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Abstract. The Model for Prediction Across ScalesAtmosphere (MPASA) has been moélied to allow fourdimensional

10 data assimilation (FDDA) by the nudging of temperature, humidity and wind toward target values predefined on the MPAS
A computational mesh. The addition of nudging allows MPA® be used as a globstale meteorological her for
retrospective air quality motlei n g . The technique of Afanal ysis nudgingbo
Model, and later applied in the Weather Research and Forecasting model, is implemented 1A MBA&daptations for its
polygonal Voronoi mesh. Reference fields genedatrom 1° x 1° National Centgfor Environmental Prediction FNL (Final)

15 Operational Global Analysis data were used to constrain MRABnulations on a 925 km variableresolution mesh with
refinementcenterecbver the contiguous United States. Test simulations were conducted for January and July 2013 with and
without FDDA, and compared to reference fields and-sediace meteorological observations. The results demonstrate that
MPAS-A with analysis nudgingpas highfidelity to the reference data while still maintaining conservation of mass as in the
unmodified model. The results also show that application of FDDA constrains model errors retimedmperature,-2n

20 water vapo mixing ratio, and 10n wind speed such that they continue to be at or below the magnitudes found at the start of
each test period.

1. Introduction

Combining data at various times in a dynamical model to provide time continuity and dynamic balance among the model fields
was first sggested by Charney et al. (1969) and has become known adifeemsional data assimilation (FDDANudging,
25 also known as Newtonian relaxation, involvesthe e of speci al terms in forecast eq
simulation toward olervationsor some reference state.was originally employed for dynamic initialization (Anthes, 1974;
Hoke and Anthes, 1976)Many approaches to data assimilation have been developed for dynamical atmospheric models
including simple interpolation and are complex variational and stochastic methods. However, these have usually been
intended to initialize prognostic modelsudging was tested as a means for improving diagnostic simulations by Stauffer and
30 Seaman (1990) in the Penn State / National CdoteAtmospheric Research (NCAR) Mesoscale Madekrsion 4 (MM4)
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(Anthes et al., 1987). In that study, nudging was applied in two ways. The model solutions were nudged toward either gridde
analyses (fianalysis nudgingohudgi nignodi.vi dAat erobMMAyatbiod
implemented in its successor MM5 (Grell et al., 1995) and subsequently in the Weather Research and Forecasting mode
(WRF) (Skamarock and Klemp, 2008).

In addition to basic variables like temperaturemidity, wind, cloud cover, and precipitation, meteorological simulations
guided by nudging provide factors critical to air quality modeling that are not easily observed, such as stability, eurbulenc
mixing height, etc. Nudging applied in MM4, MM5 andRWF has been used at the U. S. Environmental Protection Agency
(U.S. EPA) for almost three decades to support air quality modeling, first with the Regional Acid Deposition Model (RADM)
(Chang et al., 1987) and continuing to the present day with the ComyruritiscaleAir Quality (CMAQ) model (Byun and

Schere, 2006; Appel et al., 2017).

It has long been recognized that air quality at any particular location can be affected by pollution sources on loal to glob
scales (NRC, 1998; NRC, 2010). Air qualityodels are often applied with relatively coarse horizontal resolution on
hemispheric and global scales to provide boundary information for nested,-reégh&rtion regional models (Bullock et al.,

2008; Jacobson and Ginnebaugh, 2010; Schere et al.,Mafifyr et al., 2014). In various applications, this nested modeling
strategy has created unrealistic simulations at the lateral boundaries of internal model domains due to discontinuities ir
horizontal and vertical resolution and/or differing modelinguagptions between separate models used at each scale (Warner

et al., 1997; Bullock et al., 2009; Tudor and Termonia, 2010; Mathur et al., 2017).

To address the need for a globalocal air quality modeling system that can avoid boundary problems agsbeiith model

domain nesting, this work adapts the Model for Prediction Across Scatesosphere (MPASA) (Skamarock et al., 2012)

for use as the meteorological component of a future coupled meteorolcigizaical modeling system. MPA&S which

featues a globakcomputational mesh based on a centroMatonoi tessellation (Du et al., 1999ffers gradual mesh
refinement rather than discrete nesting to a focal region. For retrospective air quality modeling, an FDDA approach based ol

analysis nudgin@pas been developed and tested in MPA&s described below.

2. Experimental design, implementation and testing

FDDA by way of analysis nudging, similar to that described in Stauffer and Seaman (1990), has been addedAo MPAS
Unlike MM4, MM5 and WRF, with are limitedarea models with rectangular computational grids, Mi2Ags gpolygonal
computational mesh as illustratedHig. 1. Nonetheless, once the required fAtar
defined to match the MPAS prognogsic variable array, analysis nudging in MPASis similar to its ancestral

implementations
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2.1 Description of analysis nudging in MPASA

Analysis nudging is applied in MPAAS by the addition of a nudging tendency term to the normal predictive equathn.

nudging tendency for prognostic variable U is calculate
— 00O 0 | | @

whereGpis a nudging inverse timead e or @i nud g\Wea gndW.p-aré $pecialibieanytteéms ¢t 0), andlarget

is the target or reference value BrTrusted reference fields are typically only available at certain times each day and temporal
interpolation is required to provide target values at each model time step. It may be advantageoidsniadging in the
planetary boundary layer (PBL) so as not to disrupt simulatedaliprocesses. In this cadgs. can be seequalto 1 in

layers above the simulated PBL top aed equato O in layers below or coritang the PBL top. Otherwisé/gs. can be se

equal to 1 in all layersWayer is a similar binary term to allow the exclusion of nudging near the surface baség simp
vertical layer numberGy, WeeL andWiayer are all defined independently for each of the nudged variables.

Analysis nudging has been applied for potential temperatuyewater vapor mixing ratiog(), and wind. Treating wind
involves extra complications because of the way it is represented MRA&-A mesh. As illustrated by Fig. 1, scalar
prognostic variables including andqy are defined at the cell centers. However, the prognostic variable for wind in MPAS
A is the component perpendicular to the cell faths To nudge wind, meridional and zoigicompositions at the cell centers

are used. These model variabldReconstructZonabnd UReconstructMeridionahlready exist to treat the influence of
parameterized convection and PBL processes on the wind field. While the wind component acrosescél) edgld be
nudged directly, this method would require 50% more comparisons between prognostic and target values since there are
times as many cell edges as there are cells. Nudging tendenclgRdoonstructZonahnd UReconstructMeridionaére
translated to cell edges in the same manner as the tendencies for PBL and convection processes.

2.2 Creating target fields

The MPASA modeling system already provides model initialization software, namely the executable program
init_atmosphere_modeFor ths study, initialization fields were created at each time where nudging target fields were desired
using 1° x 1° NCEP FNL (Final) Operational Global Analysis data (ds083.2) (NCEP/NWS/NOAA/U.S. Department of
Commerce, 2000) Target fields could be based ather analytical methods such asahd 4dimensional variational
assimilation (3BVAR, 4D-VAR) or an ensemble Kalman filter (EnKF). However, the NCEP FNL data are already produced
using techniques similar to 41AR. A full description ofthe NCEPFNLdaa pr oduct i s available f
tab athttps://doi.org/10.5065/D6M043C6The spatial resolution of the® x 1° NCEP FNLdata approximates that of the

coarse portion of the MPAS mesh used tims study. The nudged variables , q,, UReconstructZonaland

UReconstructMeridionalvere extracted from each initialization file, renantedfdda_newqv_fdda_newu_fdda_newand

v_fdda_newrespectively, and used to compile the necessary FDDA input files. The modified-MPR#8s in new FDDA
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targets every 6 h when NCEP FNL data are available, specifically at 00, 06, 12, and 18 UTC. Target values at intervening

times during the simulatioare computed using linear time interpolation.

The FDDA target vanewalloe imamesateonthaitn dor the time in
represent the target value at the end of the upcomm&BDA time interval. Unlike WR whi ch reads i n #Ac
targets for each FDDA interval, the modified MPAS r eads only fAnewd values. The #

interval are recycled to be used as t he 0 ddinuiatiovstatttime,s, t
initial values for , v, UReconstructZonandUReconstructMeridionare used to s¢h_fdda_oldqv_fdda_oldu_fdda_old
andv_fdda_oldrespectively. Thus, simulation start time must be at 00, 06, 12, or 18 UTC in ordéntminttae 6h FDDA

data interval.

Scripts have been written to automate the process of rumingtmosphere_modé&br each FDDA time, extracting the four
nudged variables, and composing the FDDA target input fildey perform variable extraction a€DDA input file
composition using NetCDF Operators (NCO) software availabié@t/nco.sourceforge.net/

2.3 FDDA test applications

MPAS-A version 4.0 [ittps://github.com/MPAPev/IMPAS Release/releases/tag/vt.anodified to include FDDA by

analysis nudging as described above, was applied on-2bl@2 variableresolution mesh obtained from the MPAS

Atmospheremesh downloadpage http://www2.mmm.ucar.edu/projects/mpas/atmosphere_meshes/x4.16384P wathgz

the origin of this mesh repositioned t0°49, 95° W. Two test simulation periods wedefined spanning January 2013 and

July 2013.

As mentioned before, model initialization and FDDA inputs were produced from 1° x 1° NCEP FNL data using the
init_atmosphere_modelsoftware included in the MPAS version 4.0 public distribution. For this diy
init_atmosphere_modelas slightly modified to allow finer vertical resolution near the surface.qéality models typically

require fine vertical resolution in the PBL in order to better simulate pollutant emissions which are commonly neacéhe surfa
To produce sufficiently thin layers near the surface, the unmodiifiecitmosphere_modetquired an unreasonable number

of layers due to the 1-power function used to define layer boundary heights. Modifattdn code described in Appendix

A was developed such that only 50 layers were required with the model top specified at 30 km. Using the modified code and
given a surface elevation at sea level, layer thickness is 18 m at the bottom, 232 m at 1.5 km elevation, 1000 m at 12.5 kr
elevation, ad 1729 m at the top. This layer structure was used to produce model initialization and FDDA target data files for
all MPAS-A model simulations described below.

The modifiedinit_atmosphere_modeVas also used to produce update fields for sea surfaceretomgeand sea ice athb

intervals throughout each test period. For this purpose, the new layer generation function had no bearing, but a problem wa
discovered in the original MPAS model code where sea ice was being analyzed over land areas. Dhespwas solved

with additional code nifications described in Appendix.B


http://nco.sourceforge.net/
https://github.com/MPAS-Dev/MPAS-Release/releases/tag/v4.0
http://www2.mmm.ucar.edu/projects/mpas/atmosphere_meshes/x4.163842.tar.gz

10

15

20

25

30

Once the required initialization, surface update and FDDA target fields were in place -MBiAtfilations were performed

with theatmosphere_modg@rogram. Tabld shows all nordefaultnhyd _modeanddampingnamelist options used in this

study. Namelist options fatmosphere_modé&om the standard MPAB and their default values are described in Appendix

B of t he MP AS At mosphere Mo del User 6s23 Glayi 2048 atver si

http://www2.mmm.ucar.edu/projects/mpas/mpas_atmosplusers_guide_4.0.9df Table2 shows all applicabl@hysics

namelist options chosen from therslard MPAS list. These do not include namelist options added to MP#sSpart of the

FDDA implementation.

Table3 shows the new namelist options added as part of the FDDA implementation and the values used for testing in this
study. These options asemilar to those used in the WRF model for FDDA application. WRF contains them within a special
fddasubset of namelist options. For now, they have been addedpbytbiesnamelist input variable list for MPAB. The

primary option to invoke FDDA isonfig_fdda_schemeAs a defaultconfig_fdda_scheme off, and FDDA is not invoked

in the modified MPASA model. If FDDA is invoked with a value @nalysis then the other options in TabBbecome
applicable. The modified MPAS& code also includessecond option for FDDA callestaledwhich allows the user to adjust
nudging strength based on MPAS cell size. This option is still under development and has not been investigated as a part ¢
this study.

FDDA can be selectively applied or omitted for leaweteorological variable ( g, U). If applied, the nudging strength is
controlled by a variablgpecific nudging coefficient. FDDA for each variable can be applied throughout all vertical layers, or
only above a particular layer number. In many prasiapplications of WRF, it was common for FDDA to only be applied
above the PBL so as not to disrupt the diurnal evolution of the PBL with data from a linear time interpOtttiendl., 2012;
Bowden et al., 2012; Bowden et al., 2013; Bullock e28l14). Table3 shows namelist options provided to avoid nudging in

the PBL, avoid nudging below a specified layer number, or both. It is also worth noting here that the default nudging
coefficients implemented in MPAS& are equal to 3.0x10s? for all variables, just like in WRFThe theoretical reasoning
comes from Stauffer and Seam(1990) where they equate thisgdging time scale to that of meteorological phenomena at the
meseU s p at iUnlike fer temgderature and windudging water vaporancentration perturbs atmospheric mass in the
simulation. Previous studies using WRF have chosen to employ smaller nudggfiicientsfor g, versus other variables

(Otte et al., 2012; Bowden et al., 2012; Bowden et al., 2013; Bullock et al., 2014)tsRistussed later in this work show
some benefit from doing so. For this study, the nudging coefficiert}, f@as one order of magnitude smaller than for the

other variables, except for a special test where the value was kept equal.

3. Results

To evaluate FDDA in MPA&\, test simulations for January and July of 2013 were performed with both the standard version
of the model and the modified model using FDDA by analysis nudging. The modified MRS also applied with FDDA

turned off to verifyagreement with the results obtained from the standard model. Model results from the standard and modified

5
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versions were first compared to the FDDA target fields. Obviously, nudging strongly toward the target fields should produce
good agreement with tke fields. The intent of these first comparisons was to verify that using nudging coefficients for
temperature, humidity and wind similar to those used in WRF would constrain MPs&S8ulations in a reasonable manner.

To further test the capabilities BDDA in MPAS-A, simulated surfacéevel data for temperature, humidity and wind speed

from both the standard and modified MPASvere then compared to observational deden theMeteorological Assimilation

Data Ingest System (MADIShttps:/madis.noaa.ggv Finally, total dry air, total water vapor and total atmospheric mass

calculations were performed to test for any corruption of mass conservation byptemantation of FDDA in MPAS\.

3.1 Comparisons to FDDA taget fields

Figure 2 shows MPAR\ simulation results and FDDA target fields for potential temperature in layers 1, 28, and 45, for 00
UTC 11 January 2013, ten days into the simulation. The left column of maps shows layer 1 values from the standard MPAS
A (top), the FDDA target fieldMPAS-A with FDDA applied and the difference fiel(bottom). Differences are calculated as

FDDA target field minus MPAS\ with FDDA to reflect the polarity of the nudging forcEhe center and right columns show

the same irdrmation for layers 28 and 45, respectively. Layer 1 extends from 0 to ~18 m above the surface where the surface
is at mean sea level (msl), and to ~15 m above the surface over the highest resolved terrain. The vertical span of layer 2
varies from 5005551 m to 9449784 m above msl depending on the resolved terrain height which varies8dm5425

m. So layer 28 represents a 30 m thick layer somewhere in the middle troposphere. The span of layer 45 varies from
2062222024 m to 206822048 mabove msl. Layer 45 varies only slightly due to the MPABybrid vertical coordinate

system having shifted almost completely to a height coordinate at that altitude in the lower stratosphere.

By ten days into the simulation, the simulation without FD&lPeady shows significant potential temperature differences
from the FDDA target fields in all three layers shown in Fig. 2. These differences are especially noticeable in layer 45 whe
an apparent stratospheri c war siinuiation & is lorgitudinally didgplacednagoaitrl20i n
degrees from the location in the reanalsased target field. The unconstrained simulation also shows -dattitgide cold

pool that is not in the target field and much colder stratospheric temmasratter the tropics. There are also some interesting

di fferences in | ayer 28 around the high terrain of the
temperatures than the target values. The simulation with FDDA matches thdi¢dagdor, almost perfectly for layers 28

and 45. Near the surface, maps for layer 1 show difference from theget field in both MPASA simulations, mostly in

arctic regions where simulated temperatures are generally colder. But the simuldtiBD A& shows surface temperatures
closer to the target values even though FDDA was not applied in the PBL.

To demonstrate that FDDA continues to constrain MPPASmulations through longer time periods, Fig. 3 shows the same
information as Fig. 2, but thitme the fields are for 00 UTC 31 January 2013, 30 days into the simulation. The deviation
of the fANo FDDAO simulation from the target fields is |
continue to follow the target fielddosely for layers 28 and 45. However, layer 1 continues to be too cold across the arctic

with FDDA applied above the PBL. The simulation without FDDA is too cold in some parts of the arctic and too warm in

6
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others, and significant deviations from the &rfield are apparent in many locations around the globe. A quick investigation

of observed surface temperatures at Barrow, Alaska, found that the simulated surface temperatures are about 10 K too cold
that location in the FDDA simulation. This poiritsthe fact that FDDA applied only above the PBL can keep simulated
temperatures at the surface from being too high due to the effect of convective mixing, but it cannot prevent them from being
too cold. Work is ongoing to remedy both warm and cold biassurface temperature through the use of other land surface
and PBL models which nudge soil temperature and moisture towards known conditions.

To investigate temporal variability of the nudging effects qrthe simulated and target values for Jan2ad3 were plotted

for layer 28 at Research Triangle Park, N6.03°N, 78.96°V}, along with the value of the nudging term. The results in Fig.

4 show that the simulated values tracked the FDDA target values quite closely, but do deviate at timese&isiy|ttme

nudging term increases in magnitude to counteract these deviations. A significant perturbation is evident at around 00 UTC
on 18 January. To investigate this occurrence and to illustrate the spatial variability of the nudging, spatiaff pihats o

nudging term were made ftayer 28 al00 UTC onl18 January, one with a focus on North America and the second showing

the entire global domain. Figure 5 shows the spatial extent of the perturbation and the spatial patterns of positatevand neg
forcing at that time. These patterns match the spatial scale of meteorological features where model error might gnaw over ti
were it not for the corrective effects of analysis nudging.

The array of maps in Fi§.shows water vapor mixing ratio at 00 OB1 January 2013 in the same arrangement gefential
temperature in Fig8. Even with weaky, nudging, the simulation with FDDA matches the target fields well for all three layers.
Without FDDA, the simulated pattern of water vapor deviates signific | v from t he target iin al
FDDAO <case g hatuessll abrosg theetropics than exist in the target field or in the simulation with FDDA where
water vapor is practically absent. These results suggest that evenwdegghkgof water vapor can mitigate what appears to

be artificial vertical diffusion of tropospheric water vapor into the stratosphere.

Figure7 shows layer 1 fields at 00 UTC 31 January 2013 for potential temperature and water vapor mixing ratio, but this time
focused on the contiguous United States (CONUS). At this point in time, a strong cold front stretching from western
Pennsylvania, down ¢hAppalachian Mountains, and into the Gulf of Mexico was advancing from the west. It is important to
note once again that analysis nudging was only applied above the PBL. Nonetheless, not only does the simulation with FDD/
place the front in the correldcation, but the simulated front shows sharper detajl fandqy than in the target fields. This

is especially true fog, where it appears that weaker nudging above the PBL allows simulated details at the surface to be better
conserved. Finer detad evident, not only along the cold front, but also in other locations where it appears variations in terrain
and land cover type may be important. It stands to reason that if nudging had been applied within the PBL, these simulate
fine details at the stace would have been blurred somewhat by blending with the less resolved target fields. Of course, finer
detail does not in itself indicate better accuracy. To address that issue, simulation results were also compareddoaibservat
data as describddter in section 2.

Vertical cross section plots of water vapor mixing ratio show that FDDA can constrain undesirable model behavior even when

the nudging strength is quite weak. Fig8rehows vertical cross sections along longitudeB@om 55 N to 55° S for 00

7
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UTC 31 January 2013 (day 30). This particular location was chosen to investigate the effect of the Himalayan Mountains on
MPAS-A simulation results. The height of the Himalayan Mountains (~ 5 km) as resolved bykheré2sh size is shown

by the white areatahe bottom of each plot. Figuga shows the standard MPAS simulation result, 8igshows the FDDA

target field, and Fig8c shows the results from MPAS with FDDA using moisture nudging atemtl the strength used for

the other ariables. As previously seen in Figthe unconstrained simulation shows signs of upward transport and/or diffusion
of water vapor into the lower stratosphere with water vafiging ratiosovertwo orders of magnitude higher than the target
values. Tl simulation with FDDA almost completely eliminates this deviation from the target, even with the weak nudging
strength.

Wind velocities and flow patterns from MPASsimulations and FDDA target fields were investigated with streamline plots.
Figure 9 shows global streamline analyses for layer 28 (=300 hPa), again for 00 UTC 31 January 2013. As might be
expected from a 3@ay forecast, the flow field from the simulation without FDDA (Fdg) differs significantly from the
FDDA target flow field Fig. 9b). However, the simulation with FDDA (Fi§c) follows the FDDA target data almost
perfectly. To show the ability of FDDA to maintain firstale fidelity, similar streamline analyses focused on the CONUS
are shownn Fig. 10. Again, the simulatin with FDDA is almost identical to the target flow field. Streamline analysis for
layer 1 focused on the southeastern U.S. (Eiyshows some noticeable differences between the simulation with FDDA and
the target field. These differences are not ssirgy given that no nudging was applied in the PBL. Also, the FDDA target
fields above the PBL were derived frondégree FNL reanalysis data, while the simulation cell size is ~25 km in this region.
Terrain effects on wind flow direction and speed app@ée more significant in the simulation than in the FDDA target field.
Similar comparisons of MPA®B simulations to FDDA target data were made for the July 2013 test period. All of these
comparisons showed essentially the same results as were foulahfmry 2013. While weather systems and patterns were
generally more quiescent, at least in the Northern Hemisphere, simulations unconstrained by FDDA still deviated significantly

from target fields after a few days, while those constrained by FDDAtamaéal their fidelity relative to the target data.

3.2 Comparisons to observational data

MPAS-A simulation results were compared to observations-of @mperature, -2n humidity and 16m wind speed. To

assure data quality, only aviation routine weathpores (METAR) and surface airways observation (SAO) reports from the
MADIS repository were used. This comparison was made using the Atmospheric Model Evaluation Tool (AMET) described
in Appel et al. (2011). AMET was configured to calculate daily evalnadtatistics for the entire global domain and for a
subdomain confined within 25 to 50 degrees North latitude and 67 to 125 degrees West longitude, basically covering the
CONUS where the horizontal mesh size was 25 km. Daily statistics were calcutabethfthe January 2013 and July 2013

test periods.

Figure12 shows the time series ofr@ temperature root mean squared error (RMSE) for January 2013. The top graph shows
results for the entire global domain while the bottom graph shows results for the CONSnsaib. Three MPAR\
simulations were analyzed, thasdard model denoted B® FDDA FDDA applied using relatively weal nudging denoted

8
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asFDDA, and FDDA applied using equal nudging strength for all variables denokdlss (equal) TheNo FDDAcases

show error increasing right from the start, botbbgllly and over the CONUS. For the global domain RB®A andFDDA
(equal)cases both show RMSE actually decreasing somewhat over the first 10 days, but generally holding steady throughou
the month. Globally, model performance with wegkudging is Bghtly better than with equal nudging strength farg,

andU. Inthe CONUS analysis; temperature RMSE for tHeDDA case decreases more significantly over the first 10 days
than in the global analysis, and remains below the starting values thubtiggnoemainder of the month. Once again, relatively
weakqy nudging improves model error statistics to some degree.

Figure B shows the same information as Fig, &xcept this time for July 2013. RMSE values are generally lower than for
January 2013put the same relationships hold betweenNbeFDDA case and the other two cases. Slight reductionsnin 2
temperature RMSE result from the use of weajerudging. Another interesting aspect of the results in Figsaidd B is

the temporal correlatio of RMSE for the global domain and the CONUS-domain. This is probably due to the high
concentration of METAR observation sites over the CONUS. The same behavior is found to varyingidegezesults

shown belowfor humidity andwind speed.

Figures ¥ and B show RMSE for 2m water vapor mixing ratidqg,) during January 2013 and July 2013, respectively. These
figures show RMSE values for July 2013 are larger than for January 2013. This is largely due to the KAaDtRat
observations are more concentrated in the northern hemisphere. In fact, they are most concentrated in North America. Thu
in the northern hemisphere warm season when humidity levels are highest, model errors are also highest. But these figure
show for humidity much the same effect of FDDA as was shown for temperature. Without FDDA, model error immediately
increases at the start of the simulation and continues to increase for 10 or more days until errors in the unconstetioad simu
approactthe levels of variation in the actual meteorological fields. From that time on, the magnitude of daily RMSE values
fluctuate quite randomly. It is interesting to note in both Figsarid 5 that the simulation with weakep nudging often has

slightly lower RMSE than the simulation with equal nudging strength. While the difference is quite small, it is counterintuitive
nonetheless. Apparently the 1° x 1° NCEP FNL data used to create the FDDA targets eititively coarse resolution
compared to the5-km MPASA mesh used over North America, can degrade the simulation in that area where the MADIS
observations are most concentrated. Further study is underway to see if target fields derived from newly available 0.25° x
0.25° NCEP FNL data lead to tekame behavior.

Figures B and I¥ show RMSE for 1ém wind speed during January and July of 2013, respectively. As with temperature and
humidity, model errors for wind speed begin to increase at the start of both simulations without FDDA and contiresst inc

for about 10 days. After 10 days, fluctuations in wind speed error in the unconstrained simulations appear to be guite rando
The simulations with FDDA, regardless of the nudging strengtt.faontinue to have about the same RM& wind speed
throughout the month, be that January or July of 2013. For wind speed, the strepgiidgfing appears to have little effect

on RMSE. Opposite to what was seen for humidity, the analyzed wind speed errors are largest in the northern hemispher
cold £ason. The concentration of MADIS observations in the northern hemisphere is once again likely an important factor in

this seasonal difference in wind speed RMSE magnitude.

9
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Even though FDDA nudging was not applied within the PBL for any variable, thiksrabove show model errors near the
surface were constrained quite well, except where simulated surface temperatures were too cold. Also, near the surface
where finer horizontal resolution of the model relative to the FDDA target data source meatiéstgeffect. Further study is
anticipated to better identify optimal FDDA nudging strengths fpig,, andU in MPAS-A, and to better understand the

vertical levels of the atmosphere where nudging should be applied.

3.3 Mass Conservation tests

In addiion to the comparisons described above, the ability of MRAS conserve simulated atmospheric mass was also
tested. For each monthng test period, all model simulations reported total atmospheric mass and total water vapor mass at
each 156second simiation time step. This was accomplished with minor additions to the Fortran code in the time integration
module (./src/core_atmosphere/dynamics/mpas_atm_time_integratidim&modified module iscluded in the model code
repository fttps://doi.org/10.5281/zen0do0.1101204

As shown in Fig. &, all simulations including those with FDDA conserved total moist air within the global model domain to

within five parts in 100,000 of their starting values. Total water vapor (Ragsl9)varied more significantly in time in each
simulation, and thiss to be expected due to evaporation and precipitation processes. There is a diurnal signal evident in the
water vapor mass total from all simulations, most likely due to longitudinal variations in evaporation and precipitati@h pote
under solar radtion caused by the geographic distribution of continents and oceans. For Januarth@ @ FDDA
simulation lost over 5% of its initial quantity of water vapor. This could be indicative of too much simulated precipitation,

little simulated evaporain, or both. Also, the model initialization based on the NCEP FNL analysis could be too moist. The
simulations with FDDA all tended to maintain more total water vapor relative to the standard model. In general, the
unconstrained simulations tended tedowater vapor at the start of the simulation and come to an equilibrium point
significantly lower tha the simulations with FDDA. Th&DDA (equal)simulations tended to quickly establish and then
maintain the most total water vapor. Obviously, the FMhalgsis indicated a moister atmosphere than the unconstrained
MPAS-A simulations could maintain.

It is interesting to note that tHeDDA andFDDA (equal)cases had almost identical trends in total moist air mass, with any
differences in total water vapatmost perfectly cancelled out by differences in dry(lig. 20) Also, the January 20180

FDDA simulation gained total dry air mass to about 13 parts in 100,000 of the initial value. This is the same simulation that
lost a significant fraction ofstinitialized water vapor, once again showing an opposite conservation response between dry air
and water vapor.

Overall, the results in Fgy18, 19 and 2@emonstrate that the addition of FDDA does not degrade mass conservation relative
to the standartMPAS-A. Conservation of dry air mass is most important if MPAB to be used as the meteorological driver

for air quality modeling. These results show that using FDDA could actually offer some improvement in that regard.
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4. Summary and conclusions

TheU. S. EPA is working to make MPAA suitable for use as the meteorological component of an integrated meteorology
and airquality modeling system for glob#d-fine-scale applications. The ability to constrain simulated meteorology to
resemble historicakanalysis fields at comparable spatial scales is crucial to making this integrated modeling system a practical
diagnostic tool for aiquality research. FDDA applied through analysis nudging has been used for decades to provide this
constraint in othemodels such as MM4, MM5 and WRF. The results shown here demonstrate that it also works quite well in
MPAS-A. Comparison of MPASA simulations of January and July 2013 with and without FDDA demonstrate that
unconstrained simulations deviate significafitm historical conditions in only a few days, while those constrained through
analysis nudging follow historical conditions well in most situations. Due to stefgee decoupling, analysis nudging
applied only above the PBL was not able to constrarddvelopment of excessively cold surface temperatures in arctic areas
during the January 2013 simulation period. However, this can be addressed with the use of land surface models that als
employ FDDA. Further study is already underway at the U.S. fPdetermine the best strength with which to nudge
temperature, humidity and wind in MPASand the levels of the atmosphere to best apply that nudging.

The target fields toward which MPAS state variables are nudged could come from a number of soukistorical
meteorological reanalysis products have previously been used for this purpose in regional and hemispheric modeling witt
WRF, and the results here suggest they can also be used with-MBA%e global scale. This study applied MRASvith

a variable 9225km mesh with the refined region centered on North America. Target fields used here were based on the 1° x
1° NCEP FNL reanalysis product. As such, there was not a great disparity in horizontal resolution between the simulations
and the targefields where the MPA®\ mesh size was 92 km. However, where the mesh was more refined,-MRaS

capable of delivering additional horizontal detail and the results shown here indicate weaker nudging may produce superio
results, at least when nudgingater vapor mixing ratio. Finally, adding FDDA did not disrupt the ability of MBAS

simulations to conserve mass, and this is an important point when considering its usgualitgimodeling.

Codeand dataavailability

The MPASA model software used in this project is a subset of the complete Model for Prediction Across Scales (MPAS)
developed by Los Alamos National Security, LLC (LANS) and the University Corporation for Atmospheric Research (UCAR)
and distributed undex 3-clause BSD license allowing distributionariginal and derivative worksnder onditions that have
been satisfied here The full text of this BSD license can be foundhittp://mpasdev.github.ioffiles/documents/MPAS

DevelopersGuide.pdf MPAS-A model source codes used in this study are availahlethe Supplementand at

https://doi.org/10.5281/zenodo.11012@#h all modified codes accompanied by theiriginal codes Run scripts used to

prepare FDDA target fieldsre also included in the Supplemant! athttps://doi.org/10.5281/zenodo.110120hedefinition

file for the 92-25km computational mesh usedthis studyis too large for the Supplement, but it da@ obtained from

https://doi.org/10.5281/zenodo.110120@perational model global troppheric analysis data used to initialize MPA&Nd
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to define FDDA target fields are availablehditps://doi.org/10.5065/D6M043C6The Atmospheric Model Evaluatiohool

used in this studys available athttps://www.cmascenter.org/ametDbservational data usedthin AMET were obtained

from https://madis.noaa.gav/

Appendix A

The following describegortrancode modifications made to define a vertical layer structure with fine resolution near the

surface without the use of an extremely large number of layers. The basis for these changes was thenidBé&ode
originally published in the MPAS Version 4.0dmrelease dated 22 May 201bhese changesre includedn the MPAS
model codes provided in the Supplemand athttps://doi.org/10.5281/zen0do.1101204

In src/core_init_atmosphere/mpas_init_atmses.F, make the following edits:

Replace line 2538 with the following:
real (kind=RKIND) :: r_earth, etavs, ztemp, zd, zt, gam, delt, str, grd, kfrac

Replace lines 2864 through 2870 with the following:

write(0,*) "*** Using custom layer dnition ***'

str = 3.

grd =0.03

zt = config_ztop
do k=1,nz

kfrac = real(kl)/real(nzl)
zw(k) = zt*((1-grd)*kfrac**str+grd*kfrac)

Appendix B

The following information was obtained from tMPAS GitHub web sit€https://git.io/vhJ1) to fix a problem with sea ice

being defined over land area$he basis for these changes was the Mi2ABodel code originally published in the MPAS
Version 4.0 code release dated 22 May 20Me ations describetielow have already been takerthe MPAS model codes
provided in the Supplemeand athttps://doi.org/10.5281/zen0do.1101204

Description: Activate the ‘'vertical_stage_in' packadpen config_init_case ==
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The init_atmosphere core previously only activated packages to read in static fields when config_init_case == 7 (and eithel
config_vertical_grid or config_met_interp were true). However, for config_init_case == 8, we needdimadk field for
interpolating, e.g., sei@e. Since we may potentially need other static fields as well when creating surface update files, the
simplest solution seems to be to simply read all static fields when config_init_case == 8 by activatimjcle stage_in

package for this case.

Corrective ation:
Add the followingfive lines ofFortrancode after line 162 in src/core_init_atmosphere/mpas_init_atm_core_interface.F.
else if (config_init_case == 8) then

vertical_stage_in = .true.

vertical_stage_out = .false.

met_stage_in = .false.

met_stage_out = .false.
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Table 1. MPASA non-default namelist configuration variables used for testing (exueics.

nhyd_model

config_dt

Model time step, in seconds
Applied value: 150.0

config_start_time

Starting time for model run
Applied vG@I0Ode 006DOABOWES 1an0d0o: 00: 000

config_run_duration

Length of model run
Applied value: 631_00:00:006

config_len_disp

Horizontal length scale for Smagorinsky formulation of horizontal diffusion
Applied value: 25000.0

config_h_ScaleWithMesh

Scale eddy viscositiesith meshdensity function for horizontal diffusion
Applied value: .true.

damping

config_zd

Height MSL to begin wdamping profile
Applied value: 27000.0

config_xnutr

Maximum wdamping coefficient at model top
Applied value: 0.2
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Table 2. Standard MPAS physicsnamelist variables used for testing

config_sst_update

Logical used to update the S8arface Temperatures $$s) and fractions
seaice. If set totrue, SSTs are updated using the file config_sfc_update_i
If set tofalse, SSTs remain fixed during the entire model run.
Applied value: .true.

config_sstdiurn_update

If set to true, a diurnal cycle is applied to the SSTs. If set to false, SSTs
constant during the entire day.
Applied value: .false. (same as ddfavalue)

config_deepsoiltemp_update

If set to true, deep soil temperatures are slowly updated during the model
set to false, deep soil temperatures remain fixed during the entire run.
Applied value: .false. (same as default value)

config_radtlw_interval

Temporal interval between calls to the parameterizations of long wave
radiation, formad y ynymyd d _ h h: .mm: s s 0
Applied value: 600:10: 006

config_radtsw_interval

Temporal interval between calls to the parameterizations of short wave
radiation, formad y ymymd d __ h h: .mm: s s &
Applied value: 600:10: 006

config_bucket_update

Temporal interval between updates to restoring the accumulated rain and rg
fields below their respective bucket values,
formato6 y ynmydd d __hh: . .mm: ss

Appliedv al ue: O6noned (same as default
config_physics_suite Physics suite:
— - Not applicable.
i . Cloud Microphysics scheme:
config_microp_scheme ; . . N
Applied value: Ows m6 06
: . Convection scheme:
config_convection_scheme Applied value: 6kain_fritscho
' Landsurface scheme:
config_lsm_scheme ; . . N
Applied value: 6noaho

config_pbl_scheme

Planetary Boundary Layer scheme:
Applied value: O6ysubd

config_radt_cld scheme

Parameterization of cloud fraction for long and short wave radiation schem
Applied value: o6cld_fractionbd

config_radt_Iw_scheme

Long wave (LW) radiation scheme:
Applied value: &érrtmg_1| wbd

config_radt_sw_scheme

Short wave (SW) radiation scheme:
Applied value: &érrtmg_swbd

config_sfclayer_scheme

Surfacelayer scheme:
Appl i ed vaolbw&hormoni n
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Table 3. New MPASA physicsnamelist variables added for the FDDA implementation and the values used for testing.

config_fdda_scheme

Fourdimensional data assimilation (FDDA) scheme:

6nonedé = FDDA not applied (defaul
6anal ysisd = anal ysiisgstrengthgi ng wi t
6scal edé6 anal ydepesdentnudbigg stregpgthwi t h
Applied value: O6éanalysiso

config_fdda_f

Potential temperature nudging indicator:

.true. = apply nudging to potential temperature

false. = do not apply nudging to potentainperature (default value)
Applied value: .true.

config_fdda_d

Water vapor mixing ratio nudging indicator:

.true. = apply nudging to water vapor mixing ratio

false. = do not apply nudging to water vapor mixing ratio (default value)
Applied value: rue.

config_fdda_uv

Wind nudging indicator:

.true. = apply nudging to wind

false. = do not apply nudging to wind (default value)
Applied value: .true.

config_fdda_t coef

Nudging coefficient for potential temperatureé’)sdefault value = 3.0x10
Applied value: 3.0x10

config_fdda_q_coef

Nudging coefficient for water vapor mixing ratio%js default value = 3.0x16
Applied value: 3.0x10(base case), 3.0x1fJsensitivity test)

config_fdda_uv_coef

Nudging coefficient for wind (%, default vdue = 3.0x1¢.
Applied value: 3.0x10

config_fdda_t_in_pbl

If config_fdda_t = .true., nudge potential temperature in PBL?
.true. = yes (default value)

false. = no

Applied value: .false.

config_fdda_q_in_pbl

If config_fdda_q = .true., nudge wategipor missing ratio in PBL?
.true. = yes (default value)

false. =no

Applied value: .false.

config_fdda_uv_in_pbl

If config_fdda_uv = .true., nudge wind in PBL?
true. = yes (default value)

false. = no

Applied value: .false.

config_fdda_t_min_layer

If config_fdda_t = .true., lowest layer to nudge potential temperature,
Default value = 0.
Applied value: 0
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config_fdda_g_min_layer

If config_fdda_q = .true., lowest layer to nudge water vapor mixing ratio,

Default value = 0.
Applied value: 0

config_fdda_uv_min_layer

If config_fdda_uv = .true., lowest layer to nudge wind,

Default value = 0.
Applied value: 0
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Figure 1: A schematic of Ggrid staggered variables on the MPASA horizontal mesh. Normal wind velocities (U) are defined on the
cell faces while all other scalar variables are def ipormixingat t h
5 ratio (qv).
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Layer 28 Layer 45

No FDDA

FDDA Target

With FDDA

Difference

Figure 2: MPAS-A simulation results without FDDA (top row), FDDA target fields, MPAS-A results with FDDA, and FDDA target
minus MPAS-A with FDDA (bottom row) for potential temperature (K) in layers 1, 28, and 45, for 00 UTC on 11 January 2013, 10
days into the simulation.
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Layer 28 Layer 45

No FDDA

FDDA Target

With FDDA

Difference

Figure 3: MPAS-A simulation results without FDDA (top row), FDDA target fields, MPAS-A results with FDDA, and FDDA target
minus MPAS-A with FDDA (bottom row) for potential temperature (K) in layers 1, 28, and 45, for 00 UTC o81 January 2013, 30
days into the simulation.
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Figure 4. Timeline analysisfor January 2013showing simulatel potential temperature (blue line), the potential temperature
Research Triangle Park, NC ¢ell center location 35.93°N, 78.96°\W
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Figure 6: MPAS-A simulation results without FDDA (top row), FDDA target fields, MPAS-A results with FDDA, and FDDA target
minus MPAS-A with FDDA (bottom row) for water vapor mixing ratio (kg kg?) in layers 1, 28, and 45, for 00 UTC o1 January
2013, 30 days into the simulation.
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