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Abstract. The extent to which climate conditions influenced the spatial distribution of hominin populations in the past is highly 

debated. General Circulation Models (GCMs) and archaeological data have been used to address this issue. Most GCMs are 15 

not currently capable of simulating past surface climate conditions with sufficiently detailed spatial resolution to distinguish 

areas of potential hominin habitat, however. In this paper we propose a Statistical Downscaling Method (SDM) for increasing 

the resolution of climate model outputs in a computationally efficient way. Our method uses a generalized additive model 

(GAM), calibrated over present-day climatology data, to statistically downscale temperature and precipitation time series from 

the outputs of a GCM simulating the climate of the Last Glacial Maximum (19-23,000 BP) over Western Europe. Once the 20 

SDM is calibrated, we first interpolate the coarse-scale GCM outputs to the final resolution and then use the GAM to compute 

surface air temperature and precipitation levels using these interpolated GCM outputs and fine resolution geographical 

variables such as topography and distance from an ocean. The GAM acts as a transfer function, capturing non-linear 

relationships between variables at different spatial scales and correcting for the GCM biases. We tested three different 

techniques for the first interpolation of GCM output: bilinear, bicubic, and kriging. The resulting SDMs were evaluated by 25 

comparing downscaled temperature and precipitation at local sites with paleoclimate reconstructions based on paleoclimate 

archives (archaeozoological and palynological data) and the impact of the interpolation technique on patterns of variability 

was explored. The SDM based on kriging interpolation, providing the best accuracy, was then validated on present-day data 

outside of the calibration period. Our results show that the downscaled temperature and precipitation values are in good 

agreement with paleoclimate reconstructions at local sites, and that our method for producing fine-grained paleoclimate 30 

simulations is therefore suitable for conducting paleo-anthropological research. It is nonetheless important to calibrate the 

GAM on a range of data encompassing the data to be downscaled. Otherwise, the SDM is likely to over-correct the coarse-

grain data. In addition, the bilinear and bicubic interpolation techniques were shown to distort either the temporal variability 
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or the values of the response variables, while the kriging method offered the best compromise. Since climate variability is an 

aspect of the environment to which human populations may have responded in the past the choice of interpolation technique 

is therefore an important consideration. 

1 Introduction 

The extent to which past climate change influenced human population dynamics during the course of prehistory is a subject of 5 

lively debate. The Last Glacial period, including Marine Isotope Stages 3 (MIS3) and 2 (MIS2) and the Last Glacial Maximum 

(LGM), is particularly interesting in the context of this debate (van Andel, 2003). During MIS3 the archaeological record 

suggests that modern human populations originating in Africa expanded into Eurasia, while Neanderthal populations gradually 

contracted their range before becoming extinct ~27,000 years Before Present (BP) (Serangeli and Bolus, 2008). Progressively 

colder and drier conditions, culminating in the LGM (19,000 - 23,000 years Before Present), are thought to have triggered 10 

further range contractions and the demographic decline of modern human populations in Europe. Climate affects the spatial 

behaviour of human populations directly (when conditions exceed human physiological limits) and indirectly (when it affects 

the distribution of resources upon which humans depend). The global climate during the Last Glacial period was characterised 

by a series of rapid oscillations (known as Dansgaard-Oeschger, or D-O events). These events may have acted as forcing 

mechanisms, affecting the demographic processes described above (e.g. Müller et al., 2011; Schmidt et al., 2012; Sepulchre et 15 

al., 2007; Jimenez-Espejo et al., 2007; Banks et al., 2013; d'Errico and Sánchez Goñi, 2003; Gamble et al., 2004; Shea, 2008). 

While the timing of climate events relative to large-scale patterns in the archaeological record is suggestive, the mechanisms 

by which climate forcing acted on human populations are still imperfectly understood. More empirical evidence is needed to 

validate the hypothesis that climate forcing affected human population dynamics and explore the nature and scale of the effect.  

 20 

The broad demographic patterns mentioned above are the result of smaller, local-scale patterns produced by mobile groups of 

hunter-gatherers distributing themselves on the landscape in order to exploit available resources. The availability of these 

resources fluctuated both predictably (on a seasonal basis) and unpredictably (as a result of climate variability). It is by gaining 

an understanding of these smaller-scale patterns, ultimately, that we will be able to understand how climate forcing affects the 

spatial and cultural dynamics of prehistoric human populations. Previous analyses of climate forcing have used a variety of 25 

data to reconstruct the paleoclimate, such as ice-core or marine records (e.g., Bradtmöller et al., 2012; Jimenez-Espejo et al., 

2007; Schmidt et al., 2012), present-day climate data (e.g., Jennings et al., 2011), and climate model simulations (e.g., Banks 

et al., 2008; Davies and Gollop, 2003; Sepulchre et al., 2007; Benito et al. 2017; Hughes et al. 2007; Tallavaara et al. 2015). 

These analyses were conducted at varying spatial resolutions, typically on the order of ~50 km x 50 km (= 2500 km2). Higher-

resolution climate simulations are nonetheless necessary for the quantification of climate variability at an inter-annual scale 30 

and a spatial scale which approximates the size of the catchments within which hunter-gatherer groups typically forage (~10 

km from camp, or 314 km2; Vita-Finzi and Higgs, 1970) making this an ideal spatial scale at which to consider the impact of 

climate variability on human systems.  
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Global Climate Models (GCMs) are able to simulate climate conditions at various spatial and temporal scales, whereas climate 

proxy data are inherently limited by the uneven distribution of sample locations and taphonomic biases (i.e biases in the fossil 

record, such as pollen preservation, location of archaeological sites, etc.). GCMs use physical equations, e.g. to represent 

atmospheric fluid dynamics, as well as parameterisations, e.g. for sub-grid scale phenomena, to simulate the Earth’s climate. 5 

The major disadvantage of GCMs is that they are computationally intensive and are usually only used to model climate 

behaviour at relatively coarse spatial resolution, typically coarser than 100 km (cf. Flato et al., 2013 for the latest details on 

the CMIP5 models) especially for long paleoclimatic simulations. Their ability to simulate the small-scale physical processes 

that drive local surface variables, such as precipitation, is therefore limited (Wood et al., 2004).  

 10 

Regional Climate Models (RCMs) represent a physically based approach to climate modelling at a finer spatial scale over a 

specific region of interest (e.g., Liang et al., 2006, Flato et al., 2013). However, RCMs use GCM outputs to set their boundary 

conditions. They therefore require the explicit modelling of physical processes at both coarse and fine scales  globally and over 

the region of interest, respectively and are also computationally demanding. Statistical Downscaling Methods (SDM), on the 

other hand, are less computationally demanding. SDMs proceed by empirically associating local-scale variables with large-15 

scale atmospheric variables produced by GCMs and are faster to compute than mechanistic RCMs (Vaittinada Ayar et al., 

2015). SDMs fall into four main families: “transfer functions”, which directly link large-scale and local-scale variables; 

“weather typing” methods based on conditioning statistical models on recurrent weather states; “stochastic weather generators” 

that simulate downscaled values from their (potentially conditional) probability density functions; and “Model Output 

Statistics” (MOS) methods based on adjusting (i.e., correcting) the statistical distribution of the large-scale GCM simulations 20 

in order to generate local-scale variables with the correct statistical properties (e.g., Vaittinada Ayar et al., 2015). 

 

In this study, we explore and refine the capacity of an SDM from the transfer functions family, based on Generalized Additive 

Modelling (GAM), to compute temperature and precipitation time series at a fine spatial and temporal resolution for the LGM 

over Western Europe, south of the Fennoscandian ice-sheets. GAM is a non-parametric statistical technique that has proven 25 

reliable for capturing non-linear relationships between local- and large-scale variables and correcting the biases specific to a 

given GCM (e.g., Vrac et al., 2007; Levavasseur et al., 2010). The SDM used here accurately downscales the climatology (i.e., 

the climate averages over several decades) of temperature and precipitation generated by a GCM for the LGM when calibrated 

using present-day data (Vrac et al. 2007). Its ability to generate projections of the small-scale temporal patterns necessary to 

explain the spatial dynamics of prehistoric human populations is untested, however. In the present study, therefore, we use 30 

present-day climate data (corresponding to the average of the 1961-1990 period) extracted from the IPSL-CM5A-LR GCM 

(Dufresne et al., 2013) to calibrate the SDM, applying it to a 50 year-long time series of climate simulations for the LGM 

(Kageyama et al., 2013a, b). Interpolated values of coarse-grain variables extracted from the GCM, as well as fine-scale 

geographical data, such as elevation and advective continentality, are used as predictors in the GAM. The result is the 
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production of downscaled monthly values over 50 years for temperature and precipitation, including local temporal variability 

in temperature and precipitation rates. In addition, we compare the impact of three different interpolation techniques (bilinear 

interpolation, bicubic interpolation and kriging) on the downscaling results, evaluating the resulting SDM outputs with the aid 

of climate proxies (palynological and archaeozoological data) and observing the impact of each technique on patterns of spatial 

and temporal variability in temperature and precipitation. The SDM using kriging interpolation is demonstrated to be a good 5 

compromise between computational complexity and accuracy. Although a longer timeframe could be used to validate the 

method, potentially reducing the influence of interdecadal internal variability, we validated on an 11-year present-day time 

series distinct from the calibration period due to computational constraints. 

 

The Materials and Methods section is organised as follows. First, we present the GCM to be downscaled, detailing its 10 

characteristics and biases. Next, we detail how the GAMs are constructed and how they are used to perform the downscaling. 

The calibration data used to parameterise the GAMs are presented, distinguishing between the dependent variables, the large-

scale predictors drawn from the GCM and the fine-scale geographical predictors. Since the large-scale predictor variables must 

be interpolated at fine-scale before applying the GAMs, we evaluate the relative merits of three interpolation techniques. The 

procedure used for the calibration of the GAM and the selection of predictor variables is then detailed, followed by a description 15 

of the procedure used to downscale the large-scale temperature and precipitation data for the LGM generated by the GCM for 

each interpolation technique, generating spatial measures of variability. We then describe how we obtained the independent 

data used to evaluate the downscaling outputs for the LGM. Finally, we describe the present-day data outside of the calibration 

period used for validating the downscaling method using kriging interpolation, since it provides the best results for the LGM. 

 20 

Downscaling GCM outputs to a fine spatial scale using interpolation and a GAM alters the values and potentially introduces 

bias. The main focus of this paper is to fine-tune the downscaling method and, to this end, we focus on the relative impact of 

three different interpolation methods on the downscaled time series which are the main focus of this research. The Results 

section is therefore organised as follows. First we describe and compare the splines generated by the calibration of the GAM 

for the three interpolation techniques. Understanding these differences is important because the splines are used to correct the 25 

different biases introduced by the three interpolation techniques. We then describe and compare the maps generated by the 

SDMs using the three interpolation techniques for temperature and precipitation and assess the results using the evaluation 

data. The differences between the three interpolation techniques for generating measures of temperature and precipitation 

variability are then explored. Finally, the results of the SDM using kriging interpolation are compared to the present-day 

validation data. These results and the potential pitfalls associated with this downscaling method are then detailed in the 30 

Discussion section. 

2 Materials and Methods 

2.1 Global Climate Model  
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The GCM used in this study is the ocean-atmosphere coupled model IPSL-CM5A-LR (Dufresne et al., 2013) developed for 

the CMIP5 (Taylor et al., 2012) and PMIP3 (Braconnot et al., 2012) projects and the 5th IPCC report (IPCC, 2013). The IPSL-

CM5A-LR model has a spatial resolution of 1.9° in latitude and 3.75° in longitude over Europe, which is the area of interest 

here (i.e. ~62 500 km2). The model performance and main biases are described in Dufresne et al. (2013) and Hourdin et al. 

(2013). This model version is known to have a cold (-1.4°C) bias in terms of globally averaged temperature and the bias in 5 

mean annual temperature over Europe is similar to the global value. In this low-resolution version of the model, the mid-

latitude westerly winds are generally more equatorial than observed (Hourdin et al., 2013) and this is the case for the Northeast 

Atlantic and Europe too. The general pattern of extra-tropical precipitation over the North Atlantic and European sectors is 

satisfactory with respect to the annual mean (Dufresne et al., 2013). The equilibrium temperature response to a doubling CO2 

is 3.59°C (Dufresne et al., 2013), which is rather high compared to other CMIP5 models. Nevertheless, the model’s response 10 

to LGM forcings somewhat underestimates the cooling over Europe, as reconstructed from pollen, and is satisfactory in terms 

of precipitation (Kageyama et al., 2013). 

 

We use a historical simulation run according to the CMIP5 protocol, and use model output for the period from 1961 to 1990 

as our present-day reference climate. Outputs from this simulation are used in the calibration process (below). The simulation 15 

of LGM climate conditions follows the PMIP3 protocol (Braconnot et al., 2011, Braconnot et al., 2012). The concentrations 

of atmospheric greenhouse gases were lowered to their LGM values derived from ice core data (185 ppm for CO2, 350 ppb for 

CH4 and 200 ppb for N2O) and the ice sheets are prescribed according to the product developed for PMIP3 (Abe-Ouchi et al., 

2015). The model is run for several hundred years until the response to the LGM forcing in terms of surface climate variables 

is stabilised (Kageyama et al., 2013a, b). For this research, we extracted 50 years of monthly mean data (temperature 2m above 20 

the surface, precipitation, sea level pressure and relative humidity) from the stabilised part of the simulation. Next, we 

downscaled the data, calculated their average climatology and their temporal (interannual) variability. 

2.2 Generalized additive models  

Generalized additive models (GAM, Hastie and Tibshirani, 1990) are statistical models blending the properties of generalized 

linear models with additive models. Given a dependent variable Y and p predictor variables [X1,…,Xp], GAMs compute E(Y| 25 

X1,…,Xp), the expected value of Y, conditionally on the p predictors Xi, as a sum of non-parametric functions as follows: 

 

E 𝑌 𝑋#, … , 𝑋& = 	 𝑓* 𝑋*
&
*+# ,          (1) 

 

Following Vrac et al. (2007), cubic spline functions were used for the fi, represented by piece-wise third-order polynomial 30 

functions. For each function ƒi, a number of knots are placed evenly throughout the predictor range, and the cubic polynomials 

that compose ƒi are constrained to continuity conditions at each knot to ensure smooth transitions (Wood, 2000, 2004). GAMs 
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were calibrated using the mgcv package (Wood, 2011) in R, and the number of knots was determined automatically using 

generalised cross-validation. 

 

Using a combination of geographical and physical predictor variables has been shown to improve spatial downscaling results 

(Vrac et al., 2007). The GAM uses these predictor variables, in addition to the original variables to be downscaled, to correct 5 

the biases of the GCM described above. This implies that a given GAM is only valid for the GCM for which it was calibrated, 

as it corrects its’ specific biases. Using GAMs on climate variables requires the predictor and dependent variables to have the 

same spatial scale. The present-day dependent variables (precipitation and temperature) are at a fine spatial scale. The elevation 

variable is also at a fine spatial scale, whereas the predictor climate variables generated by the GCM are at a coarser scale. 

Thus, interpolation of the predictor climate variables is necessary. For this research we tested three interpolation techniques 10 

(see below). 

 

Once the functions ƒi have been fitted using the present-day data, the downscaling can be performed on the GCM outputs for 

the LGM. The downscaling uses fine-scale and interpolated predictor climate variables corresponding to the LGM to generate 

fine-scale dependent variables. Here, two GAMs are calibrated: one for temperature and one for precipitation. 15 

2.3 Calibration data 

2.3.1 Fine-scale dependent variables: the CRU climatology. 

Fine-scale, present-day temperature and precipitation dependent data were obtained from the Climate Research Unit (CRU, 

New et al., 2002). The spatial resolution of the data is 10’ (i.e. 1/6 degree), regularly gridded between 32.72° and 59.861° 

latitude (N = 164 values) and -11.578° and 24.738° longitude (N = 219 values) for a total of N = 35916 grid-points. We 20 

computed a monthly climatology for each gridpoint by averaging the variable of interest (temperature or precipitation) over 

30 years (from 1961 to 1990) for each month (Fig. S1), resulting in 12 values for each cell. The GAM is calibrated over this 

30-year climatology, because the GCM cannot be set up to generate predictor variables for a specific year.   

 

We are specifically interested in downscaling temperature and precipitation over Western Europe, south of the ice-sheets 25 

during the LGM, a time when archaeological data indicates that human populations contracted in size and range. The GAMs 

were calibrated over a wider area than the region of interest in order to avoid edge effects and include the full range of climate 

conditions that prevailed during the LGM, which was much colder than the present day. As a result, the calibration domain 

extends further North and East (where more continental conditions prevail) than the region of interest. Preliminary simulations 

nonetheless showed that selecting too large a calibration region averaged-out the small-scale variation we are interested in.  30 

2.3.2 Large-scale predictor variables. 
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We used the data from a CMIP5 historical simulation run with the IPSL-CM5A-LR model to produce the predictor climate 

variables used for the calibration of the GAMs. We calculated monthly climatological averages from the simulation outputs 

for the period from 1961 to 1990, i.e. the same years as the CRU data (see above). The predictor variables we used are: 

temperature (T), precipitation (P), atmospheric pressure at sea level (SLP) and relative humidity (RH). The variables were 

spatially interpolated to match the spatial resolution of CRU data, which is 10’; each grid-point in the CRU data therefore 5 

matches a value for each of the predictor variables. Three interpolation methods were tested: bilinear, bicubic and kriging 

(Figs. S2-S4). For the kriging method, we used the “krig” function from the vacumm python package 

(http://relay.actimar.fr/~raynaud/vacumm/) using an exponential fit of the variogram, with the fit computed independently for 

every month and every variable. Different interpolation methods generate differences in the fine-scale predictor data. For 

example, the bicubic interpolation generates values outside of the initial range of values, contrary to the other two techniques. 10 

The bilinear interpolation generates abrupt changes in the slope of the values at the initial data points, whereas the other two 

techniques generate smooth surfaces. It is therefore important to assess the potential impact of the interpolation method on the 

output of the downscaling process. 

2.3.3 Fine-scale predictor variables. 

We extracted present-day elevation data from the CRU dataset gridded at the same fine-scale spatial resolution as the dependent 15 

variables. We computed the advective (Aco) and diffusive (Dco) continentalities, following Vrac et al. (2007). Dco is bounded 

between 0 and 1, and corresponds to the shortest distance to the ocean. A low value means that distance to the ocean is small, 

and vice versa. Aco is also bounded between 0 and 1, and takes the direction and intensity of prevailing winds into account 

along with the distance to the ocean. The change of Aco during a time dt is governed by Equation 2: 

 20 

𝑑𝐴𝑐𝑜 = −𝐴𝑐𝑜 1 − 𝑖34 + 1 − 𝐴𝑐𝑜 𝑖34
6
78
98

ln 2 	𝑑𝑥        (2) 

 

where ico is 0 over sea and 1 over land, dx is the distance traveled by the air mass during dt, U is the mean wind norm, obtained 

from the GCM, and l0/U0 is the distance/wind ratio corresponding to a change of Aco of 1/2. Both variables are used to account 

for the fact that an air mass becomes more continental as it travels across land. Since Dco and the Aco proved to be highly 25 

correlated but Aco provided the best performance in the models, we only selected Aco for the present analysis (Figs. S2-S4). 

2.4 Calibration of the GAMs 

For each dependent variable (temperature and precipitation) and for each interpolation technique (bilinear, bicubic and 

kriging), we tested different combinations of physical and geographical predictor variables. To downscale temperature, we 

computed GAMs for all possible combinations of coarse-grain temperature values from the GCM interpolated at fine scale, 30 

with fine-grain elevation and advective continentality (Aco), resulting in seven possible models for each interpolation. To 
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downscale precipitation, we computed GAMs for all possible combinations of coarse-grain temperature, coarse-grain 

precipitation, sea-level pressure, and relative humidity values from the GCM interpolated at fine scale, with fine-grain 

elevation and advective continentality (Aco), resulting in 31 possible models for each interpolation. For each interpolation 

technique, the resulting GAMs were compared using the Akaike Information Criterion (AIC; Akaike, 1974), and the model 

with the lowest AIC was selected. The AIC is a measure of the relative goodness of fit of each of the models and penalizes the 5 

number of parameters, thus preventing overfitting. The significance of each variable was assessed using p-values, and verified 

by visual inspection of the spline 95% confidence intervals. Six GAMs were therefore retained after calibration (one for each 

response variable and for each interpolation technique; Table S1).  

2.5 Downscaling of temperature and precipitation time series for the LGM 

We computed downscaled temperature and precipitation values using the six GAMs resulting from the calibration process 10 

described above, i.e. for the same predictor variables. The large-scale climate variables were generated by the GCM using the 

PMIP3 protocol for the LGM prior to interpolation (Figs. S5-S7). The geographical variables are derived from a digital 

elevation model for the LGM (Levavasseur et al., 2011). In particular, the change in coastlines due to the lower sea-level at 

LGM is accounted for, which has an impact on the continentalities. The downscaling was performed for each month of the 50-

year-long monthly output from the GCM, in order to obtain a long time series of fine-scale temperature and precipitation 15 

values over Europe and calculate climatological averages. We also calculated indices of variability, including measures of 

variance and inter-annual variability for the variables of interest. The standard deviation of monthly mean temperatures for 

each month was calculated for the 50-year run. The coefficient of variation of monthly mean precipitation values was calculated 

for the same period. 

2.6 Evaluation data (palynological data and vertebrate remains) 20 

To evaluate the performance of the SDM for the LGM we compared our temperature and precipitation outputs to local climate 

variables estimated on the basis of pollen and vertebrate fossils from 29 test locations (Table S1, Fig. 1). For each of our 29 

test sites, we estimated the mean, minimum, and maximum temperature and precipitation rate on a monthly basis over the 

course of the 50 downscaled years, and compared the ranges of downscaled values to the ranges of temperature and 

precipitation values reconstructed using the palynological data and vertebrate remains.  25 

 

Reconstruction of local temperature and precipitation values (annual mean temperature, mean temperature of the coldest 

month, mean temperature of the warmest month, mean annual precipitation, precipitation in January, precipitation in July) 

were obtained from pollen data reported in an independent study using inverse vegetation modelling for 14 sites located in 

Europe (Wu et al., 2007). For the remaining 19 sites, vertebrate remains from another study (Burke et al. 2014) were used to 30 

calculate bio-climate indices (BCI; ff. Hernandez Fernandez, 2001a, b). The method set forth by Hernandez-Fernandez uses 
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large and small vertebrates to compute the relative probability that a given assemblage reflects one of Walter’s nine global 

zonobiomes (Walter and Box, 1976). The method is based on the “climate envelope” method commonly employed in 

biogeographical reconstructions. The BCI uses presence/absence data, thus avoiding the problems inherent with calculating 

the relative representation of species from the archaeozoological record, and all available taxa rather than one or two 

“indicator” species, thus avoiding the risk that changes in the distribution of a single taxon could bias the biogeographical 5 

reconstruction. Ranges of temperature and precipitation values (minimum, mean and maximum) for each zonobiome were 

estimated by mapping the modern distribution of zonobiomes in the northern hemisphere and compiling present-day 

temperature and precipitation data from the CRU data (see Burke et al. 2014). The zonobiomes (calculated using BCI) were 

then used to predict the climate ranges for each test location. Note that the range of values for each zonobiome corresponds to 

the minimum and maximum values for the zonobiome over Western Europe (see Burke et al. 2014). It is therefore not specific 10 

to a given location and encompasses a large range of values. The intervals generated by these two different climate 

reconstruction methods, therefore, are not equivalent. Nevertheless, they provide useful references for evaluating the values 

generated by the SDM.  

2.7 Validation using present-day data (CRU 1950-1960 time series) 

Due to computational constraints, the validation of the SDM was performed for the kriging interpolation technique only on an 15 

11-year period outside of the calibration period, based on the comparison of the results of the downscaling for the LGM 

between the three interpolation techniques (see below). A GCM simulation was produced for the period from 1950-1960 and 

compared with a time series of temperature and precipitation at 10’ resolution over Europe for the same period (Mitchell et al. 

2004). Yearly averages and variability indices (standard deviation for temperature and coefficient of variation for precipitation) 

for the two sets of data were compared. The time series was based on the same original data used to create the 1961-1990 20 

climatology, which forms the calibration set for the SDM (New et al. 1999). The time series was created by spatially 

interpolating data from irregularly spaced climate stations using thin-plate smoothing splines, however, and may be subject to 

its own bias. Potential differences between our results and the validation time series should therefore be interpreted with 

caution. 

3. Results 25 

3.1 The GAM 

The best models (i.e., the models with the lowest AIC value) for temperature and for precipitation were obtained by using the 

same sets of variables (one for temperature, one for precipitation) in the GAM for the three interpolation techniques. The 

predictors for temperature are: simulated temperature from the GCM, elevation and advective continentality (explaining 

95.80%, 95.29% and 95.63% of the variance for the bilinear, bicubic, and kriging interpolations, respectively). For 30 

precipitation, the predictors are:  simulated temperature, precipitation, sea-level pressure and relative humidity from the GCM, 
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elevation, and advective continentality (explaining 64.65%, 64.79% and 65.43% of the variance for the bilinear, bicubic, and 

kriging interpolations) (Table 1). The p-values for all variables for all models were < 0.001. 

 

The splines resulting from the calibration process for the downscaling of temperature values show that fine-scale temperature 

readings are related to the GCM temperature and to elevation in a linear fashion, and the differences between the three 5 

interpolation techniques tested are negligible (Fig. 2). The fine-scale temperature is proportional to the GCM temperature but 

it is inversely proportional to elevation, which means that the coarse-grain temperatures generated by the GCM are higher than 

fine grain observations in regions of high elevation. This is expected because temperature generally decreases with increasing 

altitude and because in the coarse grain GCM, it is the average elevation over the grid box that is considered. Although the 

model including all three predictor variables produced the lowest AIC, advective continentality has a very limited impact on 10 

temperature, as the values of ƒ(Aco) remain close to 0. When applied outside the range of values for which they are calibrated, 

GAMs use a linear extrapolation of the splines. The range of values for elevation is similar for the present-day and the LGM 

(Fig. 3). Because of the increased land mass during the LGM (which correlates with a low sea-stand), there are more high 

values for advective continentality, but this difference has a small impact since the spline is relatively flat for this variable. As 

expected, temperature is lower during the LGM than for present-day. This has a limited impact on the projections because the 15 

linear interpolation of the spline outside of the range of values used for calibration is consistent with the fact that the spline is 

relatively linear for temperature  and the few remaining values are within 10 degrees of the minimum temperature. For very 

low temperatures during the LGM, however, the SDM outputs should be interpreted carefully, as discussed below. 

 

The splines for the downscaling of precipitation, in contrast, are non-linear (Fig. 4). The splines showing the influence of 20 

temperature on expected precipitation rates show larger variations due to a low expected precipitation for both low and high 

temperatures, but high expected precipitation for middle-range temperatures. Although the expected precipitation increases 

monotonically with the interpolated precipitation rates, the spline values are lower than the GCM precipitation values and the 

relationship is non-linear. The expected precipitation increases more rapidly for low than for high interpolated precipitation, 

in keeping with previous observations that GCMs (and even RCMs) overestimate drizzles, which may explain this correction 25 

(e.g. Gutowski et al.,2013). The three interpolation techniques produced similar splines for all variables, although the splines 

of the bicubic interpolation are slightly distinct from the other two interpolation techniques. The main difference is observed 

for the spline of the bicubic relative humidity, which indicates lower precipitation for low relative humidity than the other two 

interpolation techniques. Differences between the splines of the bicubic interpolation and the other two techniques were 

expected, since this interpolation generates the most divergent values (Figures S8, S11). As a GAM will adjust the splines to 30 

compensate for the potential biases of a GCM, it will also do so to compensate for the specificity of an interpolation technique. 

 

Advective continentality is the variable with the least impact on precipitation rates. The ranges of values for simulated 

precipitation, relative humidity, and for elevation are similar for the present-day and the LGM periods, and the distributions 
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of the variable substantially overlap, indicating that the splines calibrated over the present-day period can apply for the LGM 

(Fig. 3). As for temperature, the spline of advective continentality is relatively flat, and the difference of range of values will 

have limited impact on the projections. The spline for the simulated atmospheric pressure at sea level has a positive slope for 

high values. This spline does not represent a causal relationship, but simply indicates that the GCM tends to underestimate 

precipitation at high atmospheric pressure. The simulated atmospheric pressure at sea level is also higher for the LGM than 5 

for the present-day period. Nonetheless, since the atmospheric pressure is mostly lower than 1045 hPa during the LGM, and 

given the low slope of the spline on the right-hand extremity, this discrepancy should have little impact on the results. For 

temperature, the splines are relatively linear near the lower end of the range of present-day values, and the linear interpolation 

of the spline at lower values for the LGM is therefore sensible.  

3.2 Results for the LGM 10 

3.2.1 Temperature 

Downscaled annual mean temperature was very similar for the three interpolation techniques tested (Fig. 5). This was expected, 

since the splines for the GCM temperature and elevation for all three techniques are also very similar. Temperatures 

interpolated with the bilinear and kriging techniques were more similar to each other than to the temperature interpolated using 

the bicubic technique before (Fig. S8) and after (Fig. 5) applying the GAMs. The differences between the bilinear and kriging 15 

techniques show a pattern corresponding to the original coarse-grain cells from the GCM. This illustrates the difference 

between the two interpolation techniques: kriging generates smoother variations than the bilinear interpolation, which 

generates discontinuous variations at the original points. This difference remained after applying the GAMs, showing the 

impact of the interpolation technique used on the final outcome of the downscaling.  

 20 

The main differences between the interpolated and downscaled temperatures occur in the northeast of Europe (Fig. S9), where 

downscaled temperatures are higher, especially in winter. This difference was also observed when comparing present-day 

CRU data with the interpolated GCM data (Fig. S10), although with a much lower amplitude. Northeast Europe is the coldest 

region of the study area for both the LGM and the present-day (Figs. S1-S7). Since the spline for temperature has a slope lower 

than 1 for low temperatures (Fig. 2), the GAM generates higher temperatures than the interpolated values, especially for very 25 

low temperatures which fall outside of the present-day range of values due to the linear interpolation of the spline. As a result, 

the difference between interpolated and downscaled temperatures during the LGM is lower in summer. The SDM also takes 

fine scale variations in topography into account, such as abrupt elevation changes in the Alps and Pyrenees (Fig. S9).  

 

The range of temperatures for the 19 sites for which the BCIs were computed are in accordance with the temperature 30 

reconstructions, irrespective of the interpolation technique used (Fig. 6). Simulated temperature ranges fall within the 

reconstructed ranges corresponding to the BCIs and are within the reconstructed ranges from Wu et al. (2007) for all test sites, 
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as shown by the overlap of the red and blue error bars with the diagonal (Fig. 6a,c,e). As noted above, since the BCI 

reconstruction considers the minimum, mean and maximum values for each zonobiome over the whole of Western Europe 

(see Burke et al. 2014), some downscaled temperature values may differ from the mean, but as long as the error bars overlap 

with the diagonal are still in accordance with the BCI climate reconstruction. 

3.2.2 Precipitation 5 

The three interpolation techniques tested here produce similar distributions of precipitation rates but, compared to the two 

other interpolation techniques, the bicubic interpolation produced the most divergent results (Fig. S11). All three interpolation 

techniques nonetheless reflect the biases of the GCM (Fig. S12).  Precipitation rates predicted using bicubic interpolation were 

substantially lower than those predicted using the other techniques in the South-West of Europe in winter and higher in the 

North of Europe (over the current North Sea) in summer (Fig. 7). This result is consistent with the observation that the splines 10 

for the bicubic interpolation differed from the other two interpolation techniques. Despite a general agreement between 

simulated and observed annual precipitation mean over Europe (Dufresne et al. 2013), comparing GCM projections 

interpolated at fine scale with the present-day CRU data shows that the GCM overestimates precipitation over the South of 

Europe in winter and underestimates them over the North in summer (Fig. S13), which results in the non-linear spline for 

precipitation (Fig. 4). Coarse-grain GCMs are known to perform poorly when simulating the small-scale physical processes 15 

that drive local surface variables such as precipitation (Wood et al., 2004). This explains the discrepancies between the present-

day simulations and the CRU data and, by extension, explains the adjustments performed by the SDM. 

 

The precipitation ranges for the 19 sites for which the BCIs were computed are in accordance with the precipitation ranges 

reconstructed for the LGM. Simulated precipitation ranges for all sites fall within the reconstructed ranges corresponding to 20 

the BCIs, as shown by the overlap of the horizontal error bars (in red) with the diagonal (Fig. 8). The SDM predicts higher 

precipitation values for 1 site (in North-West Iberia) than the reconstructions provided by Wu et al. (2007) (the simulated mean 

precipitation of the driest month was predicted to be higher than the maximum precipitation found by Wu et al.). However, 

while the BCI ranges correspond to minimum and maximum values over a relatively large spatial extent, the reconstructions 

offered by Wu et al. (2007) are site-specific and therefore produce smaller ranges of values. Moreover, Wu et al. (2007) based 25 

their reconstructions on local adjustments of the biome estimates from the BIOME4 model (Kaplan et al. 2003). They therefore 

used the same initial values for different sites, which may underestimate differences between sites and explain the lower range 

of precipitation values compared to the values generated by the SDM.  

3.2.3 Variability 

The temporal variability of temperature and precipitation rates highlights differences between the three interpolation 30 

techniques. When temporal variation was computed over the interpolated variables (Figs. S14, S15), bilinear interpolation 
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displays regular spatial patterns for both temperature and precipitation, especially in summer. This pattern was less apparent 

for kriging, and almost absent for bicubic interpolation.  

 

With bilinear interpolation, the interpolated values will necessarily be less variable (whatever the index used) than the original 

values. For a simple linear interpolation, given 2 spatially consecutive values at 2 different points in time (y(x0,t0), y(x0,t1), 5 

y(x1,t0) and y(x1,t1)), any linearly interpolated value y(xi) for a location xi in [x0, x1] will necessarily be comprised in [y(x0),y(x1)]. 

In addition, due to the linear interpolation |y(xi,t1)- y(xi,t0)| < |y(x0,t1)- y(x0,t0)| and |y(xi,t1)- y(xi,t0)| < |y(x1,t1)- y(x1,t0)|. By 

contrast, since kriging does not impose linear interpolation between x0 and x1, this relation does not necessarily hold, and even 

less for bicubic interpolation, which do not impose y(x0) ≤ y(x1) ≤ y(x1). However, because of this absence of restriction, bicubic 

interpolation can generate values with a high variability, as for precipitation in summer in the South-West of the Iberian 10 

peninsula (Fig. S15; the high variability for kriging in winter only occurs at the boundary of the study area due to boundary 

conditions, and can therefore be discarded). 

 

Computing temporal variation over the downscaled variables (Figs. 9, 10), showed that the GAMs attenuated this spatial 

pattern, which nonetheless still occurred for the bilinear interpolation, and was almost non-existent for the other two 15 

interpolation techniques. 

3.3 Validation on present-day data 

The comparison of average downscaled (based on kriging interpolation) and observed (CRU) monthly temperature and daily 

precipitation for the 1950-1960 period shows that they are in good agreement (Figures S16, S17). For temperature, the main 

difference occurs in the far North of the study area (Southern point of the Scandinavian peninsula), and on the Italian side of 20 

the Alps. The downscaled temperature is similar on both sides of the Alps, whereas there is some difference in the CRU data 

(Figure S16), suggesting the inclusion of orographic wind as a predictor may improve the SDM for specific areas. For 

precipitation, the main difference occurs in areas of high precipitation, especially the Western coast of Great Britain (Figure 

S17). Nonetheless, these areas were the areas with higher levels of precipitation for both datasets. 

 25 

The overall patterns of variability were overall similar between the downscaled and CRU datasets (Figures S18, S19), with 

nonetheless some local differences. Temperature variability was higher in the North-East region of the study area and lower 

in the South-West region, especially in winter (Figure S18), and the range of values for the standard deviation were very similar 

for the different seasons. Downscaling tended to slightly overestimate temperature variability in the North of the study area, 

and underestimate it in the North-East compared to the CRU data. Some small-scale differences are nonetheless difficult to 30 

interpret, since the CRU data showed some spatial artifact, for example in the center of the Iberia peninsula. The amplitude of 

the variability values was more different for precipitation, with the variability observed in the CRU data being higher (Figure 
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S19). Nonetheless, the general patterns were quite similar, with the Southern region of the study area having higher 

precipitation variability than the North for both the downscaled and the CRU datasets. 

4 Conclusion and Discussion 

We downscaled temperature and precipitation values produced by the IPSL-CM5 model for 50 simulated years over Western 

Europe during the last glacial maximum using a GAM, a computationally efficient method for downscaling GCMs (Vrac et 5 

al. 2007). A single GAM was used for each dependent variable, calibrated over an average of 30 years of present-day data. 

Comparing the outputs of the SDM with two different climate reconstructions showed that this method generates results that 

fall within the computed confidence intervals for the variables of interest. This enabled us to compute indices of climate 

variability for the LGM in Western Europe. In a separate study, we were then able to test a suite of environmental predictors 

and demonstrate that climate variability is a key factor governing the spatial distribution of prehistoric human populations 10 

during the LGM (Burke et al. 2014, 2017).  

 

Downscaled time series for a present-day period (1950-1960) falling outside of the calibration period (1961-1990) were in 

good agreement with an independent time series for both averaged values and measures of variability. Our study, therefore, 

demonstrates that the SDM, originally designed to downscale climatology data (averaged over several decades), can be applied 15 

to a time series thus allowing us to compute spatio-temporal patterns at a fine scale appropriate for studying the spatial 

dynamics of prehistoric human populations. SDMs must be carefully parameterised, however, including selecting the 

appropriate size of the area used for calibration. 

 

Overall, the downscaled temperature and precipitation values produced by the SDM are in agreement with the climate 20 

reconstructions obtained from vertebrate remains and palynological data, with few exceptions (Figures 6, 8). The SDM results 

for the LGM differ from the interpolated data in the northeast of the study area, reflecting the adjustments made in the GAM 

to counter biases inherent in the IPSL-CM5A-LR GCM used in this study. These discrepancies have little consequence in the 

present study, since this region was covered by ice-sheets during the LGM. It was included for calibration because it 

represented present-day climate conditions that were close to those of the Southern part of the study area during the LGM. 25 

This region was also included in the downscaling to illustrate the fact that, since it was colder during the LGM than any present-

day region of the study area, results for this region should be interpreted with caution. 

 

The choice of interpolation technique used in the SDM also proved critical as it has a strong impact on the distribution of 

climate variability. We tested three different interpolation techniques. Since GAMs require the predictor and the dependent 30 

variables to have the same spatial grain, bilinear interpolation is commonly used to downscale the coarse-grain data generated 

by GCMs (Vrac 2007). However, as this research demonstrates, bilinear interpolation generates non-smooth surfaces which 

may cause spatial artifacts in the final output. We tested two other non-linear interpolation techniques which generate smoother 
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surfaces: bicubic interpolation and kriging. Bicubic interpolation generates values outside of the initial range of values (and 

therefore under- or overestimates the values) but is faster to apply than kriging. Kriging is more computationally demanding 

but offers the advantage of constraining the interpolated values within the range of initial values. The three interpolation 

techniques produced different results for both temperature and precipitation during the LGM (Figs. S8, S11). After applying 

the GAM, these differences were especially important for precipitation values (Fig. 7). Because the GCM generated coarse 5 

grain temperature values for present-day conditions which are highly correlated with the CRU data, all three interpolation 

techniques produced similar linear splines and led to similar results for this variable. In the case of precipitation, however, 

bicubic interpolation predicts drier environments than the other two techniques by up to 2 mm/day. Since GCMs operate at 

grains that are too coarse to accurately model small-scale physical processes driving local surface variables (Wood et al., 

2004), the SDM for precipitation relies on more variables than are required to model temperature. The splines for these 10 

variables are non-linear (Figure 4), however, and may exacerbate the differences between the bicubic interpolation and the 

other two techniques. The cumulative impact of the interpolation and the GAM can therefore be non-negligible. This highlights 

the utility of the comparison presented in this research, especially for local phenomena such as precipitation. 

 

The variability maps produced when using bilinear interpolation show the presence of a spatial artefact, in the form of a regular 15 

grid, for both temperature and precipitation (Figs. S14, S15). This artefact reflects the fact that bilinear interpolation generates 

lower variability between the points from which the interpolation is performed. Although slightly attenuated, this artefact 

remained after applying the GAMs (Figs. 9, 10). Prior to applying the GAMs, bicubic interpolation produced maps with the 

smallest level of artifacts, kriging was intermediate and bilinear interpolation produced the highest level of artifacts. However, 

bicubic interpolation sometimes generated unrealistically high variability for precipitation (Fig. S15) while the artifacts 20 

generated by kriging decreased after applying the GAMs (Figs. 9, 10). We conclude that although more computationally 

demanding than the other two techniques, kriging represents a good compromise between computational complexity and 

accuracy. Contrary to bicubic interpolation, kriging generates values within the range of the values generated by the GCM and 

generates variability indices with more realistic patterns than the bilinear interpolation. We therefore recommend using kriging 

for SDM applications based on the method presented here. 25 

 

The IPSL-CM5A-LR GCM is known to predict lower temperatures than the values observed at high latitudes in winter 

(Dufresne et al., 2013). This bias was indeed observed when comparing the interpolated temperature with the CRU present-

day data. As a result, the spline for temperature has a shallow slope at low temperatures (Fig. 2). The resulting correction 

applied by the GAM was emphasised for the LGM data generated by the GCM in winter in the North of Europe (Fig. S9), 30 

which lie outside of the range of present-day temperature and therefore relied on a linear interpolation of the spline. The large 

differences in temperature are therefore likely to be a combination of an underestimation of temperature by the GCM, and an 

over-correction of the very low temperature by the SDM. The spatial domain used to calibrate the GAM is larger than the 

domain of interest, namely Western Europe south of the ice sheets (the region occupied by human populations during the 
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LGM) for reasons discussed above. These include the necessity of avoiding edge effects and including the full range of climate 

conditions likely to have occurred during the LGM. The observed over-correction lies on the periphery of the calibration region 

and is not within the study region this SDM was designed for.  

 

The calibration area selected should therefore be large enough to encompass a representative range of climate conditions but 5 

should overlap the study region in order to account for potential relationships between climate and geographical variables 

specific to the region. However, through trial and error we found that using too large a calibration region averages out these 

relationships and therefore runs counter to the objectives of the downscaling, which is to represent fine scale spatial variation. 

Further research into the impact of the size of the calibration region on the SDM would be an interesting avenue to pursue. In 

addition, some results presented here are probably highly influenced by the specific GCM that was used. Especially, the 10 

variability in the SDM results is sontrgly influenced by the variability of the original GCM, in addition to the choice of the 

interpolation technique (Figure 9, S14, 10, S15). For temperature, for example, for a given interpolation technique, the 

downscaling adjusts the interpolated GCM temperature based on elevation, which is constant for a given location. The SDM 

will therefore not change variability compared with interpolation of the GCM. Using ensembles of models increases confidence 

in climate projections by enabling a better quantification of such uncertainty (Tebaldi & Knutti 2007). Although the outputs 15 

of ensembles of models may be challenging to interpret, this is another promising avenue for improving the application of the 

SDM method presented here that should be pursued in the future, especially for the computation of variability indices.  

 

Our goal in this research has been to develop and test tools for the production of climate simulations at suitable spatial and 

temporal scales for investigating the mechanisms through which climate change and climate variability may have affected 20 

human populations in the past. Our aim is to help explain some of the broad evolutionary patterns visible in the archaeological 

record. Our results demonstrate the potential of GAMs for the production of climate simulations at a fine scale of resolution, 

both spatially and temporally, at relatively low computational cost. The resulting climate simulations can be used to test human 

decision-making at regional and local scales useful for investigating the spatial distribution of prehistoric populations against 

a backdrop of inter and intra-annual climate variability (e.g., Burke et al. 2017; Burke et al. 2014). 25 

  

 

Code and data availability. The code used for the downscaling and the input and output data are available at at 

https://figshare.com/s/1b952e47ff274cc0687e (DOI: 10.6084/m9.figshare.5487145). 
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Table 1. Model selection among all possible combinations of variables for the temperature and the precipitations. Only the five 

models with the lowest AIC are presented. AIC scores, differences in AIC compared to the lowest scoring model (ΔAIC), and AIC 

weights (wAIC = exp(-0.5 × ΔAIC) ∈ [0,1], representing the relative likelihood of the models) are reported. 

 
Candidate model AIC ΔAIC wAIC 
Bilinear interpolation 
Temperature 

   

T+elv+Aco 869468.4 0 1 
T+elv 878862.9 9394.52 0 
T+Aco 951357.5 81889.14 0 
T 955986.9 86518.50 0 
elev+Aco 1605682.9 736214.55 0 
Precipitations    
T+P+elev+Aco+RH+SLP 275068.7 0 1 
T+P+elev+Aco+SLP 281222.3 6153.56 0 
T+P+elev+Aco+RH 283266.4 8197.70 0 
T+P+elev+RH+SLP  288574.6 13505.85 0 
T+P+elev+Aco 288864.1 13795.35 0 
    
Bicubic interpolation 
Temperature 

   

T+elv+Aco 896517.0 0 1 
T+elv 904724.6 8207.52 0 
T+Aco 952109.7 55592.63 0 
T 955079.5 58562.43 0 
elev+Aco 1605402.4 708885.36 0 
Precipitations    
T+P+elev+Aco+RH+SLP 274137.9 0 1 
T+P+elev+Aco+SLP 278178.8 4040.881 0 
T+P+elev+Aco+RH 283162.3 9024.412 0 
T+P+elev+Aco 286857.5 12719.589 0 
T+P+elev+RH+SLP 286926.3 12788.379 0 
    
Kriging 
Temperature 

   

T+elv+Aco 878970.1 0 1 
T+elv 888326.4 9356.24 0 
T+Aco 952033.1 73062.92 0 
T 956903.8 77933.70 0 
elev+Aco 1607626.2 728656.08 0 
Precipitations    
T+P+elev+Aco+RH+SLP 269767.4 0 1 
T+P+elev+Aco+SLP 276171.0 6403.59 0 
T+P+elev+Aco+RH 277692.0 7924.60 0 
T+P+elev+Aco  283099.2 13331.79 0 
T+P+Aco+RH+SLP 286495.6 16728.23 0 

  5 
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Figure 1. Study area and locations of the sites used for reconstructing local climate variables estimated on the basis of pollen and 
vertebrate fossils, used for the evaluation of the method. The grey scale represents elevation. 5 
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Figure 2. Splines of the GAM for temperature. The splines are scaled to the same range to allow for visual estimation of their relative 
importance. The range of the x-axes combines the ranges of values for the present-day period and the LGM. The grey lines indicate 
the values for the 12 months over the 50 years during the LGM at the archaeological sites of Figure 1 (except for the elevation, for 
which there is only one value per site).  5 
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Figure 3. Histograms of the predictor variables for the present-time (1961-1990; dashed lines) and for the LGM (solid lines) over 
Western Europe, using the bilinear (red), bicubic (green) and kriging (blue) interpolations. The grey lines indicate the values for the 
12 months over the 50 years during the LGM at the archaeological sites of Figure 1 (except for the elevation, for which there is only 
one value per site). 5 
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Figure 4. Splines of the GAM for precipitations. The splines are scaled to the same range to allow for visual estimation of their 
relative importance. The range of the x-axes combines the ranges of values for the present-day period and the LGM. The grey lines 
indicate the values for the 12 months over the 50 years during the LGM at the archaeological sites of Figure 1 (except for the 
elevation, for which there is only one value per site). 5 
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Figure 5. Mean distributions of monthly mean downscaled temperatures over Western Europe during the LGM for winter 
(December, January, February), summer (June, July, August), and the whole year, computed over 50 years for the kriging 
interpolation technique, and difference between the kriging and the other two techniques. Downscaling was performed for each 
month independently, but results are combined into seasons to summarise the results. 5 



29 
 

 

Figure 6. Comparison of reconstructed vs. downscaled temperatures for the LGM based on the BCI indices (red), and from Wu et 
al. (2007)’s reconstructions (blue) for a) the bilinear, b) the bicubic and c) the kriging interpolations. The circles represent the mean 
temperature values for the two reconstruction methods (x-axis) and the downscaled values over the 50 simulated years (y-axis). The 
horizontal error bars represent the range of temperature values for the reconstruction method (minimum and maximum over the 5 
whole zonobiome for the BCI indices, mean temperature of the coldest and warmest month for Wu et al. 2007). The vertical error 
bars correspond to the mean temperature of the coldest and warmest month over the 50 simulated years. 
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Figure 7. Mean distributions of downscaled daily precipitations over Western Europe during the LGM for winter (December, 
January, February), summer (June, July, August), and the whole year, computed over 50 years for the kriging interpolation 
technique, and difference between the kriging and the other two techniques. Downscaling was performed for each month 
independently, but results are combined into seasons to summarise the results. 5 
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Figure 8. Boxplot of reconstructed vs. downscaled precipitations for the LGM based on the BCI indices (red), and from Wu et al. 
(2007)’s reconstructions (blue) for a) the bilinear, b) the bicubic and c) the Kriging interpolations. The circles represent the mean 
temperature values for the two reconstruction methods (x-axis) and the downscaled values over the 50 simulated years (y-axis). The 
horizontal error bars represent the range of precipitation values for the reconstruction method (minimum and maximum over the 5 
whole zonobiome for the BCI indices, mean precipitation of the coldest and warmest month for Wu et al. 2007). The vertical error 
bars correspond to the mean precipitation of the driest and wettest month over the 50 simulated years. 
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Figure 9. Maps of temporal variations (standard deviation of each month across 50 years) of downscaled monthly mean temperatures 
over Western Europe during the LGM averaged over winter (December, January, February), summer (June, July, August), and the 
whole year for the kriging interpolation technique, and difference between the kriging and the other two techniques. Variability was 
computed for each month independently, but results are combined into seasons to summarise the results. 5 
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Figure 10. Maps of temporal variations (coefficient of variation of each month across 50 years) of downscaled daily precipitations 
over Western Europe during the LGM averaged over winter (December, January, February), summer (June, July, August), and the 
whole year, computed over 50 years for the kriging interpolation technique, and difference between the kriging and the other two 
techniques. Variability was computed for each month independently, but results are combined into seasons to summarise the results. 5 

 
 

 


