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Abstract. The extent to which climate conditions influenced the spatial distribution of hominin populations in the past is 

highly debated. General Circulation Models (GCMs) and archaeological data have been used to address this issue. Most 15 

GCMs are not currently capable of simulating past surface climate conditions with sufficiently detailed spatial resolution to 

distinguish areas of potential hominin habitat, however. In this paper we propose a Statistical Downscaling Methods (SDM) 

for increasing the resolution of climate model outputs in a computationally efficient way. Our method uses a generalized 

additive model (GAM), calibrated over present-day data, to statistically downscale temperature and precipitation from the 

outputs of a GCM simulating the climate of the Last Glacial Maximum (19-23,000 BP) over Western Europe. Once the 20 

SDM is calibrated, we first interpolate the coarse-scale GCM outputs to the final resolution and then use the GAM to 

compute surface air temperature and precipitation levels using these interpolated GCM outputs and fine resolution 

geographical variables such as topography and distance from an ocean. The GAM acts as a transfer function, capturing non-

linear relationships between variables at different spatial scales. We tested three different techniques for the first 

interpolation of GCM output: bilinear, bicubic, and kriging. The results were evaluated by comparing downscaled 25 

temperature and precipitation at local sites with paleoclimate reconstructions based on paleoclimate archives 

(archaeozoological and palynological data). Our results show that the simulated, downscaled temperature and precipitation 

values are in good agreement with paleoclimate reconstructions at local sites confirming that our method for producing fine-

grained paleoclimate simulations suitable for conducting paleo-anthropological research is sound. In addition, the bilinear 

and bicubic interpolation techniques were shown to distort either the temporal variability or the values of the response 30 

variables, while the kriging method offers the best compromise. Since climate variability is an aspect of their environment to 

which human populations may have responded in the past this is an important distinction. 
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1 Introduction 

The extent to which past climate change influenced human population dynamics during the course of prehistory is a subject 

of lively debate. The Last Glacial period, including Marine Isotope Stages 3 (MIS3) and 2 (MIS2) and the Last Glacial 

Maximum (LGM), is particularly interesting in the context of this debate (van Andel, 2003). During MIS3 the archaeological 

record suggests that modern human populations originating in Africa expanded into Eurasia, while Neanderthal populations 5 

progressively contracted their range before becoming extinct ~27,000 years Before Present (BP) (Serangeli and Bolus, 

2008). Progressively colder and drier conditions, culminating in the LGM (19,000 - 23,000 years Before Present), are 

thought to have triggered further range contractions and the demographic decline of modern human populations in Europe. 

Climate affects the spatial behaviour of human populations directly (when conditions exceed human physiological limits) 

and indirectly (when it affects the distribution of resources upon which humans depend).The global climate during the Last 10 

Glacial period was characterised by a series of rapid oscillations (known as Dansgaard-Oeschger, or D-O events). These 

events may have acted as forcing mechanisms, affecting the demographic processes described above (e.g. Müller et al., 

2011; Schmidt et al., 2012; Sepulchre et al., 2007; Jimenez-Espejo et al., 2007; Banks et al., 2013; d'Errico and Sánchez 

Goñi, 2003; Gamble et al., 2004; Shea, 2008). While the timing of climate events relative to large-scale patterns in the 

archaeological record is suggestive, the mechanisms by which climate forcing acted on human populations are still 15 

imperfectly understood. More empirical evidence is needed to validate the hypothesis that climate forcing affected human 

population dynamics and explore the nature and scale of the effect.  

 

The broad demographic patterns mentioned above are the result of smaller, local-scale patterns produced by mobile groups 

of hunter-gatherers distributing themselves on the landscape in order to exploit available resources. The availability of these 20 

resources fluctuated both predictably (on a seasonal basis) and unpredictably (as a result of climate variability). It is by 

gaining an understanding of these smaller-scale patterns, ultimately, that we will be able to understand how climate forcing 

affects the spatial and cultural dynamics of prehistoric human populations. Previous analyses of climate forcing have used a 

variety of data to reconstruct the paleoclimate, such as ice-core or marine records (e.g., Bradtmöller et al., 2012; Jimenez-

Espejo et al., 2007; Schmidt et al., 2012), present-day climate data (e.g., Jennings et al., 2011), and climate model 25 

simulations (e.g., Banks et al., 2008; Davies and Gollop, 2003; Sepulchre et al., 2007; Benito et al. 2017; Hughes et al. 2007; 

Tallavaara et al. 2015). These analyses were conducted at varying spatial resolutions, typically on the order of ~50 km x 50 

km (= 2500 km2). The goal of this study is to develop high-resolution climate simulations suitable for the quantification of 

climate variability at an inter-annual scale and a spatial scale of ~15 km x 15 km (= 225 km2) which approximates the size of 

the catchments within which hunter-gatherer groups forage (Vita-Finzi and Higgs, 1970) making this an ideal spatial scale at 30 

which to consider the impact of climate variability on human systems.  

 

Global Climate Models (GCMs) are able to simulate climate conditions at various spatial and temporal scales, whereas 
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climate proxy data are inherently limited by the uneven distribution of sample locations and taphonomic biases (pollen 

preservation, location of archaeological sites, etc.). GCMs use physical equations, e.g. to represent atmospheric fluid 

dynamics, as well as parameterisations, e.g. for sub-grid scale phenomena, to simulate the Earth’s climate. The major 

disadvantage of GCMs is that they are computationally intensive and are usually only used to model climate behaviour at 

relatively coarse spatial resolution, typically coarser than 100 km (cf. Flato et al., 2013 for the latest details on the CMIP5 5 

models) especially for long paleoclimatic simulations. Their ability to simulate the small-scale physical processes that drive 

local surface variables, such as precipitation, is therefore limited (Wood et al., 2004).  

 

Regional Climate Models (RCM) represent a physically based approach to climate modelling at a finer spatial scale over a 

specific region of interest (e.g., Liang et al., 2006, Flato et al., 2013). However, RCMs use GCM outputs to set their 10 

boundary conditions. They therefore require the explicit modelling of the physical processes at both coarse and fine scales 

over the whole planet and over region of interest, respectively, and are also computationally demanding. Statistical 

Downscaling Methods (SDM), on the other hand, are less computationally demanding. SDMs proceed by empirically 

associating local-scale variables with large-scale atmospheric variables produced by GCMs, and are faster to compute than 

mechanistic RCMs (Vaittinada Ayar et al., 2015). SDMs fall into four main families: “transfer functions”, which directly 15 

link large-scale and local-scale variables; “weather typing” methods based on conditioning statistical models on recurrent 

weather states; “stochastic weather generators” that simulate downscaled values from their (potentially conditional) 

probability density functions; and “Model Output Statistics” (MOS) methods based on adjusting (i.e., correcting) the 

statistical distribution of the large-scale GCM simulations in order to generate local-scale variables with the correct statistical 

properties (e.g., Vaittinada Ayar et al., 2015). 20 

 

In this study, we apply an SDM from the transfer functions family, based on Generalized Additive Modelling (GAM), to 

compute temperature and precipitation at a fine spatial resolution for the LGM over Western Europe. We use a 50 year-long 

time series of climate simulations for the LGM (Kageyama et al., 2013a, b) and the present climate (Dufresne et al., 2013) 

extracted from the IPSL-CM5A-LR GCM (Dufresne et al., 2013). GAM is a non-parametric statistical technique that has 25 

proven reliable for capturing non-linear relationships between local- and large-scale variables (e.g., Vrac et al., 2007; 

Levavasseur et al., 2010). In the present study, interpolated values of coarse-grain variables extracted from the GCM, as well 

as fine-scale geographical data such as elevation and advective continentality, are used as predictors in the GAM. The result 

is the production of downscaled monthly values for temperature and precipitation. We compare the impact of three different 

interpolation techniques (bilinear interpolation, bicubic interpolation and kriging) on the downscaling, evaluating the 30 

resulting SDM outputs with the aid of climate proxies (palynological and archaeozoological data) and observing the impact 

of each technique on the calculation of temporal variability in temperature and precipitation.  
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2 Materials and Methods 

2.1 Global Climate Model  

The GCM used in this study is the ocean-atmosphere coupled model IPSL-CM5A-LR (Dufresne et al., 2013) developed for 

the CMIP5 (Taylor et al., 2012) and PMIP3 (Braconnot et al., 2012) projects and the 5th IPCC report (IPCC, 2013). The 

IPSL-CM5A-LR model has a spatial resolution of 1.9° in latitude and 3.75° in longitude over Europe, which is the area of 5 

interest here (i.e. ~62 500 km2). 

 

A present-day simulation was run according to the CMIP5 protocol, for the period from 1960 to 1990 with the corresponding 

forcings in atmospheric composition and land use changes. Outputs from this simulation are used in the calibration process 

(below). The simulation of LGM climate conditions follows the PMIP3 protocol (Braconnot et al., 2011, Braconnot et al., 10 

2012). The concentrations of atmospheric greenhouse gases were lowered to their LGM values derived from ice core data 

(185 ppm for CO2, 350 ppb for CH4 and 200 ppb for N2O) and the ice sheets are prescribed according to the product 

developed for PMIP3 (Abe-Ouchi et al., 2015). The model is run for several hundred years until the response to the LGM 

forcing in terms of surface climate variables is stabilised (Kageyama et al., 2013a, b). For this research, we extracted 50 

years of monthly mean data (temperature 2m above the surface, precipitation, sea level pressure and relative humidity) from 15 

the stabilised part of the simulation. Next, we downscaled the data, calculated their average climatology and their temporal 

(interannual) variability. 

2.2 Generalized additive models  

Generalized additive models (GAM, Hastie and Tibshirani, 1990) are statistical models blending the properties of 

generalized linear models with additive models. Given a dependent variable Y and p predictor variables [X1,…,Xp], GAMs 20 

compute E(Y| X1,…,Xp), the expected value of Y, conditionally on the p predictors Xi, as a sum of non-parametric functions 

as follows: 

 

E 𝑌 𝑋#, … , 𝑋& = 	 𝑓* 𝑋*
&
*+# ,          (1) 

 25 

Following Vrac et al. (2007), cubic spline functions were used for the fi, represented by piece-wise third-order polynomial 

functions. For each function ƒi, a number of knots are placed evenly throughout the predictor range, and the cubic 

polynomials that compose ƒi are constrained to continuity conditions at each knot to ensure smooth transitions (Wood, 2000, 

2004). GAMs were calibrated using the mgcv package (Wood, 2006) in R, and the number of knots was determined 

automatically using generalised cross-validation. 30 

 

Using a combination of geographical and physical predictor variables has been shown to improve spatial downscaling results 
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(Vrac et al., 2007). Using GAMs on climate variables requires the predictor and dependent variables to have the same spatial 

scale. The present-day dependent variables (precipitation and temperature) are at a fine spatial scale. The elevation variable 

is also at a fine spatial scale, whereas the predictor climate variables generated by the GCM are at a coarser scale. Thus, 

interpolation of the predictor climate variables is necessary.  

 5 

Once the functions ƒi have been fitted using the present-day data, the downscaling can be performed on the GCM outputs for 

the LGM. The downscaling uses fine-scale and interpolated predictor climate variables corresponding to the LGM to 

generate fine-scale dependent variables. Here, two GAMs are calibrated: one for temperature and one for precipitation. 

2.3 Calibration data 

2.3.1 Fine-scale dependent variables: the CRU climatology. 10 

Fine-scale, present-day temperature and precipitation dependent data were obtained from the Climate Research Unit (CRU, 

New et al., 2000). The spatial resolution of the data is 10’ (i.e. 1/6 degree), regularly gridded between 32.72° and 59.861° 

latitude (N = 164 values) and -11.578° and 24.738° longitude (N = 219 values) for a total of N = 35916 grid-points. We 

computed a monthly climatology for each gridpoint by averaging the variable of interest (temperature or precipitation) over 

31 years (from 1960 to 1990) for each month (Fig. S1). 15 

2.3.2 Large-scale predictor variables. 

We used the data from a CMIP5 historical simulation run with the IPSL-CM5A-LR model to produce the predictor climate 

variables used for the calibration of the GAMs. We calculated monthly climatological averages from the simulation outputs 

for the period from 1960 to 1990, i.e. the same years as for the CRU data (see above). The predictor variables we used are: 

temperature (T), precipitation (P), atmospheric pressure at sea level (SLP) and relative humidity (RH). The variables were 20 

spatially interpolated to match the spatial resolution of CRU data, which is 10’; each grid-point in the CRU data therefore 

matches a value for each of the predictor variables. Three interpolation methods were tested: bilinear, bicubic and kriging 

(Figs. S2-S4). For the kriging method, we used the “krig” function from the vacumm python package 

(http://relay.actimar.fr/~raynaud/vacumm/) using an exponential fit of the variogram, with the fit computed independently 

for every month and every variable interpolated variable.  25 

2.3.3 Fine-scale predictor variables. 

We extracted present-day elevation data from the CRU dataset gridded at the same fine-scale spatial resolution as the 

dependent variables. We computed the advective (Aco) and diffusive (Dco) continentalities, following Vrac et al. (2007). 

Dco is bounded between 0 and 1, and corresponds to the shortest distance to the ocean. A low value means that distance to 

the ocean is small, and vice versa. Aco is also bounded between 0 and 1, and takes the direction and intensity of prevailing 30 
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winds into account along with the distance to the ocean. Both variables are used to account for the fact that an air mass 

becomes more continental as it travels across land. Since Dco and the Aco proved to be highly correlated but Aco provided 

the best performance in the models, we only selected Aco for the present analysis (Figs. S2-S4). 

2.4 Calibration of the GAMs 

For each dependent variable (temperature and precipitation) and for each interpolation technique (bilinear, bicubic and 5 

kriging), we tested different combinations of physical and geographical predictor variables. To downscale temperature, we 

computed GAMs for all possible combinations of coarse-grain temperature values from the GCM interpolated at fine scale, 

with fine-grain elevation and advective continentality (Aco), resulting in seven possible models for each interpolation. To 

downscale precipitation, we computed GAMs for all possible combinations of coarse-grain temperature, coarse-grain 

precipitation, sea-level pressure, and relative humidity values from the GCM interpolated at fine scale, with fine-grain 10 

elevation and advective continentality (Aco), resulting in 31 possible models for each interpolation. For each interpolation 

technique, the resulting GAMs were compared using the Akaike Information Criterion (AIC; Akaike, 1974), and the model 

with the lowest AIC was selected. The AIC is a measure of the relative goodness of fit of each of the models and penalizes 

the number of parameters, thus preventing overfitting. The significance of each variable was assessed using p-values, and 

verified by visual inspection of the spline 95% confidence intervals. Six GAMs were therefore retained after calibration (one 15 

for each response variable and for each interpolation technique) 

2.5 Downscaling of temperature and precipitation for the LGM 

We computed downscaled temperature and precipitation values using the six GAMs resulting from the calibration process 

described above, i.e. for the same predictor variables. The large-scale climate variables were generated by the GCM using 

the PMIP3 protocol for the LGM prior to interpolation (Figs. S5-S7). The geographical variables are derived from a digital 20 

elevation model for the LGM (Levavasseur et al., 2011). In particular, the change in coastlines due to the lower sea-level at 

LGM is accounted for, which has an impact on the continentalities. The downscaling was performed for each month of the 

50-year-long monthly output from the GCM, in order to obtain a long time series of fine-scale temperature and precipitation 

values over Europe and calculate climatological averages as well as variability and extremes. 

2.6 Evaluation data (palynological data and vertebrate remains) 25 

To evaluate the performance of the SDM, we compared our temperature and precipitation outputs to local climate variables 

estimated on the basis of pollen and vertebrate fossils from 29 test locations (Table S1, Fig. S8). For each of our 29 test sites, 

we estimated the mean, minimum, and maximum temperature and precipitation rate on a monthly basis over the course of 

the 50 downscaled, simulated years, and compared the ranges of downscaled, simulated values to the ranges of values 

reconstructed using the palynological data and vertebrate remains.  30 
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Reconstruction of local temperature and precipitation values were obtained from pollen data reported in an independent 

study using inverse vegetation modelling for 10 sites located in the Iberian peninsula (Wu et al., 2007). For the remaining 19 

sites, vertebrate remains from another study (Burke et al. 2014) were used to calculate bio-climate indices (ff. Hernandez 

Fernandez, 2001a, b). The method set forth by Hernandez-Fernandez uses large and small vertebrates to compute the relative 

probability that a given assemblage reflects one of Walter’s nine global zonobiomes (Walter and Box, 1976). The method is 5 

based on the “climate envelope” method commonly employed in biogeographical reconstructions. The BCI uses 

presence/absence data, thus avoiding the problems inherent with calculating the relative representation of species from the 

archaeozoological record, and all available taxa rather than one or two “indicator” species, thus avoiding the risk that 

changes in the distribution of a single taxon could bias the biogeographical reconstruction. Ranges of temperature and 

precipitation values for each zonobiome were estimated by mapping the modern distribution of zonobiomes in the northern 10 

hemisphere and compiling present-day temperature and precipitation data from the CRU data (see Burke et al. 2014). The 

zonobiomes (calculated using BCI) were then used to predict the climate ranges for each test location. Because 

archaeozoological assemblages are thanatocoenoses, rather than biocoenoses, they may represent more than one biome. 

Thus, we considered the two most probable zonobiomes (the two highest BCIs) for each site.  

2.7 Variability indices 15 

We calculated indices of variability, including measures of variance and inter-annual variability for the variables of interest. 

The standard deviation of monthly mean temperatures for each month was calculated for the 50-year run. The coefficient of 

variation of monthly mean precipitation values was calculated for the same period. Next, we used the Standardized 

Precipitation Index (Agnew 2000; Guttman 1999; McKee et al. 1993) to calculate how often a given month deviated from 

expected precipitation values based on the climatic norm (calculated over 50 years) using a subroutine of the “SPEI” 20 

package in R (Vicente-Serrano et al. 2010) and a 12-month interval to standardize the values. Standardized Precipitation 

Index (SPI) values were then classified as “normal”, “very” dry/wet, “severe” dry/wet and “extreme” dry/wet following 

McKee et al. (1993) and the number of “normal” months was summed to produce the variability index for Precipitation. The 

Standardized Temperature Index (STI), which is based on the same principle as the SPI, was calculated using the “STI” 

package in R (Fasel 2014) and used to produce a variability index for temperature. 25 

3. Results 

3.1 The GAM 

The best models (i.e., the models with the lowest AIC value) for temperature and for precipitation were obtained by using 

the same sets of variables (one for temperature, one for precipitation) in the GAM for the three interpolation techniques. The 

predictors for temperature are: simulated temperature from the GCM, elevation and advective continentality (explaining 30 

95.80%, 95.29% and 95.63% of the variance for the bilinear, bicubic, and kriging interpolations, respectively). For 
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precipitation, the predictors are:  simulated temperature, precipitation, sea-level pressure and relative humidity from the 

GCM, elevation, and advective continentality (explaining 64.65%, 64.79% and 65.43% of the variance for the bilinear, 

bicubic, and kriging interpolations) (Table 1). The p-values for all variables for all models were < 0.001. 

 

The splines resulting from the calibration process for the downscaling of temperature values show that fine-scale temperature 5 

readings are related to the GCM temperature and to elevation in a linear fashion, and the differences between the three 

interpolation techniques tested are negligible (Fig. 1). The fine-scale temperature is proportional to the GCM temperature but 

it is inversely proportional to elevation, which means that the GCM overestimates temperatures for high elevations. This is 

expected because temperature generally decreases with increasing altitude and because in the coarse grain GCM, it is the 

average elevation over the grid box that is considered. Although the model including all three predictor variables produced 10 

the lowest AIC, advective continentality has a very limited impact on temperature, as the values of ƒ(Aco) remain close to 0. 

When applied outside the range of values for which they were calibrated, GAMs use a linear extrapolation of the splines. 

The range of values for elevation is similar for the present-day and the LGM periods (Fig. 2). Because of the increased land 

mass during the LGM (which correlates with a low sea-stand), there are more high values for advective continentality, but 

this difference should have a small impact since the spline is relatively flat for this variable. As expected, temperature is 15 

lower during the LGM than for present-day. This should nonetheless have a limited impact on projections because the linear 

interpolation of the spline outside of the range of values used for calibration is consistent with the fact that the spline is 

relatively linear for temperature.  

 

The splines for the downscaling of precipitation, in contrast, are non-linear (Fig. 3). The splines showing the influence of 20 

temperature on expected precipitation rates show larger variations due to a low expected precipitation for both low and high 

temperatures, but high expected precipitation for middle-range temperatures. Although the expected precipitation increases 

monotonically with the interpolated precipitation rates, the spline values are lower than the GCM precipitation values and the 

relationship is non-linear. The expected precipitation increases more rapidly for low than for high interpolated precipitation, 

in keeping with previous observations that GCMs (and even RCMs) overestimate drizzles, which may explain this correction 25 

(e.g. Gutowski et al.,2013). The three interpolation techniques produced similar splines for all variables, although the splines 

of the bicubic interpolation are slightly distinct from the other two interpolation techniques. The main difference is observed 

for the spline of the bicubic relative humidity, which indicates lower precipitation for low relative humidity than the other 

two interpolation techniques. Advective continentality is the variable with the least impact on precipitation rates. The ranges 

of values for simulated precipitation, relative humidity, and for elevation are similar for the present-day and the LGM 30 

periods, and the distributions of the variable substantially overlap, indicating that the splines calibrated over the present-day 

period can apply for the LGM (Fig. 2). As for temperature, the spline of advective continentality is relatively flat, and the 

difference of range of values will have limited impact on the projections. Similarly, the simulated atmospheric pressure at 

sea level was lower for the LGM than for the present-day period, but the corresponding spline calibrated on present-day data 
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is linear at low values, and has little influence on the projections. For temperature, the splines are relatively linear near the 

lower end of the range of present-day values, and the linear interpolation of the spline at lower values for the LGM is 

therefore sensible.  

3.2 Projections for the LGM 

3.2.1 Temperature 5 

Downscaled annual mean temperature was very similar for the three interpolation techniques tested (Figs. 4, 5). This was 

expected, since the splines for the GCM temperature and elevation for all three techniques are also very similar. 

Temperatures interpolated with the bilinear and kriging techniques were more similar to each other than to the temperature 

interpolated using the bicubic technique before (Figs. S9, S10) and after (Fig. 5) applying the GAMs. The differences 

between the bilinear and kriging techniques were regularly spaced, corresponding to the original coarse-grain cells from the 10 

GCM. This illustrates the difference between the two interpolation techniques: kriging generates smoother variations than 

the bilinear interpolation, which generates discontinuous variations at the original points. This difference remained after 

applying the GAMs, showing the impact of the interpolation technique used on the final outcome of the downscaling.  

 

The main differences between the interpolated and downscaled temperatures occur in the North-East region of Europe (Fig. 15 

S11), with the downscaled temperature being higher, especially in winter. This difference was also observed when 

comparing present-day CRU data with the interpolated GCM data (Fig. S12), although with a much lower amplitude. North-

East Europe is the coldest region of the study area for both the LGM and the present-day (Figs. S2-S7). Since the spline for 

temperature has a slope lower than 1 for low temperatures (Fig. 1), the GAM generates higher temperatures than the 

interpolated values, especially for very low temperatures falling outside of the present-day range of values due to the linear 20 

interpolation of the spline. As a result, the difference between the interpolated and downscaled temperature during the LGM 

is lower in summer. The SDM also took fine scale variations in topography into account, such as abrupt elevation changes in 

the Alps and Pyrenees (Fig. S11).  

 

The range of temperatures for the 19 sites for which the BCIs were computed are in accordance with the temperature 25 

reconstructions, irrespective of the interpolation technique used (Fig. 6). Simulated temperature ranges fall within the 

reconstructed ranges corresponding to the primary BCIs for all sites (Fig. 6a,c,e). The reconstructions from Wu et al. (2007) 

produce smaller ranges of values, but the simulated ranges overlap with reconstructed temperatures (Fig. 6b,d,f).  

3.2.2 Precipitation 

Bilinear interpolation and kriging resulted in very similar downscaled precipitation values, whereas the precipitation rates 30 

predicted using bicubic interpolation were substantially lower in the South-West of Europe in winter and higher in the North 
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of Europe (over the current North Sea) in Summer (Figs. 7, 8). This result is consistent with the observation that the splines 

for the bicubic interpolation differed from the other two techniques. The three interpolation techniques produced similar 

distributions of precipitation rates, but compared to the two other interpolation techniques the results of the bicubic 

interpolation differed the most (Figs. S13, S14). A comparison of interpolated and downscaled precipitation for the LGM 

with all three interpolation techniques shows that the GCM underestimates precipitation over the South of Europe and 5 

overestimates it over the North in winter, and substantially underestimate precipitation over all of Europe in Summer (Fig. 

S15). Comparing GCM projections interpolated at fine scale with the present-day CRU data confirms this pattern in winter, 

and shows that the GCM overestimates precipitation over the South of Europe and underestimates them over the North in 

Summer (Fig. S16), which results in the non-linear spline for precipitation (Fig. 3). This is due to the fact that GCMs 

perform poorly when simulating the small-scale physical processes that drive local surface variables such as precipitation 10 

(Wood et al., 2004).   

 

Precipitation ranges for the 19 sites for which the BCIs were computed are in accordance with the precipitation ranges 

reconstructed for the LGM. Simulated precipitation ranges for all sites fall within the reconstructed ranges corresponding to 

the primary and secondary BCIs (Fig. 9). As with temperature, the reconstructions from Wu et al. (2007) show smaller 15 

ranges of precipitation than the reconstructions using the BCIs.  

3.2.3 Variability 

The temporal variability of temperature and precipitation showed important differences between the three interpolation 

techniques. When temporal variation was computed over the interpolated variables (Figs. S17, S18), bilinear interpolation 

showed regular spatial patterns for both temperature and precipitation, especially in summer. This pattern was less apparent 20 

for kriging, and almost absent for bicubic interpolation.  

 

With bilinear interpolation, the interpolated values will necessarily have a lower variation (whatever the index used) than the 

original values. For a simple linear interpolation, given 2 spatially consecutive values at 2 different points in time (y(x0,t0), 

y(x0,t1), y(x1,t0) and y(x1,t1)), any linearly interpolated value y(xi) for a location xi in [x0, x1] will necessarily be comprised in 25 

[y(x0),y(x1)]. In addition, due to the linear interpolation |y(xi,t1)- y(xi,t0)| < |y(x0,t1)- y(x0,t0)| and |y(xi,t1)- y(xi,t0)| < |y(x1,t1)- 

y(x1,t0)|. By contrast, since kriging does not impose linear interpolation between x0 and x1, this relation does not necessarily 

hold, and even less for bicubic interpolation, which do not impose y(x0) ≤ y(x1) ≤ y(x1). However, because of this absence of 

restriction, bicubic interpolation can generate values with a high variability, as for precipitation in summer in the South-West 

of the Iberian peninsula (Fig. S18; the high variability for kriging in winter only occurs at the boundary of the study area due 30 

to boundary conditions, and can therefore be discarded). 
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Computing temporal variation over the downscaled variables (Figs. 10, 11), showed that the GAMs attenuated this spatial 

patterns, which nonetheless still occurred for the bilinear interpolation, and was almost non-existent for the other two 

interpolation techniques. 

 

The three interpolation techniques generated similar STI and SPI surfaces (Fig. S19). The main difference occurred for the 5 

SPI from the bicubic interpolation, which showed less months with “normal” precipitation (i.e. either drier or wetter than 

baseline) than the other two interpolation techniques in the center and North of Europe. As for the temporal variability, this 

result is due to the fact that, contrary to the other two interpolation techniques, bicubic interpolation generates values outside 

of the original coarse-scale values, and is therefore more likely to over- or underestimate them. 

4 Conclusion and Discussion 10 

We apply GAM-based statistical downscaling, a computationally efficient method for the downscaling of large-scale 

climatic variables from global climatic models (Vrac et al. 2007), to the downscaling of temperature and precipitation values 

produced by the IPSL-CM5 model for 50 simulated years over Western Europe during the last glacial maximum. A single 

GAM was used for each dependent variable, calibrated over the average of 31 years present-day data. Comparing the outputs 

of the SDM with two different climate reconstructions showed that the method produced satisfying results. It also enabled us 15 

to compute indices of climate variability. Elsewhere, we demonstrate that climate variability is a key factor governing the 

spatial distribution of human populations society during the LGM (Burke et al. 2014, 2017). Nonetheless, SDMs require a 

careful evaluation of the different variables considered.  

 

The interpolation technique used in the SDM proved critical for the accuracy of the output. Since the GAMs require the 20 

predictor and the dependent variables to have the same spatial grain, bilinear interpolation is commonly used to downscale 

the coarse-grain data generated by the GCM (Vrac 2007). However, bilinear interpolation is shown to generate non-smooth 

surfaces, which may cause spatial artifacts in the final output. We tested two other non-linear interpolation techniques which 

generate smoother surfaces: bicubic interpolation and kriging. Bicubic interpolation generates values outside of the initial 

range of values (and therefore under- or overestimates the values) but is faster to apply than Kriging. Kriging is more 25 

computationally demanding but offers the advantage of constraining the interpolated values within the range of initial values. 

The three interpolation techniques showed differences for both temperature and precipitation during the LGM (Figs. S10, 

S14). After applying the GAM, these differences were especially important for precipitation values (Fig. 8). In particular, 

bicubic interpolation predicts drier environments than the other two techniques by up to 2 mm/day. Since GCMs operate at 

grains that are too coarse to accurately model small-scale physical processes driving local surface variables (Wood et al., 30 

2004), the SDM for precipitation relies on more variables than the temperature. The splines for these variables are non-

linear, which may explain the important differences between the SDM based on bicubic interpolation and the SDM based on 
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the other two techniques. The cumulative impact of the interpolation and the GAM can therefore be non-negligible. This 

pinpoints the utility of the comparison presented here, especially for local phenomena such as precipitation. 

 

Moreover, the variability maps produced when using bilinear interpolation show the presence of a spatial artefact, in the 

form of a regular grid, for both temperature and precipitation (Figs. S17, S18). This artefact reflects the fact that bilinear 5 

interpolation generates lower variability between the points from which the interpolation is performed. Although slightly 

attenuated, this artefact remained after applying the GAMs (Figs. 10, 11). Prior to applying the GAMs, bicubic interpolation 

produced maps with the smallest level of artifacts and kriging was intermediate. However, bicubic interpolation sometimes 

generated unrealistically high variability for precipitation (Fig. S18). After applying the GAMs, the artifact generated by 

kriging decreased (Figs. 10, 11). 10 

 

Assuming that the range of values of the coarse-scale data generated by the GCM is accurate, we conclude that although 

more computationally demanding than the other two techniques, kriging seems to represent a good compromise between 

computational complexity and accuracy. Contrary to bicubic interpolation, kriging generates values within the range of 

values generated by the GCM and generates more reliable variability indices than the bilinear interpolation. 15 

 

Because the GCM generated reliable temperatures at coarse grain which were highly correlated with the CRU present-day 

temperatures, the three interpolation techniques produced similar linear splines and led to relatively similar values for this 

variable. The IPSL-CM5A-LR GCM is known to predict lower temperatures than observed at high latitudes in winter 

(Dufresne et al., 2013). This bias was indeed observed when comparing the interpolated temperature with the CRU present-20 

day data. As a result, the spline for temperature had a shallow slope at low temperature (Fig. 1). This correction was 

emphasised for the LGM data generated by the GCM in winter in the North of Europe (Fig. S11), which are outside of the 

range of present-day temperature, and therefore relied on a linear interpolation of the spline. No palynological or vertebrate 

data were available to evaluate the performance of the downscaling method in this region, and such a correction should be 

treated with caution. For the purpose of studying the spatial distribution of modern human population, this overcorrection 25 

will have negligible effects, since this region was covered by an ice cap during the time of interest, and the range of values 

over the whole region in the present-day data encompasses the range of values for the region where humans were present 

during the LGM (Figs. S2-S7). 

 

Our goal in this research has been to develop and test tools for the production of climate simulations at a suitable scale to 30 

investigate the mechanisms through which climate change and locally decision-making may have affected broader 

evolutionary patterning in the archaeological record. Our results demonstrate the potential of GAMs for the production of 

climate simulations at a fine scale of resolution, both spatially and temporally, at low computational cost. The resulting 

climate simulations can be used to test human decision-making at regional and local scales, particularly with regards to the 
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spatial distribution of prehistoric populations against a backdrop of inter and intra-annual climate variability (Burke et al. 

2017; Burke et al. 2014). The impact of climate change on human decision-making processes at a local scale, specifically the 

selection of seasonal ranges within annual territories, will have had a cumulative effect leading to the larger-scale patterning 

currently discussed in the literature. Paleoclimatological models, such as the ones produced here, also allow climatologists to 

investigate climate events that are not observable in the present – such as sudden climate change – but which may occur in 5 

the near future. Collaboration with archaeologists, who produce chronologically controlled datasets, allowed us to evaluate 

the simulation outputs at a fine scale of resolution. 

 

Code and data availability. The code used for the downscaling and the input and output data are available at at 

https://figshare.com/s/1b952e47ff274cc0687e (DOI: 10.6084/m9.figshare.5487145). 10 
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Table 1. Model selection among all possible combinations of variables for the temperature and the precipitations. Only the five 

models with the lowest AIC are presented. AIC scores, differences in AIC compared to the lowest scoring model (ΔAIC), and AIC 

weights (wAIC) are reported. 

 
Candidate model AIC ΔAIC wAIC 
Bilinear interpolation 
Temperature 

   

T+elv+Aco 869468.4 0 1 
T+elv 878862.9 9394.52 0 
T+Aco 951357.5 81889.14 0 
T 955986.9 86518.50 0 
elev+Aco 1605682.9 736214.55 0 
Precipitations    
T+P+elev+Aco+RH+SLP 275068.7 0 1 
T+P+elev+Aco+SLP 281222.3 6153.56 0 
T+P+elev+Aco+RH 283266.4 8197.70 0 
T+P+elev+RH+SLP  288574.6 13505.85 0 
T+P+elev+Aco 288864.1 13795.35 0 
    
Bicubic interpolation 
Temperature 

   

T+elv+Aco 896517.0 0 1 
T+elv 904724.6 8207.52 0 
T+Aco 952109.7 55592.63 0 
T 955079.5 58562.43 0 
elev+Aco 1605402.4 708885.36 0 
Precipitations    
T+P+elev+Aco+RH+SLP 274137.9 0 1 
T+P+elev+Aco+SLP 278178.8 4040.881 0 
T+P+elev+Aco+RH 283162.3 9024.412 0 
T+P+elev+Aco 286857.5 12719.589 0 
T+P+elev+RH+SLP 286926.3 12788.379 0 
    
Kriging 
Temperature 

   

T+elv+Aco 878970.1 0 1 
T+elv 888326.4 9356.24 0 
T+Aco 952033.1 73062.92 0 
T 956903.8 77933.70 0 
elev+Aco 1607626.2 728656.08 0 
Precipitations    
T+P+elev+Aco+RH+SLP 269767.4 0 1 
T+P+elev+Aco+SLP 276171.0 6403.59 0 
T+P+elev+Aco+RH 277692.0 7924.60 0 
T+P+elev+Aco  283099.2 13331.79 0 
T+P+Aco+RH+SLP 286495.6 16728.23 0 

  5 
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Figure 1. Splines of the GAM for temperature. The splines are scaled to the same range to allow for visual estimation of their 
relative importance. 5 
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Figure 2. Histograms of the predictor variables for the present-time (1960-1990; solid lines) and for the LGM (dashed lines) over 
Western Europe, using the bilinear (red), bicubic (green) and kriging (blue) interpolations.  
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Figure 3. Splines of the GAM for precipitations. The splines are scaled to the same range to allow for visual estimation of their 
relative importance. 
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Figure 4. Maps of mean distributions of monthly mean downscaled temperatures over Western Europe during the LGM for 
winter (December, January, February), summer (June, July, August), and the whole year, computed over 50 years for the three 
interpolation techniques. 
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Figure 5. Maps of difference in mean distributions of monthly mean downscaled temperatures over Western Europe during the 
LGM for winter (December, January, February), summer (June, July, August), and the whole year, computed over 50 years, 
between the three interpolation techniques. 
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Figure 6. Boxplot of reconstructed vs. downscaled, simulated temperatures for the LGM based on the BCI indices (a, c, e), and 
from Wu et al. (2007)’s reconstructions (b, d, f). 
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Figure 7. Maps of mean distributions of downscaled daily precipitations over Western Europe during the LGM for winter 
(December, January, February), summer (June, July, August), and the whole year, computed over 50 years for the three 
interpolation techniques. 
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Figure 8. Maps of difference in mean distributions of downscaled daily precipitations over Western Europe during the LGM for 
winter (December, January, February), summer (June, July, August), and the whole year, computed over 50 years, between the 
three interpolation techniques. 
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Figure 9. Boxplot of reconstructed vs. downscaled, simulated precipitations for the LGM based on the BCI indices (a, c, e), and 
from Wu et al. (2007)’s reconstructions (b, d, f). 
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Figure 10. Maps of temporal variations (standard deviation of each month across 50 years) of downscaled monthly mean 
temperatures over Western Europe during the LGM averaged over winter (December, January, February), summer (June, July, 
August), and the whole year for the three interpolation techniques. Color scales differ between maps for better distinguishing the 
spatial artifacts. 5 
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Figure 11. Maps of temporal variations (coefficient of variation of each month across 50 years) of downscaled daily precipitations 
over Western Europe during the LGM averaged over winter (December, January, February), summer (June, July, August), and 
the whole year, computed over 50 years for the three interpolation techniques. Color scales differ between maps for better 
distinguishing the spatial artifacts. 5 
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