
ANONYMOUS	REFEREE	#1	
	
This	study	applies	a	Generalized	Additive	Model	to	statistically	downscale	precipitation	
and	temperature	over	Europe	during	the	Last	Glacial	Maximum.	It	specifically	evaluates	
the	effect	of	different	interpolation	schemes	(bilinear,	bicubic	and	kriging)	to	the	
application	of	a	previously	used	downscaling	method	(Vrac	et	al.	2007	as	cited	in	the	
manuscript).	I	believe	this	manuscript	could	be	accepted	subject	to	revisions	concerning	
the	following	issues.	
	
We	thank	the	reviewer	for	taking	the	time	to	review	our	manuscript	and	for	providing	
the	constructive	comments	below.		
	
	
MAIN	COMMENTS	
	
GC1:	The	first	issue	involves	the	coarse	scale	GCM	predictor	variables	used	by	the	
downscaling	model.	Using	a	single	GCM	(IPSL-CM5A-LR)	to	calibrate	the	model	and	
generate	simulations	is	problematic	as	it	leaves	the	analysis	subject	to	the	biases	of	that	
individual	model	(biases	identified	in	“European	temperatures	in	CMIP5:	origins	of	
present-day	biases	and	future	uncertainties”	for	example).	This	GCM	has	a	larger	than	
average	climate	sensitivity	relative	to	the	CMIP5	ensemble	and	it’s	response	to	
significantly	reduced	GHG	concentrations	may	be	similarly	different	from	other	GCMs.	
Calibrating	a	single	GCM	over	a	30-year	period	should	eliminate	any	biases	due	to	inter-
annual	or	decadal	variability	but	could	still	influenced	by	lower	frequency	modes	of	
variability.	Magnitudes	of	temperature	and	precipitation	in	paleoclimate	simulations	
could	be	amplified	or	diminished	depending	on	whether	the	model	was	fitted	in	a	
generally	cooler	or	warmer	phase	of	low-frequency	variability.	Using	an	ensemble	of	
models	generally	limits	this	effect	as	well.	If	only	one	GCM	is	feasible,	then	its	
characteristics	and	limitations	should	be	explained	in	more	detail.	
	
GR1:	One	purpose	of	the	downscaling	method,	in	addition	to	generating	data	at	a	finer	
grain	than	generated	by	the	GCM,	is	actually	to	correct	for	the	potential	biases	of	the	
specific	GCM.	Such	correction	is	possible	thanks	to	the	GAM,	which	acts	as	a	transfer	
function,	and	is	calibrated	using	the	comparison	of	the	interpolated	GCM	data	with	the	
target	CRU	data.	This	point	has	now	been	emphasised	in	the	methods	(p.4,	l.12-20;	p.5,	
l.13-16),	where	we	discuss	the	biases	of	the	GCM,	and	in	the	discussion	(p.13-14,	l.30-4)	
It	is	true	that	for	application	of	the	data	to	specific	issues,	an	ensemble	of	models,	which	
would	require	calibrating	a	different	SDM	for	each	model	to	correct	for	the	specific	bias	
of	each	model,	would	provide	more	accurate	predictions.	However,	the	purpose	of	this	
paper	is	to	introduce	the	method	and	show	how	to	apply	it	to	a	specific	model,	and	such	
application	is	therefore	out	of	the	present	scope.	To	clarify	this	point,	and	in	response	to	
the	first	comment	of	reviewer	2,	we	clarified	the	objectives	of	the	paper	in	the	
introduction	(p.3-4,	l.22-6)		
	



	
GC2:	The	second	concern	is	in	the	results	for	Generalized	Additive	Model	(Section	3).	
There	is	confusion	between	the	text	and	Figures	2	and	3	about	what	is	occurring.	On	
Page	8	starting	with	lines	34-35	and	continued	onto	next	page	the	text	states:	
“Simulated	atmospheric	temperature	at	sea	level	was	lower	for	the	LGM	than	for	the	
present-day	period”.	Is	this	true?	In	Figure	2	the	legend	suggests	present-day	SLP	is	
lower,	while	the	caption	suggests	LGM	SLP	is	lower	(the	figure	legend	and	caption	
contradict	each	other	over	what	the	solid	and	dashed	lines	represent).	Further,	the	
domain	of	the	spline	for	SLP	(fitted	in	present-day)	in	Figure	3	is	1000	hPa	to	1030	hPa	
which	corresponds	to	the	lower	valued	histogram	in	Figure	2,	contradicting	the	text.	
If	the	spline	for	SLP	in	Figure	3	is	correct	then	it	implies	LGM	SLP	is	described	by	the	solid	
line	and	is	higher	than	present-day	SLP.	This	is	(hopefully)	correct	because	if	the	text	and	
Figure	2	caption	are	correct,	the	temperature	panel	would	imply	that	the	LGM	had	high	
temperatures	than	present-day,	suggesting	there	is	something	seriously	wrong	with	the	
IPSL-CM5A-LR	GCM!	If	the	splines	of	Figure	3	are	correct,	then	a	linear	extrapolation	of	
the	SLP	spline	into	the	higher	SLP	values	of	the	LGM	suggests	precipitation	will	have	a	
strong	positive	response	to	increasing	SLP.	This	does	not	seem	physically	realistic.	
	
GR2:	We	thank	the	reviewer	for	point	this	error	out.	We	indeed	made	a	mistake	when	
describing	the	spline	of	the	sea-level	pressure,	and	the	interpolation	occurs	on	the	right-
had	extremity	of	the	spline.	Please	note	that	the	SDM	consists	of	applying	a	correction	to	
the	GCM	precipitation	using	the	other	atmospheric	variables,	i.e.	to	correct	the	potential	
biases	of	the	CGM	(please	see	also	our	response	to	the	previous	comment).	It	does	not	
represent	a	causal	relationship	between	the	predictors	and	precipitation,	and	the	splines	
cannot	be	interpreted	separately.	In	other	words,	the	positive	slope	of	the	spline	
indicates	that,	according	to	the	comparison	with	the	CRU	data,	precipitations	should	be	
higher	at	high	SLP	than	they	are	in	the	GCM.	This	point	has	been	clarified	on	p.10,	l.14-
16.	Moreover,	given	the	low	slope	of	the	spline	at	this	point,	and	the	fact	that	most	
pressure	values	are	below	~1045	hPa,	we	believe	this	interpolation	will	have	limited	
impact	on	the	output	of	the	SDM.	The	text	was	modified	accordingly	on	p.10,	l.17-19.	
	
GC3:	The	large	differences	in	temperature	in	Figure	S11	between	downscaled	and	
interpolated	GCM	values	also	raise	doubts	about	the	linear	extrapolation	of	the	splines	
to	lower	temperatures.	The	GAM	is	clearly	adjusting	the	GCM	temperatures	upward	in	
the	majority	of	the	region	in	response	to	what	appears	to	be	a	cold	bias	in	the	GCM	
shown	in	S12	(the	order	of	subtraction	should	be	specified	in	both	figure	captions	to	
confirm	this).	But	does	that	mean	in	the	LGM	the	GCM	has	a	20	degree	C	cold	bias	and	
the	GAM	is	correcting	this?	Or	is	the	GAM	overcompensating	and	generating	
temperatures	that	are	too	warm	because	the	slope	of	the	temperature	spline	is	too	
low?	
	
GR3:	We	agree	with	the	reviewer	that	the	difference	in	temperature	in	the	North-Eastern	
end	of	the	study	area	should	be	considered	carefully	(in	fact,	this	point	was	discussed	in	
the	discussion,	originally	on	p.12,	l.19-28,	now	p.15,	l.11-11,	and	see	also	p.15,	l.13-21	on	



the	impact	of	the	calibration	area	of	the	results).	We	believe	this	difference	is	a	
combination	of	both	the	underestimation	of	temperature	by	the	GCM,	and	an	
overcorrection	of	the	SDM.	However,	as	we	now	clarified	in	the	methods	(p.6,	l.1-8),	we	
are	focusing	on	downscaling	the	region	that	was	occupied	by	human	populations	during	
the	LGM,	i.e.	mostly	Western	Europe,	South	of	the	ice-sheets.	We	nonetheless	
downscaled	the	whole	region	to	explore	in	more	details	the	behaviour	of	the	SDM.	The	
paragraph	in	the	discussion	was	slightly	modified	to	improve	clarity,	and	now	reads:	
“Because	the	GCM	generated	reliable	temperatures	at	coarse	grain	for	present-day	
conditions,	which	were	highly	correlated	with	the	CRU	present-day	temperatures,	the	
three	interpolation	techniques	produced	similar	linear	splines	and	led	to	relatively	similar	
values	for	this	variable.	The	IPSL-CM5A-LR	GCM	is	known	to	predict	lower	temperatures	
than	observed	at	high	latitudes	in	winter	(Dufresne	et	al.,	2013).	This	bias	was	indeed	
observed	when	comparing	the	interpolated	temperature	with	the	CRU	present-day	data.	
As	a	result,	the	spline	for	temperature	had	a	shallow	slope	at	low	temperature	(Fig.	1).	
This	correction	was	emphasised	for	the	LGM	data	generated	by	the	GCM	in	winter	in	the	
North	of	Europe	(Fig.	S11),	which	are	outside	of	the	range	of	present-day	temperature,	
and	therefore	relied	on	a	linear	interpolation	of	the	spline.	The	large	difference	in	
temperature	is	therefore	likely	to	be	a	combination	of	an	underestimation	of	
temperature,	and	an	over-correction	of	the	very	low	temperature	by	the	SDM.	However,	
as	stated	previously,	we	are	especially	interested	in	downscaling	climate	data	for	the	
region	occupied	by	human	populations	during	the	LGM.	For	the	purpose	of	studying	the	
spatial	distribution	of	modern	human	population,	this	overcorrection	will	have	negligible	
effects,	since	this	region	was	covered	by	an	ice	cap	during	the	time	of	interest	
(consequently,	no	palynological	or	vertebrate	data	were	available	for	this	region),	and	
the	range	of	values	over	the	whole	region	in	the	present-day	data	encompasses	the	
range	of	values	for	the	region	where	humans	were	present	during	the	LGM	(Figs.	S2-
S7).”	
	
GC4:	A	useful	check	of	the	downscaling	model’s	performance	would	be	to	simulate	the	
years	in	the	historical	model	run	(1901-1950	if	available,	1951-1960,1990-2005)	outside	
the	calibration	period	and	ask	how	the	method	performs	against	CRU	observations	
before	attempting	to	employ	the	method	in	time	period	with	substantially	different	
atmospheric	forcing	conditions.	I	suggest	repeating	the	figures	of	S12	and	S16	but	
comparing	downscaled	values	(for	winter,	summer	and	using	the	different	interpolation	
methods)	against	the	CRU	observations.	If	these	figures	replaced	Figures	5	and	8	
(moving	those	to	the	supplementary	figures),	it	would	provide	a	better	picture	of	the	
method	performance.	
	
GR4:	The	downscaling	performance	was	validated	on	the	1950-1960	period.	The	CRU	TS	
v.	1.2	time	series	(Mitchell	et	al.	2004)	was	used,	since	it	is	based	on	the	same	
methodology	used	for	generating	the	1961-1990	climatology	used	for	the	calibration	
and	had	the	same	10	minutes	spatial	resolution.	Since	the	objective	of	the	work	was	to	
apply	the	method	to	LGM	data	for	paleo-anthropological	research,	we	decided	to	keep	
figures	5	and	8	(now	combined	with	figures	4	and	7,	as	figures	5	and	7)	in	the	main	text,	



and	to	add	the	validation	figures	in	appendix	(Figures	S16-S19).	The	validation	was	also	
performed	for	the	kriging	technique	only,	since	it	is	the	technique	we	recommend	(now	
more	explicitly	in	the	discussion,	p.15,	l.8).	The	results	show	good	agreement	for	the	
average	temperature	and	precipitation	values,	and	some	small	scale	variations	but	
overall	good	agreement	in	the	general	spatial	patterns	for	the	variability	measures.	
	
GC5:	It	may	be	beyond	the	scope	of	this	study	but	it	would	be	useful	to	see	the	GAM	
fitted	separately	using	proxy	data	from	the	29	sites	in	past	and	in	present	to	see	how	
the	splines	vary	between	such	different	climate	regimes	and	whether	linear	
extrapolation	is	indeed	a	good	assumption.	
	
GR5:	We	thank	the	reviewer	for	this	suggestion.	However,	fitting	a	GAM	over	the	29	sites	
wields	several	potential	issues.	Because	GAMs	are	very	flexible,	using	only	29	points	may	
lead	to	an	overfitting	of	the	GAMs,	especially	when	using	6	variables.	Moreover,	no	
precise	values	were	available	for	the	past,	and	we	had	to	rely	on	reconstructions	with	
confidence	intervals,	which	could	be	quite	large,	especially	for	the	BCI	technique.	We	
therefore	believe	that	the	best	way	to	test	the	agreement	is	by	comparing	the	simulated	
temperature	and	precipitation	with	the	reconstructions,	as	we	present	in	Figures	6	and	
8.	
	
GC6:	The	third	concern	is	regarding	the	comparison	of	simulated	temperature	and	
precipitation	against	paleo-reconstructions	during	the	LGM.	The	boxplots	of	Figures	6	
and	9	do	not	clearly	support	the	claim	that	the	downscaling	method	is	in	“good	
agreement”	with	the	reconstructed	values.	I	suggest	removing	(or	moving	to	
supplementary)	the	bilinear	and	bicubic	panels	and	instead	display	comparisons	of	
annual	maximum,	minimum	and	mean	values	separately	for	the	kriging	simulations	
using	proper	boxplots.	This	would	provide	a	clearer	comparison	between	the	actual	
values	and	allow	for	at	least	a	visual	comparison	of	the	distribution	of	these	values	over	
the	50-year	LGM	period	to	be	compared.	Additionally,	how	do	you	measure	model	
performance	when	the	two	selected	proxy	biomes	are	significantly	different	from	one	
another	(as	occurs	more	often	for	precipitation)?	
	
GR6:	We	have	clarified	the	meaning	of	the	reconstruction	ranges	from	the	two	methods,	
which	must	be	interpreted	differently	(p.8,	l.20-24).	Given	that	these	reconstructions	
were	generated	in	independent	studies,	the	corresponding	ranges	are	not	directly	
equivalent	to	our	temperature	and	precipitation	ranges,	which	are	the	mean,	minimum	
and	maximum	values	over	the	50	downscaled	year.	The	BCI	provides	a	minimum	and	
maximum	value	over	the	whole	zonobiome,	and	therefore	generates	wide	ranges.	
Moreover,	that	means	that	simulated	temperature	and	precipitation	values	close	to	the	
extremes	of	the	BCI	ranges	is	expected.	The	reconstructions	by	Wu	et	al.	(2007)	provide	
mean	temperature	of	the	coldest	and	warmest	months	and	the	ranges	are	therefore	
much	smaller.	However,	these	comparisons	still	offer	valuable	insights	to	evaluate	our	
data.	The	meaning	of	the	overlap	between	the	simulated	and	reconstructed	range	has	
also	been	clarified	in	the	results	(p.11,	l.10-16	and	p.12,	l.2-7).	Note	also	that	we	



changed	figures	6	and	8	following	recommendations	from	reviewer	2	and	now	use	
scatterplots	rather	than	boxplots.	
	
	
GC7:	It	would	also	be	particularly	useful	to	evaluate	the	performance	of	the	GAM	in	
replicating	present	variability	outside	the	calibration	period	given	the	importance	of	
climate	variability	for	human	population	distributions.	Figures	S19	illustrates	the	
differences	between	interpolation	methods	in	the	LGM	but	doesn’t	show	whether	the	
GAM	is	simulating	the	variability	accurately.	It	would	be	useful	to	see	SPI	and	STI	from	
the	GAM	compared	to	the	same	values	for	CRU	similar	to	S12	and	S16.	
Further	to	Figure	S19,	maps	showing	the	differences	between	the	interpolation	
methods,	as	presented	in	the	figures	before,	would	help	illustrate	the	effect	of	the	
different	methods	more	clearly.	Are	the	differences	in	variability	from	the	three	
methods	meaningful	and	if	so	are	they	large	enough	to	suggest	the	methods	could	imply	
different	patterns	of	human	migration?	
	
GR7:	As	explained	in	our	response	to	comment	4,	the	downscaling	performance	was	
validated	on	the	1950-1960	period	on	the	CRU	TS	v.	1.2	time	series.	The	results	show	
some	small	scale	variations	but	overall	good	agreement	in	the	general	spatial	patterns	
for	the	variability	measures.	Note	however	that	the	CRU	time	series	also	relies	on	
interpolation	techniques	(thin-plate	smoothing	splines)	on	irregularly	space	weather	
stations,	and	is	therefore	likely	to	suffer	from	its	own	specific	biases.	Small	scale	
differences	should	therefore	be	interpreted	with	caution.	
	
All	figures	presenting	the	results	of	the	three	interpolation	techniques	were	modified	to	
present	only	kriging	and	differences	between	kriging	and	the	other	two	techniques,	as	
suggested	by	the	specific	comment	19	of	reviewer	2,	to	improve	clarity	and	better	show	
the	differences	between	techniques.	It	is	of	course	difficult	to	precisely	assess	the	impact	
of	the	differences	between	the	three	techniques	on	patterns	of	human	migration,	but	
given	that	other	studies	(Burke	et	al.2014,	2017)	found	that	variability	is	a	key	factor	
governing	human	distributions,	we	recommend	using	the	technique	providing	the	best	
results.		
	
SPECIFIC/TECHNICAL	COMMENTS:	
	
SC1:	P1	Line	17:	Remove	the	“s”	from	methods	in	“Statistical	Downscaling	Methods”.	
	
SR1:	This	has	been	corrected.	
	
SC2:	P1	Line	27:	In	the	sentence	beginning	with	“Our	results”	replace	“confirming”	with	
“suggesting”,	add	“is”	before	“suitable”	and	drop	“is	sound”	at	the	end.	The	current	
sentence	is	too	strong	given	the	evidence	presented.	
	
SR2:	This	sentence	has	been	rewritten.	



	
SC3:	P1	Line	31:	Replace	“their”	with	“the”.	
	
SR3:	This	has	been	corrected.	
	
SC4:	P8	Line	3:	I	am	skeptical	that	the	p-value	for	ACO	is	so	low	(particularly	for	
temperature)	given	the	sensitivity	of	the	GAM	to	ACO	is	so	small.	If	the	variance	
explained	by	ACO	is	indeed	statistically	significant,	the	splines	and	the	AIC	values	would	
suggest	it	is	not	meaningfully	significant.	This	is	noted	in	later	paragraphs	on	this	page.	
	
SR4:	The	fact	that	the	spline	is	significant	is	not	surprising,	given	the	number	of	points	
used	for	the	calibration	(the	p-values	are	very	sensitive	to	the	size	of	the	dataset,	and	p-
values	have	been	criticised	for	this,	but	since	they	are	still	the	norm,	we	reported	them	
nonetheless).	The	flat	spline	indicates	that	the	effect	size	of	ACO	is	small,	which	is	a	
different	matter.	
	
SC5:	P8	Line	8:	The	inverse	proportionality	of	temperature	to	elevation	in	the	GAM	
spline	does	not	itself	imply	that	the	GCM	overestimates	temperature	at	high	elevation	
(though	it	likely	does	for	the	reason	stated	in	the	next	sentence).	It	merely	implies,	that	
in	the	GAM	if	elevation	increases	while	the	other	parameters	are	constant,	then	the	
simulated	temperature	is	expected	to	decrease.	
	
SR5:	This	sentence	has	been	rewritten	as:	“…which	means	that	the	coarse-grain	
temperatures	generated	by	the	GCM	are	higher	than	observed	at	fine	grain	at	high	
elevations”.	
	
SC6:	P8	Line	16:	Sentence	beginning	with	“This	should...”.	The	curvature	of	the	lower	
end	of	the	temperature	spline	is	not	negligible	so	this	is	not	necessarily	a	safe	
assumption.	
	
SR6:	This	sentence	was	removed,	and	it	now	reads:	“However,	most	temperature	values	
in	the	sites	where	human	presence	has	been	observed	during	the	LGM	are	within	the	
range	of	present-day	temperature,	and	the	few	remaining	values	are	within	10	degrees	
of	the	minimum	temperature.	For	very	low	temperatures	during	the	LGM,	the	SDM	
outputs	should	be	interpreted	carefully,	as	we	discuss	below.”	
	
SC7:	P10	Line	6:	Add	“s”	to	“underestimate”.	
	
SR7:	This	has	been	corrected.	
	
SC8:	P10	Line	30-31:	Given	the	boundary	condition	issue	is	present	for	all	the	
interpolation	methods,	why	not	reduce	the	applicable	study	area	to	exclude	the	outer	
regions	where	the	downscaled	values	will	be	unreliable?	
	



SR8:	The	size	of	the	area	to	exclude	would	vary	with	the	interpolation	technique,	and	is	
difficult	to	estimate.	For	transparency,	we	therefore	decided	to	provide	the	full	results.	
Moreover,	considering	such	boundary	conditions	provides	additional	details	on	the	
differences	between	the	interpolation	techniques,	which	is	one	purpose	of	the	present	
work.	We	added	some	sentences	in	the	methods	(p.6,	l.3-8	)	to	clarify	these	points.	
	
SC9:	P11	Line	15:	“Satisfying	results”	is	subjective,	prefer	a	quantifiable	description	of	
how	the	results	compared.	
	
SR9:	This	sentence	was	reformulated	as:	“the	method	generated	results	falling	within	the	
computed	confidence	intervals”	
	
SC10:	P11	Line	16-16:	Sentence	beginning	with	“Elsewhere”	seems	misplaced	here.	
	
SR10:	This	sentence	was	reformulated	and	the	new	text	reads	as:	“In	a	separate	study,	
we	were	then	able	to	test	a	suite	of	environmental	predictors	and	demonstrate	that	
climate	variability	is	a	key	factor	governing	the	spatial	distribution	of	prehistoric	human	
populations	during	the	LGM	(Burke	et	al.	2014,	2017).”	
	
SC11:	P11	Line	20:	“Critical”	is	too	strong	a	descriptor	here.	This	study	shows	the	choice	
of	interpolation	can	reduce	spatial	artifacts	but	does	not	explicitly	demonstrate	that	it	
alone	is	most	responsible	for	the	GAM	accuracy.	
	
SR11:	This	sentence	was	reformulated	as:	“The	interpolation	technique	used	in	the	SDM	
had	a	major	impact	for	the	spatial	patterns	of	climate	variability.”	
	
SC12:	P11	Line	31-32:	“non-linear”	One	could	have	linear	splines	and	still	end	up	with	
differences	due	to	choice	of	interpolation	method.	
	
SR12:	This	sentence	was	rewritten	for	clarification.	It	now	reads:	“The	splines	for	these	
variables	are	non-linear	and	may	exacerbate	the	differences	between	the	bicubic	
interpolation	and	the	other	two	techniques.”	
	
SC13:	P12	Line	12:	“Assuming	...	accurate”.	This	is	not	a	good	assumption	and	I	suggest	
simply	starting	the	sentence	at	“We	conclude”.	
	
SR13:	The	beginning	of	the	sentence	was	removed	as	suggested.	
	
SC14:	P12	Line	17:	“Reliable	temperatures”?	There	are	significant	biases	in	the	
mountains	as	shown	in	Figure	S12.	
	
SR14:	After	rewriting	and	clarifying	the	discussion,	this	sentence	does	not	exist	anymore.	
	



SC15:	P12	Line	21	starting	with	“This	correction”	to	the	end	of	the	paragraph:	Isn’t	this	
further	evidence	that	the	domain	of	the	study	area	should	be	reduced	to	areas	with	
paleo	proxy	data	and	without	coverage	by	an	ice	sheet?	
	
SR15:	The	data	used	to	calibrate	the	SDM	must	be	a	compromise	between	
representativity	and	specificity	compared	to	the	area	to	downscale.	In	other	words,	using	
a	region	that	would	only	cover	the	paleo	proxys	would	likely	not	allow	to	have	
representative	values	for	the	different	climate	variables,	and	using	a	region	that	would	
be	too	wide	would	not	allow	to	capture	small	scale	variations.	We	added	details	about	
this	point	in	the	methods	(p.6,	l.1-8)	and	in	the	discussion	(p.15,	l13-21).	We	also	
specified	that	we	are	nonetheless	downscaling	the	whole	region	to	provide	a	more	
complete	understanding	of	how	the	SDM	operates,	making	clear	that	using	the	
calibration	region	presented	here	is	not	recommended	for	downscaling	North-East	
Europe.	
	
SC16:	Figure	1	and	3:	Add	the	linearly	extrapolated	splines	in	a	different	colour	to	show	
how	the	variables	would	respond	in	regimes	that	occur	during	the	LGM.	
	
SR16:	Unfortunately,	this	feature	is	not	available	in	the	mgcv	package	in	R,	and	we	did	
not	manage	to	add	the	linear	extrapolations	on	the	splines.	However,	we	added	the	
range	of	values	for	the	12	months	over	the	50	years	during	the	LGM	on	the	spline	and	
histogram	figures	to	improve	clarity.	
	
SC17:	Figure	2:	Correct	the	labelling	contradiction	between	the	legend	and	the	caption.	
	
SR17:	The	legend	has	been	corrected.	
	
SC18:	Figure	3:	Are	the	units	for	the	precipitation	spline	“mm”	or	“mm/day”?	
	
SR18:	The	units	have	been	changed	to	mm/day.	
	
SC19:	Figures	6	and	9:	Please	revise	the	y-axis	ranges	of	the	boxplot	figures	to	span	the	
actual	range	of	data	displayed	(e.g.	there	are	not	any	temperature	values	above	40C	yet	
the	plot	extends	beyond	60C).	
	
SR19:	Please	note	that	we	changed	figures	6	and	8	following	recommendations	from	
reviewer	2	and	now	use	scatterplots	rather	than	boxplots.	
	
SC20:	Figures	10	and	11:	I	understand	the	colour	scales	here	vary	from	panel	to	panel	to	
highlight	spatial	artifacts	but	it	makes	interpreting	the	relative	effects	of	the	methods	
more	difficult.	I	think	common	colour	scales	would	be	more	useful	given	the	spatial	
artifacts	should	be	visible	from	the	contours	anyway.	
	



SR20:	The	colour	scale	was	changed	from	blue	to	dark	red	for	temperature.	Note	that	
instead	of	showing	all	results,	we	now	only	show	the	maps	of	variability	for	the	kriging	
technique,	and	show	the	difference	between	kriging	and	the	other	2	interpolation	
techniques	for	concision	and	clarity,	as	recommended	by	reviewer	2.	
	
SC21:	Figures	S1	through	S7:	There	are	too	many	individual	panels	within	these	figures	
and	they	have	insufficient	resolution	which	makes	them	impossible	to	read.	I	suggest	
presenting	only	the	four	seasons	for	S1,	and	a	few	representative	panels	from	the	
different	interpolation	methods	for	S2	-S7	which	would	allow	them	to	be	presented	at	a	
readable	scale.	
	
SR21:	The	figures	were	modified	to	only	show	the	4	seasons,	and	the	orientation	of	the	
page	was	changed	to	landscape	to	enable	better	readability	of	the	figures.	
	
SC22:	Figures	10	and	S17:	Please	revise	the	red-black	colour	schemes	to	something	
analogous	to	the	other	figures.	The	large	magnitude	darker	colours	obscure	the	
contours	and	make	large	areas	of	the	map	seem	overly	homogeneous.	
	
SR22:	The	colour	scale	was	changed	from	blue	to	dark	red	for	temperature.	As	for	the	
downscaled	figures,	we	now	only	show	the	maps	of	variability	for	the	kriging	technique,	
and	show	the	difference	between	kriging	and	the	other	2	interpolation	techniques	for	
concision	and	clarity,	as	recommended	by	reviewer	2.	
	
SC23:	Figures	S17	and	S18:	Add	a	note	in	the	caption	why	a	different	land-sea	mask	is	
used	in	these	figures	relative	to	all	of	the	others.	I	suspect	it	is	because	the	
Mediterranean	illustrates	the	differences	in	interpolation	technique	quite	well.	
However,	if	these	are	masked	out	and	not	used	for	projections	in	the	LGM	it	also	raises	
the	question	of	whether	these	differences	are	meaningful	in	the	areas	actually	used	in	
the	analysis.	
	
SR23:	No	land-sea	mask	had	originally	been	used	here	because	the	interpolations	are	
applied	before	applying	the	mask	in	the	SDM.	However,	we	agree	that	this	was	not	
coherent,	and	the	mask	has	been	applied	to	these	figures	for	consistency.	
	
SC24:	Figure	S19:	Specify	this	is	during	the	LGM.	“(STI	and	SPI	values	in	]-1,1[)”	is	a	typo?	
	
SR24:	Following	comments	from	reviewer	2,	the	parts	of	the	manuscript	referring	to	the	
STI	and	SPI	indices	have	been	removed.	
	 	



ANONYMOUS	REFEREE	#2	
	
This	manuscript	deals	with	the	application	of	a	downscaling	technique	combining	
interpolation	(through	three	techniques)	and	General	Additive	Models	(GAMs),	over	
Western	Europe	during	the	Last	Glacial	maximum	(LGM).	Results	are	compared	to	site	
specific	climate	proxys	from	pollen	and	vertebrate	remains	data.	Its	seems	well	within	
the	scope	of	Geoscientific	Model	Development,	and	deals	with	the	relevant	topic	of	
developing	statistical	downscaling	tools	that	may	be	used	in	very	different	climates	like	
the	LGM.	The	manuscript	needs	in	my	opinion	some	tightening	of	the	objectives,	some	
work	on	the	clarity	of	the	text	and	take-home	messages,	as	well	as	some	additional	
simulation	analysis.	I	detail	below	these	few	main	comments,	together	with	many	
specific	ones.	I	can	therefore	recommend	publication	of	the	manuscript	only	once	all	
these	comments	are	addressed.	
	
We	thank	the	reviewer	for	these	nice	comments	and	for	the	constructive	review	he	
provided.	
	
	
MAIN	COMMENTS	
	
GC1.	It	is	not	clear	from	the	start	(and	down	to	the	choice	of	figures)	what	are	the	
objectives	of	this	manuscript.	Is	it	the	comparison	of	downscaling	methods	(i.e.	through	
different	interpolation	techniques)?	Is	it	the	adequate	simulation	of	reconstructed	
climate	proxy	data?	Is	the	target	location	the	whole	Europe	or	only	the	proxy	specific	
sites?	All	these	questions	should	be	answered	from	the	beginning	of	the	manuscript.	As	
they	are	currently	not	answered,	the	organization	of	the	manuscript	and	the	choice	of	
figures	are	indecisive	(see	specific	comments	below).	
	
GR1.	We	rewrote	the	last	paragraph	of	the	introduction	(p.3-4,	l.22-6)	to	clarify	the	
objectives	of	the	manuscript.	As	we	now	state	explicitly,	we	are	assessing	and	refining	
(comparing	the	3	interpolation	techniques)	the	capacity	of	an	SDM	method	based	on	a	
Generalised	Additive	Model	originally	designed	for	the	downscaling	of	climatology	data	
to	downscale	time	series,	with	a	special	interest	in	sites	where	prehistoric	human	
presence	has	been	recorded.	We	therefore	seek	to	obtain	a	good	accuracy	for	the	
results,	while	exploring	the	limitations	of	the	application	and	acknowledging	that	results	
may	be	improved,	for	example	by	using	an	ensemble	of	models,	as	suggested	by	
reviewer	1.	We	also	modified	and	added	some	contents	in	the	first	paragraphs	of	the	
discussion	(p.13,	l.22-29)	to	clarify	these	last	points.	
	
C2.	The	simulation	set-up	clearly	lacks	some	present-day	validation,	as	already	pointed	
out	by	reviewer	#1.	This	would	hopefully	help	disentangling	errors/biases	from	the	
interpolation,	GAM	models,	and	the	driving	GCM	(see	specific	comments	below).	
	



GR2.	The	downscaling	performance	was	validated	on	the	1950-1960	period.	The	CRU	TS	
v.	1.2	time	series	was	used,	since	it	is	based	on	the	same	methodology	used	for	
generating	the	1961-1990	climatology	used	for	the	calibration	and	had	the	same	10	
minutes	spatial	resolution.	Since	the	objective	of	the	work	was	to	apply	the	method	to	
LGM	data	for	paleo-anthropological	research,	we	decided	to	keep	figures	5	and	8	(now	
combined	with	figures	4	and	7,	as	figures	5	and	7)	in	the	main	text,	and	to	add	the	
validation	figures	in	appendix	(Figures	S16-S19).	The	validation	was	also	performed	for	
the	kriging	technique	only,	since	it	is	the	technique	we	recommend.	The	results	show	
good	agreement	for	the	average	temperature	and	precipitation	values,	and	some	small	
scale	variations	but	overall	good	agreement	in	the	general	spatial	patterns	for	the	
variability	measures.	
	
GC3.	Another	consequence	of	the	first	main	comment	above	is	that	a	large	number	of	
supplementary	figures	are	commented	in	the	main	text,	which	is	quite	frustrating	for	
the	reader.	The	organization	of	figures	(and	associated	text)	should	definitely	be	
redesigned	(see	specific	comments	below).	
	
GR3.	The	figures	have	been	re-designed	and	re-arranged	based	on	the	specific	comments	
below.	Given	the	nature	of	the	work,	we	had	to	provide	quite	a	number	of	figures	in	
supplementary	material	to	allow	the	reader	to	investigate	some	subtleties	of	the	work	in	
more	details,	while	keeping	the	number	of	figures	acceptable	in	the	main	text.	Some	
figures	were	combined,	which	should	increase	the	clarity	of	the	manuscript.	We	also	
clarified	the	objectives	of	the	present	study,	and	we	think	that	the	current	arrangement	
of	the	figures	is	consistent	with	the	logic.	
	
GC4.	In	relation	to	the	second	main	comment	above,	there	is	little	uncertainty	discussed	
in	the	manuscript,	be	it	a	result	of	the	short	calibration	period	for	GAMs	or	from	another	
source	like	using	a	single	GCM.	This	should	definitely	be	taken	on	by	the	authors	for	the	
manuscript.	
	
GR4.	The	biases	of	the	GCM,	which	can	influence	the	SDM	have	now	been	specified	in	
the	Methods	(p.	4,	l.12-20).	In	addition,	we	added	a	paragraph	in	the	Discussion	(p.13-
15,	l.13-21)	in	which	we	discuss	in	more	details	some	uncertainties	related	to	our	results	
and	make	recommendation	for	dealing	with	them.	
	
			
SPECIFIC	COMMENTS	
	
SR1.	P3L1:	Please	define	“taphonomic”	
	
SR1.	Taphonomic	has	been	defined	in	the	parenthesis	following	the	word.	It	now	reads	
“(i.e	biases	in	the	fossil	record,	such	as	pollen	preservation,	location	of	archaeological	
sites,	etc.)”.	
	



SC2.	P3L23-25:	The	length	of	the	two	GCM	simulations	is	not	clear	here	
	
SR2.	It	is	now	specified	that	the	climate	data	corresponds	to	the	average	of	the	1961-
1990	period,	by	contrast	with	the	50	years	time	series.	
	
SC3.	P4L29:	The	reference	used	here	for	the	mgcv	R	package	is	not	one	of	those	
recommended	in	the	citation	info	of	the	package.	Please	correct	this.	
	
SR3.	The	reference	has	been	changed	to	Wood	(2011),	as	indicated	in	the	citation	
information	of	the	mgcv	package.	
	
SC4.	P5L1-2:	Is	there	actually	a	theoretical	reason	for	the	requirement	of	the	same	
scale?	I	fully	understand	the	advantage	of	using	e.g.	downscaled	precipitation	as	a	
predictor	for	local	precipitation,	but	when	considering	other	predictors	like	SLP,	the	
most	informative	scale	for	local	precipitation	my	clearly	not	be	the	local	scale,	but	a	
larger	domain	shifted	in	the	direction	of	the	prevailing	winds	(at	least	in	western	
Europe).	This	would	open	quite	different	approaches	for	performing	this	kind	of	studies	
that	would	not	require	the	interpolation	step.	But	this	may	lead	to	difficulties	given	the	
change	in	land/sea	mask	and	the	presence	of	ice	caps	when	considering	LGM	
simulations.	I	would	appreciate	a	comment	on	that.	
	
SR4.	We	agree	with	the	reviewer	that	the	extents	of	the	region	used	for	calibration	and	
for	the	downscaling	are	important	to	consider.	We	now	explain	in	more	details	in	the	
methods	(p.6,	l.1-8)	that	we	are	especially	interested	in	downscaling	the	region	of	
Europe	where	human	presence	has	been	observed	during	the	LGM	(i.e.	South	of	the	ice-
sheets),	which	is	why	the	calibration	region	encompasses	North-East	Europe,	which	has	
low	temperature	during	the	present-day	period.	However,	using	a	region	that	is	too	big	
would	not	allow	to	capture	the	small-scale	variations.	We	specify	that	we	applied	the	
downscaling	on	the	whole	area	to	better	explore	how	the	SDM	performs,	and	added	
details	in	the	discussion	(p.14,	l.3-4	and	see	also	p.15,	l.16-20)	on	the	risks	of	using	it	to	
downscale	North-Europe	during	the	LGM.	
	
SC5.	P5L13-15:	This	starts	to	be	confusing	in	terms	of	data.	I	believe	that	(for	any	
location)	not	only	the	monthly	regime	(i.e.	12	values	only)	is	used,	but	the	whole	31-year	
monthly	time	series.	Please	be	more	specific.	
	
SR5.	The	climatology,	i.e.	the	30-years	average	resulting	in	12	values	for	each	cell,	was	
indeed	used	to	calibrate	the	SDM,	and	then	applied	to	downscale	the	time	series.	The	
climatology	was	used	because	the	GCM	is	not	precise	enough	to	simulate	the	
temperature	and	precipitation	of	a	given	month	in	a	specific	year,	which	would	be	
require	to	calibrate	the	GAM	on	a	time	series.	However,	a	GCM	can	generate	temporal	
patterns	for	these	variables,	and	we	therefore	tested	the	potential	of	applying	an	SDM	
calibrated	on	a	climatology	to	a	time	series	generated	by	the	same	model.	These	points	



have	been	specified	in	the	introduction	as	we	clarified	the	objectives	of	the	work	(p.3,	
l.21)(cf	General	Comment	1),	and	in	the	methods	(p.5,	l.29-31).	
	
SC6.	FigureS1:	This	figure	is	not	readable	at	all.	Same	for	Figures	S2	to	S7.	I	would	
strongly	recommend	finding	a	way	to	make	them	actually	useful.	
	
SR6.	The	figures	were	modified	to	only	show	the	4	seasons,	and	the	orientation	of	the	
page	was	changed	to	landscape	to	enable	better	readability	of	the	figures.	
	
SC7.	P528-P6L3:	“Aco”	should	be	defined	mathematically	in	the	text	without	having	to	
look	into	Vrac	et	al.	(2007).	There	is	no	need	to	define	“Dco”	if	not	used,	apart	maybe	
from	writing	that	it	is	highly	correlated	to	“Aco”.	
	
SR7.	The	mathematical	formula	of	Aco	is	now	provided	in	Equation	2.	
	
SC8.	P6L16:	There	should	be	a	reference	here	to	Table	S1.	
	
SR8.	The	reference	to	Table	S1	has	been	added.	
	
SC9.	Section	2.5:	There	should	be	two	additional	subsections	on	the	
interpolation/downscaling	for	the	present-day	reference	period	(1961-1990)	and	for	a	
present-day	validation	period	(see	Main	comment	above	and	comments	from	reviewer	
1).	
	
SR9.	A	section	(2.7)	describing	the	present-day	validation	outside	of	the	calibration	
period	was	added.	Please	note	that	we	did	not	include	the	downscaling	of	the	1961-1990	
climatology,	because	it	would	be	redundant	with	the	validation	on	present	day	data,	and	
would	add	an	unnecessary	additional	number	of	figures.	Figures	S10	and	S13	
nonetheless	compare	the	interpolated	and	CRU	data	for	1961-1990	to	discuss	the	
correction	performed	by	the	GAM	(p.11,	l.2-4;	p.11,	l.27-29),	but	we	considered	that	this	
did	not	deserve	a	full	subsection,	that	would	complexify	an	already	long	article.	
	
SC10.	P6L24:	“Extremes”	is	a	much	too	strong	word	here.	This	set-up	(length	of	time	
series	and	temporal	resolution)	prevents	assessing	extremes.	
	
SR10.	“extremes”	has	been	removed	from	the	text.	
	
SC11.	Figure	S8:	This	map	should	definitely	be	included	in	the	main	text,	because	this	
critically	shows	where	to	look	in	European	map	results.	It	might	also	be	relevant	to	
systematically	indicate	these	locations	in	the	results	maps	(depending	on	their	size).	
	
SR11.	Figure	S8	has	been	added	to	the	main	article	and	is	now	Figure	1.	The	locations	
were	not	indicated	on	the	other	figures,	because	they	already	contain	a	lot	of	



information,	such	as	the	contour	line,	and	adding	the	site	locations	would	impair	their	
readability.	
	
SC12.	P7L18-25:	Results	on	the	SPI	and	STI	are	not	used	at	all	in	the	manuscript	(only	in	
the	Supplementary	material),	so	please	remove	their	description	(and	possible	
comments)	from	the	main	text.	
	
SR12.	All	parts	of	the	manuscript	referring	to	the	SPI	and	STI	have	now	been	removed	
from	the	manuscript.	
	
SC13.	P7L18-25:	The	description	of	SPI	computation	lacks	many	important	details:	(1)	
what	is	the	climatic	norm,	i.e.	the	reference	period	over	which	the	standardization	is	
based	(present-day,	LGM)	and	why?	(2)	what	is	the	chosen	distribution	function	for	
monthly	precipitation?	(3)	Is	it	the	same	everywhere	in	Europe?	Results	are	quite	
sensitive	to	these	issues,	as	clearly	shown	in	the	literature	(see	e.g.	Wu	et	al.,	2005;	
Stagge	et	al.,	2015)	
	
SR13.	All	parts	of	the	manuscript	referring	to	the	SPI	and	STI	have	now	been	removed	
from	the	manuscript.	
	
SC14.	P7L18-25:	The	choice	of	a	variability	index	as	the	number	of	months	with	SPI	
between	-1	and	1	is	actually	very	strange	(and	indeed	quite	irrelevant).	The	SPI	is	by	
definition	normally	distributed,	so	the	probability	of	having	a	SPI	between	-1	and	1	is	
68.27%,	which	amounts	to	around	410	months	in	50	years	(95%	confidence	interval:	
387-432),	if	the	reference	period	for	fitting	the	precipitation	distribution	is	the	same	as	
the	computation	period	(which	I	believe	is	the	case	here,	see	P7L20).	So	the	spatial	
pattern	observed	in	Figure	S19	is	a	complete	artifact	due	to	(1)	the	limited	length	of	the	
period	used	for	fitting	the	distribution,	and	(2)	the	relevance	of	the	specific	theoretical	
distribution	used	for	fitting.	Based	on	the	3	above	comments,	I	strongly	suggest	
removing	all	the	analysis	done	with	SPI/STI.	
	
SR14.	All	parts	of	the	manuscript	referring	to	the	SPI	and	STI	have	now	been	removed	
from	the	manuscript.	
	
SC15.	Figure	1:	It	would	be	great	to	see	the	range	of	present-day	and	LGM	predictors	in	
these	figures	in	order	to	directly	check	statements	made	in	the	text	P8L12-18.	
	
SR15.	The	total	range	of	the	values	is	represented	by	the	range	of	the	x-axis	of	the	
splines.	This	is	now	specified	in	the	figure’s	caption.	In	addition,	we	added	grey	lines	to	
show	the	values	of	temperature	at	the	locations	of	the	archaeological	sites	in	the	
simulations	for	all	months	and	50	years.	
	
SC16.	Figure	2:	Like	reviewer	#1,	I	believe	that	dotted	lines	are	for	the	present-day	
period.	Please	remove	the	wrong	legend	definition	from	the	caption.	



	
SR16.	There	was	indeed	an	error	in	the	figure	caption.	The	text	and	figure	caption	have	
been	modified	accordingly,	indicating	that	dotted	lines	are	for	present	and	plain	lines	for	
the	LGM.	
	
SC17.	Section	3.2:	As	mentioned	above	for	section	2.5,	there	should	be	an	additional	
result	section	for	validation	the	interpolation/downscaling	process	in	a	presentday	
period	distinct	from	the	calibration	period.	
	
SR17.	Section	3.3	has	been	added	to	present	the	results	of	the	validation	procedure	on	a	
present	day	time	series	outside	of	the	period	used	for	calibration.	
	
SC18.	Most	of	results	are	presented	at	the	annual	time	scale	or	for	two	3-month	
seasons.	What	is	then	the	advantage	of	fitting	GAMs	for	individual	months?	I	would	
expect	a	larger	explained	variance	for	annual	or	seasonal	averages.	I	would	appreciate	
some	comments	on	this	issue	in	the	manuscript.	
	
SR18.	The	maps	are	presented	combining	months	into	seasons	to	condense	the	results	
and	increase	readability.	This	has	now	been	specified	in	the	figure	captions.	Applying	the	
GAM	to	individual	months	is	nontheless	necessary	for	computing	the	variability	of	
temperature	and	precipitation.	
	
SC19.	Figure	4:	Possible	differences	between	the	three	interpolation	techniques	cannot	
be	appreciated	from	these	maps	with	a	common	colour	scale,	because	of	(1)	the	large	
spatial	range,	and	(2)	the	large	seasonal	range.	Figure	5	looks	into	all	possible	
differences	between	the	3	techniques,	making	both	figures	relatively	redundant.	I	would	
therefore	recommend	choosing	one	interpolation	technique	as	reference	(ideally	the	
one	that	should	be	recommended	in	the	conclusion	of	the	manuscript)	and	plot	(1)	
maps	as	in	Figure	4	for	this	technique,	and	(2)	differences	from	this	reference	with	a	
specific	colour	scale,	as	in	Figure	5.	This	would	hopefully	reduce	the	number	of	figures	
and	make	the	message	clearer	(“we	choose	this	technique	and	results	with	the	others	
are	not	that	different.”)	
	
SR19.	We	thank	the	reviewer	for	this	advice.	Following	his	recommendation,	we	
combined	figures	to	represent	the	values	for	the	kriging,	and	the	differences	between	the	
kriging	and	the	other	2	interpolation	techniques,	decreasing	the	total	number	of	figures	
in	the	manuscript	and	the	supplementary	material,	and	making	the	message	clearer.	
	
SC20.	Figures	S9	to	S12.	This	is	a	much	too	high	number	of	figures	which	shows	that	
work	on	synthesizing	results	is	clearly	lacking.	The	reader	should	be	presented	two	
things:	first,	how	temperature	(and	precipitation	in	a	second	step)	is	transformed	by	the	
whole	downscaling	process,	through	maps	of	raw,	interpolated,	interpolated	
+downscaled,	and	observations	(CRU)	in	the	present-day	period.	A	similar	presentation	
should	be	made	for	the	validation	period,	and	for	the	LGM	period	(for	which	CRU	



observations	may	be	replaced	by	the	pollen	and	vertebrate	proxys).	This	could	be	made	
only	for	the	reference	interpolation	technique.	Second,	additional	maps	should	show	
the	differences	with	the	two	other	techniques,	possibly	through	the	whole	downscaling	
process.	This	would	require	reorganizing	figures	and	text	(P9L6-28),	but	for	a	much	
better	clarity	of	the	manuscript!	
	
SR20.	The	number	of	figures	in	both	the	main	article	and	in	the	supplementary	material	
has	been	reduced.	Since,	as	we	now	clarify	in	the	introduction,	the	purpose	of	the	
present	work	is	to	explore	and	refine	an	existing	SDM	method	design	for	the	downscaling	
of	climatology	data	to	downscale	time	series	of	simulated	past	climate.	Since	the	core	
SDM	method	has	been	described	previously	(Vrac	et	al.	2007),	we	focus	on	presenting	
the	results	and	the	effect	of	using	the	different	interpolations	in	the	main	article,	since	
these	represent	its	main	contributions.	Showing	how	things	change	from	coarse	to	
interpolated	to	downscaling	is	not	the	main	focus	here,	because	the	effect	of	the	
downscaling	will	vary	depending	on	the	interpolation	technique	to	compensate	for	the	
bias	the	interpolation	may	induce.	Rather,	comparisons	with	the	interpolation	data	is	
used	to	shed	light	on	the	final	results,	and	such	maps	are	therefore	in	the	appendix.	
	
	
SC21.	P9L25-28,	and	Figure6:	I	am	not	convinced	by	results	as	presented	here,	as	these	
plots	are	not	very	appropriate	for	identifying	agreement	for	each	site	independently.	I	
would	therefore	recommend	trying	scatterplots	(with	uncertainty	bars	as	here	or	better	
uncertainty	squares),	with	reconstructions	(BCI,	Wu	et	al.	data)	on	the	x-axis	and	
simulations	from	this	paper	on	the	y-axis.	The	overlap	of	uncertainty	ranges	with	the	
diagonal	might	better	inform	on	the	agreement	of	simulations	with	reconstructions.	
	
SR21.	Following	the	reviewer’s	advice,	we	changed	figures	6	and	8	to	show	scatterplots	
rather	than	boxplots.	In	addition,	we	clarified	the	differences	between	the	ranges	
obtained	with	the	reconstruction	methods	and	the	downscaling,	and	how	to	interpret	
the	figures	(p.11,	l.13-16	and	p.12,	l.2-7).	
	
	
SC22.	P9L30-P10L16:	cf.	comments	on	temperature	for	an	additional	validation	period,	
revised	figure	organization,	etc.	
	
SR22.	Please	see	our	response	to	previous	comments	GC2,	SC9,	SC17	and	SC20.	We	
believe	that	the	addition	of	the	present-day	validation,	the	clarification	of	the	objectives	
and	the	simplification	of	the	figures	make	the	article	clearer	and	justify	its	current	
organisation.	
	
SC23.	P10L9-11,	“This	is	due.	.	.	such	as	precipitation	(Wood	et	al.,	2004)”:	I	don’t	
understand	why	this	should	lead	to	the	European-scale	discrepancies	noted	in	the	
previous	sentence.	Please	make	it	clearer.	
	



SR23.	This	sentence	has	been	re-written	as:	“This	explains	the	discrepancies	between	the	
present-day	simulations	and	the	CRU	data	and,	by	extension,	explains	the	adjustments	
performed	by	the	SDM.”	
	
SC24.	P10L23-31:	I	find	this	paragraph	a	bit	long,	compared	to	other	issues	elsewhere	
that	would	also	deserve	some	explanations.	
	
SR24.	This	paragraph	is	a	bit	long	because	it	requires	mathematical	explanations,	which	
can	hardly	be	condensed	without	losing	clarity.	We	clarified	the	other	issues	identified	by	
the	two	reviewers	in	the	rest	of	the	article.	
	
SC25.	P11L5-9:	As	mentioned	above,	please	remove	the	SPI/STI	analysis	and	results.	C6	
	
SR25.	All	parts	of	the	manuscript	referring	to	the	SPI	and	STI	have	now	been	removed	
from	the	manuscript.	
	
SC26.	P11L25-26:	So	should	we	use	kriging?	Please	be	more	specific	on	your	conclusions	
about	the	preferred	interpolation	method.	
	
SR26.	We	removed	“seems	to”	on	l…,	and	added	the	following	sentence	at	the	end	of	the	
paragraph:	“We	therefore	recommend	using	kriging	for	SDM	applications	based	on	the	
method	presented	here.”	
	
SC27.	P12L14-15,	“more	reliable	variability”:	I	don’t	understand.	Please	make	it	clearer.	
	
SR27.	This	part	was	rewritten	as:	“generates	variability	indices	with	more	realistic	
patterns”.	
	
SC28.	P12L19-29:	Well,	this	clearly	poses	the	question	on	whether	one	should	put	
confidence	in	GCM	outputs	at	high	latitudes	(at	least.	.	.).	And	for	this	study,	this	raises	
the	following	issue:	should	the	interpolation/downscaling	take	place	over	the	whole	of	
Europe	for	reconstructing	only	a	few	sites	located	in	the	south	of	the	continent.	This	
issue	should	be	seriously	taken	into	account	by	the	authors	for	the	manuscript.	Indeed,	
there	may	some	biases	in	LGM	results	in	the	south	due	to	present-day	biases	in	the	
north	via	the	continent-wide	GAM	modeling.	.	.	I	am	definitely	expecting	comments	on	
this	potential	issue.	
	
SR28.	The	reviewer	is	right	to	point	out	the	issue	of	the	confidence	of	the	results	for	
North-East	Europe.	We	now	provide	additional	details	in	the	methods	(p.6,	l.1-8)	and	
discussion	(p.14,	l.3-4	and	see	also	p.15,	l.16-20)	about	this	point.	As	we	now	clarify,	we	
are	especially	interested	in	modelling	climate	for	parts	of	Europe	occupied	by	human	
populations	during	the	LGM,	therefore	excluding	North-East	Europe,	which	was	covered	
by	an	ice	cap.	However,	we	applied	the	SDM	to	this	region	in	the	manuscript	to	explore	
in	details	potential	issues	with	applying	this	method	to	a	region	with	data	outside	of	the	



range	of	values	used	for	calibration.	The	manuscript	is	therefore	now	more	complete,	
not	only	showing	how	to	apply	the	method,	but	also	pointing	out	potential	pitfalls.	
	
SC29.	P13L3,	“larger-scale	patterning”:	Could	you	explain	and	make	it	clearer?	
	
SR29.	This	sentence	has	been	removed.	
	
SC30.	P13L4-6:	I	am	not	sure	this	sentence	is	relevant	here.	
	
SR30.	The	sentence	has	been	removed.	
	
SC31.	Table	1,	“AIC	weights”:	this	should	be	defined	and	commented	in	the	text.	
	
SR31.	The	AIC	weights	have	now	been	defined	and	commented	in	the	figure	caption,	to	
avoid	overloading	the	main	text.	
	
Technical	corrections	
1.	P5L25:	Remove	“interpolated	variable”	
	
“interpolated	variable”	has	been	removed.	
	
2.	P6L29-30:	Redundancy	of	“downscaled,	simulated”	
	
“simulated”	has	been	removed.	
	
3.	P7L3:	Please	specify	that	“bio-climatic	indices”	is	abbreviated	as	BCI(s)	in	the	
following.	
	
This	has	been	specified.	
	
4.	P8L10:	font	size	of	“predictor”	
	
The	font	size	has	been	changed.	
	
5.	P11L31:	“than	for	the	temperature”	
	
The	correction	has	been	made.	



List	of	changes	in	the	manuscript.	
	
1.	Title	changed	from	“Comparison	of	spatial	downscaling	methods	of	general	
circulation	models	results	to	study	climate	variability	during	the	Last	Glacial	Maximum	»	
to	«	Comparison	of	spatial	downscaling	methods	of	general	circulation	model	results	to	
study	climate	variability	during	the	Last	Glacial	Maximum”	
	
2.	Abstract	changed	from	“The	extent	to	which	climate	conditions	influenced	the	spatial	
distribution	of	hominin	populations	in	the	past	is	highly	debated.	General	Circulation	
Models	(GCMs)	and	archaeological	data	have	been	used	to	address	this	issue.	Most	
GCMs	are	not	currently	capable	of	simulating	past	surface	climate	conditions	with	
sufficiently	detailed	spatial	resolution	to	distinguish	areas	of	potential	hominin	habitat,	
however.	In	this	paper	we	propose	a	Statistical	Downscaling	Methods	(SDM)	for	
increasing	the	resolution	of	climate	model	outputs	in	a	computationally	efficient	way.	
Our	method	uses	a	generalized	additive	model	(GAM),	calibrated	over	present-day	data,	
to	statistically	downscale	temperature	and	precipitation	from	the	outputs	of	a	GCM	
simulating	the	climate	of	the	Last	Glacial	Maximum	(19-23,000	BP)	over	Western	
Europe.	Once	the	SDM	is	calibrated,	we	first	interpolate	the	coarse-scale	GCM	outputs	
to	the	final	resolution	and	then	use	the	GAM	to	compute	surface	air	temperature	and	
precipitation	levels	using	these	interpolated	GCM	outputs	and	fine	resolution	
geographical	variables	such	as	topography	and	distance	from	an	ocean.	The	GAM	acts	as	
a	transfer	function,	capturing	non-linear	relationships	between	variables	at	different	
spatial	scales.	We	tested	three	different	techniques	for	the	first	interpolation	of	GCM	
output:	bilinear,	bicubic,	and	kriging.	The	results	were	evaluated	by	comparing	
downscaled	temperature	and	precipitation	at	local	sites	with	paleoclimate	
reconstructions	based	on	paleoclimate	archives	(archaeozoological	and	palynological	
data).	Our	results	show	that	the	simulated,	downscaled	temperature	and	precipitation	
values	are	in	good	agreement	with	paleoclimate	reconstructions	at	local	sites	confirming	
that	our	method	for	producing	fine-grained	paleoclimate	simulations	suitable	for	
conducting	paleo-anthropological	research	is	sound.	In	addition,	the	bilinear	and	bicubic	
interpolation	techniques	were	shown	to	distort	either	the	temporal	variability	or	the	
values	of	the	response	variables,	while	the	kriging	method	offers	the	best	compromise.	
Since	climate	variability	is	an	aspect	of	their	environment	to	which	human	populations	
may	have	responded	in	the	past	this	is	an	important	distinction.”	
	
to	“The	extent	to	which	climate	conditions	influenced	the	spatial	distribution	of	hominin	
populations	in	the	past	is	highly	debated.	General	Circulation	Models	(GCMs)	and	
archaeological	data	have	been	used	to	address	this	issue.	Most	GCMs	are	not	currently	
capable	of	simulating	past	surface	climate	conditions	with	sufficiently	detailed	spatial	
resolution	to	distinguish	areas	of	potential	hominin	habitat,	however.	In	this	paper	we	
propose	a	Statistical	Downscaling	Method	(SDM)	for	increasing	the	resolution	of	climate	
model	outputs	in	a	computationally	efficient	way.	Our	method	uses	a	generalized	
additive	model	(GAM),	calibrated	over	present-day	climatology	data,	to	statistically	
downscale	temperature	and	precipitation	time	series	from	the	outputs	of	a	GCM	



simulating	the	climate	of	the	Last	Glacial	Maximum	(19-23,000	BP)	over	Western	
Europe.	Once	the	SDM	is	calibrated,	we	first	interpolate	the	coarse-scale	GCM	outputs	
to	the	final	resolution	and	then	use	the	GAM	to	compute	surface	air	temperature	and	
precipitation	levels	using	these	interpolated	GCM	outputs	and	fine	resolution	
geographical	variables	such	as	topography	and	distance	from	an	ocean.	The	GAM	acts	as	
a	transfer	function,	capturing	non-linear	relationships	between	variables	at	different	
spatial	scales	and	correcting	for	the	GCM	biases.	We	tested	three	different	techniques	
for	the	first	interpolation	of	GCM	output:	bilinear,	bicubic,	and	kriging.	The	resulting	
SDMs	were	evaluated	by	comparing	downscaled	temperature	and	precipitation	at	local	
sites	with	paleoclimate	reconstructions	based	on	paleoclimate	archives	
(archaeozoological	and	palynological	data)	and	the	impact	of	the	interpolation	
technique	on	patterns	of	variability	was	explored.	The	SDM	based	on	kriging	
interpolation,	providing	the	best	accuracy,	was	then	validated	on	present-day	data	
outside	of	the	calibration	period.	Our	results	show	that	the	downscaled	temperature	
and	precipitation	values	are	in	good	agreement	with	paleoclimate	reconstructions	at	
local	sites,	and	that	our	method	for	producing	fine-grained	paleoclimate	simulations	is	
therefore	suitable	for	conducting	paleo-anthropological	research.	It	is	nonetheless	
important	to	calibrate	the	GAM	on	a	range	of	data	encompassing	the	data	to	be	
downscaled.	Otherwise,	the	SDM	is	likely	to	over-correct	the	coarse-grain	data.	In	
addition,	the	bilinear	and	bicubic	interpolation	techniques	were	shown	to	distort	either	
the	temporal	variability	or	the	values	of	the	response	variables,	while	the	kriging	
method	offered	the	best	compromise.	Since	climate	variability	is	an	aspect	of	the	
environment	to	which	human	populations	may	have	responded	in	the	past	the	choice	of	
interpolation	technique	is	therefore	an	important	consideration.”	
	
3.	p.3-4,	l.23-7:	objectives	of	the	paper	clarified:	“In	this	study,	we	explore	and	refine	
the	capacity	of	an	SDM	from	the	transfer	functions	family,	based	on	Generalized	
Additive	Modelling	(GAM),	to	compute	temperature	and	precipitation	time	series	at	a	
fine	spatial	and	temporal	resolution	for	the	LGM	over	Western	Europe,	south	of	the	
Fennoscandian	ice-sheets.	GAM	is	a	non-parametric	statistical	technique	that	has	
proven	reliable	for	capturing	non-linear	relationships	between	local-	and	large-scale	
variables	and	correcting	the	biases	specific	to	a	given	GCM	(e.g.,	Vrac	et	al.,	2007;	
Levavasseur	et	al.,	2010).	The	SDM	used	here	accurately	downscales	the	climatology	
(i.e.,	the	climate	averages	over	several	decades)	of	temperature	and	precipitation	
generated	by	a	GCM	for	the	LGM	when	calibrated	using	present-day	data	(Vrac	et	al.	
2007).	Its	ability	to	generate	projections	of	the	small-scale	temporal	patterns	necessary	
to	explain	the	spatial	dynamics	of	prehistoric	human	populations	is	untested,	however.	
In	the	present	study,	therefore,	we	use	present-day	climate	data	(corresponding	to	the	
average	of	the	1961-1990	period)	extracted	from	the	IPSL-CM5A-LR	GCM	(Dufresne	et	
al.,	2013)	to	calibrate	the	SDM,	applying	it	to	a	50	year-long	time	series	of	climate	
simulations	for	the	LGM	(Kageyama	et	al.,	2013a,	b).	Interpolated	values	of	coarse-grain	
variables	extracted	from	the	GCM,	as	well	as	fine-scale	geographical	data	such	as	
elevation	and	advective	continentality,	are	used	as	predictors	in	the	GAM.	The	result	is	
the	production	of	downscaled	monthly	values	over	50	years	for	temperature	and	



precipitation,	including	local	temporal	variability	in	temperature	and	precipitation	rates.	
In	addition,	we	compare	the	impact	of	three	different	interpolation	techniques	(bilinear	
interpolation,	bicubic	interpolation	and	kriging)	on	the	downscaling	results,	evaluating	
the	resulting	SDM	outputs	with	the	aid	of	climate	proxies	(palynological	and	
archaeozoological	data)	and	observing	the	impact	of	each	technique	on	patterns	of	
spatial	and	temporal	variability	in	temperature	and	precipitation.	The	SDM	using	kriging	
interpolation	is	demonstrated	to	be	a	good	compromise	between	computational	
complexity	and	accuracy,	validated	on	an	11-year	present-day	time	series	distinct	from	
the	calibration	period.”	
	
4.	p.4,	l.13-21:	biases	of	the	GCM	specified:	“The	model	performance	and	main	biases	
are	described	in	Dufresne	et	al.	(2013)	and	Hourdin	et	al.	(2013).	This	model	version	is	
known	to	have	a	cold	(-1.4°C)	bias	in	terms	of	globally	averaged	temperature	and	the	
bias	in	mean	annual	temperature	over	Europe	is	similar	to	the	global	value.	In	this	low-
resolution	version	of	the	model,	the	mid-latitude	westerly	winds	are	generally	more	
equatorial	than	observed	(Hourdin	et	al.,	2013)	and	this	is	the	case	for	the	Northeast	
Atlantic	and	Europe	too.	The	general	pattern	of	extra-tropical	precipitation	over	the	
North	Atlantic	and	European	sectors	is	satisfactory	with	respect	to	the	annual	mean	
(Dufresne	et	al.,	2013).	The	equilibrium	temperature	response	to	a	doubling	CO2	is	
3.59°C	(Dufresne	et	al.,	2013),	which	is	rather	high	compared	to	other	CMIP5	models.	
Nevertheless,	the	model’s	response	to	LGM	forcings	somewhat	underestimates	the	
cooling	over	Europe,	as	reconstructed	from	pollen,	and	is	satisfactory	in	terms	of	
precipitation	(Kageyama	et	al.,	2013).”	
	
5.	p.5,	l.14-16:	Addition:	“The	GAM	uses	these	predictor	variables,	in	addition	to	the	
original	variables	to	be	downscaled,	to	correct	the	biases	of	the	GCM	described	above.	
This	implies	that	a	given	GAM	is	only	valid	for	the	GCM	for	which	it	was	calibrated,	as	it	
corrects	its’	specific	biases.”	added.	
	
6.	p.6,	l.1-7:	Addition:	“We	are	specifically	interested	in	downscaling	temperature	and	
precipitation	over	Western	Europe,	south	of	the	ice-sheets	during	the	LGM,	a	time	when	
archaeological	data	indicates	that	human	populations	contracted	in	size	and	range.	The	
GAMs	were	calibrated	over	a	wider	area	than	the	region	of	interest	in	order	to	avoid	
edge	effects	and	include	the	full	range	of	climate	conditions	that	prevailed	during	the	
LGM,	which	was	much	colder	than	the	present	day.	As	a	result,	the	calibration	domain	
extends	further	North	and	East	(where	more	continental	conditions	prevail)	than	the	
region	of	interest.	Preliminary	simulations	nonetheless	showed	that	selecting	too	large	a	
calibration	region	averaged-out	the	small-scale	variation	we	are	interested	in.”	
	
7.	p.6,	l.	29:	equation	of	the	advective	continentality	added.	
	
8.	p.7,	l.25-28:	“We	also	calculated	indices	of	variability,	including	measures	of	variance	
and	inter-annual	variability	for	the	variables	of	interest.	The	standard	deviation	of	
monthly	mean	temperatures	for	each	month	was	calculated	for	the	50-year	run.	The	



coefficient	of	variation	of	monthly	mean	precipitation	values	was	calculated	for	the	
same	period.”	Moved	up	due	to	the	removal	of	the	SPI	and	STI	indices	in	section	2.7	
originally.	
	
9.	section	3.1:	specifications	on	the	interpretation	of	the	GAM	splines,	on	p.8	l.16,	26,	
p.9	l.6,	14,	and	17.	
	
10.	p.11,	l.12:	specifications	added	on	how	to	interpret	the	pollen	and	BCI	temperature	
reconstructions:	“Simulated	temperature	ranges	fall	within	the	reconstructed	ranges	
corresponding	to	the	BCIs	and	are	within	the	reconstructed	ranges	from	Wu	et	al.	(2007)	
for	all	test	sites,	as	shown	by	the	overlap	of	the	red	and	blue	error	bars	with	the	
diagonal	(Fig.	6a,c,e).	As	noted	above,	since	the	BCI	reconstruction	considers	the	
minimum,	mean	and	maximum	values	for	each	zonobiome	over	the	whole	of	Western	
Europe	(see	Burke	et	al.	2014),	some	downscaled	temperature	values	may	differ	from	
the	mean,	but	as	long	as	the	error	bars	overlap	with	the	diagonal	are	still	in	accordance	
with	the	BCI	climate	reconstruction.”	
	
11.	section	3.2.2	Precipitation:	the	whole	section	was	rewritten	to	improve	clarity.	
	
12.	addition	of	section	3.3	Validation	on	present	day	data.	
	
13.	The	discussion	was	largely	rewritten	and	rearranged	according	to	the	reviewers’	
comments	to	improve	clarity	sand	to	incorporate	the	new	validation	results.	
	
14.	Figure	1	indicated	the	sites	used	for	the	temperature	and	precipitation	
reconstructions	was	added.	
	
15.	Figures	2-5:	information	on	the	range	of	data	at	the	reconstruction	sites	were	added	
on	the	figures,	and	the	mistake	inverting	present-day	and	LGM	curves	was	corrected.	
	
16.	Figures	5	and	7	combines	the	original	figures	4	and	5	and	figures	7	and	8,	
respectively.	
	
17.	Figures	6	and	8	use	square	error	bars	instead	of	the	original	boxplots	for	clarity.	
	
18.	Figures	9	and	10	present	the	same	information	as	original	figures	10	and	11	but	
using	the	same	representation	as	figures	5	and	7,	for	clarity.	
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Abstract. The extent to which climate conditions influenced the spatial distribution of hominin populations in the past is highly 

debated. General Circulation Models (GCMs) and archaeological data have been used to address this issue. Most GCMs are 15 

not currently capable of simulating past surface climate conditions with sufficiently detailed spatial resolution to distinguish 

areas of potential hominin habitat, however. In this paper we propose a Statistical Downscaling Method (SDM) for increasing 

the resolution of climate model outputs in a computationally efficient way. Our method uses a generalized additive model 

(GAM), calibrated over present-day climatology data, to statistically downscale temperature and precipitation time series from 

the outputs of a GCM simulating the climate of the Last Glacial Maximum (19-23,000 BP) over Western Europe. Once the 20 

SDM is calibrated, we first interpolate the coarse-scale GCM outputs to the final resolution and then use the GAM to compute 

surface air temperature and precipitation levels using these interpolated GCM outputs and fine resolution geographical 

variables such as topography and distance from an ocean. The GAM acts as a transfer function, capturing non-linear 

relationships between variables at different spatial scales and correcting for the GCM biases. We tested three different 

techniques for the first interpolation of GCM output: bilinear, bicubic, and kriging. The resulting SDMs were evaluated by 25 

comparing downscaled temperature and precipitation at local sites with paleoclimate reconstructions based on paleoclimate 

archives (archaeozoological and palynological data) and the impact of the interpolation technique on patterns of variability 

was explored. The SDM based on kriging interpolation, providing the best accuracy, was then validated on present-day data 

outside of the calibration period. Our results show that the downscaled temperature and precipitation values are in good 

agreement with paleoclimate reconstructions at local sites, and that our method for producing fine-grained paleoclimate 30 

simulations is therefore suitable for conducting paleo-anthropological research. It is nonetheless important to calibrate the 

GAM on a range of data encompassing the data to be downscaled. Otherwise, the SDM is likely to over-correct the coarse-

grain data. In addition, the bilinear and bicubic interpolation techniques were shown to distort either the temporal variability 

Définition du style: EndNote Bibliography: Police :(par

défaut) Times New Roman, 10 pt

Définition du style: EndNote Bibliography Title: Police :(par

défaut) Times New Roman, 10 pt

Supprimé: models

Mis en forme: Français

Supprimé: 1Department35 

Mis en forme: Français

Supprimé: d'anthropologie

Mis en forme: Français

Supprimé: Methods

Supprimé: .

Supprimé: results

Supprimé: ). Our results show that the simulated,40 

Supprimé:  confirming

Supprimé:  is sound



 

2 
 

or the values of the response variables, while the kriging method offered the best compromise. Since climate variability is an 

aspect of the environment to which human populations may have responded in the past the choice of interpolation technique 

is therefore an important consideration. 

1 Introduction 

The extent to which past climate change influenced human population dynamics during the course of prehistory is a subject of 5 

lively debate. The Last Glacial period, including Marine Isotope Stages 3 (MIS3) and 2 (MIS2) and the Last Glacial Maximum 

(LGM), is particularly interesting in the context of this debate (van Andel, 2003). During MIS3 the archaeological record 

suggests that modern human populations originating in Africa expanded into Eurasia, while Neanderthal populations gradually 

contracted their range before becoming extinct ~27,000 years Before Present (BP) (Serangeli and Bolus, 2008). Progressively 

colder and drier conditions, culminating in the LGM (19,000 - 23,000 years Before Present), are thought to have triggered 10 

further range contractions and the demographic decline of modern human populations in Europe. Climate affects the spatial 

behaviour of human populations directly (when conditions exceed human physiological limits) and indirectly (when it affects 

the distribution of resources upon which humans depend). The global climate during the Last Glacial period was characterised 

by a series of rapid oscillations (known as Dansgaard-Oeschger, or D-O events). These events may have acted as forcing 

mechanisms, affecting the demographic processes described above (e.g. Müller et al., 2011; Schmidt et al., 2012; Sepulchre et 15 

al., 2007; Jimenez-Espejo et al., 2007; Banks et al., 2013; d'Errico and Sánchez Goñi, 2003; Gamble et al., 2004; Shea, 2008). 

While the timing of climate events relative to large-scale patterns in the archaeological record is suggestive, the mechanisms 

by which climate forcing acted on human populations are still imperfectly understood. More empirical evidence is needed to 

validate the hypothesis that climate forcing affected human population dynamics and explore the nature and scale of the effect.  

 20 

The broad demographic patterns mentioned above are the result of smaller, local-scale patterns produced by mobile groups of 

hunter-gatherers distributing themselves on the landscape in order to exploit available resources. The availability of these 

resources fluctuated both predictably (on a seasonal basis) and unpredictably (as a result of climate variability). It is by gaining 

an understanding of these smaller-scale patterns, ultimately, that we will be able to understand how climate forcing affects the 

spatial and cultural dynamics of prehistoric human populations. Previous analyses of climate forcing have used a variety of 25 

data to reconstruct the paleoclimate, such as ice-core or marine records (e.g., Bradtmöller et al., 2012; Jimenez-Espejo et al., 

2007; Schmidt et al., 2012), present-day climate data (e.g., Jennings et al., 2011), and climate model simulations (e.g., Banks 

et al., 2008; Davies and Gollop, 2003; Sepulchre et al., 2007; Benito et al. 2017; Hughes et al. 2007; Tallavaara et al. 2015). 

These analyses were conducted at varying spatial resolutions, typically on the order of ~50 km x 50 km (= 2500 km2). Higher-

resolution climate simulations are nonetheless necessary for the quantification of climate variability at an inter-annual scale 30 

and a spatial scale which approximates the size of the catchments within which hunter-gatherer groups typically forage (~10 

km from camp, or 314 km2; Vita-Finzi and Higgs, 1970) making this an ideal spatial scale at which to consider the impact of 

climate variability on human systems.  
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Global Climate Models (GCMs) are able to simulate climate conditions at various spatial and temporal scales, whereas climate 

proxy data are inherently limited by the uneven distribution of sample locations and taphonomic biases (i.e biases in the fossil 

record, such as pollen preservation, location of archaeological sites, etc.). GCMs use physical equations, e.g. to represent 

atmospheric fluid dynamics, as well as parameterisations, e.g. for sub-grid scale phenomena, to simulate the Earth’s climate. 5 

The major disadvantage of GCMs is that they are computationally intensive and are usually only used to model climate 

behaviour at relatively coarse spatial resolution, typically coarser than 100 km (cf. Flato et al., 2013 for the latest details on 

the CMIP5 models) especially for long paleoclimatic simulations. Their ability to simulate the small-scale physical processes 

that drive local surface variables, such as precipitation, is therefore limited (Wood et al., 2004).  

 10 

Regional Climate Models (RCMs) represent a physically based approach to climate modelling at a finer spatial scale over a 

specific region of interest (e.g., Liang et al., 2006, Flato et al., 2013). However, RCMs use GCM outputs to set their boundary 

conditions. They therefore require the explicit modelling of the physical processes at both coarse and fine scales over the whole 

planet and over region of interest, respectively, and are also computationally demanding. Statistical Downscaling Methods 

(SDM), on the other hand, are less computationally demanding. SDMs proceed by empirically associating local-scale variables 15 

with large-scale atmospheric variables produced by GCMs, and are faster to compute than mechanistic RCMs (Vaittinada Ayar 

et al., 2015). SDMs fall into four main families: “transfer functions”, which directly link large-scale and local-scale variables; 

“weather typing” methods based on conditioning statistical models on recurrent weather states; “stochastic weather generators” 

that simulate downscaled values from their (potentially conditional) probability density functions; and “Model Output 

Statistics” (MOS) methods based on adjusting (i.e., correcting) the statistical distribution of the large-scale GCM simulations 20 

in order to generate local-scale variables with the correct statistical properties (e.g., Vaittinada Ayar et al., 2015). 

 

In this study, we explore and refine the capacity of an SDM from the transfer functions family, based on Generalized Additive 

Modelling (GAM), to compute temperature and precipitation time series at a fine spatial and temporal resolution for the LGM 

over Western Europe, south of the Fennoscandian ice-sheets. GAM is a non-parametric statistical technique that has proven 25 

reliable for capturing non-linear relationships between local- and large-scale variables and correcting the biases specific to a 

given GCM (e.g., Vrac et al., 2007; Levavasseur et al., 2010). The SDM used here accurately downscales the climatology (i.e., 

the climate averages over several decades) of temperature and precipitation generated by a GCM for the LGM when calibrated 

using present-day data (Vrac et al. 2007). Its ability to generate projections of the small-scale temporal patterns necessary to 

explain the spatial dynamics of prehistoric human populations is untested, however. In the present study, therefore, we use 30 

present-day climate data (corresponding to the average of the 1961-1990 period) extracted from the IPSL-CM5A-LR GCM 

(Dufresne et al., 2013) to calibrate the SDM, applying it to a 50 year-long time series of climate simulations for the LGM 

(Kageyama et al., 2013a, b). Interpolated values of coarse-grain variables extracted from the GCM, as well as fine-scale 

geographical data such as elevation and advective continentality, are used as predictors in the GAM. The result is the 
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production of downscaled monthly values over 50 years for temperature and precipitation, including local temporal variability 

in temperature and precipitation rates. In addition, we compare the impact of three different interpolation techniques (bilinear 

interpolation, bicubic interpolation and kriging) on the downscaling results, evaluating the resulting SDM outputs with the aid 

of climate proxies (palynological and archaeozoological data) and observing the impact of each technique on patterns of spatial 

and temporal variability in temperature and precipitation. The SDM using kriging interpolation is demonstrated to be a good 5 

compromise between computational complexity and accuracy, validated on an 11-year present-day time series distinct from 

the calibration period. 

2 Materials and Methods 

2.1 Global Climate Model  

The GCM used in this study is the ocean-atmosphere coupled model IPSL-CM5A-LR (Dufresne et al., 2013) developed for 10 

the CMIP5 (Taylor et al., 2012) and PMIP3 (Braconnot et al., 2012) projects and the 5th IPCC report (IPCC, 2013). The IPSL-

CM5A-LR model has a spatial resolution of 1.9° in latitude and 3.75° in longitude over Europe, which is the area of interest 

here (i.e. ~62 500 km2). The model performance and main biases are described in Dufresne et al. (2013) and Hourdin et al. 

(2013). This model version is known to have a cold (-1.4°C) bias in terms of globally averaged temperature and the bias in 

mean annual temperature over Europe is similar to the global value. In this low-resolution version of the model, the mid-15 

latitude westerly winds are generally more equatorial than observed (Hourdin et al., 2013) and this is the case for the Northeast 

Atlantic and Europe too. The general pattern of extra-tropical precipitation over the North Atlantic and European sectors is 

satisfactory with respect to the annual mean (Dufresne et al., 2013). The equilibrium temperature response to a doubling CO2 

is 3.59°C (Dufresne et al., 2013), which is rather high compared to other CMIP5 models. Nevertheless, the model’s response 

to LGM forcings somewhat underestimates the cooling over Europe, as reconstructed from pollen, and is satisfactory in terms 20 

of precipitation (Kageyama et al., 2013). 

 

We use a historical simulation run according to the CMIP5 protocol, and use model output for the period from 1961 to 1990 

as our present-day reference climate. Outputs from this simulation are used in the calibration process (below). The simulation 

of LGM climate conditions follows the PMIP3 protocol (Braconnot et al., 2011, Braconnot et al., 2012). The concentrations 25 

of atmospheric greenhouse gases were lowered to their LGM values derived from ice core data (185 ppm for CO2, 350 ppb for 

CH4 and 200 ppb for N2O) and the ice sheets are prescribed according to the product developed for PMIP3 (Abe-Ouchi et al., 

2015). The model is run for several hundred years until the response to the LGM forcing in terms of surface climate variables 

is stabilised (Kageyama et al., 2013a, b). For this research, we extracted 50 years of monthly mean data (temperature 2m above 

the surface, precipitation, sea level pressure and relative humidity) from the stabilised part of the simulation. Next, we 30 

downscaled the data, calculated their average climatology and their temporal (interannual) variability. 

2.2 Generalized additive models  
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Generalized additive models (GAM, Hastie and Tibshirani, 1990) are statistical models blending the properties of generalized 

linear models with additive models. Given a dependent variable Y and p predictor variables [X1,…,Xp], GAMs compute E(Y| 

X1,…,Xp), the expected value of Y, conditionally on the p predictors Xi, as a sum of non-parametric functions as follows: 

 

E ! "#, … , "& = 	 )* "*&
*+# ,          (1) 5 

 

Following Vrac et al. (2007), cubic spline functions were used for the fi, represented by piece-wise third-order polynomial 

functions. For each function ƒi, a number of knots are placed evenly throughout the predictor range, and the cubic polynomials 

that compose ƒi are constrained to continuity conditions at each knot to ensure smooth transitions (Wood, 2000, 2004). GAMs 

were calibrated using the mgcv package (Wood, 2011) in R, and the number of knots was determined automatically using 10 

generalised cross-validation. 

 

Using a combination of geographical and physical predictor variables has been shown to improve spatial downscaling results 

(Vrac et al., 2007). The GAM uses these predictor variables, in addition to the original variables to be downscaled, to correct 

the biases of the GCM described above. This implies that a given GAM is only valid for the GCM for which it was calibrated, 15 

as it corrects its’ specific biases. Using GAMs on climate variables requires the predictor and dependent variables to have the 

same spatial scale. The present-day dependent variables (precipitation and temperature) are at a fine spatial scale. The elevation 

variable is also at a fine spatial scale, whereas the predictor climate variables generated by the GCM are at a coarser scale. 

Thus, interpolation of the predictor climate variables is necessary. For this research we tested three interpolation techniques 

(see below). 20 

 

Once the functions ƒi have been fitted using the present-day data, the downscaling can be performed on the GCM outputs for 

the LGM. The downscaling uses fine-scale and interpolated predictor climate variables corresponding to the LGM to generate 

fine-scale dependent variables. Here, two GAMs are calibrated: one for temperature and one for precipitation. 

2.3 Calibration data 25 

2.3.1 Fine-scale dependent variables: the CRU climatology. 

Fine-scale, present-day temperature and precipitation dependent data were obtained from the Climate Research Unit (CRU, 

New et al., 2002). The spatial resolution of the data is 10’ (i.e. 1/6 degree), regularly gridded between 32.72° and 59.861° 

latitude (N = 164 values) and -11.578° and 24.738° longitude (N = 219 values) for a total of N = 35916 grid-points. We 

computed a monthly climatology for each gridpoint by averaging the variable of interest (temperature or precipitation) over 30 

30 years (from 1961 to 1990) for each month (Fig. S1), resulting in 12 values for each cell. The GAM is calibrated over this 

30-year climatology, because the GCM cannot be set up to generate predictor variables for a specific year.   
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We are specifically interested in downscaling temperature and precipitation over Western Europe, south of the ice-sheets 

during the LGM, a time when archaeological data indicates that human populations contracted in size and range. The GAMs 

were calibrated over a wider area than the region of interest in order to avoid edge effects and include the full range of climate 

conditions that prevailed during the LGM, which was much colder than the present day. As a result, the calibration domain 5 

extends further North and East (where more continental conditions prevail) than the region of interest. Preliminary simulations 

nonetheless showed that selecting too large a calibration region averaged-out the small-scale variation we are interested in.  

2.3.2 Large-scale predictor variables. 

We used the data from a CMIP5 historical simulation run with the IPSL-CM5A-LR model to produce the predictor climate 

variables used for the calibration of the GAMs. We calculated monthly climatological averages from the simulation outputs 10 

for the period from 1961 to 1990, i.e. the same years as the CRU data (see above). The predictor variables we used are: 

temperature (T), precipitation (P), atmospheric pressure at sea level (SLP) and relative humidity (RH). The variables were 

spatially interpolated to match the spatial resolution of CRU data, which is 10’; each grid-point in the CRU data therefore 

matches a value for each of the predictor variables. Three interpolation methods were tested: bilinear, bicubic and kriging 

(Figs. S2-S4). For the kriging method, we used the “krig” function from the vacumm python package 15 

(http://relay.actimar.fr/~raynaud/vacumm/) using an exponential fit of the variogram, with the fit computed independently for 

every month and every variable. Different interpolation methods generate differences in the fine-scale predictor data. For 

example, the bicubic interpolation generates values outside of the initial range of values, contrary to the other two techniques. 

The bilinear interpolation generates abrupt changes in the slope of the values at the initial data points, whereas the other two 

techniques generate smooth surfaces. It is therefore important to assess the potential impact of the interpolation method on the 20 

output of the downscaling process. 

2.3.3 Fine-scale predictor variables. 

We extracted present-day elevation data from the CRU dataset gridded at the same fine-scale spatial resolution as the dependent 

variables. We computed the advective (Aco) and diffusive (Dco) continentalities, following Vrac et al. (2007). Dco is bounded 

between 0 and 1, and corresponds to the shortest distance to the ocean. A low value means that distance to the ocean is small, 25 

and vice versa. Aco is also bounded between 0 and 1, and takes the direction and intensity of prevailing winds into account 

along with the distance to the ocean. The change of Aco during a time dt is governed by Equation 2: 

 

,-./ = −-./ 1 − 234 + 1 − -./ 234 6
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where ico is 0 over sea and 1 over land, dx is the distance traveled by the air mass during dt, U is the mean wind norm, obtained 

from the GCM, and l0/U0 is the distance/wind ratio corresponding to a change of Aco of 1/2. Both variables are used to account 

for the fact that an air mass becomes more continental as it travels across land. Since Dco and the Aco proved to be highly 

correlated but Aco provided the best performance in the models, we only selected Aco for the present analysis (Figs. S2-S4). 

2.4 Calibration of the GAMs 5 

For each dependent variable (temperature and precipitation) and for each interpolation technique (bilinear, bicubic and 

kriging), we tested different combinations of physical and geographical predictor variables. To downscale temperature, we 

computed GAMs for all possible combinations of coarse-grain temperature values from the GCM interpolated at fine scale, 

with fine-grain elevation and advective continentality (Aco), resulting in seven possible models for each interpolation. To 

downscale precipitation, we computed GAMs for all possible combinations of coarse-grain temperature, coarse-grain 10 

precipitation, sea-level pressure, and relative humidity values from the GCM interpolated at fine scale, with fine-grain 

elevation and advective continentality (Aco), resulting in 31 possible models for each interpolation. For each interpolation 

technique, the resulting GAMs were compared using the Akaike Information Criterion (AIC; Akaike, 1974), and the model 

with the lowest AIC was selected. The AIC is a measure of the relative goodness of fit of each of the models and penalizes the 

number of parameters, thus preventing overfitting. The significance of each variable was assessed using p-values, and verified 15 

by visual inspection of the spline 95% confidence intervals. Six GAMs were therefore retained after calibration (one for each 

response variable and for each interpolation technique; Table S1).  

2.5 Downscaling of temperature and precipitation time series for the LGM 

We computed downscaled temperature and precipitation values using the six GAMs resulting from the calibration process 

described above, i.e. for the same predictor variables. The large-scale climate variables were generated by the GCM using the 20 

PMIP3 protocol for the LGM prior to interpolation (Figs. S5-S7). The geographical variables are derived from a digital 

elevation model for the LGM (Levavasseur et al., 2011). In particular, the change in coastlines due to the lower sea-level at 

LGM is accounted for, which has an impact on the continentalities. The downscaling was performed for each month of the 50-

year-long monthly output from the GCM, in order to obtain a long time series of fine-scale temperature and precipitation 

values over Europe and calculate climatological averages. We also calculated indices of variability, including measures of 25 

variance and inter-annual variability for the variables of interest. The standard deviation of monthly mean temperatures for 

each month was calculated for the 50-year run. The coefficient of variation of monthly mean precipitation values was calculated 

for the same period. 

2.6 Evaluation data (palynological data and vertebrate remains) 
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To evaluate the performance of the SDM for the LGM we compared our temperature and precipitation outputs to local climate 

variables estimated on the basis of pollen and vertebrate fossils from 29 test locations (Table S1, Fig. 1). For each of our 29 

test sites, we estimated the mean, minimum, and maximum temperature and precipitation rate on a monthly basis over the 

course of the 50 downscaled years, and compared the ranges of downscaled values to the ranges of temperature and 

precipitation values reconstructed using the palynological data and vertebrate remains.  5 

 

Reconstruction of local temperature and precipitation values (annual mean temperature, mean temperature of the coldest 

month, mean temperature of the warmest month, mean annual precipitation, precipitation in January, precipitation in July) 

were obtained from pollen data reported in an independent study using inverse vegetation modelling for 14 sites located in 

Europe (Wu et al., 2007). For the remaining 19 sites, vertebrate remains from another study (Burke et al. 2014) were used to 10 

calculate bio-climate indices (BCI; ff. Hernandez Fernandez, 2001a, b). The method set forth by Hernandez-Fernandez uses 

large and small vertebrates to compute the relative probability that a given assemblage reflects one of Walter’s nine global 

zonobiomes (Walter and Box, 1976). The method is based on the “climate envelope” method commonly employed in 

biogeographical reconstructions. The BCI uses presence/absence data, thus avoiding the problems inherent with calculating 

the relative representation of species from the archaeozoological record, and all available taxa rather than one or two 15 

“indicator” species, thus avoiding the risk that changes in the distribution of a single taxon could bias the biogeographical 

reconstruction. Ranges of temperature and precipitation values (minimum, mean and maximum) for each zonobiome were 

estimated by mapping the modern distribution of zonobiomes in the northern hemisphere and compiling present-day 

temperature and precipitation data from the CRU data (see Burke et al. 2014). The zonobiomes (calculated using BCI) were 

then used to predict the climate ranges for each test location. Note that the range of values for each zonobiome corresponds to 20 

the minimum and maximum values for the zonobiome over Western Europe (see Burke et al. 2014). It is therefore not specific 

to a given location and encompasses a large range of values. The intervals generated by these two different climate 

reconstruction methods, therefore, are not equivalent. Nevertheless, they provide useful references for evaluating the values 

generated by the SDM.  

2.7 Validation using present-day data (CRU 1950-1960 time series) 25 

Due to computational constraints, the validation of the SDM was performed for the kriging interpolation technique only, based 

on the comparison of the results of the downscaling for the LGM between the three interpolation techniques (see below). A 

GCM simulation was produced for the period from 1950-1960 and compared with a time series of temperature and precipitation 

at 10’ resolution over Europe for the same period (Mitchell et al. 2004). Yearly averages and variability indices (standard 

deviation for temperature and coefficient of variation for precipitation) for the two sets of data were compared. The time series 30 

was based on the same original data used to create the 1961-1990 climatology, which forms the calibration set for the SDM 

(New et al. 1999). The time series was created by spatially interpolating data from irregularly spaced climate stations using 
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thin-plate smoothing splines, however, and may be subject to its own bias. Potential differences between our results and the 

validation time series should therefore be interpreted with caution. 

3. Results 

3.1 The GAM 

The best models (i.e., the models with the lowest AIC value) for temperature and for precipitation were obtained by using the 5 

same sets of variables (one for temperature, one for precipitation) in the GAM for the three interpolation techniques. The 

predictors for temperature are: simulated temperature from the GCM, elevation and advective continentality (explaining 

95.80%, 95.29% and 95.63% of the variance for the bilinear, bicubic, and kriging interpolations, respectively). For 

precipitation, the predictors are:  simulated temperature, precipitation, sea-level pressure and relative humidity from the GCM, 

elevation, and advective continentality (explaining 64.65%, 64.79% and 65.43% of the variance for the bilinear, bicubic, and 10 

kriging interpolations) (Table 1). The p-values for all variables for all models were < 0.001. 

 

The splines resulting from the calibration process for the downscaling of temperature values show that fine-scale temperature 

readings are related to the GCM temperature and to elevation in a linear fashion, and the differences between the three 

interpolation techniques tested are negligible (Fig. 2). The fine-scale temperature is proportional to the GCM temperature but 15 

it is inversely proportional to elevation, which means that the coarse-grain temperatures generated by the GCM are higher than 

fine grain observations in regions of high elevation. This is expected because temperature generally decreases with increasing 

altitude and because in the coarse grain GCM, it is the average elevation over the grid box that is considered. Although the 

model including all three predictor variables produced the lowest AIC, advective continentality has a very limited impact on 

temperature, as the values of ƒ(Aco) remain close to 0. When applied outside the range of values for which they are calibrated, 20 

GAMs use a linear extrapolation of the splines. The range of values for elevation is similar for the present-day and the LGM 

(Fig. 3). Because of the increased land mass during the LGM (which correlates with a low sea-stand), there are more high 

values for advective continentality, but this difference has a small impact since the spline is relatively flat for this variable. As 

expected, temperature is lower during the LGM than for present-day. This has a limited impact on the projections because the 

linear interpolation of the spline outside of the range of values used for calibration is consistent with the fact that the spline is 25 

relatively linear for temperature  and the few remaining values are within 10 degrees of the minimum temperature. For very 

low temperatures during the LGM, however, the SDM outputs should be interpreted carefully, as discussed below. 

 

The splines for the downscaling of precipitation, in contrast, are non-linear (Fig. 4). The splines showing the influence of 

temperature on expected precipitation rates show larger variations due to a low expected precipitation for both low and high 30 

temperatures, but high expected precipitation for middle-range temperatures. Although the expected precipitation increases 

monotonically with the interpolated precipitation rates, the spline values are lower than the GCM precipitation values and the 
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relationship is non-linear. The expected precipitation increases more rapidly for low than for high interpolated precipitation, 

in keeping with previous observations that GCMs (and even RCMs) overestimate drizzles, which may explain this correction 

(e.g. Gutowski et al.,2013). The three interpolation techniques produced similar splines for all variables, although the splines 

of the bicubic interpolation are slightly distinct from the other two interpolation techniques. The main difference is observed 

for the spline of the bicubic relative humidity, which indicates lower precipitation for low relative humidity than the other two 5 

interpolation techniques. Differences between the splines of the bicubic interpolation and the other two techniques were 

expected, since this interpolation generates the most divergent values (Figures S8, S11). As a GAM will adjust the splines to 

compensate for the potential biases of a GCM, it will also do so to compensate for the specificity of an interpolation technique. 

 

Advective continentality is the variable with the least impact on precipitation rates. The ranges of values for simulated 10 

precipitation, relative humidity, and for elevation are similar for the present-day and the LGM periods, and the distributions 

of the variable substantially overlap, indicating that the splines calibrated over the present-day period can apply for the LGM 

(Fig. 3). As for temperature, the spline of advective continentality is relatively flat, and the difference of range of values will 

have limited impact on the projections. The spline for the simulated atmospheric pressure at sea level has a positive slope for 

high values. This spline does not represent a causal relationship, but simply indicates that the GCM tends to underestimate 15 

precipitation at high atmospheric pressure. The simulated atmospheric pressure at sea level is also higher for the LGM than 

for the present-day period. Nonetheless, since the atmospheric pressure is mostly lower than 1045 hPa during the LGM, and 

given the low slope of the spline on the right-hand extremity, this discrepancy should have little impact on the results. For 

temperature, the splines are relatively linear near the lower end of the range of present-day values, and the linear interpolation 

of the spline at lower values for the LGM is therefore sensible.  20 

3.2 Results for the LGM 

3.2.1 Temperature 

Downscaled annual mean temperature was very similar for the three interpolation techniques tested (Fig. 5). This was expected, 

since the splines for the GCM temperature and elevation for all three techniques are also very similar. Temperatures 

interpolated with the bilinear and kriging techniques were more similar to each other than to the temperature interpolated using 25 

the bicubic technique before (Fig. S8) and after (Fig. 5) applying the GAMs. The differences between the bilinear and kriging 

techniques show a pattern corresponding to the original coarse-grain cells from the GCM. This illustrates the difference 

between the two interpolation techniques: kriging generates smoother variations than the bilinear interpolation, which 

generates discontinuous variations at the original points. This difference remained after applying the GAMs, showing the 

impact of the interpolation technique used on the final outcome of the downscaling.  30 
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The main differences between the interpolated and downscaled temperatures occur in the northeast of Europe (Fig. S9), where 

downscaled temperatures are higher, especially in winter. This difference was also observed when comparing present-day 

CRU data with the interpolated GCM data (Fig. S10), although with a much lower amplitude. Northeast Europe is the coldest 

region of the study area for both the LGM and the present-day (Figs. S1-S7). Since the spline for temperature has a slope lower 

than 1 for low temperatures (Fig. 2), the GAM generates higher temperatures than the interpolated values, especially for very 5 

low temperatures which fall outside of the present-day range of values due to the linear interpolation of the spline. As a result, 

the difference between interpolated and downscaled temperatures during the LGM is lower in summer. The SDM also takes 

fine scale variations in topography into account, such as abrupt elevation changes in the Alps and Pyrenees (Fig. S9).  

 

The range of temperatures for the 19 sites for which the BCIs were computed are in accordance with the temperature 10 

reconstructions, irrespective of the interpolation technique used (Fig. 6). Simulated temperature ranges fall within the 

reconstructed ranges corresponding to the BCIs and are within the reconstructed ranges from Wu et al. (2007) for all test sites, 

as shown by the overlap of the red and blue error bars with the diagonal (Fig. 6a,c,e). As noted above, since the BCI 

reconstruction considers the minimum, mean and maximum values for each zonobiome over the whole of Western Europe 

(see Burke et al. 2014), some downscaled temperature values may differ from the mean, but as long as the error bars overlap 15 

with the diagonal are still in accordance with the BCI climate reconstruction. 

3.2.2 Precipitation 

The three interpolation techniques tested here produce similar distributions of precipitation rates but, compared to the two 

other interpolation techniques, the bicubic interpolation produced the most divergent results (Fig. S11). All three interpolation 

techniques nonetheless reflect the biases of the GCM (Fig. S12).  Precipitation rates predicted using bicubic interpolation were 20 

substantially lower than those predicted using the other techniques in the South-West of Europe in winter and higher in the 

North of Europe (over the current North Sea) in summer (Fig. 7). This result is consistent with the observation that the splines 

for the bicubic interpolation differed from the other two interpolation techniques. Despite a general agreement between 

simulated and observed annual precipitation mean over Europe (Dufresne et al. 2013), comparing GCM projections 

interpolated at fine scale with the present-day CRU data shows that the GCM overestimates precipitation over the South of 25 

Europe in winter and underestimates them over the North in summer (Fig. S13), which results in the non-linear spline for 

precipitation (Fig. 4). Coarse-grain GCMs are known to perform poorly when simulating the small-scale physical processes 

that drive local surface variables such as precipitation (Wood et al., 2004). This explains the discrepancies between the present-

day simulations and the CRU data and, by extension, explains the adjustments performed by the SDM. 

 30 

The precipitation ranges for the 19 sites for which the BCIs were computed are in accordance with the precipitation ranges 

reconstructed for the LGM. Simulated precipitation ranges for all sites fall within the reconstructed ranges corresponding to 

the BCIs, as shown by the overlap of the horizontal error bars (in red) with the diagonal (Fig. 8). The SDM predicts higher 
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precipitation values for 1 site (in North-West Iberia) than the reconstructions provided by Wu et al. (2007) (the simulated mean 

precipitation of the driest month was predicted to be higher than the maximum precipitation found by Wu et al.). However, 

while the BCI ranges correspond to minimum and maximum values over a relatively large spatial extent, the reconstructions 

offered by Wu et al. (2007) are site-specific and therefore produce smaller ranges of values. Moreover, Wu et al. (2007) based 

their reconstructions on local adjustments of the biome estimates from the BIOME4 model (Kaplan et al. 2003). They therefore 5 

used the same initial values for different sites, which may underestimate differences between sites and explain the lower range 

of precipitation values compared to the values generated by the SDM.  

3.2.3 Variability 

The temporal variability of temperature and precipitation rates highlights differences between the three interpolation 

techniques. When temporal variation was computed over the interpolated variables (Figs. S14, S15), bilinear interpolation 10 

displays regular spatial patterns for both temperature and precipitation, especially in summer. This pattern was less apparent 

for kriging, and almost absent for bicubic interpolation.  

 

With bilinear interpolation, the interpolated values will necessarily be less variable (whatever the index used) than the original 

values. For a simple linear interpolation, given 2 spatially consecutive values at 2 different points in time (y(x0,t0), y(x0,t1), 15 

y(x1,t0) and y(x1,t1)), any linearly interpolated value y(xi) for a location xi in [x0, x1] will necessarily be comprised in [y(x0),y(x1)]. 

In addition, due to the linear interpolation |y(xi,t1)- y(xi,t0)| < |y(x0,t1)- y(x0,t0)| and |y(xi,t1)- y(xi,t0)| < |y(x1,t1)- y(x1,t0)|. By 

contrast, since kriging does not impose linear interpolation between x0 and x1, this relation does not necessarily hold, and even 

less for bicubic interpolation, which do not impose y(x0) ≤ y(x1) ≤ y(x1). However, because of this absence of restriction, bicubic 

interpolation can generate values with a high variability, as for precipitation in summer in the South-West of the Iberian 20 

peninsula (Fig. S15; the high variability for kriging in winter only occurs at the boundary of the study area due to boundary 

conditions, and can therefore be discarded). 

 

Computing temporal variation over the downscaled variables (Figs. 9, 10), showed that the GAMs attenuated this spatial 

pattern, which nonetheless still occurred for the bilinear interpolation, and was almost non-existent for the other two 25 

interpolation techniques. 

3.3 Validation on present-day data 

The comparison of average downscaled (based on kriging interpolation) and observed (CRU) monthly temperature and daily 

precipitation for the 1950-1960 period shows that they are in good agreement (Figures S16, S17). For temperature, the main 

difference occurs in the far North of the study area (Southern point of the Scandinavian peninsula), and on the Italian side of 30 

the Alps. The downscaled temperature is similar on both sides of the Alps, whereas there is some difference in the CRU data 
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(Figure S16), suggesting the inclusion of orographic wind as a predictor may improve the SDM for specific areas. For 

precipitation, the main difference occurs in areas of high precipitation, especially the Western coast of Great Britain (Figure 

S17). Nonetheless, these areas were the areas with higher levels of precipitation for both datasets. 

 

The overall patterns of variability were overall similar between the downscaled and CRU datasets (Figures S18, S19), with 5 

nonetheless some local differences. Temperature variability was higher in the North-East region of the study area and lower 

in the South-West region, especially in winter (Figure S18), and the range of values for the standard deviation were very similar 

for the different seasons. Downscaling tended to slightly overestimate temperature variability in the North of the study area, 

and underestimate it in the North-East compared to the CRU data. Some small-scale differences are nonetheless difficult to 

interpret, since the CRU data showed some spatial artifact, for example in the center of the Iberia peninsula. The amplitude of 10 

the variability values was more different for precipitation, with the variability observed in the CRU data being higher (Figure 

S19). Nonetheless, the general patterns were quite similar, with the Southern region of the study area having higher 

precipitation variability than the North for both the downscaled and the CRU datasets. 

4 Conclusion and Discussion 

We downscaled temperature and precipitation values produced by the IPSL-CM5 model for 50 simulated years over Western 15 

Europe during the last glacial maximum using a GAM, a computationally efficient method for downscaling GCMs (Vrac et 

al. 2007). A single GAM was used for each dependent variable, calibrated over an average of 30 years of present-day data. 

Comparing the outputs of the SDM with two different climate reconstructions showed that this method generates results that 

fall within the computed confidence intervals for the variables of interest. This enabled us to compute indices of climate 

variability for the LGM in Western Europe. In a separate study, we were then able to test a suite of environmental predictors 20 

and demonstrate that climate variability is a key factor governing the spatial distribution of prehistoric human populations 

during the LGM (Burke et al. 2014, 2017).  

 

Downscaled time series for a present-day period (1950-1960) falling outside of the calibration period (1961-1990) were in 

good agreement with an independent time series for both averaged values and measures of variability. Our study, therefore, 25 

demonstrates that the SDM, originally designed to downscale climatology data (averaged over several decades), can be applied 

to a time series thus allowing us to compute spatio-temporal patterns at a fine scale appropriate for studying the spatial 

dynamics of prehistoric human populations. SDMs must be carefully parameterised, however, including selecting the 

appropriate size of the area used for calibration. 

 30 

Overall, the downscaled temperature and precipitation values produced by the SDM are in agreement with the climate 

reconstructions obtained from vertebrate remains and palynological data, with few exceptions (Figures 6, 8). The SDM results 

for the LGM differ from the interpolated data in the northeast of the study area, reflecting the adjustments made in the GAM 
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to counter biases inherent in the IPSL-CM5A-LR GCM used in this study. These discrepancies have little consequence in the 

present study, since this region was covered by ice-sheets during the LGM. It was included for calibration because it 

represented present-day climate conditions that were close to those of the Southern part of the study area during the LGM. 

This region was also included in the downscaling to illustrate the fact that, since it was colder during the LGM than any present-

day region of the study area, results for this region should be interpreted with caution. 5 

 

The choice of interpolation technique used in the SDM also proved critical as it has a strong impact on the distribution of 

climate variability. We tested three different interpolation techniques. Since GAMs require the predictor and the dependent 

variables to have the same spatial grain, bilinear interpolation is commonly used to downscale the coarse-grain data generated 

by GCMs (Vrac 2007). However, as this research demonstrates, bilinear interpolation generates non-smooth surfaces which 10 

may cause spatial artifacts in the final output. We tested two other non-linear interpolation techniques which generate smoother 

surfaces: bicubic interpolation and kriging. Bicubic interpolation generates values outside of the initial range of values (and 

therefore under- or overestimates the values) but is faster to apply than kriging. Kriging is more computationally demanding 

but offers the advantage of constraining the interpolated values within the range of initial values. The three interpolation 

techniques produced different results for both temperature and precipitation during the LGM (Figs. S8, S11). After applying 15 

the GAM, these differences were especially important for precipitation values (Fig. 7). Because the GCM generated coarse 

grain temperature values for present-day conditions which are highly correlated with the CRU data, all three interpolation 

techniques produced similar linear splines and led to similar results for this variable. In the case of precipitation, however, 

bicubic interpolation predicts drier environments than the other two techniques by up to 2 mm/day. Since GCMs operate at 

grains that are too coarse to accurately model small-scale physical processes driving local surface variables (Wood et al., 20 

2004), the SDM for precipitation relies on more variables than are required to model temperature. The splines for these 

variables are non-linear (Figure 4), however, and may exacerbate the differences between the bicubic interpolation and the 

other two techniques. The cumulative impact of the interpolation and the GAM can therefore be non-negligible. This highlights 

the utility of the comparison presented in this research, especially for local phenomena such as precipitation. 

 25 

The variability maps produced when using bilinear interpolation show the presence of a spatial artefact, in the form of a regular 

grid, for both temperature and precipitation (Figs. S14, S15). This artefact reflects the fact that bilinear interpolation generates 

lower variability between the points from which the interpolation is performed. Although slightly attenuated, this artefact 

remained after applying the GAMs (Figs. 9, 10). Prior to applying the GAMs, bicubic interpolation produced maps with the 

smallest level of artifacts, kriging was intermediate and bilinear interpolation produced the highest level of artifacts. However, 30 

bicubic interpolation sometimes generated unrealistically high variability for precipitation (Fig. S15) while the artifacts 

generated by kriging decreased after applying the GAMs (Figs. 9, 10). We conclude that although more computationally 

demanding than the other two techniques, kriging represents a good compromise between computational complexity and 

accuracy. Contrary to bicubic interpolation, kriging generates values within the range of the values generated by the GCM and 
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generates variability indices with more realistic patterns than the bilinear interpolation. We therefore recommend using kriging 

for SDM applications based on the method presented here. 

 

The IPSL-CM5A-LR GCM is known to predict lower temperatures than the values observed at high latitudes in winter 

(Dufresne et al., 2013). This bias was indeed observed when comparing the interpolated temperature with the CRU present-5 

day data. As a result, the spline for temperature has a shallow slope at low temperatures (Fig. 2). The resulting correction 

applied by the GAM was emphasised for the LGM data generated by the GCM in winter in the North of Europe (Fig. S9), 

which lie outside of the range of present-day temperature and therefore relied on a linear interpolation of the spline. The large 

differences in temperature are therefore likely to be a combination of an underestimation of temperature by the GCM, and an 

over-correction of the very low temperature by the SDM. The spatial domain used to calibrate the GAM is larger than the 10 

domain of interest, namely Western Europe south of the ice sheets (the region occupied by human populations during the 

LGM) for reasons discussed above. These include the necessity of avoiding edge effects and including the full range of climate 

conditions likely to have occurred during the LGM. The observed over-correction lies on the periphery of the calibration region 

and is not within the study region this SDM was designed for.  

 15 

The calibration area selected should therefore be large enough to encompass a representative range of climate conditions but 

should overlap the study region in order to account for potential relationships between climate and geographical variables 

specific to the region. However, through trial and error we found that using too large a calibration region averages out these 

relationships and therefore runs counter to the objectives of the downscaling, which is to represent fine scale spatial variation. 

Further research into the impact of the size of the calibration region on the SDM would be an interesting avenue to pursue. In 20 

addition, some results presented here are probably highly influenced by the specific GCM that was used. Especially, the 

variability in the SDM results is sontrgly influenced by the variability of the original GCM, in addition to the choice of the 

interpolation technique (Figure 9, S14, 10, S15). For temperature, for example, for a given interpolation technique, the 

downscaling adjusts the interpolated GCM temperature based on elevation, which is constant for a given location. The SDM 

will therefore not change variability compared with interpolation of the GCM. Using ensembles of models increases confidence 25 

in climate projections by enabling a better quantification of such uncertainty (Tebaldi & Knutti 2007). Although the outputs 

of ensembles of models may be challenging to interpret, this is another promising avenue for improving the application of the 

SDM method presented here that should be pursued in the future, especially for the computation of variability indices.  

 

Our goal in this research has been to develop and test tools for the production of climate simulations at suitable spatial and 30 

temporal scales for investigating the mechanisms through which climate change and climate variability may have affected 

human populations in the past. Our aim is to help explain some of the broad evolutionary patterns visible in the archaeological 

record. Our results demonstrate the potential of GAMs for the production of climate simulations at a fine scale of resolution, 

both spatially and temporally, at relatively low computational cost. The resulting climate simulations can be used to test human 
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decision-making at regional and local scales useful for investigating the spatial distribution of prehistoric populations against 

a backdrop of inter and intra-annual climate variability (e.g., Burke et al. 2017; Burke et al. 2014). 
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Table 1. Model selection among all possible combinations of variables for the temperature and the precipitations. Only the five 

models with the lowest AIC are presented. AIC scores, differences in AIC compared to the lowest scoring model (ΔAIC), and AIC 

weights (wAIC = exp(-0.5 × ΔAIC) � [0,1], representing the relative likelihood of the models) are reported. 

 
Candidate model AIC ΔAIC wAIC 
Bilinear interpolation 
Temperature 

   

T+elv+Aco 869468.4 0 1 
T+elv 878862.9 9394.52 0 
T+Aco 951357.5 81889.14 0 
T 955986.9 86518.50 0 
elev+Aco 1605682.9 736214.55 0 
Precipitations    
T+P+elev+Aco+RH+SLP 275068.7 0 1 
T+P+elev+Aco+SLP 281222.3 6153.56 0 
T+P+elev+Aco+RH 283266.4 8197.70 0 
T+P+elev+RH+SLP  288574.6 13505.85 0 
T+P+elev+Aco 288864.1 13795.35 0 
    
Bicubic interpolation 
Temperature 

   

T+elv+Aco 896517.0 0 1 
T+elv 904724.6 8207.52 0 
T+Aco 952109.7 55592.63 0 
T 955079.5 58562.43 0 
elev+Aco 1605402.4 708885.36 0 
Precipitations    
T+P+elev+Aco+RH+SLP 274137.9 0 1 
T+P+elev+Aco+SLP 278178.8 4040.881 0 
T+P+elev+Aco+RH 283162.3 9024.412 0 
T+P+elev+Aco 286857.5 12719.589 0 
T+P+elev+RH+SLP 286926.3 12788.379 0 
    
Kriging 
Temperature 

   

T+elv+Aco 878970.1 0 1 
T+elv 888326.4 9356.24 0 
T+Aco 952033.1 73062.92 0 
T 956903.8 77933.70 0 
elev+Aco 1607626.2 728656.08 0 
Precipitations    
T+P+elev+Aco+RH+SLP 269767.4 0 1 
T+P+elev+Aco+SLP 276171.0 6403.59 0 
T+P+elev+Aco+RH 277692.0 7924.60 0 
T+P+elev+Aco  283099.2 13331.79 0 
T+P+Aco+RH+SLP 286495.6 16728.23 0 

  5 

Tableau mis en forme
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Figure 1. Study area and locations of the sites used for reconstructing local climate variables estimated on the basis of pollen and 
vertebrate fossils, used for the evaluation of the method. The grey scale represents elevation. 5 
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Figure 2. Splines of the GAM for temperature. The splines are scaled to the same range to allow for visual estimation of their relative 
importance. The range of the x-axes combines the ranges of values for the present-day period and the LGM. The grey lines indicate 
the values for the 12 months over the 50 years during the LGM at the archaeological sites of Figure 1 (except for the elevation, for 
which there is only one value per site).  5 
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Figure 3. Histograms of the predictor variables for the present-time (1961-1990; dashed lines) and for the LGM (solid lines) over 
Western Europe, using the bilinear (red), bicubic (green) and kriging (blue) interpolations. The grey lines indicate the values for the 
12 months over the 50 years during the LGM at the archaeological sites of Figure 1 (except for the elevation, for which there is only 
one value per site). 5 
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Figure 4. Splines of the GAM for precipitations. The splines are scaled to the same range to allow for visual estimation of their 
relative importance. The range of the x-axes combines the ranges of values for the present-day period and the LGM. The grey lines 
indicate the values for the 12 months over the 50 years during the LGM at the archaeological sites of Figure 1 (except for the 
elevation, for which there is only one value per site). 5 
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Figure 5. Mean distributions of monthly mean downscaled temperatures over Western Europe during the LGM for winter 
(December, January, February), summer (June, July, August), and the whole year, computed over 50 years for the kriging 
interpolation technique, and difference between the kriging and the other two techniques. Downscaling was performed for each 
month independently, but results are combined into seasons to summarise the results. 5 
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Figure 6. Comparison of reconstructed vs. downscaled temperatures for the LGM based on the BCI indices (red), and from Wu et 
al. (2007)’s reconstructions (blue) for a) the bilinear, b) the bicubic and c) the kriging interpolations. The circles represent the mean 
temperature values for the two reconstruction methods (x-axis) and the downscaled values over the 50 simulated years (y-axis). The 
horizontal error bars represent the range of temperature values for the reconstruction method (minimum and maximum over the 5 
whole zonobiome for the BCI indices, mean temperature of the coldest and warmest month for Wu et al. 2007). The vertical error 
bars correspond to the mean temperature of the coldest and warmest month over the 50 simulated years. 
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Figure 7. Mean distributions of downscaled daily precipitations over Western Europe during the LGM for winter (December, 
January, February), summer (June, July, August), and the whole year, computed over 50 years for the kriging interpolation 
technique, and difference between the kriging and the other two techniques. Downscaling was performed for each month 
independently, but results are combined into seasons to summarise the results. 5 
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Figure 8. Boxplot of reconstructed vs. downscaled precipitations for the LGM based on the BCI indices (red), and from Wu et al. 
(2007)’s reconstructions (blue) for a) the bilinear, b) the bicubic and c) the Kriging interpolations. The circles represent the mean 
temperature values for the two reconstruction methods (x-axis) and the downscaled values over the 50 simulated years (y-axis). The 
horizontal error bars represent the range of precipitation values for the reconstruction method (minimum and maximum over the 5 
whole zonobiome for the BCI indices, mean precipitation of the coldest and warmest month for Wu et al. 2007). The vertical error 
bars correspond to the mean precipitation of the driest and wettest month over the 50 simulated years. 
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Figure 9. Maps of temporal variations (standard deviation of each month across 50 years) of downscaled monthly mean temperatures 
over Western Europe during the LGM averaged over winter (December, January, February), summer (June, July, August), and the 
whole year for the kriging interpolation technique, and difference between the kriging and the other two techniques. Variability was 
computed for each month independently, but results are combined into seasons to summarise the results. 5 
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Figure 10. Maps of temporal variations (coefficient of variation of each month across 50 years) of downscaled daily precipitations 
over Western Europe during the LGM averaged over winter (December, January, February), summer (June, July, August), and the 
whole year, computed over 50 years for the kriging interpolation technique, and difference between the kriging and the other two 
techniques. Variability was computed for each month independently, but results are combined into seasons to summarise the results. 5 
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The three interpolation techniques generated similar STI and SPI surfaces (Fig. S19). The main difference 

occurred for the SPI from the bicubic interpolation, which showed less months with “normal” precipitation 

(i.e. either drier or wetter than baseline) than the other two interpolation techniques in the center and North 

of Europe. As for the temporal variability, this result is due to the fact that, contrary to the other two 

interpolation techniques, bicubic interpolation generates values outside of the original coarse-scale values, 

and is therefore more likely to over- or underestimate them. 
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Figure 5. Maps of difference in mean distributions of monthly mean downscaled temperatures over Western 
Europe during the LGM for winter (December, January, February), summer (June, July, August), and the whole 
year, computed over 50 years, between the three interpolation techniques. 
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Maps of difference in mean distributions of downscaled daily precipitations over Western Europe during the LGM 
for winter (December, January, February), summer (June, July, August), and the whole year, computed over 50 
years, between the three interpolation techniques. 
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Figure 9.  
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