

included in Ward et al. (2012).240

3.1 State variables

ECOGEM state variables are organised into three matrices (Table 1), representing ecologically-

relevant biogeochemical tracers (hereafter referred to as ‘nutrient resources’), plankton biomass and

organic matter. All these matrices have units of mmol element m�3, with the exception of the dy-

namic chlorophyll quota, which is expressed in units of mg chlorophyll m�3. The nutrient resource245

matrix (R) includes Ir distinct inorganic resources. The plankton community (B) is made up of J

individual populations, each associated with Ib cellular nutrient quotas. Finally organic matter (D)

is made up of K size classes of organic matter, each containing id organic nutrient element pools.

(Note that strictly speaking, detrital organic matter is not explicitly resolved as a state variable in
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ECOGEM as we currently only resolve the production of organic matter, which is passed to BIO-250

GEM and held there as a state variable. As a consequence, there is no grazing on detrital organic

matter in the current configuration of EcoGENIE
::::::::
EcoGEnIE. We include a description of D and its

relationships here for completeness and for convenience of notation.)

Table 1. State variable index notation.

State variable Dimensions Index Size Available elements

R Resource element ir Ir DIC, PO4, F e

B
Plankton class j J 1, 2, . . . , J

Cellular quota ib Ib C, P, Fe, Chl

D
Organic matter size class k K DOM, POM

Detrital nutrient element id Id C, P, Fe

3.1.1 Inorganic resources

R is a row vector of length Ir, the number of dissolved inorganic nutrient resources.255

R=
h
DIC PO4 Fe

i
(1)

An individual inorganic resource is denoted by the appropriate subscript. For example, PO4 is de-

noted RPO4 .

3.1.2 Plankton biomass

B is a J⇥Ib matrix, where J is the number of plankton populations and Ib is the number of cellular260

quotas, including chlorophyll.

B=

2

666664

B1,C B1,P B1,Fe B1,Chl

B2,C B2,P B2,Fe B2,Chl

...
...

...
...

BJ,C BJ,P BJ,Fe BJ,Chl

3

777775
(2)

Each population and element is denoted by an appropriate subscript. For example, the total carbon

biomass of plankton population j is denoted Bj,C , while the chlorophyll biomass of that population

is denoted Bj,Chl. The column vector describing the the carbon content of all plankton populations265

is denoted BC .

This framework can account for competition between (in theory) any number of different plankton

populations. The model equations (below) are written in terms of an ‘ideal’ planktonic form, with

the potential to exhibit the full range of ecophysiological traits (among those that are included in

the model). Individual populations may take on a realistic subset of these traits, according to their270
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assigned ‘plankton functional type’ (PFT) (see Section 3.4.1). Each population is also assigned a

characteristic size, in terms of equivalent spherical diameter (ESD) or cell volume. Organism size

plays a key role in determining each population’s ecophysiological traits (see Section 3.4.2).

3.1.3 Organic detritus

D is a K⇥ Id matrix, where K is the number of detrital size classes and Id is the number of detrital275

nutrient elements.

D=

2

4 D1,C D1,P D1,Fe

D2,C D2,P D2,Fe

3

5 (3)

Each size class and element is denoted by an appropriate subscript. For example, dissolved organic

phosphorus (size class k = 1) is denoted D1,P , while particulate organic iron (size class k = 2) is

denoted D2,Fe.280

3.2 Plankton physiology and ecology

The rates of change in each state variable within ECOGEM are defined by a range of ecophysiolog-

ical processes. These are defined by a set of mathematical functions that are common to all plankton

populations. Parameter values are defined in Section 3.4.

3.2.1 Temperature limitation285

Temperature affects a wide range of metabolic processes through an Arrenhius-like equation that is

here set equal for all plankton.

�T = e
A(T�Tref ) (4)

The parameter A describes the temperature sensitivity, T is the ambient water temperature in degrees

C, and Tref is a reference temperature (also in degrees C) at which �T = 1.290

3.2.2 The plankton ‘quota’

The physiological status of a plankton population is defined in terms of its cellular nutrient quota, Q,

which is the ratio of assimilated nutrient (phosphorus or iron) to carbon biomass. For each plankton

population, j, and each planktonic quota, ib ( 6= C),

Qj,ib =
Bj,ib

Bj,C

(5)295

This equation is also used to describe the population chlorophyll content relative to carbon biomass.

The size of the quota increases with nutrient uptake , chlorophyll synthesis, or the loss of carbon
::
or

:::::::::
chlorophyll

::::::::
synthesis. The quota decreases through the acquisition of carbon (described below).
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Excessive accumulation of P or Fe biomass in relation to carbon is prevented as the uptake or

assimilation of each nutrient element is down-regulated as the respective quota becomes full. The300

generic form of the uptake regulation term for element ib is given by a linear function of the nutrient

status, modified by an additional shape-parameter (h=0.1)
:::::::::::::::::::::::
(h=0.1; Geider et al., 1998) that allows

greater assimilation under low-to-moderate resource limitation.

Q
stat

j,ib
=

✓
Q

max

j,ib
�Qj,ib

Qmax

j,ib
�Qmin

j,ib

◆h

(6)

3.2.3 Nutrient uptake305

Phosphate and dissolved iron (ir = ib = P or Fe) are taken up as functions of environmental avail-

ability ([Rir ]), maximum uptake rate (V max

j,ir
), the nutrient affinity (↵j,ir ), the quota satiation term,

(Qstat

j,ib
) and temperature limitation (�T):

Vj,ir =
V

max

j,ir
↵j,ir [Rir ]

V max

j,ir
+↵j,ir [Rir ]

Q
stat

j,ib
· �T (7)

This equation is effectively equivalent to the Michaelis-Menten type response, but replaces the half-310

saturation constant with the more mechanistic nutrient affinity, ↵j,ir .

3.2.4 Photosynthesis

The photosynthesis model is modified from Geider et al. (1998) and Moore et al. (2002). Light-

limitation is calculated as a Poisson function of local irradiance (I), modified by the iron-dependent

initial slope of the P-I curve (↵ · �j,Fe) and the chlorophyll-a-to-carbon ratio (Qj,Chl).315

�j,I =
h
1� exp

⇣�↵ · �j,Fe ·Qj,Chl · I
P sat

j,C

⌘i
(8)

Here P
sat

j,C
is maximum light-saturated growth rate, modified from an absolute maximum rate of

P
max

j,C
, according to the current nutrient and temperature limitation terms.

P
sat

j,C
= P

max

j,C
· �T ·min

⇥
�j,P, �j,Fe

⇤
(9)

The nutrient-limitation term is given as a minimum function of the internal nutrient status (Droop,320

1968; Caperon, 1968; Flynn, 2008), each defined by normalised hyperbolic functions for P and Fe

(ib = P or Fe),

�j,ib =
1�Q

min

j,ib
/Qj,ib

1�Qmin

j,ib
/Qmax

j,ib

, (10)

The gross photosynthetic rate (Pj,C) is then modified from P
sat

j,C
by the light-limitation term.

Pj,C = �j,IP
sat

j,C
(11)325

Net carbon uptake is given by

Vj,C = Pj,C � ⇠ ·Vj,P (12)
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With the second term accounting for the metabolic cost of biosynthesis (⇠). This parameter was

originally defined as a loss of carbon as a fraction of nitrogen uptake (Geider et al., 1998). We define

it here relative to phosphate uptake, using a fixed N:P ratio of 16.330

3.2.5 Photoacclimation

The chlorophyll-to-carbon ratio is regulated as the cell attempts to balance the rate of light capture

by chlorophyll with the maximum potential (i.e. light-replete) rate of carbon fixation. Depending

on this ratio, a certain fraction of newly assimilated phosphorus is diverted to the synthesis of new

chlorophyll a,335

⇢j,Chl = ✓
max

P

Pj,C

↵ · �j,Fe ·Qj,Chl · I
(13)

Here ⇢j,Chl is the amount of chlorophyll a that is synthesised for every mmol of phosphorus assim-

ilated (mg Chl (mmol P)�1) with ✓
max

P
representing the maximum ratio (again converting from the

nitrogen based units of Geider et al., 1998, with a fixed N:P ratio of 16). If phosphorus is assimilated

at carbon specific rate Vj,P (mmol P (mmol C)�1 d�1), then the carbon specific rate of chlorophyll340

a synthesis (mg chl (mmol C)�1 d�1) is

Vj,Chl = ⇢j,Chl ·Vj,P (14)

3.2.6 Light attenuation

ECOGEM
::
In

::::
both

:::::::::
BIOGEM

:::
and

::::::::::
ECOGEM,

:::
the

:::::::::
incoming

::::::::
shortwave

:::::
solar

::::::::
radiation

::::::::
intensity

::
is

::::
taken

:::::
from

::
the

:::::::
climate

:::::::::
component

::
in

:::::::
cGEnIE

:::
and

:::::
varies

:::::::::
seasonally

:::::::::::::::::::::::::::::::::::::::
(Edwards and Marsh, 2005b; Marsh et al., 2011)345

:
.
::::::::
However,

:::::::::
ECOGEM uses a slightly more complex light attenuation scheme than BIOGEM, which

simply calculates a mean solar (shortwave) irradiance averaged over the depth of the surface layer,

and assuming a length
::::::::
assuming

:
a
:::::::::
clear-water

::::
light

::::::::::
attenuation scale of 20 m over which light decays

(Doney et al., 2006). BIOGEM then takes this mean irradiance and applies a Michaelis-Menten like

limitation term, assuming a half saturation value for light of 20 W m�2 (Doney et al., 2006). At the350

ocean surface, the incoming shortwave solar radiation intensity is taken from the climate component

in cGENIE and varies seasonally (Edwards and Marsh, 2005b; Marsh et al., 2011).
::::::::::::::::
(Doney et al., 2006)

:
.

In ECOGEM the light level is calculated as the mean level of photosynthetically available radia-

tion within a variable mixed layer (with depth calculated according to Kraus and Turner, 1967). We355

also take into account inhibition of light penetration due to the presence of light absorbing particles

and dissolved molecules (Shigsesada and Okubo, 1981). If Chltot is the total chlorophyll concentra-

tion in the surface layer (of thickness Z1), and ZML is the mixed-layer depth, the virtual chlorophyll

concentration distributed across the mixed layer is given by

ChlML = Chltot
Z1

ZML

(15)360
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The combined light-attenuation coefficient attributable to both water and the virtual chlorophyll

concentration is given by

ktot = kw + kchl ·ChlML (16)

For a given level of photosynthetically available radiation at the ocean surface (I0), plankton in the

surface grid box experience the average irradiance within the mixed layer, which is given by365

I =
I0

ktot

1

ZML

(1� e
(�ktot·ZML)) (17)

3.2.7 Predation (including both herbivorous and carnivorous interactions)

Here we define predation simply as the consumption of any living organism, regardless of the trophic

level
::
of the organism (i.e. phytoplankton or zooplankton prey).

The predator-biomass-specific grazing rate of predator (jpred) on prey (jprey) is given by,370

Gjpred,jprey,C = �T ·Gmax

jpred,C
·

Fjpred,C

kjprey,C +Fjpred,C| {z }
overall grazing rate

·�jpred,jprey| {z }
switching

·(1� e
⇤·Fjpred,C)| {z }

prey refuge

(18)

where �T is the temperature-dependence, Gmax

jpred,C
is the maximum grazing rate, and kjprey,C is the

half-saturation concentration for all (available) prey. The overall grazing rate is a function of total

food available to the predator, Fjpred,C. This is given by the product of the prey biomass vector, BC,375

and the grazing kernel (�),

FC
[Jpred⇥1]

= �
[Jpred⇥Jprey]

BC
[Jprey⇥1]

(19)

Note that this equation is written out in matrix form, with the dimensions noted underneath each ma-

trix. Each element of the grazing matrix � is an approximately log-normal function of the predator-

to-prey length ratio, #jpred,jprey , with an optimum ratio of #opt and a geometric standard deviation380

�jpred .

�jpred,jprey = exp
h
�
⇣
ln
�#jpred,jprey

#opt

�⌘2

/
�
2�2

jpred

�i
(20)

We also include an optional ‘prey-switching’ term, such that predators may preferentially attack

those prey that are relatively more available (i.e. active switching, s= 2). Alternatively they may

attack prey in direct proportion to their availability (i.e. passive switching, s= 1). In the simulations385

below we assume active switching.

�jpred,jprey =
(�jpred,jpreyBjprey,C)

s

P
J

jprey=1
(�jpred,jpreyBjprey,C)

s
(21)

Finally, a prey refuge function is incorporated, such that the overall grazing rate is decreased when

the availability of all prey (Fjpred,C) is low. The size of the prey refuge is dictated by the coefficient

13



⇤. The overall grazing response is calculated on the basis of prey carbon. Grazing losses of other390

prey elements are simply calculated from their stoichiometric ratio to prey carbon, with different

elements assimilated according to the predator’s nutritional requirements (see below).

Gjpred,jprey,ib =Gjpred,jprey,C

Bjprey,ib

Bjprey,C

(22)

3.2.8 Prey assimilation

Prey biomass is assimilated into predator biomass with an efficiency of �jpred,ib (ib 6= Chl). This395

has a maximum value of �max that is modified according the the quota status of the predator. For

elements ib = P or Fe, prey biomass is assimilated as a function of the respective predator quota. If

the quota is full, the element is not assimilated. If the quota is empty, the element is assimilated with

maximum efficiency (�max).

�jpred,ib = �
max

Q
stat

j,ib
(23)400

C assimilation is regulated according to the status of the most limiting nutrient element (P or Fe)

modified by the same shape-parameter, h, that was applied in Equation 6.

Q
lim

j,ib
=

✓
Qj,ib �Q

min

j,ib

Qmax

j,ib
�Qmin

j,ib

◆h

(24)

If both nutrient quotas are full, C is assimilated at the maximum rate. If either are empty, C assimi-

lation is down-regulated until sufficient quantities of the limiting element(s) are acquired.405

�jpred,C = �
maxmin

�
Q

lim

j,P
,Q

lim

j,Fe

�
(25)

3.2.9 Respiration

A linear respiration rate is applied to degrade plankton carbon biomass into dissolved inorganic

carbon. This is achieved through a J by Ir respiration matrix, r, which is non-zero only for ir =DIC.

410

3.2.9 Death

All living biomass is subject to a linear mortality rate of mp. This rate is decreased at very low

biomasses (population carbon biomass . 1⇥10�6 mmol C m�3) in order to maintain a viable

population within every surface grid cell (“everything is everywhere, but the environment selects”,

Baas-Becking, 1934).415

mj =mp(1� e
�10

10·Bj,C ) (26)

The low biomass at which a population attains ‘immortality’ is sufficiently small for that population

to have a negligible impact on all other components of the ecosystem.
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3.2.10 Calcium carbonate

The production and export of calcium carbonate (CaCO3) by calcifying plankton in the surface420

ocean is scaled to the export of particulate organic carbon via a spatially-uniform value which is

modified by a thermodynamically-based relationship with the calcite saturation state. The dissolu-

tion of CaCO3 below the surface is treated in a similar way to that of particulate organic matter

(equation 32), as described by Ridgwell et al. (2007a) with the parameter values controlling the

export ratio between CaCO3 and POC taken from Ridgwell et al. (2007b).425

3.2.11 Oxygen

Oxygen production is coupled to photosynthetic carbon fixation via a fixed linear ratio, such that

Vj,O2 =�106

138

138

106
:::

Vj,DICBj,C (27)

The negative sign indicates that oxygen is produced as DIC is consumed. Oxygen consumption

associated with the remineralisation of organic matter is unchanged relative to BIOGEM.430

3.2.12 Alkalinity

Production of alkalinity is coupled to planktonic uptake of PO4 via a fixed linear ratio, such that

Vj,Alk =�16Vj,PO4 ·Bj,C (28)

The negative sign indicates that alkalinity increases as PO4 is consumed. This relationship accounts

for alkalinity changes associated with N transformations (Zeebe and Wolf-Gladrow, 2001) that are435

not explicitly represented in the biogeochemical configurations of cGENIE
:::::::
cGEnIE that are applied

here.

3.2.13 Production of organic matter

Plankton mortality and grazing are the only two sources of organic matter, with partitioning between

non-sinking dissolved and sinking particulate phases determined by the parameter �j . In this initial440

implementation of ECOGEM, for traceability, the assumptions are the same as made in the current

version of BIOGEM (Ridgwell and Death, in prep.) which themselves follow the OCMIP2 ocean

carbon cycle modelling intercomparison protocol described in Najjar et al. (2007). Specifically, �j

is set to a fixed fraction � for all size classes.

3.3 Differential equations445

Differential equations for R, B and D are written below. The dimensions of each matrix and vector

used
::
in

:
equations 29 to 31 are given in Table 1. Note that while R and OM are transported by

the physical component of GENIE
:::::
GEnIE, living biomass B is not currently subject to any physical
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transport. The only communication between biological communities in adjacent grid cells is through

the advection and diffusion of inorganic resources and non-living organic matter in BIOGEM. Note450

that some additional sources and sinks of R, and all sinks of D, are computed in BIOGEM.

3.3.1 Inorganic resources

For each inorganic resource, ir,

@Rir

@t
=

JX

j=1

�Vj,ir ·Bj,C| {z }
uptake

+respiration (29)

3.3.2 Plankton biomass455

For each plankton class, j, and internal biomass quota, ib,

@Bj,ib

@t
=+Vj,ib ·Bj,C| {z }

uptake

� mj ·Bj,ib| {z }
basal mortality

�respiration +Bj,C ·�j,ib

JX

jprey=1

Gj,jprey,ib

| {z }
grazing gains

�
JX

jpred=1

Bjpred,C ·Gjpred,j,ib

| {z }
grazing losses

(30)

3.3.3 Dissolved organic matter

For each detrital nutrient element, id, the rate of change of dissolved fraction of organic matter

(k = 1) is described by460

@D1,id

@t
=

JX

j=1

[Bj,id ]�jmj

| {z }
mortality

+
JX

jpred=1

[Bjpred,C](1��jpred,ib)
JX

jprey=1

�jpreyGjpred,jprey,id

| {z }
messy feeding

(31)

Dissolved organic matter
:::
The

::::::::
dissolved

:::::::
organic

::::::
matter

::::::
vector (D1) is an explicit tracer that is

:::::::
includes

::::
three

:::::::
explicit

:::::
tracers

::::
that

:::
are transported by the ocean circulation model and is

:::
are degraded

back to its
:::
their

:
constituent nutrients with a fixed turnover time of � (= 0.5 years). Particulate organic

matter (POM) is not represented as an explicit state variable
::::
with

::::::
explicit

::::
state

::::::::
variables

:
in either465

ECOGEM or BIOGEM. Instead, its implicit production in the surface layer
::::
(and

:::
the

::::::::::::
corresponding

:::::
export

:::::
below

:::
the

:::::::
surface

:::::
layer) is given by

Fsurface,id =
JX

j=1

[Bj,id ](1��j)mj

| {z }
mortality

+
JX

jpred=1

[Bjpred,C](1��jpred,ib)
JX

jprey=1

(1��jprey)Gjpred,jprey,id

| {z }
messy feeding

This surface production is redistributed throughout the water column as a depth dependent flux,

Fz,id . To achieve this, Fsurface,id is partitioned between a ‘refractory’ component (rPOM) that is pre-470

dominantly remineralised close to the seafloor, and a ‘labile’ component (1� r
POM) which predom-

inantly remineralises in the upper water column. The net remineralisation at depth z, relative to the
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export depth z0 is determined by characteristic length scales (lrPOM and l
POM for ‘refractory’ and

‘labile’ POM respectively):

Fz,id = Fsurface,id

h
(1� r

POM) · exp(
z0 � z

lPOM )+ r
POM · exp(

z0 � z

lrPOM )
i

(32)475

The remineralisation length scales reflect a constant sinking speed and constant remineralisation

rate. All POM reaching the seafloor is remineralised instantaneously. See Ridgwell et al. (2007a) for

a fuller description and justification.

3.3.4 Coupling to BIOGEM

The calculations in BIOGEM are performed 48 times for each model year (i.e. once for every 2 time-480

steps taken by the ocean circulation mode). ECOGEM takes 20 time steps for each BIOGEM time-

step i.e. 960 time-steps per year). At the beginning of each ECOGEM time-step loop, concentrations

of inorganic tracers and key properties of the physical environment are passed from BIOGEM. The

ecological community responds by transforming inorganic compounds into living biomass through

photosynthesis. At the end of each ECOGEM time step loop, the rates of change in R and OM485

are passed back to BIOGEM. @R/@t is used to update DIC, phosphate, iron, oxygen and alkalinity

tracers, while @D1/@t is added to the dissolved organic matter pools. The rate of particulate organic

matter production, @D2/@t is instantly remineralised at depth using to the standard BIOGEM export

functions described above (equation 32). @B
@t

is used only to update the living biomass concentrations

within ECOGEM. The structure of the coupling is illustrated in Figure 1.490

In the initial implementation of ECOGEM described and evaluated here, the explicit plankton

community is held entirely within the ECOGEM module and is not subject to physical transport

(e.g. advection and diffusion) by the ocean circulation model (although dissolved tracers such as

nutrients still are). As a first approximation, this approach appears to be acceptable, as long as the

rate of transport between the very large grid cells in cGENIE
::::::
cGEnIE

:
is slow in relation to the495

net growth rates of the plankton community. On-line advection of ecosystem state variables will be

implemented and its consequences explored in a future version of EcoGENIE
:::::::::
EcoGEnIE.

3.4 Ecophysiological parameterisation

The model community is made up of a number of different plankton populations, with each one

described according to the same set of equations, as outlined above. Differences between the pop-500

ulations are specified according to individual parameterisation of the equations. In the following

sections, we describe how the members of the plankton community are specified, and how their

parameters are assigned according to the organism’s size and taxonomic group.
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3.4.1 Model structure

The plankton community in ECOGEM is designed to be highly configurable. Each population505

present in the initial community is specified by a single line in an input text file, which describes

the organism size and taxonomic group.

In this configuration we include 16 plankton populations across eight different size classes. These

are divided into two PFTs, namely, “Phytoplankton” and ”Zooplankton” (see Table 2). The eight

phytoplankton populations have nutrient uptake and photosynthesis traits enabled, and predation510

traits disabled, whereas the opposite is true for the eight zooplankton populations. In future we

expect to bring in a wider range of trait-based functional types, including siliceous plankton (e.g.

Follows et al., 2007), calcifiers (Monteiro et al., 2016), nitrogen fixers (Monteiro et al., 2010), and

mixotrophs (Ward and Follows, 2016).

Table 2. Plankton functional groups and sizes in the standard run.

j PFT ESD (µm)

1 Phytoplankton 0.6

2 Phytoplankton 1.9

3 Phytoplankton 6.0

4 Phytoplankton 19.0

5 Phytoplankton 60.0

6 Phytoplankton 190.0

7 Phytoplankton 600.0

8 Phytoplankton 1900.0

j Functional Type ESD (µm)

11 Zooplankton 0.6

12 Zooplankton 1.9

13 Zooplankton 6.0

14 Zooplankton 19.0

15 Zooplankton 60.0

16 Zooplankton 190.0

17 Zooplankton 600.0

18 Zooplankton 1900.0

3.4.2 Size-dependent traits515

With the exception of the maximum photosynthetic rate (Pmax

C
, see below), the size-dependent eco-

physiological parameters (p) given in Table 3 are assigned as power-law functions of organismal

volume (V = ⇡[ESD]3/6) according to standard equations of the form,

p= a

⇣
V

V0

⌘b

(33)

Here V0 is a reference value of V0 = 1 µm3. The value of p at V = V0 is given by the coefficient a,520

while the rate of change in p as a function of V is described by the exponent b.

The maximum photosynthetic rate (Pmax

C
) of very small cells (i.e. . 5 µm ESD) has been shown

to deviate from the standard power law of equation 33 (Raven, 1994; Bec et al., 2008; Finkel et al.,

2010), so we use the slightly more complex unimodal function given by Ward and Follows (2016).

P
max

C
=

pa + log10(
V

V0
)

pb + pc log10(
V

V0
)+ log10(

V

V0
)2

(34)525
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The parameters of this equation (listed in Table 3), were derived empirically from the data of

Marañón et al. (2013).

Table 3. Size-dependent ecophysiological parameters (p) and their units, with size-scaling coefficients (a, b

and c) for use in equations 33 and 34.

Parameter Symbol Size-scaling coefficients Units

p a b c

Inorganic nutrient uptake

Maximum photosynthetic rate Pmax

C
3.08 5.00 -3.80 mmol N (mmol C)�1 d�1

Maximum nutrient uptake rates V max

PO4
4.4⇥10�2 0.06 mmol P (mmol C)�1 d�1

V max

Fe
1.4⇥10�4 -0.09 mmol Fe (mmol C)�1 d�1

Nutrient affinities ↵PO4 1.10 -0.35 m3 (mmol C)�1 d�1

↵Fe 0.175 -0.36 m3 (mmol C)�1 d�1

Carbon quotas

Cell carbon content QC 1.45⇥10�11 0.88 mmol C cell�1

Grazing

Maximum prey ingestion rate Gmax
C

21.9 -0.16 d�1

3.4.3 Size-independent traits

A list of size-independent model parameters are listed in Table 4.

3.5 Parameter modifications530

As far as possible, the parameter values applied in ECOGEM were kept as close as possible to

previously published versions of the model (Ward and Follows, 2016). There were however a few

modifications that were required to bring EcoGENIE
:::::::::
EcoGEnIE into first order agreement with ob-

servations and the current version of cGENIE
::::::
cGEnIE

:
(Ridgwell and Death, in prep.). In particular,

in comparison to the biogeochemical model used in Ward and Follows (2016), the amount of soluble535

iron supplied to cGENIE
:::::::
cGEnIE by atmospheric deposition is considerably less. With a smaller

source of iron, it was necessary to decrease the iron demand of the plankton community, and this

was achieved by decreasing Q
max

Fe
and Q

min

Fe
by five-fold (Qmax

Fe
from 20 to 4 nmol Fe (mmol C)�1,

and Q
min

Fe
from 5 to 1 nmol Fe (mmol C)�1).

We also found that the flexible stoichiometry of ECOGEM led to excessive export of carbon540

from the surface ocean, attributable to higher C:P ratios in organic matter (BIOGEM assumes a

Redfieldian C:P of 106). This effect was moderated by adding the respiration term, which returns

a fraction of carbon biomass directly to DIC (it is assumed that other elements are not lost in this

way)
::::::::
increasing

:::
the

::::
size

::
of

::
the

:::::::::
minimum

::::::::::::::
phosphate:carbon

:::::
quota,

:::::
Q

min

P ::::::::::::::::::::::::
(relative to Ward et al., 2012)

. The additional production of POC also led to increased production of calcium carbonate. This545

was counteracted by increasing the PIC:POC production ratio (rCaCO3:POC) from 0.022 to 0.0285,
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Table 4. Size-independent model parameters.

Parameter Symbol Value Units

Nutrient quotas

Minimum phosphate:carbon quota Qmin

P
2.1

::
3.3⇥10�3 mmol P (mmol C)�1

Maximum phosphate:carbon quota Qmax

P
1.1⇥10�2 mmol P (mmol C)�1

Minimum iron:carbon quota Qmin

Fe
1.0⇥10�6 mmol Fe (mmol C)�1

Maximum iron:carbon quota Qmax

Fe
4.0⇥10�6 mmol Fe (mmol C)�1

Temperature

Reference temperature Tref 20 �C

Temperature dependence A 0.05 -

Photosynthesis

Maximum Chl-a-to-phosphorus ratio ✓max

N
48 mg Chl a (mmol P)�1

Initial slope of P-I curve ↵ 3.83⇥10�7 mmol C (mg Chl a)�1(µEin m�2)�1

Cost of biosynthesis ⇠ 37.28 mmol C (mmol P)�1

Grazing

Optimum predator:prey length ratio #opt 10 -

Geometric s.d. of # �graz 2.0 -

Total prey half-saturation kprey
C

5.0 mmol C m�3

Maximum assimilation efficiency �max 0.7 -

Grazing refuge parameter ⇤ -1 (mmol C m�3)�1

Active switching parameter s 2 -

Assimilation shape parameter h 0.1 -

Other loss terms

Plankton mortality m 0.05 d�1

Plankton respiration rib=DIC 0.05 d�1 rib 6=DIC 0 d�1

Partitioning of organic matter

Fraction to DOM � 0.66 -

Light attenuation

Light attenuation by water kw 0.04 m�1

Light attenuation by chlorophyll kChl 0.03 m�1(mg Chl)�1
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and decreasing the thermodynamic calcification rate power (⌘) from 1.28 to 0.744 (Ridgwell et al.,

2007a).

4 Simulations and Data

4.1 10,000 year spin-up550

We ran cGENIE
:::::::
cGEnIE (as configured and described in Ridgwell and Death, in prep.) and EcoGENIE

:::::::::
EcoGEnIE (as described here) each for period of 10,000 years. These runs were initialised from a

homogenous and static ocean, with an imposed constant atmospheric CO2 concentration of 278 ppm.

We present model output from the 10,000th year of integration.

4.2 Observations555

Although they are not necessarily strictly comparable, we compare results from the pre-industrial

configurations of cGENIE and EcoGENIE
:::::::
cGEnIE

:::
and

:::::::::
EcoGEnIE

:
to contemporary climatologies

from a range of sources. Global climatologies of dissolved phosphate and oxygen are drawn from

the World Ocean Atlas (WOA 2009 )
::::::::::::::::::::::::
(WOA09 - Garcia et al., 2010), while DIC and alkalinity are

taken from Global Ocean Data Analysis Project (GLODAP)
::::::
version

::
2

::::::::::::::
(GLODAPv2 - ?). Surface560

chlorophyll concentrations represent a climatological average from 1997 to 2002, estimated by the

SeaWiFS satellite. Depth-integrated primary production is from Behrenfeld and Falkowski (1997).

All of these interpolated global fields have been re-gridded onto the cGENIE
:::::::
cGEnIE

:
36⇥36⇥16

grid.

Observed dissolved iron concentrations are those published by Tagliabue et al. (2012). These data565

are too sparse and variable to allow reliable mapping on the cGENIE
:::::::
cGEnIE grid, and are therefore

shown as individual data.

Fidelity to the observed seasonal cycle of nutrients and biomass was evaluated against obser-

vations from nine Joint Global Ocean Flux Study (JGOFS) sites: the Hawai‘i Ocean Time-series

(HOT: 23�N, 158�W), the Bermuda Atlantic Time-series Study (BATS: 32�N, 64�W), the equato-570

rial Pacific (EQPAC: 0�N, 140�W), the Arabian Sea (ARABIAN: 16�N, 62�E), the North Atlantic

Bloom Experiment (NABE: 47�N, 19�W), Station P (STNP: 50�NS, 145�W), Kerfix (KERFIX:

51�S, 68�E), Antarctic Polar Frontal Zone (APFZ: 62�S, 170�W) and the Ross Sea (ROSS: 75�S,

180�W). Model output for KERFIX and the Ross Sea site was not taken at the true locations of

the observations (51�S, 68�E and 75�S, 180�W, respectively). Kerfix was moved to compensate for575

a poor representation of the Polar Front within the coarse resolution ocean model, while the Ross

Sea site does not lie within the GEnIE ocean grid. At each site, the observational data represent the

mean daily value within the mixed layer. Observational data from all years are plotted together as

one climatological year.
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5 Results580

5.1 Biogeochemical variables

We start by describing the global distributions of key biogeochemical tracers that are common to

both cGENIE and EcoGENIE
::::::
cGEnIE

::::
and

:::::::::
EcoGEnIE.

5.1.1 Global surface values

Annual mean global distributions are presented for the upper 80.8 m of the water column, corre-585

sponding to the model surface layer. In Figure 2 we compare output from the two models to ob-

servations of dissolved phosphate and iron. Surface phosphate concentrations are broadly similar

between the two versions of the model, except that EcoGENIE
::::::::
EcoGEnIE

:
provides slightly lower

estimates in the Southern Ocean and equatorial upwellings. Both versions strongly underestimate

surface phosphate in the equatorial and north Pacific, and to a lesser extent in the north and east At-590

lantic, the Arctic and the Arabian Sea. This is likely attributable in part to the model underestimating

the strength of upwelling in these regions. It should also be noted that the observations may in some

cases be unrepresentative of the true surface layer, when this is significantly shallower than 80.8 m.

In such cases the observed value will be affected by measurements from below the surface layer. Iron

distributions are also broadly similar between the two models, with EcoGENIE
::::::::
EcoGEnIE

:
showing595

slightly lower iron concentrations over most of the ocean.

Figure 3 shows observed and modelled values of inorganic carbon, oxygen and alkalinity. The

two models yield very similar surface distributions of the three tracers. DIC and alkalinity are both

broadly underestimated relative to observations, while oxygen shows higher fidelity, albeit with ar-

tificially high estimates in the equatorial Atlantic and Pacific. This is likely attributable to unrealis-600

tically weak upwelling in these regions.

Surface �pCO2 from the two models is shown in Figure 4. EcoGENIE
:::::::::
EcoGEnIE shows weaker

CO2 outgassing in
:::
the tropical band, with a much stronger ocean-to-atmosphere flux in the Western

Arctic.

In Figure 5 we show the annual mean rate of particulate organic matter production in the surface605

layer, and the relative differences between ECOGEM and BIOGEM. In comparison to cGENIE,

EcoGENIE
:::::::
cGEnIE,

:::::::::
EcoGEnIE

:
shows elevated POC production in all regions. Production of CaCO3

is globally less variable in EcoGENIE than cGENIE
::::::::
EcoGEnIE

:::::
than

:::::::
cGEnIE, with notable higher

fluxes in the oligotrophic gyres and polar regions.

The relative proportions in which these elements and compounds are exported from the sur-610

face ocean are regulated by the stoichiometry of biological production. In cGENIE
::::::
cGEnIE

:
(BIO-

GEM), carbon and phosphorus production are rigidly coupled through a fixed ratio of 106:1, while

POFe:POC and CaCO3:POC production
:::::
export

:::
flux

:
ratios are regulated as a function of environ-

mental conditions. In ecoGENIE
:::::::::
ecoGEnIE (ECOGEM), phosphorus, iron and carbon production
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:::::
fluxes are all decoupled through the flexible quota physiology, which depends on both environmental615

conditions, and the status of the food-web. Only CaCO3:POC production
:::
flux

:
ratios are regulated

via the same mechanism in the two models (although we decreased the average CaCO3:POC ratio

in ECOGEM to compensate for the elevated POC production relative to POP).

(a) PO4 - WOA (2009) (b) PO4 - cGENIE
::::::
cGEnIE (c) PO4 - EcoGENIE

::::::::
EcoGEnIE

(d) dFe - Tagliabue et al. (2012) (e) dFe - cGENIE
:::::
cGEnIE (f) dFe - EcoGENIE

:::::::
EcoGEnIE

Figure 2. Surface concentrations of dissolved inorganic nutrients
:::::::
phosphate

::::::
(mmol

:::
PO4:::::

m�3)
:::
and

:::
iron

::::::
(mmol

:::
dFe

::::
m�3

:
).
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(a) DIC - GLODAP
:::::::::
GLODAPv2 (b) DIC - - cGENIE

::::::
cGEnIE (c) DIC - EcoGENIE

::::::::
EcoGEnIE

(d) Oxygen - WOA (2009) (e) Oxygen - cGENIE
::::::
cGEnIE (f) Oxygen - EcoGENIE

::::::::
EcoGEnIE

(g) Alkalinity -

GLODAP
:::::::::
GLODAPv2

(h) Alkalinity - cGENIE
::::::
cGEnIE

(i) Alkalinity -

EcoGENIE
::::::::
EcoGEnIE

Figure 3. Surface concentrations of dissolved inorganic carbon
:::::
(mmol

::
C

::::
m�3), alkalinity

::::
(meq

::::
m�3)

:
and

dissolved oxygen
:::::
(mmol

::
O2:::::

m�3).

(a) �pCO2 (ppm) - cGENIE
::::::
cGEnIE

(b) �pCO2 (ppm) -

EcoGENIE
::::::::
EcoGEnIE

Figure 4. (Preindustrial) surface �pCO2 ::::
(ppm).
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(a) POC production -

cGENIE
::::::
cGEnIE

(b) POC production -

EcoGENIE
::::::::
EcoGEnIE

(c) ECOGEM÷BIOGEM

(d) POP production -

cGENIE
::::::
cGEnIE

(e) POP production -

EcoGENIE
::::::::
EcoGEnIE

(f) ECOGEM÷BIOGEM

(g) POFe production -

cGENIE
::::::
cGEnIE

(h) POFe production -

EcoGENIE
::::::::
EcoGEnIE

(i) ECOGEM÷BIOGEM

(j) CaCO3 production -

cGENIE
::::::
cGEnIE

(k) CaCO3 production -

EcoGENIE
::::::::
EcoGEnIE

(l) ECOGEM÷BIOGEM

Figure 5. Particulate matter production
::::::
Vertical

:::::
fluxes

::
of

::::::::
particulate

:::::
carbon

:
(
:::::
mmol

:
C
::::

m�2

:::::
d�1),

:::::::::
phosphorus

:::::
(mmol

:
P
::::

m�2

:::::
d�1),

:::
iron

::::::
(mmol

::
Fe

::::
m�2

::::
d�1)

:
and export from

::::::
calcium

:::::::
carbonate

::::::
(mmol

::::::
CaCO3 ::::

m�2

::::
d�1)

::::
across

:
the

:::
base

:::
of

:::
the surface layer). The right-hand column indicates the relative increase or decrease in

ECOGEM, relative to BIOGEM
:::::::::::
(dimensionless).
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5.1.2 Basin-averaged depth profiles

In this section we present the meridional depth distributions of key biogeochemical tracers, averaged620

across each of the three main ocean basins, as shown in Figure 6. Figure 7 shows that the distribution

of dissolved phosphate is very similar between the two models, with EcoGENIE
:::::::::
EcoGEnIE showing

a slightly stronger sub-surface accumulation in the northern Indian Ocean.

The vertical distributions shown in Figure 8 reveal that dissolved iron is lower throughout the

ocean in EcoGENIE
:::::::::
EcoGEnIE, relative to cGENIE

:::::::
cGEnIE, particularly below 1500 m. Differences625

are less obvious at intermediate depths. (Observations are currently too sparse to estimate reliable

basin-scale distributions of dissolved iron; see Tagliabue 2016.)

Figure 9 shows that while cGENIE
::::::
cGEnIE

:
reproduces observed DIC distributions very well,

EcoGENIE
::::::::
EcoGEnIE

:
overestimates concentrations within the Indian and Pacific Oceans. The to-

tal oceanic DIC inventory increased by just under 2% from 0.299 mol C in cGENIE to 0.304 in630

EcoGENIE
:::
2.99

:::::::
Examol

::
C

::
in

:::::::
cGEnIE

::
to

::::
3.05

::
in

:::::::::
EcoGEnIE (with a fixed atmospheric CO2 concen-

tration of 278 ppm). Otherwise the two models show broadly similar distributions, with the most

pronounced differences (as for PO4) in the northern Indian Ocean.

Figure 10 shows that cGENIE
:::::::
cGEnIE reasonably captures the invasion of O2 into the ocean inte-

rior through the Southern Ocean and North Atlantic. These patterns are also seen in EcoGENIE
::::::::
EcoGEnIE,635

although unrealistic water column anoxia is seen in the northern intermediate Indian and Pacific

Oceans. Again, this is likely a consequence of greater export and remineralisation of organic car-

bon in EcoGENIE
:::::::::
EcoGEnIE, leading to more oxygen consumption at intermediate depths (also

evidenced by elevated PO4, DIC and alkalinity in the same regions; Figures 7, 9 and 11).

Alkalinity (Figure 11) also shows some clear differences between the two models, again most640

noticeably in the northern intermediate Indian and Pacific Oceans. In these regions EcoGENIE

:::::::::
EcoGEnIE shows excessive accumulation of alkalinity at ⇠1000 m depth. This is again attributable

to the increased C export in EcoGENIE
::::::::
EcoGEnIE. In the absence of a nitrogen cycle (and NO�

3
re-

duction), increased anoxic remineralisation of organic carbon (Figures 9 and 10) leads to increased

reduction of sulphate to H2S, which in turn increases the alkalinity of seawater. Further adjustment of645

the respiration of carbon
::::::
cellular

:::::::
nutrient

::::::
quotas in ECOGEM and hence the effective exported P:C

Redfield ratio, and/or retuning of the organic matter remineralisation profiles in BIOGEM (Ridgwell

et al., 2007a) would likely resolve these issues.
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Figure 6. Spatial definition of the three ocean basins used in Figures 7 to 10. Locations of the JGOFS time-series

sites are indicated with blue dots.

(a) Atlantic PO4 - WOA (2009) (b) Atlantic PO4 - cGENIE
::::::
cGEnIE

(c) Atlantic PO4 -

EcoGENIE
::::::::
EcoGEnIE

(d) Indian PO4 - WOA (2009) (e) Indian PO4 - cGENIE
::::::
cGEnIE

(f) Indian PO4 -

EcoGENIE
::::::::
EcoGEnIE

(g) Pacific PO4 - WOA (2009) (h) Pacific PO4 - cGENIE
:::::
cGEnIE

(i) Pacific PO4 -

EcoGENIE
::::::::
EcoGEnIE

Figure 7. Basin-averaged meridional-depth distribution of phosphate
:::::
(mmol

:
P
:::::
m�3).
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(a) Atlantic dFe - cGENIE
::::::
cGEnIE

(b) Atlantic dFe -

EcoGENIE
::::::::
EcoGEnIE

(c) Indian dFe - cGENIE
::::::
cGEnIE

(d) Indian dFe -

EcoGENIE
::::::::
EcoGEnIE

(e) Pacific dFe - cGENIE
::::::
cGEnIE

(f) Pacific dFe -

EcoGENIE
::::::::
EcoGEnIE

Figure 8. Basin-averaged meridional-depth distribution of total dissolved iron (
::::
mmol

:
dFe

:::
m�3).
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(a) Atlantic DIC -

GLODAP
:::::::::
GLODAPv2

(b) Atlantic DIC - cGENIE
::::::
cGEnIE

(c) Atlantic DIC -

EcoGENIE
::::::::
EcoGEnIE

(d) Indian DIC -

GLODAP
:::::::::
GLODAPv2

(e) Indian DIC - cGENIE
::::::
cGEnIE

(f) Indian DIC -

EcoGENIE
::::::::
EcoGEnIE

(g) Pacific DIC -

GLODAP
:::::::::
GLODAPv2

(h) Pacific DIC - cGENIE
:::::
cGEnIE

(i) Pacific DIC -

EcoGENIE
::::::::
EcoGEnIE

Figure 9. Basin-averaged meridional-depth distribution of DIC
:::::
(mmol

:
C
:::::
m�3).
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(a) Atlantic O2 - WOA (2009) (b) Atlantic O2 - cGENIE
:::::
cGEnIE

(c) Atlantic O2 -

EcoGENIE
::::::::
EcoGEnIE

(d) Indian O2 - WOA (2009) (e) Indian O2 - cGENIE
::::::
cGEnIE

(f) Indian O2 -

EcoGENIE
::::::::
EcoGEnIE

(g) Pacific O2 - WOA (2009) (h) Pacific O2 - cGENIE
::::::
cGEnIE

(i) Pacific O2 -

EcoGENIE
::::::::
EcoGEnIE

Figure 10. Basin-averaged meridional-depth distribution of dissolved oxygen
:::::
(mmol

:::
O2 ::::

m�3).
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(a) Atlantic ALK -

GLODAP
:::::::::
GLODAPv2

(b) Atlantic Alkalinity -

cGENIE
::::::
cGEnIE

(c) Atlantic Alkalinity -

EcoGENIE
::::::::
EcoGEnIE

(d) Indian ALK -

GLODAP
:::::::::
GLODAPv2

(e) Indian Alkalinity -

cGENIE
::::::
cGEnIE

(f) Indian Alkalinity -

EcoGENIE
::::::::
EcoGEnIE

(g) Pacific ALK -

GLODAP
:::::::::
GLODAPv2

(h) Pacific Alkalinity -

cGENIE
::::::
cGEnIE

(i) Pacific Alkalinity -

EcoGENIE
::::::::
EcoGEnIE

Figure 11. Basin-averaged meridional-depth distribution of alkalinity
:::
(meq

:::::
m�3).
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5.1.3 Time-series

Figures 12 and 13 we compare the seasonal cycles of surface nutrients (phosphate and iron) at nine650

Joint Global Ocean Flux Study (JGOFS) sites.

Figure 12. Annual cycle of surface PO4 at 9 time-series sites in cGENIE
::::::
cGEnIE and EcoGENIE

::::::::
EcoGEnIE.

Red dots indicate climatological observations, while the lines represent modelled surface PO4 concentrations.

Locations of the time-series are indicated in Figure 6.
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Figure 13. Annual cycle of surface dissolved iron at 9 time-series sites in cGENIE
::::::
cGEnIE

:
and

EcoGENIE
::::::::
EcoGEnIE. Red dots indicate climatological observations, while the lines represent modelled sur-

face iron concentrations. Locations of the time-series are indicated in Figure 6.

33



5.2 Ecological variables

Moving on from the core components that are common to both models, we present a range of eco-

logical variables that are exclusive to EcoGENIE
:::::::::
EcoGEnIE. As before, we begin by presenting the

annual mean global distributions in the ocean surface layer, comparing total chlorophyll and primary655

production to satellite-derived estimates (Figure 14). We then look in more detail at the community

composition, with Figure 15 showing the carbon biomass within each plankton population. Figure 16

then shows the degree of nutrient limitation within each phytoplankton population. Finally, in Fig-

ure 17, we show the seasonal cycle of community and population level chlorophyll at each of the

nine JGOFS time-series sites.660

5.2.1 Global surface values

Figure 14 reveals that EcoGENIE
:::::::::
EcoGEnIE

:
shows some limited agreement with the satellite-

derived estimate of global chlorophyll. As expected, chlorophyll biomass is elevated in the high-

latitude oceans relative to lower latitudes. The sub-tropical gyres show low biomass, but the distinc-

tion with higher latitudes is not as clear as in the satellite estimate. The model also shows a clear665

lack of chlorophyll in equatorial and coastal upwelling regions, relative to the satellite estimate. The

model predicts higher chlorophyll concentrations in the Southern Ocean than the satellite estimate,

although it should be noted that the satellite algorithms may be underestimating concentrations in

these regions (Dierssen, 2010)
:::::::::::::::::::::::::
(Figure 17 and Dierssen, 2010).

Modelled primary production correctly increases from the oligotrophic gyres towards high lati-670

tudes and upwelling regions, but variability is much lower than in the satellite estimate. Specifically,

the model and satellite estimates yield broadly similar estimates in the oligotrophic gyres, but the

model does not attain the high values seen at higher latitudes and in coastal areas.

Figure 15 shows the modelled carbon biomass concentrations in the surface layer, for each mod-

elled plankton population. The smallest (0.6 µm) phytoplankton size class is evenly distributed in the675

low-latitude oceans between 40� N and S, but is largely absent nearer to the poles. The 1.9 µm phy-

toplankton size class is similarly ubiquitous at low latitudes, albeit with somewhat higher biomass,

and its range extends much further towards the poles. With increasing size, the larger phytoplank-

ton are increasingly restricted to highly productive areas, such as the sub-polar gyres and upwelling

zones.680

Perhaps as expected, zooplankton size classes tend to mirror the biogeography of their phytoplank-

ton prey. The smallest (1.9 µm) surviving size class is found primarily at low latitudes, although a

highly variable population is found at higher latitudes. This population is presumably supported by

grazing on the larger 6 µm size class (with very low efficiency dictated by the unfavourable predator-

prey length ratio). Larger zooplankton size classes follow a similar pattern to the phytoplankton,685
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(a) SeaWiFS Chlorophyll (b) ECOGEM Chlorophyll

(c) Yool et al. (2013) Pr. Production (d) ECOGEM Pr. Production

Figure 14. Satellite-derived (left) and modelled (right) surface chlorophyll a concentration
:::
(mg

:::
Chl

:::::
m�3) and

depth-integrated primary production
:::
(mg

:
C
::::
m�2

::::
d�1). The satellite-derived estimate of primary production is

a composite of three products (Behrenfeld and Falkowski, 1997; Carr et al., 2006; Westberry et al., 2008), as in

Yool et al. (2013, their Figure 12).

moving from a cosmopolitan but homogenous distribution in the smaller size classes, towards spa-

tially more variable distributions among the larger organisms.

The degree of nutrient limitation within each phytoplankton size class is shown in Figure 16. The

two-dimensional colour-scale indicates decreasing iron limitation from left to right, and decreasing

phosphorus limitation from bottom to top. White is therefore nutrient replete, blue is phosphorus690

limited, red is iron limited, and magenta is phosphorus-iron co-limited. The figure demonstrates

that the smallest size class is not nutrient limited in any region. The increasing saturation of the

colour scale in larger size classes indicates an increasing degree of nutrient limitation. As expected,

nutrient limitation is strongest in the highly stratified low latitudes. A stronger vertical supply of

nutrients at higher latitudes is associated with weaker nutrient limitation, although nutrient limitation695

is still significant among the larger size classes. Consistent with observations (Moore et al., 2013),

phosphorus limitation is restricted to low latitudes. Iron limitation dominates in high latitude regions.

Among the ,
:::::::::
especially

::::::
among larger size classes.

:::::::
Among

::::
these

:::::
larger

:::::::
groups,

:
the upwelling zones

appear to be characterised by iron-phosphorus co-limitation.
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Figure 15. Surface concentrations of carbon biomass in each population
:::::
(mmol

::
C

::::
m�3).
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Figure 16. Nutrient limitation in each phytoplankton population
:::::::::::

(dimensionless). The two-dimensional colour-

scale indicates decreasing phosphorus limitation from left to right, and decreasing iron limitation from bot-

tom to top. White is therefore nutrient replete, blue is phosphorus limited, red is iron limited, and magenta is

phosphorus-iron co-limited.
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5.2.2 Time-series700

The seasonal cycles of phytoplankton chlorophyll a are compared to time-series observations in

Figure 17. The modelled total chlorophyll concentrations (black lines) track the observed concen-

trations (red dots) reasonably well at most sites, and perhaps better than might be expected from

the comparison to satellite data .
::::
The

::::::
bottom

:::::
three

:::::
panels

::::
also

:::::::
suggest

:::
that

:::
the

:::::::
satellite

::::
data

::::::
shown

in Figure 14
::::
may

::::::
slightly

::::::::::::
underestimate

:::::::
surface

:::::::::
chlorophyll

:::::::::::::
concentrations

::
in

:::
the

:::::::
Southern

::::::
Ocean.705

The modelled surface chlorophyll concentration is probably too low in the equatorial Pacific, while

the spring bloom occurs one to two months earlier than was seen during the North Atlantic Bloom

Experiment.

Figure 17. Annual cycle of surface chlorophyll a at nine JGOFS time-series sites. Red dots indicate climatolog-

ical observations, while the black lines represents modelled total surface chlorophyll a. Coloured lines represent

chlorophyll a in individual size classes (blue = small, red = large). Locations of the time-series are indicated in

Figure 6.
::::::
Satellite

:::::::
estimates

::
of

:::::::::
chlorophyll

:
a
:::
are

:::::
shown

::
in

::::
grey.

:::
The

:::::::
seasonal

::::::
cycles

::
of

::::::
primary

:::::::::
production

::
in

:::
the

::::::
surface

:::::
layer

:::
are

::::::::
compared

::
to

:::::::::
time-series

::::::::::
observations

::
in

:::::
Figure

:::
18.

:::
As

::::
also

::::::::
indicated

::
in

::::::
Figure

:::
14,

:::
the

:::::
spatial

::::::::
variance

::
in

::::::::
modelled

:::::::
primary

:::::::::
production

::
is710

:::
too

::::
low,

::::
with

:::::::
primary

:::::::::
production

::::::::::::
overestimated

::
at

:::
the

:::::
most

::::::::::
oligotrophic

:::
site

::::::
(HOT)

::::
and

::::::::
typically

::::::::::::
underestimated

::
at

:::
the

::::
most

:::::::::
productive

::::
sites

:::::
(esp.

:::
the

::::::::
equatorial

::::::
Pacific,

::::::
NABE

::::
and

:::
the

::::
Ross

:::::
Sea).

::
In

::::::
contrast

::
to
::::

the
:::
lack

:::
of

::::::
spatial

:::::::::
variability,

:::
the

:::::
model

:::::::
exhibits

:::::::::
significant

::::::::
seasonal

::::::::
variation,

:::::
often

::
in

:::::
excess

::
of

:::
the

::::::::
observed

:::::::::
variability

::
(at

:::::
those

::::
sites

:::::
where

:::
the

::::::::
seasonal

::::
cycle

::
is
::::
well

:::::::::
resolved).

38



Figure 18. Annual cycle of surface primary production at nine JGOFS time-series sites. Red dots indicate

climatological observations, while the black lines represents modelled total primary production. Locations of

the time-series are indicated in Figure 6.
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5.2.3 cGENIE
:::::::
cGEnIE vs. EcoGENIE

:::::::::
EcoGEnIE715

Figure 19 is a Taylor diagram comparing the two models in terms of their correlation to observations

and their standard deviations, relative to observations. A perfect model would be located at the mid-

dle of the bottom axis, with a correlation coefficient of 1.0 and a normalised standard deviation of 1.0.

The closer a model is to this ideal point, the better a representation of the data it provides. Figure 19

shows that EcoGENIE
:::::::::
EcoGEnIE is located further from the ideal point than cGENIE

::::::
cGEnIE, in720

terms of oxygen, alkalinity, phosphate, and DIC. The new model seems to provide a universally

worse representation of global ocean biogeochemistry. This is perhaps not surprising, given that

the BIOGEM component of cGENIE
::::::
cGEnIE

:
has at various times been systematically tuned to

match the observation data (e.g. Ridgwell et al., 2007a; Ridgwell and Death, in prep.). EcoGENIE

:::::::::
EcoGEnIE has not yet been optimised in this way.725
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Figure 19. Taylor diagram comparing cGENIE
:::::
cGEnIE

:::::
(white

:::::
dots) and EcoGENIE

:::::::
EcoGEnIE

:::::
(grey

::::
dots) to

annual mean observation fields.
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6 Discussion

The marine ecosystem is a central component of the Earth system, harnessing solar energy to sustain

the biogeochemical cycling of elements between dissolved inorganic nutrients, living biomass and

decaying organic matter. The interaction of these components with the global carbon cycle is critical

to our interpretation of past, present and future climates, and has motivated the development of a730

wide range of models. These can be placed on a spectrum of increasing complexity, from simple and

computationally efficient box models to fully coupled Earth system models with extremely large

computational overheads
::::
costs.

cGENIE
::::::
cGEnIE

:
is a model of intermediate complexity on this spectrum. It has been designed

to allow rapid model evaluation while at the same time retaining somewhat realistic global dynam-735

ics that facilitate comparison with observations. With this goal in mind, the biological pump was

parameterised as a simple vertical flux defined as a function of environmental conditions (Ridgwell

et al., 2007a). This simplicity is well suited to questions concerning the interactions of marine bio-

geochemistry and climate, but at the same time precludes any investigation of the role of ecological

interactions with the broader Earth system.740

Here we have presented an ecological extension to cGENIE
::::::
cGEnIE

:
that opens up this area of

investigation. EcoGENIE
:::::::::
EcoGEnIE is rooted in size-dependent physiological and ecological con-

straints (Ward et al., 2012). The ecophysiological parameters are relatively well constrained by ob-

servations, even in comparison to simpler ecosystem models that are based on much more aggregated

functional groups (Anderson, 2005; Litchman et al., 2007). The size-based formulation has the ad-745

ditional benefit of linking directly to functional aspects of the ecosystem, such as food-web structure

and particle sinking (Ward and Follows, 2016).

The aim of this paper is to provide a detailed description of the new ecological component. It is

clear from Figure 19 that the switch from the parameterised biological pump to the explicit ecological

model has led to a deterioration in the overall ability of cGENIE
::::::
cGEnIE

:
to reproduce the global750

distributions of important biogeochemical tracers. This is an acceptable outcome, as our goal here is

simply to provide a full description of the new model. Given that the original model was calibrated

to the observations in question (Ridgwell et al., 2007a), that process will need to be repeated for

the new model before any sort of objective comparison can be made. We also note that EcoGENIE

:::::::::
EcoGEnIE is still capable of reproducing approximately 90% of the global variability in DIC, more755

than 70% for phosphate, oxygen and alkalinity, and more than 50% for surface chlorophyll.

Despite a slight overall deterioration in terms of model-observation misfit, the biogeochemical

components of the model retain the key features that should be expected. At the same time, the

ecological community conforms to expectations in terms of standing stocks and fluxes, both in terms

of large-scale spatial distributions, and the seasonal cycles at specific locations
:::::::
(Figures

:::
14

:::
and

:::
17).760

Overall patterns of community structure and physiological limitation also follow expectations based

on observations and theory.
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As presented, the model is limited to three limiting resources (light, phosphorus, and iron) and two

plankton functional types (phytoplankton and zooplankton). We have written the model equations

and code to facilitate the extension of the model to include additional components. In particular, the765

model capabilities can be extended by enabling silicon and nitrogen limitation, leveraging the silicon

and nitrogen cycles already present in BIOGEM (Monteiro et al., 2012). Adding these nutrients

will enable the addition of diatoms and diazotrophs, which are both likely to be important factors

affecting the strength of the long-term biological pump (Tyrrell, 1999; Armstrong et al., 2002).

7 Code availability770

The model code and user instructions can be found at http://www.seao2.info/mycgenie.html.

SVN revision 9982.
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