
Response to Anonymous Referee #1 

 

Comment:   

 

Biggest problem I see is that in Figures 10-14 – the RMSE for the NCEP FNL data on its own without MPAS is 

not included. Is that because it is not a standard output within the NCEP FNL data? If it does exist it should be 

included in those plots. Otherwise we don’t know whether we are actually getting additional value from this 

product. a. This issue needs to be resolved or at the very least explained before publication. Maybe the RMSEs 

need to be compared against those from the CMAQ model. b. If this paper is the first step to creating a 

competitive product it needs to say so. 

 

Response:   

 

While surface values for 2-meter temperature, 2-meter water vapor and 10-m wind are included in the NCEP 

FNL product, these data are not used in the generation of the FDDA target fields.  As with analysis nudging in 

WRF, the analysis nudging we have developed for MPAS only uses target values defined on vertical layers 

within the model’s computational grid.  Also, the NCEP FNL data are only available at 6-hour intervals.  But to 

satisfy our curiosity arising from this comment, we evaluated the NCEP FNL surface data against hourly 

METAR observations in the CONUS region using linear time interpolation to get the same hourly time resolution 

we used for the MPAS-A evaluation.  The results showed superior accuracy compared to our MPAS simulations.  

Since METAR observations are used directly in the generation of the NCEP FNL surface values, this finding of 

superior accuracy is not surprising and comparison of MPAS-A and NCEP FNL regarding their agreement with 

METAR data is not really a fair assessment of the value added from analysis nudging.  Nonetheless, that finding 

of superior accuracy does gives us confidence that the NCEP FNL product is a good basis for the generation of 

FDDA target fields, especially near the surface, and that nudging layers near the surface might lead to improved 

MPAS simulations if it can be done without disrupting the evolution of the simulated planetary boundary layer 

(PBL).  This sort of disruption is why we have avoided nudging in the PBL for air-quality modeling purposes.  

We see this issue as a prime candidate for future work, but outside the scope of this effort.   
 

Regarding sub-comment (a), we assume this suggests a comparison of MPAS-A with WRF.  The physics 

parameterizations we use in WRF to support CMAQ modeling were designed specifically for air-quality 

assessment at a finer spatial scale than we used here.  For this work, we were constrained to the physics options 

already available in MPAS-A.  As a separate effort, we have begun work to add those special physics options to 

MPAS-A and will be applying them at 12-km horizontal resolution for comparison to WRF.   

 

Regarding sub-comment (b), we have no intentions to develop a product in competition with CMAQ.  Limited-

area models will continue to have appropriate applications in both meteorological and air-quality simulations. 

 

Comment: 

 

I am struck by the gross similarity between FDDA target and MPAS with FDDA in Figures 2-8. It would be good 

to see plots where the differences between FDDA target and MPAS with FDDA were presented.  

 

Response:   

 



We added difference plots to Figs. 2-5 (now Figs. 2-3 and 6-7) and updated the discussion to describe the results.  

Adding difference plots to the vertical cross section and wind vector figures has proven to be difficult.  We hope 

the additions we made will be sufficient.  If not, additional time will be required for software modifications and 

new graphics preparation. 

 

Comment: 

 

Can you give some theoretical reasoning for choosing the time-scale forcing to be around 55 minutes – it seems 

to be a bit on the strong side. The weaker forcing for q is around 9 hours. Maybe this exists in the 

WRF version. 

 

Response:   

 

The time scale we adopted in MPAS is the same as the default value in WRF.  The theoretical reasoning comes 

from Stauffer and Seaman (1990) where they equate that nudging time scale to that of meteorological phenomena 

at the meso-α spatial scale.  This is now explained in the revised manuscript at the end of section 2.3.  Our use of 

a longer time scale for moisture nudging in MPAS comes mainly from our experience with WRF where stronger 

nudging created too much cloudiness, too little downward shortwave radiation and degraded evaluation statistics 

at the surface.  As shown in this work, weaker moisture nudging produces slightly better model accuracy.  

 

Comment: 

 

Pg 3 Can the paper be a bit more specific on the details of how the NCEP FNL data is created? 

 

Response:   

 

The exact process used by NCEP is continually being modified as their base modeling platform evolves and as 

new observational data become available (e.g., GOES-Next).  The cited web reference for the NCEP FNL 

product provides a “Documentation” tab where various aspects of the NCEP FNL product are discussed.  The 

availability of this information is indicated in the revised manuscript. 

 

Comment: 

 

Throughout the paper the resolution of the NCEP FNL data is described in terms of 1-degree resolution which is 

around 100km. Given that MPAS resolution is described in terms of km can you mention the FNL data resolution 

in km to avoid the readers needing to do the conversion themselves. 

 

Response:   

 

1 degree of longitude is variable in physical length depending on latitude.  Thus, it is not possible to describe the 

1 x 1-degree resolution in terms of specific physical length.  But the revised manuscript now mentions that the 

spatial resolution of the NCEP FNL product approximates that of the coarse portion of the MPAS mesh used in 

this study. 

 

Comment: 

 



What is the timestep of the MPAS model? 

 

Response:   

 

We used a timestep of 150 seconds as indicated in Table 1. 

 

Comment: 

 

Can you use Figure throughout and not have a mixture of Figure, Fig. and (Fig. 9) on pages 6-10?  

 

Response:   

 

With one exception, the original manuscript used the standard convention of “Figure” when starting a sentence 

and “Fig.” otherwise.  That exception on page 7, line 5 has been corrected. 

 

Comment: 

 

Pg 9 line 11 RMSA -> RMSE  

 

Response: 

 

This correction has been made. 

 

Comment: 

 

Pg 9 line 30 remove dot: For January 2013 

 

Response: 

 

That period was intended to be a comma.  This has been corrected. 

 

Comment: 

 

Pg 26 and Pg 27 Figures 7 and 8 need to include hyphen between 500 and 300 hPa 

 

Response:   

 

These corrections have been made. 

 

Comment: 

 

The plots in Figure 16 do not print out well. Can the units be included in the graph? 

Response:   



Figure 16 shows mass values over time scaled to their starting value.  Thus, no units are appropriate for these 

graphs.  These graphs could be separated into individual figures for “total moist air mass”, “total water vapor 

mass” and “total dry air mass”, thus making the graphs larger and easier to see in print.  This seems to be a print-

versus-web formatting issue and we will defer to the editor as to whether Figure 16 needs to be expanded into 

three separate figures. 

  



Response to Anonymous Referee #2 

 

Comment: 

 

Major comments: 

1) As the focus of the manuscript is nudging as a DA method, the authors should extend the introduction section 

with the focus being more on nudging and less on air quality. 

 

Response:   

 

We have extended the introduction to better describe the utility of nudging versus other data assimilation methods 

for the diagnostic purposes of this work.  We are not really advancing the science of nudging but only extending 

its use to the MPAS modeling platform.  Therefore, we did not believe a full review of the development of 

nudging techniques was appropriate or necessary.  The discussion regarding air quality modeling and the 

problems associated with the use of differing models and grid nesting for global-scale assessment is intended to 

explain the motivation for our use of MPAS.  As can be seen in the first comment from Reviewer #1, there is 

some concern in the air-quality modeling community that our work is intended to create a replacement for 

CMAQ, which it is not. 

 

Comment: 

 

2) The implementation of the nudging algorithm and the setup of the experiment is well documented in the 

manuscript. However, there are some issues with the experiment setup which in my opinion are important to 

discuss: a) The observations assimilated into the model state are synthetic observations generated from NCEP 

analysis fields. As the implementation does work as expected, the nudged simulations closely resemble the input 

data. However, one major advantage of the nudging algorithm is to allow for a free simulation [of] the 

atmospheric processes corresponding to the model physics while being (temporally) constraint to the 

observations (or the target field in this case). With respect to the experiment design, the authors should add more 

discussion (and probably analysis) on this aspect. The experiment without PBL assimilation seems to be a 

natural starting point for this.  

 

Response:   

 

We interpret this comment to say we should try to reduce or eliminate nudging between the times when target 

data are available to investigate the model’s ability to provide a free simulation of atmospheric processes when 

guidance is lacking.  The halting or gradual ramping down of analysis nudging has been applied elsewhere for the 

purposes of initializing prognostic simulations. However, this work has a necessary focus on diagnostic 

simulation.  If we have misinterpreted this comment, we welcome clarification from the reviewer. 

 

Comment: 

 

b) The setup of the experiment is based on the truth being represented by the target field. The synthetic 

observations are drawn from this field in a homogeneous and dense fashion. With this setup, it is not difficult to 

achieve an accordance of the model with the target and the result will not strongly depend 

on the nudging coefficient(s). However, in reality, observations of the truth are heterogeneous, sparse and rare. 

Therefore, finding a reasonable and balanced setup which produces sound estimates of the atmospheric states is 



much harder especially with respect to the temporal availability of observations. Do the authors intend to do 

such experiments/simulations in the future? The authors should also provide results of sensitivity experiments 

with respect to the nudging coefficient. 

 

Response:   

 

We agree that with analysis nudging it is easy to achieve an accordance of the model with the target fields by 

simply increasing the nudging coefficient.  We also understand that nudging based on observational data (a.k.a., 

“obs nudging”) is more difficult due to the heterogeneous and sparse nature of the observations, but that it also 

can provide additional accuracy with respect to the true state of the atmosphere.  We intend to develop a method 

for “obs nudging” in MPAS-A, but that is beyond the scope of this initial effort.   

 

Regarding sensitivity experiments with respect to the nudging coefficient, we had already conducted those using 

one-tenth, one-fifth and one-half nudging strength for all nudged variables.  However, including those results 

here would result in an exceedingly long paper.  We hope to submit a follow-on paper showing those sensitivity 

results in detail once this paper has demonstrated a proper facility for analysis nudging in MPAS-A. 

 

Comment: 

 

3) The authors should provide plots containing information on the analysis increments from the nudging with 

respect to its spatial and temporal variability. 

 

Response:   

 

We have developed a new plot showing the temporal variation of simulated and target ϴ values and the nudging 

term for ϴ at layer 28 positioned over Research Triangle Park, NC (our laboratory location) during January 2013.  

That plot, which is Fig. 4 in the revised manuscript, shows a rather strong perturbation of ϴ near 0000 UTC on 18 

January 2013.  We also developed spatial plots, one focused on North America to show detail, and a second 

showing the entire global domain for layer 28 at 0000 UTC on 18 January 2013.  These spatial plots have been 

added as Fig. 5 of the revised manuscript.  A short discussion of the results shown in Figs. 4 and 5 is included in 

the main text. 

 

Comment: 

 

Minor comments:  

Page 2 Line 17: Please provide a reference for the Voronoi mesh. 

 

Response:   

 

We have added a reference to Du, Q., V. Faber and M. Gunzburger (1999) Centroidal Voronoi Tessellations:  

Applications and Algorithms.  SIAM Review Vol. 41, No. 4, pp.637-676. 

 

Comment: 

 

Page 2 Line 23: Is the mesh really unstructured? 

 



Response:   

 

No, and we thank the reviewer for pointing out the error in our original terminology.  We now describe the mesh 

accurately as a centroidal Voronoi tessellation. 

 

Comment: 

 

Page 6 Line 4: "show" instead of "shows" 

 

Response:   

 

This correction has been made. 

 

Comment: 

 

Page 7 Line 3: I am not able to comprehend what the authors want to say with this sentence. 

 

Response:   

 

The sentence contained a typographical error where the word “if” should have been “of”.  We trust this correction 

will allow a proper comprehension. 

 

Comment: 

 

Page 8 Line 29: It would rather say "are larger" instead of "are much larger" 

 

Response:   

 

This correction has been made. 

 

Comment: 

 

Page 9 Line 11: "RMSE" instead of "RMSA" 

 

Response:   

 

This correction has been made. 

 

Comment: 

 

Page 10 Line 2: "than" instead of "that" 

 

Response:   

 

This correction has been made. 

 



Comment: 

 

Discussion on Figures 10 to 13: The shape of the bottom and top diagram differ mostly by amplitude. Does this 

behavior arise from the fact that a majority of observations is coming from the CONUS region? Please elaborate 

on this. 

 

Response:   

 

Yes, the CONUS region does have a high density of observations compared to the rest of the globe.  This spatial 

concentration of observations probably does explain the temporal correlation of the bottom and top diagrams.  

However, finer model resolution over the CONUS and regional variation in the quality of observations 

complicate the matter.  We were not able to draw firm conclusions as to why the line deflections are so similar 

for temperature and humidity (previously Figs. 10-13, now Figs. 12-15), but not so much for wind speed 

(previously Figs. 14-15, now Figs. 16-17).  But we agree that this behavior needs to be mentioned and have 

included some discussion on the matter at the top on page 7 in the revised manuscript. 
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Abstract. The Model for Prediction Across Scales – Atmosphere (MPAS-A) has been modified to allow four- dimensional 

data assimilation (FDDA) by the nudging of temperature, humidity and wind toward target values predefined on the MPAS-10 

A computational mesh.  The addition of nudging allows MPAS-A to be used as a global-scale meteorological driver for 

retrospective air quality modeling.  The technique of “analysis nudging” developed for the Penn State / NCAR Mesoscale 

Model, and later applied in the Weather Research and Forecasting model, is implemented in MPAS-A with adaptations for 

its unstructured polygonal Voronoi mesh.  Reference fields generated from 1° × 1° National Centers for Environmental 

Prediction FNL (Final) Operational Global Analysis data were used to constrain MPAS-A simulations on a 92-25 km 15 

variable-resolution mesh with refinement centered over the contiguous United States.  Test simulations were conducted for 

January and July 2013 with and without FDDA, and compared to reference fields and near-surface meteorological 

observations.  The results demonstrate that MPAS-A with analysis nudging has high fidelity to the reference data while still 

maintaining conservation of mass as in the unmodified model.  The results also show that application of FDDA constrains 

model errors relative to 2- m temperature, 2- m water vapor mixing ratio, and 10- m wind speed such that they continue to be 20 

at or below the magnitudes found at the start of each test period. 

1 Introduction 

Combining data at various times in a dynamical model to provide time continuity and dynamic balance among the model 

fields was first suggested by Charney et al. (1969) and has become known as four-dimensional data assimilation (FDDA).   

Nudging, also known as Newtonian relaxation, involves theThe use of special terms in forecast equations to “nudge” an 25 

atmospheric model simulation toward observations or some reference state.  It was originally employed for dynamic 

initialization (Anthes, 1974; Hoke and Anthes, 1976).  Many approaches to data assimilation have been developed for 

dynamical atmospheric models including simple interpolation and more complex variational and stochastic methods.  

However, these have usually been intended to initialize prognostic models.  Nudging was tested as a means for improving 

diagnostic simulations by Stauffer and Seaman (1990) in the Penn State / National Center for Atmospheric Research 30 
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(NCAR) Mesoscale Model – Version 4 (MM4) (Anthes et al., 1987).  In that study, nudging was applied in two ways.  The 

model solutions were nudged toward either gridded analyses (“analysis nudging”) or individual observations (“obs 

nudging”).  After MM4, both forms of nudging were implemented in its successor MM5 (Grell et al., 1995) and 

subsequently in the Weather Research and Forecasting model (WRF) (Skamarock and Klemp, 2008).   

In addition to basic variables like temperature, humidity, wind, cloud cover, and precipitation, meteorological simulations 5 

guided by nudging provide factors critical to air quality modeling that are not easily observed, such as stability, turbulence, 

mixing height, etc.  Nudging applied in MM4, MM5 and WRF has been used at the U. S. Environmental Protection Agency 

(U.S. EPA) for almost three decades to support air quality modeling, first with the Regional Acid Deposition Model 

(RADM) (Chang et al., 1987) and continuing to the present day with the Community Multi-Scalescale Air Quality (CMAQ) 

model (Byun and Schere, 2006; Appel et al., 2017).   10 

It has long been recognized that air quality at any particular location can be affected by pollution sources on local to global 

scales (NRC, 1998; NRC, 2010).  Air quality models are often applied with relatively coarse horizontal resolution on 

hemispheric and global scales to provide boundary information for nested, higher-resolution regional models (Bullock et al., 

2008; Jacobson and Ginnebaugh, 2010; Schere et al., 2012; Mathur et al., 2014).  In various applications, this nested 

modeling strategy has created unrealistic simulations at the lateral boundaries of internal model domains due to 15 

discontinuities in horizontal and vertical resolution and/or differing modeling assumptions between separate models used at 

each scale (Warner et al., 1997; Bullock et al., 2009; Tudor and Termonia, 2010; Mathur et al., 2017).   

To address the need for a global-to-local air quality modeling system that can avoid boundary problems associated with 

model domain nesting, this work adapts the Model for Prediction Across Scales - Atmosphere (MPAS-A) (Skamarock et al., 

2012) for use as the meteorological component of a future coupled meteorological-chemical modeling system.  MPAS-A, 20 

which features a global unstructured computational mesh based on a centroidal Voronoi meshtessellation (Du et al., 1999), 

offers gradual mesh refinement rather than discrete nesting to a focal region.  For retrospective air quality modeling, an 

FDDA approach based on analysis nudging has been developed and tested in MPAS-A as described below. 

2. Experimental design, implementation and testing 

FDDA by way of analysis nudging, similar to that described in Stauffer and Seaman (1990), has been added to MPAS-A.  25 

Unlike MM4, MM5 and WRF, which are limited-area models with rectangular computational grids, MPAS-A has an 

unstructured polygonal computational mesh as illustrated in Fig. 1.  Nonetheless, once the required “target” fields (i.e., 

reference data for nudging) are defined to match the MPAS-A prognostic variable array, analysis nudging in MPAS-A is 

similar to its ancestral implementations. 
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2.1 Description of analysis nudging in MPAS-A 

Analysis nudging is applied in MPAS-A by the addition of a nudging tendency term to the normal predictive equation.  The 

nudging tendency for prognostic variable α is calculated as: 

(
𝜕𝛼

𝜕𝑡
)
𝑛𝑢𝑑𝑔𝑒

= 𝐺𝛼𝑊𝑃𝐵𝐿𝑊𝑙𝑎𝑦𝑒𝑟(𝛼𝑡𝑎𝑟𝑔𝑒𝑡 − 𝛼) ,        (1) 

where Gα is a nudging inverse time scale or “nudging coefficient”, WPBL and Wlayer are special binary terms (1 or 0), and 5 

αtarget is the target or reference value for α.  Trusted reference fields are typically only available at certain times each day and 

temporal interpolation is required to provide target values at each model time step.  It may be advantageous to avoid nudging 

in the planetary boundary layer (PBL) so as not to disrupt simulated diurnal processes.  In this case, WPBL can be set equal to 

1 in layers above the simulated PBL top and set equal to 0 in layers below or containing the PBL top.  Otherwise WPBL can 

be set equal to 1 in all layers.  Wlayer is a similar binary term to allow the exclusion of nudging near the surface based simply 10 

on vertical layer number.  Gα, WPBL and Wlayer are all defined independently for each of the nudged variables. 

Analysis nudging has been applied for potential temperature (ϴ), water vapor mixing ratio (qv), and wind.  Treating wind 

involves extra complications because of the way it is represented in the unstructured MPAS-A mesh.  As illustrated by Fig. 

1, scalar prognostic variables including ϴ and qv are defined at the cell centers.  However, the prognostic variable for wind in 

MPAS-A is the component perpendicular to the cell faces (U).  To nudge wind, meridional and zonal decompositions at the 15 

cell centers are used. These model variables UReconstructZonal and UReconstructMeridional already exist to treat the 

influence of parameterized convection and PBL processes on the wind field.  While the wind component across cell edges 

(U) could be nudged directly, this method would require 50% more comparisons between prognostic and target values since 

there are 3 times as many cell edges as there are cells.  Nudging tendencies for UReconstructZonal and 

UReconstructMeridional are translated to cell edges in the same manner as the tendencies for PBL and convection processes.  20 

2.2 Creating target fields 

The MPAS-A modeling system already provides model initialization software, namely the executable program 

init_atmosphere_model.  For this study, initialization fields were created at each time where nudging target fields were 

desired using 1° x 1° NCEP FNL (Final) Operational Global Analysis data (ds083.2) (NCEP/NWS/NOAA/U.S. Department 

of Commerce, 2000).  Target fields could be based on other analytical methods such as 3- and 4-dimensional variational 25 

assimilation (3D-VAR, 4D-VAR) or an ensemble Kalman filter (EnKF).  However, the NCEP FNL data are already 

produced using techniques similar to 4D-VAR.  A full description of the NCEP FNL data product is available from the 

“Documentation” tab at https://rda.ucar.edu/datasets/ds083.2/.  The spatial resolution of the 1° x 1° NCEP FNL data 

approximates that of the coarse portion of the MPAS mesh used in this study.  The nudged variables ϴ, qv, 

UReconstructZonal and UReconstructMeridional were extracted from each initialization file, renamed th_fdda_new, 30 

qv_fdda_new, u_fdda_new, and v_fdda_new, respectively, and used to compile the necessary FDDA input files.  The 

https://rda.ucar.edu/datasets/ds083.2/
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modified MPAS-A reads in new FDDA targets every 6 h when NCEP FNL data are available, specifically at 00, 06, 12, and 

18 UTC.  Target values at intervening times during the simulation are computed using linear time interpolation.  

The FDDA target variable names contain “new” to indicate that, for the time increment at which they are read, the values 

represent the target value at the end of the upcoming 6-h FDDA time interval.  Unlike WRF which reads in “old” and “new” 

targets for each FDDA interval, the modified MPAS-A reads only “new” values.  The “new” values from the previous time 5 

interval are recycled to be used as the “old” values, thus reducing the FDDA target file size by half.  At simulation start t ime, 

initial values for ϴ, qv, UReconstructZonal and UReconstructMeridional are used to set th_fdda_old, qv_fdda_old, 

u_fdda_old, and v_fdda_old, respectively.  Thus, simulation start time must be at 00, 06, 12, or 18 UTC in order to maintain 

the 6-h FDDA data interval. 

Scripts have been written to automate the process of running init_atmosphere_model for each FDDA time, extracting the 10 

four nudged variables, and composing the FDDA target input file.  They perform variable extraction and FDDA input file 

composition using NetCDF Operators (NCO) software available at http://nco.sourceforge.net/. 

2.3 FDDA test applications 

MPAS-A version 4.0 (https://github.com/MPAS-Dev/MPAS-Release/releases/tag/v4.0), modified to include FDDA by 

analysis nudging as described above, was applied on a 92-25km variable-resolution mesh obtained from the MPAS- 15 

Atmosphere Public Releases webmesh downloads page 

(http://www2.mmm.ucar.edu/projects/mpas/atmosphere_meshes/x4.163842.tar.gzhttp://mpas-dev.github.io/atmosphere/atmo

sphere-download.html) with the origin of this mesh repositioned to 40° N, 95° W.  Two test simulation periods were defined 

spanning January 2013 and July 2013.   

As mentioned before, model initialization and FDDA inputs were produced from 1° x 1° NCEP FNL data using the 20 

init_atmosphere_model software included in the MPAS-A version 4.0 public distribution.  For this study, 

init_atmosphere_model was slightly modified to allow finer vertical resolution near the surface.  Air-quality models typically 

require fine vertical resolution in the PBL in order to better simulate pollutant emissions which are commonly near the 

surface.  To produce sufficiently thin layers near the surface, the unmodified init_atmosphere_model required an 

unreasonable number of layers due to the 1.5-power function used to define layer boundary heights.  Modified Fortran code 25 

described in Appendix A was developed such that only 50 layers were required with the model top specified at 30 km.  

Using the modified code and given a surface elevation at sea level, layer thickness is 18 m at the bottom, 232 m at 1.5 km 

elevation, 1000 m at 12.5 km elevation, and 1729 m at the top.  This layer structure was used to produce model initialization 

and FDDA target data files for all MPAS-A model simulations described below. 

The modified init_atmosphere_model was also used to produce update fields for sea surface temperature and sea ice at 6-h 30 

intervals throughout each test period.  For this purpose, the new layer generation function had no bearing, but a problem was 

discovered in the original MPAS-A model code where sea ice was being analyzed over land areas.  This problem was solved 

with additional code modifications described in Appendix B. 

http://nco.sourceforge.net/
https://github.com/MPAS-Dev/MPAS-Release/releases/tag/v4.0
http://www2.mmm.ucar.edu/projects/mpas/atmosphere_meshes/x4.163842.tar.gz
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Once the required initialization, surface update and FDDA target fields were in place, MPAS-A simulations were performed 

with the atmosphere_model program.  Table 1 shows all non-default nhyd_model and damping namelist options used in this 

study.  Namelist options for atmosphere_model from the standard MPAS-A and their default values are described in 

Appendix B of the MPAS Atmosphere Model User’s Guide version 4.0 (available as of 19 July 20176 April 2018 at 

http://www2.mmm.ucar.edu/projects/mpas/mpas_atmosphere_users_guide_4.0.pdf).  Table 2 shows all applicable physics 5 

namelist options chosen from the standard MPAS list.  These do not include namelist options added to MPAS-A as part of 

the FDDA implementation.   

Table 3 shows the new namelist options added as part of the FDDA implementation and the values used for testing in this 

study.  These options are similar to those used in the WRF model for FDDA application.  WRF contains them within a 

special fdda subset of namelist options.  For now, they have been added to the physics namelist input variable list for MPAS-10 

A.  The primary option to invoke FDDA is config_fdda_scheme.  As a default, config_fdda_scheme = off, and FDDA is not 

invoked in the modified MPAS-A model.  If FDDA is invoked with a value of analysis, then the other options in Table 3 

become applicable.  The modified MPAS-A code also includes a second option for FDDA called scaled which allows the 

user to adjust nudging strength based on MPAS cell size.  This option is still under development and has not been 

investigated as a part of this study. 15 

FDDA can be selectively applied or omitted for each meteorological variable (ϴ, qv, U).  If applied, the nudging strength is 

controlled by a variable-specific nudging coefficient.  FDDA for each variable can be applied throughout all vertical layers, 

or only above a particular layer number.  In many previous applications of WRF, it was common for FDDA to only be 

applied above the PBL so as not to disrupt the diurnal evolution of the PBL with data from a linear time interpolation (Otte 

et al., 2012; Bowden et al., 2012; Bowden et al., 2013; Bullock et al., 2014).  Table 3 shows namelist options provided to 20 

avoid nudging in the PBL, avoid nudging below a specified layer number, or both.  It is also worth noting here that the 

default nudging coefficients implemented in MPAS-A are equal to 3.0×10-4 s-1 for all variables, just like in WRF.  The 

theoretical reasoning comes from Stauffer and Seaman (1990) where they equate this nudging time scale to that of 

meteorological phenomena at the meso-α spatial scale.  Unlike for temperature and wind, nudging water vapor concentration 

perturbs atmospheric mass in the simulation.  Previous studies using WRF have chosen to employ smaller nudging 25 

coefficients for qv versus other variables (Otte et al., 2012; Bowden et al., 2012; Bowden et al., 2013; Bullock et al., 2014). 

Results discussed later in this work show some benefit from doing so.  For this study, the nudging coefficient for qv was one 

order of magnitude smaller than for the other variables, except for a special test where the value was kept equal.  

3. Results 

To evaluate FDDA in MPAS-A, test simulations for January and July of 2013 were performed with both the standard version 30 

of the model and the modified model using FDDA by analysis nudging.  The modified MPAS-A was also applied with 

FDDA turned off to verify agreement with the results obtained from the standard model.  Model results from the standard 

http://www2.mmm.ucar.edu/projects/mpas/mpas_atmosphere_users_guide_4.0.pdf
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and modified versions were first compared to the FDDA target fields.  Obviously, nudging strongly toward the target fields 

should produce good agreement with those fields.  The intent of these first comparisons was to verify that using nudging 

coefficients for temperature, humidity and wind similar to those used in WRF would constrain MPAS-A simulations in a 

reasonable manner.  To further test the capabilities of FDDA in MPAS-A, simulated surface-level data for temperature, 

humidity and wind speed from both the standard and modified MPAS-A were then compared to observational data from the 5 

Meteorological Assimilation Data Ingest System (MADIS) (https://madis.noaa.gov).  Finally, total dry air, total water vapor 

and total atmospheric mass calculations were performed to test for any corruption of mass conservation by the 

implementation of FDDA in MPAS-A. 

3.1 Comparisons to FDDA target fields 

Figure 2 shows MPAS-A simulation results and FDDA target fields for potential temperature in layers 1, 28, and 45, for 00 10 

UTC 11 January 2013, ten days into the simulation.  The left column of maps shows layer 1 values from the standard MPAS-

A (top), the FDDA target field, (middle) and MPAS-A with FDDA applied, and the difference field (bottom).  Differences 

are calculated as FDDA target field minus MPAS-A with FDDA to reflect the polarity of the nudging force.  The center and 

right columns shows the same information for layers 28 and 45, respectively.  Layer 1 extends from 0 to ~18 m above the 

surface where the surface is at mean sea level (msl), and to ~15 m above the surface over the highest resolved terrain.   The  15 

vertical span of layer 28 varies from 5002-5551 m to 9449-9784 m above msl depending on the resolved terrain height which 

varies from -82 to 5425 m.  So layer 28 represents a 330-550 m thick layer somewhere in the middle troposphere.  The span 

of layer 45 varies from 20622-22024 m to 20682-22048 m above msl.  Layer 45 varies only slightly due to the MPAS-A 

hybrid vertical coordinate system having shifted almost completely to a height coordinate at that altitude in the lower 

stratosphere. 20 

By ten days into the simulation, the simulation without FDDA already shows significant potential temperature differences 

from the FDDA target fields in all three layers shown in Fig. 2.  These differences are especially noticeable in layer 45 where 

an apparent stratospheric warming event is stronger in the “No FDDA” simulation and is longitudinally displaced about 120 

degrees from the location in the reanalysis-based target field.  The unconstrained simulation also shows a high-latitude cold 

pool that is not in the target field and much colder stratospheric temperatures over the tropics.  There are also some 25 

interesting differences in layer 28 around the high terrain of the Himalayas where the “No FDDA” simulation resulted in 

much warmer temperatures than the target values.  The simulation with FDDA matches the target fields for ϴ almost 

perfectly for layers 28 and 45.  Near the surface, maps for layer 1 show difference from the ϴ target field in both MPAS-A 

simulations, mostly in arctic regions where simulated temperatures are generally colder.  But the simulation with FDDA 

shows surface temperatures closer to the target values even though FDDA was not applied in the PBL. 30 

To demonstrate that FDDA continues to constrain MPAS-A simulations through longer time periods, Fig. 3 shows the same 

information as Fig. 2, but this time the ϴ fields are for 00 UTC 31 January 2013, 30 days into the simulation.  The deviation 

of the “No FDDA” simulation from the target fields is larger than at day 10, but the results from the simulation with FDDA 

https://madis.noaa.gov/
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continue to follow the target fields closely for layers 28 and 45.  However, layer 1 continues to be too cold across the arct ic 

with FDDA applied above the PBL.  The simulation without FDDA is too cold in some parts of the arctic and too warm in 

others, and significant deviations from the target field are apparent in many locations around the globe.  A quick 

investigation of observed surface temperatures at Barrow, Alaska, found that the simulated surface temperatures are about 10 

K too cold at that location in the FDDA simulation.  This points to the fact that FDDA applied only above the PBL can keep 5 

simulated temperatures at the surface from being too high due to the effect of convective mixing, but it cannot prevent them 

from being too cold.  Work is ongoing to remedy both warm and cold biases in surface temperature through the use of other 

land surface and PBL models which nudge soil temperature and moisture towards known conditions. 

To investigate temporal variability of the nudging effects on ϴ, the simulated and target values for January 2013 were 

plotted for layer 28 at Research Triangle Park, NC (35.93°N, 78.96°W), along with the value of the nudging term.  The 10 

results in Fig. 4 show that the simulated values tracked the FDDA target values quite closely, but do deviate at times. 

Simultaneously, the nudging term increases in magnitude to counteract these deviations.  A significant perturbation is 

evident at around 00 UTC on 18 January.  To investigate this occurrence and to illustrate the spatial variability of the 

nudging, spatial plots of the ϴ nudging term were made for layer 28 at 00 UTC on 18 January, one with a focus on North 

America and the second showing the entire global domain.  Figure 5 shows the spatial extent of the perturbation and the 15 

spatial patterns of positive and negative forcing at that time.  These patterns match the spatial scale of meteorological 

features where model error might grow over time were it not for the corrective effects of analysis nudging. 

The array of maps in Fig. 64 shows water vapor mixing ratio at 00 UTC 31 January 2013 in the same arrangement as for 

potential temperature in Fig. 3.  Even with weak qv nudging, the simulation with FDDA matches the target fields well for all 

three layers. Without FDDA, the simulated pattern of water vapor deviates significantly from the target in all layers.  In layer 20 

45, the “No FDDA” case shows higher qv values all across the tropics than exist in the target field or in the simulation with 

FDDA where water vapor is practically absent.  These results suggest that even weak nudging if of water vapor can mitigate 

what appears to be artificial vertical diffusion of tropospheric water vapor into the stratosphere. 

Figure. 75 shows layer 1 fields at 00 UTC 31 January 2013 for potential temperature and water vapor mixing ratio, but this 

time focused on the contiguous United States (CONUS).  At this point in time, a strong cold front stretching from western 25 

Pennsylvania, down the Appalachian Mountains, and into the Gulf of Mexico was advancing from the west.  It is important 

to note once again that analysis nudging was only applied above the PBL.  Nonetheless, not only does the simulation with 

FDDA place the front in the correct location, but the simulated front shows sharper detail for ϴ and qv than in the target 

fields.  This is especially true for qv where it appears that weaker nudging above the PBL allows simulated details at the 

surface to be better conserved.  Finer detail is evident, not only along the cold front, but also in other locations where it  30 

appears variations in terrain and land cover type may be important.  It stands to reason that if nudging had been applied 

within the PBL, these simulated fine details at the surface would have been blurred somewhat by blending with the less 

resolved target fields.  Of course, finer detail does not in itself indicate better accuracy.  To address that issue, simulat ion 

results were also compared to observational data as described later in section 3.2b. 
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Vertical cross section plots of water vapor mixing ratio show that FDDA can constrain undesirable model behavior even 

when the nudging strength is quite weak.  Figure 86 shows vertical cross sections along longitude 80° E from 55° N to 55° S 

for 00 UTC 31 January 2013 (day 30).  This particular location was chosen to investigate the effect of the Himalayan 

Mountains on MPAS-A simulation results.  The height of the Himalayan Mountains (~ 5 km) as resolved by the 92-km mesh 

size is shown by the white area at the bottom of each plot.  Figure 86a shows the standard MPAS simulation result, Fig. 86b 5 

shows the FDDA target field, and Fig. 86c shows the results from MPAS with FDDA using moisture nudging at one-tenth 

the strength used for the other variables.  As previously seen in Fig. 64, the unconstrained simulation shows signs of upward 

transport and/or diffusion of water vapor into the lower stratosphere with water vapor concentrations mixing ratios over 2 

two orders of magnitude higher than the target values.  The simulation with FDDA almost completely eliminates this 

deviation from the target, even with the weak nudging strength. 10 

Wind velocities and flow patterns from MPAS-A simulations and FDDA target fields were investigated with streamline 

plots.  Figure 97 shows global streamline analyses for layer 28 (~500-300 hPa), again for 00 UTC 31 January 2013.  As 

might be expected from a 30-day forecast, the flow field from the simulation without FDDA (Fig. 97a) differs significantly 

from the FDDA target flow field (Fig. 97b).  However, the simulation with FDDA (Fig. 97c) follows the FDDA target data 

almost perfectly.  To show the ability of FDDA to maintain finer-scale fidelity, similar streamline analyses focused on the 15 

CONUS are shown in Fig. 108.  Again, the simulation with FDDA is almost identical to the target flow field.  Streamline 

analysis for layer 1 focused on the southeastern U.S. (Fig. 119) shows some noticeable differences between the simulation 

with FDDA and the target field.  These differences are not surprising given that no nudging was applied in the PBL.  Also, 

the FDDA target fields above the PBL were derived from 1-degree FNL reanalysis data, while the simulation cell size is ~25 

km in this region.  Terrain effects on wind flow direction and speed appear to be more significant in the simulation than in 20 

the FDDA target field.  

Similar comparisons of MPAS-A simulations to FDDA target data were made for the July 2013 test period.  All of these 

comparisons showed essentially the same results as were found for January 2013.  While weather systems and patterns were 

generally more quiescent, at least in the Northern Hemisphere, simulations unconstrained by FDDA still deviated 

significantly from target fields after a few days, while those constrained by FDDA maintained their fidelity relative to the 25 

target data. 

3.2 Comparisons to observational data 

MPAS-A simulation results were compared to observations of 2-m temperature, 2-m humidity and 10-m wind speed.  To 

assure data quality, only aviation routine weather reports (METAR) and surface airways observation (SAO) reports from the 

MADIS repository were used. This comparison was made using the Atmospheric Model Evaluation Tool (AMET) described 30 

in Appel et al. (2011).  AMET was configured to calculate daily evaluation statistics for the entire global domain and for a 

sub-domain confined within 25 to 50 degrees North latitude and 67 to 125 degrees West longitude, basically covering the 
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CONUS where the horizontal mesh size was 25 km.  Daily statistics were calculated for both the January 2013 and July 2013 

test periods. 

Figure 120 shows the time series of 2-m temperature root mean squared error (RMSE) for January 2013. The top graph 

shows results for the entire global domain while the bottom graph shows results for the CONUS sub-domain. Three MPAS-

A simulations were analyzed, the standard model denoted as No FDDA, FDDA applied using relatively weak qv nudging 5 

denoted as FDDA, and FDDA applied using equal nudging strength for all variables denoted as FDDA (equal).  The No 

FDDA cases show error increasing right from the start, both globally and over the CONUS.  For the global domain, the 

FDDA and FDDA (equal) cases both show RMSE actually decreasing somewhat over the first 10 days, but generally holding 

steady throughout the month.  Globally, model performance with weak qv nudging is slightly better than with equal nudging 

strength for ϴ, qv, and U.  In the CONUS analysis, 2-m temperature RMSE for the FDDA case decreases more significantly 10 

over the first 10 days than in the global analysis, and remains below the starting values throughout the remainder of the 

month. Once again, relatively weak qv nudging improves model error statistics to some degree.   

Figure 131 shows the same information as Fig. 120, except this time for July 2013.  RMSE values are generally lower than 

for January 2013, but the same relationships hold between the No FDDA case and the other two cases.  Slight reductions in 

2-m temperature RMSE result from the use of weaker qv nudging.  Another interesting aspect of the results in Figs. 120 and 15 

131 is the temporal correlation of RMSE for the global domain and the CONUS sub-domain.  This is probably due to the 

high concentration of METAR observation sites over the CONUS.  The same behavior is found to varying degrees in the 

results shown below for humidity and wind speed. 

Figures 142 and 153 show RMSE for 2-m humidity water vapor mixing ratio (qv) during January 2013 and July 2013, 

respectively.  These figures show RMSE values for July 2013 are much larger than for January 2013.  This is largely due to 20 

the fact that MADIS observations are more concentrated in the northern hemisphere.  In fact, they are most concentrated in 

North America.  Thus, in the northern hemisphere warm season when humidity levels are highest, model errors are also 

highest.  But these figures show for humidity much the same effect of FDDA as was shown for temperature.  Without 

FDDA, model error immediately increases at the start of the simulation and continues to increase for 10 or more days until 

errors in the unconstrained simulation approach the levels of variation in the actual meteorological fields.  From that time on, 25 

the magnitude of daily RMSE values fluctuate quite randomly. It is interesting to note in both Figs. 142 and 153 that the 

simulation with weaker qv nudging often has slightly lower RMSE than the simulation with equal nudging strength.  While 

the difference is quite small, it is counterintuitive nonetheless.  Apparently the 1° x 1° NCEP FNL data used to create t he 

FDDA targets, with its relatively coarse resolution compared to the 25-km MPAS-A mesh used over North America, can 

degrade the simulation in that area where the MADIS observations are most concentrated.  Further study is underway to see 30 

if target fields derived from newly available 0.25° x 0.25° NCEP FNL data lead to the same behavior. 

Figures 164 and 175 show RMSE for 10-m wind speed during January and July of 2013, respectively.  As with temperature 

and humidity, model errors for wind speed begin to increase at the start of both simulations without FDDA and continue to 

increase for about 10 days.  After 10 days, fluctuations in wind speed error in the unconstrained simulations appear to be 
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quite random.  The simulations with FDDA, regardless of the nudging strength for qv, continue to have about the same 

RMSEA for wind speed throughout the month, be that January or July of 2013.  For wind speed, the strength of qv nudging 

appears to have little effect on RMSE.  Opposite to what was seen for humidity, the analyzed wind speed errors are largest in 

the northern hemisphere cold season.  The concentration of MADIS observations in the northern hemisphere is once again 

likely an important factor in this seasonal difference in wind speed RMSE magnitude. 5 

Even though FDDA nudging was not applied within the PBL for any variable, the results above show model errors near the 

surface were constrained quite well, except where simulated surface temperatures were too cold.  Also, near the surface is 

where finer horizontal resolution of the model relative to the FDDA target data source has its greatest effect.  Further study is 

anticipated to better identify optimal FDDA nudging strengths for ϴ, qv, and U in MPAS-A, and to better understand the 

vertical levels of the atmosphere where nudging should be applied. 10 

3.3 Mass Conservation tests 

In addition to the comparisons described above, the ability of MPAS-A to conserve simulated atmospheric mass was also 

tested.  For each month-long test period, all model simulations reported total atmospheric mass and total water vapor mass at 

each 150-second simulation time step.  This was accomplished with minor additions to the Fortran code in the time 

integration module (./src/core_atmosphere/dynamics/mpas_atm_time_integration.F).   15 

As shown in Fig. 186, all simulations including those with FDDA conserved total moist air within the global model domain 

to within five parts in 100,000 of their starting values.  Total water vapor mass varied more significantly in time in each 

simulation, and this is to be expected due to evaporation and precipitation processes.  There is a diurnal signal evident in the 

water vapor mass total from all simulations, most likely due to longitudinal variations in evaporation and precipitation 

potential under solar radiation caused by the geographic distribution of continents and oceans.  For January 2013,. the No 20 

FDDA simulation lost over 5% of its initial quantity of water vapor. This could be indicative of too much simulated 

precipitation, too little simulated evaporation, or both.  Also, the model initialization based on the NCEP FNL analysis could 

be too moist.  The simulations with FDDA all tended to maintain more total water vapor relative to the standard model.  In 

general, the unconstrained simulations tended to lose water vapor at the start of the simulation and come to an equilibrium 

point significantly lower thant the simulations with FDDA.  The FDDA (equal) simulations tended to quickly establish and 25 

then maintain the most total water vapor.  Obviously, the FNL analysis indicated a moister atmosphere than the 

unconstrained MPAS-A simulations could maintain.   

It is interesting to note that the FDDA and FDDA (equal) cases had almost identical trends in total moist air mass, with any 

differences in total water vapor almost perfectly cancelled out by differences in dry air.  Also, the January 2013 No FDDA 

simulation gained total dry air mass to about 13 parts in 100,000 of the initial value.  This is the same simulation that lost a 30 

significant fraction of its initialized water vapor, once again showing an opposite conservation response between dry air and  

water vapor.   
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Overall, the results in Fig. 186 demonstrate that the addition of FDDA does not degrade mass conservation relative to the 

standard MPAS-A.  Conservation of dry air mass is most important if MPAS-A is to be used as the meteorological driver for 

air quality modeling.  These results show that using FDDA could actually offer some improvement in that regard. 

4. Summary and conclusions 

The U. S. EPA is working to make MPAS-A suitable for use as the meteorological component of an integrated meteorology 5 

and air-quality modeling system for global-to-fine-scale applications.  The ability to constrain simulated meteorology to 

resemble historical reanalysis fields at comparable spatial scales is crucial to making this integrated modeling system a 

practical diagnostic tool for air-quality research.  FDDA applied through analysis nudging has been used for decades to 

provide this constraint in other models such as MM4, MM5 and WRF.  The results shown here demonstrate that it also 

works quite well in MPAS-A.  Comparison of MPAS-A simulations of January and July 2013 with and without FDDA 10 

demonstrate that unconstrained simulations deviate significantly from historical conditions in only a few days, while those 

constrained through analysis nudging follow historical conditions well in most situations.  Due to surface-layer decoupling, 

analysis nudging applied only above the PBL was not able to constrain the development of excessively cold surface 

temperatures in arctic areas during the January 2013 simulation period.  However, this can be addressed with the use of land 

surface models that also employ FDDA.  Further study is already underway at the U.S. EPA to determine the best strength 15 

with which to nudge temperature, humidity and wind in MPAS-A and the levels of the atmosphere to best apply that 

nudging.  

The target fields toward which MPAS-A state variables are nudged could come from a number of sources.  Historical 

meteorological reanalysis products have previously been used for this purpose in regional and hemispheric modeling with 

WRF, and the results here suggest they can also be used with MPAS-A on the global scale.  This study applied MPAS-A 20 

with a variable 92-25km mesh with the refined region centered on North America.  Target fields used here were based on the 

1° x 1° NCEP FNL reanalysis product.  As such, there was not a great disparity in horizontal resolution between the 

simulations and the target fields where the MPAS-A mesh size was 92 km.  However, where the mesh was more refined, 

MPAS-A was capable of delivering additional horizontal detail and the results shown here indicate weaker nudging may 

produce superior results, at least when nudging water vapor mixing ratio.  Finally, adding FDDA did not disrupt the ability 25 

of MPAS-A simulations to conserve mass, and this is an important point when considering its use for air-quality modeling. 

Code and data availability 

The MPAS-A model software used in this project is a subset of the complete Model for Prediction Across Scales (MPAS) 

developed by Los Alamos National Security, LLC (LANS) and the University Corporation for Atmospheric Research 

(UCAR) and distributed under a 3-clause BSD license allowing distribution of original and derivative works under 30 
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conditions that have been satisfied here.  The full text of this BSD license can be found in http://mpas-

dev.github.io/files/documents/MPAS-DevelopersGuide.pdf.  MPAS-A model source codes used in this study are available in 

the Supplement and at https://doi.org/10.5281/zenodo.1101204 with all modified codes accompanied by their original codes.  

Run scripts used to prepare FDDA target fields are also included in the Supplement and at 

https://doi.org/10.5281/zenodo.1101204.  The definition file for the 92-25km computational mesh used in this study is too 5 

large for the Supplement, but it can be obtained from https://doi.org/10.5281/zenodo.1101204.  Operational model global 

tropospheric analysis data used to initialize MPAS-A and to define FDDA target fields are available at 

https://rda.ucar.edu/datasets/ds083.2/.  The Atmospheric Model Evaluation Tool used in this study is available at 

https://www.cmascenter.org/amet/.  Observational data used within AMET were obtained from https://madis.noaa.gov/.   

Appendix A 10 

The following describes FORTRAN code modifications made to define a vertical layer structure with fine resolution near the 

surface without the use of an extremely large number of layers. The basis for these changes was the MPAS-A model code 

originally published in the MPAS Version 4.0 code release dated 22 May 2015.  These changes are included in the MPAS 

model codes provided in the Supplement and at https://doi.org/10.5281/zenodo.1101204. 

 15 

In src/core_init_atmosphere/mpas_init_atm_cases.F, make the following edits: 

 

Replace line 2538 with the following: 

      real (kind=RKIND) :: r_earth, etavs, ztemp, zd, zt, gam, delt, str, grd, kfrac  

 20 

Replace lines 2864 through 2870 with the following: 

      write(0,*) '*** Using custom layer definition ***' 

      str = 3. 

      grd = 0.03 

      zt = config_ztop 25 

      do k=1,nz 

         kfrac = real(k-1)/real(nz1) 

         zw(k) = zt*((1-grd)*kfrac**str+grd*kfrac) 

http://mpas-dev.github.io/files/documents/MPAS-DevelopersGuide.pdf
http://mpas-dev.github.io/files/documents/MPAS-DevelopersGuide.pdf
https://doi.org/10.5281/zenodo.1101204
https://doi.org/10.5281/zenodo.1101204
https://doi.org/10.5281/zenodo.1101204
https://rda.ucar.edu/datasets/ds083.2/
https://www.cmascenter.org/amet/
https://madis.noaa.gov/
https://doi.org/10.5281/zenodo.1101204
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Appendix B 

The following information was obtained from the MPAS GitHub web site to fix a problem with sea ice being defined over 

land areas.  The actions described below have already been taken in the MPAS model codes provided in the Supplement and 

at https://doi.org/10.5281/zenodo.1101204. 

As of 5 October 2017, the original MPAS GitHub information was available at the location shown below. 5 

https://github.com/nickszap/MPAS-Release/commit/88f730142fc2ea04db12aa5e37f3337114e2ac45 

 

Description: Activate the 'vertical_stage_in' package when config_init_case == 8  

The init_atmosphere core previously only activated packages to read in static fields when config_init_case == 7 (and either 

config_vertical_grid or config_met_interp were true). However, for config_init_case == 8, we need the landmask field for 10 

interpolating, e.g., sea-ice.  Since we may potentially need other static fields as well when creating surface update files, the 

simplest solution seems to be to simply read all static fields when config_init_case == 8 by activating the vertical_stage_in 

package for this case. 

 

Action: 15 

This action was taken by adding the following lines of FORTRAN code after line 162 in 

src/core_init_atmosphere/mpas_init_atm_core_interface.F as originally published in the MPAS Version 4.0 code release 

dated 22 May 2015. 

else if (config_init_case == 8) then 

   vertical_stage_in = .true. 20 

   vertical_stage_out = .false. 

   met_stage_in = .false. 

   met_stage_out = .false. 
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Table 1.  MPAS-A non-default namelist configuration variables used for testing (except physics). 

nhyd_model 

config_dt 
Model time step, in seconds 

Applied value: 150.0 

config_start_time 
Starting time for model run 

Applied value: ‘2013-01-01_00:00:00’ and ‘2013-07-01_00:00:00’ 

config_run_duration 
Length of model run 

Applied value: ‘31_00:00:00’ 

config_len_disp 
Horizontal length scale for Smagorinsky formulation of horizontal diffusion 

Applied value:  25000.0 

config_h_ScaleWithMesh 
Scale eddy viscosities with mesh-density function for horizontal diffusion 

Applied value:  .true. 

damping 

config_zd 
Height MSL to begin w-damping profile 

Applied value: 27000.0 

config_xnutr 
Maximum w-damping coefficient at model top 

Applied value: 0.2 
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Table 2.  Standard MPAS-A physics namelist variables used for testing. 

 

config_sst_update Logical used to update the Sea-Surface Temperatures (SSTs) and fractional 

sea-ice.  If set to true, SSTs are updated using the file config_sfc_update_name.  

If set to false, SSTs remain fixed during the entire model run. 

Applied value: .true. 

config_sstdiurn_update If set to true, a diurnal cycle is applied to the SSTs.  If set to false, SSTs remain 

constant during the entire day. 

Applied value: .false.  (same as default value) 

config_deepsoiltemp_update If set to true, deep soil temperatures are slowly updated during the model run. If 

set to false, deep soil temperatures remain fixed during the entire run. 

Applied value: .false.  (same as default value) 

config_radtlw_interval 

Temporal interval between calls to the parameterizations of long wave 

radiation, format ’yyyy-mm-dd_hh:mm:ss’.  

Applied value: ‘00:10:00’ 

config_radtsw_interval 

Temporal interval between calls to the parameterizations of short wave 

radiation, format ’yyyy-mm-dd_hh:mm:ss’.  

Applied value: ‘00:10:00’ 

config_bucket_update 

Temporal interval between updates to restoring the accumulated rain and 

radiation fields below their respective bucket values,  

format ‘yyyy-mm-dd_hh:mm:ss’. 

Applied value: ’none’ (same as default value) 

config_physics_suite 
Physics suite: 

Not applicable. 

config_microp_scheme 
Cloud Microphysics scheme: 

Applied value: ‘wsm6’ 

config_convection_scheme 
Convection scheme: 

Applied value: ‘kain_fritsch’ 

config_lsm_scheme 
Land-surface scheme: 

Applied value: ‘noah’ 

config_pbl_scheme 
Planetary Boundary Layer scheme: 

Applied value: ‘ysu’ 

config_radt_cld scheme 
Parameterization of cloud fraction for long and short wave radiation schemes: 

Applied value: ‘cld_fraction’ 

config_radt_lw_scheme 
Long wave (LW) radiation scheme: 

Applied value: ‘rrtmg_lw’ 

config_radt_sw_scheme 
Short wave (SW) radiation scheme: 

Applied value: ‘rrtmg_sw’ 

config_sfclayer_scheme 
Surface-layer scheme: 

Applied value: ‘monin-obukhov’ 
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Table 3. New MPAS-A physics namelist variables added for the FDDA implementation and the values used for testing. 

 

config_fdda_scheme * 

Four-dimensional data assimilation (FDDA) scheme: 

‘none’ = FDDA not applied (default value) 

‘analysis’ = analysis nudging with constant nudging strength 

‘scaled’ = analysis nudging with scale-dependent nudging strength 

Applied value: ‘analysis’ 

config_fdda_t * 

Potential temperature nudging indicator: 

.true. = apply nudging to potential temperature 

.false. = do not apply nudging to potential temperature (default value) 

Applied value:  .true. 

config_fdda_q * 

Water vapor mixing ratio nudging indicator: 

.true. = apply nudging to water vapor mixing ratio 

.false. = do not apply nudging to water vapor mixing ratio (default value) 

Applied value:  .true. 

config_fdda_uv * 

Wind nudging indicator: 

.true. = apply nudging to wind 

.false. = do not apply nudging to wind (default value) 

Applied value:  .true. 

config_fdda_t_coef 
Nudging coefficient for potential temperature (s-1), default value = 3.0×10-4. 

Applied value: 3.0×10-4 

config_fdda_q_coef 
Nudging coefficient for water vapor mixing ratio (s-1), default value = 3.0×10-4. 

Applied value: 3.0×10-5(base case), 3.0×10-4(sensitivity test) 

config_fdda_uv_coef 
Nudging coefficient for wind (s-1), default value = 3.0×10-4. 

Applied value: 3.0×10-4 

config_fdda_t_in_pbl * 

If config_fdda_t = .true., nudge potential temperature in PBL? 

.true. = yes (default value) 

.false. = no 

Applied value:  .false. 

config_fdda_q_in_pbl * 

If config_fdda_q = .true., nudge water vapor missing ratio in PBL? 

.true. = yes (default value) 

.false. = no 

Applied value:  .false. 

config_fdda_uv_in_pbl * 

If config_fdda_uv = .true., nudge wind in PBL? 

.true. = yes (default value) 

.false. = no 

Applied value:  .false. 

config_fdda_t_min_layer * 

If config_fdda_t = .true., lowest layer to nudge potential temperature, 

Default value = 0. 

Applied value:  0 
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config_fdda_q_min_layer * 

If config_fdda_q = .true., lowest layer to nudge water vapor mixing ratio, 

Default value = 0. 

Applied value:  0 

config_fdda_uv_min_layer * 

If config_fdda_uv = .true., lowest layer to nudge wind, 

Default value = 0. 

Applied value:  0 
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Figure 1: A schematic of C-grid staggered variables on the MPAS-A horizontal mesh.  Normal wind velocities (U) are defined on 

the cell faces while all other scalar variables are defined at the cell centers, including potential temperature (θ) and water vapor 

mixing ratio (qv). 5 
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Figure 2: MPAS-A simulation results without FDDA (top row), FDDA target fields (center row), and MPAS-A results with FDDA, 

and FDDA target minus MPAS-A with FDDA (bottom row) for potential temperature (K) in layers 1, 28, and 45, for 00 UTC on 

11 January 2013, 10 days into the simulation. 
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Figure 3: MPAS-A simulation results without FDDA (top row), FDDA target fields (center row), and MPAS-A results with FDDA, 

and FDDA target minus MPAS-A with FDDA (bottom row) for potential temperature (K) in layers 1, 28, and 45, for 00 UTC on 

31 January 2013, 30 days into the simulation. 
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Figure 4.  Timeline analysis for January 2013 showing simulated potential temperature (blue line), the potential temperature 

target value (red line), and the nudging term arising from their discrepancy (green line) for layer 28 of the MPAS cell containing 

Research Triangle Park, NC (cell center location 35.93°N, 78.96°W). 
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Figure 5.  Spatial plots of the nudging term for potential temperature in layer 28 at 00 UTC on 18 January 2013.   
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Figure 64: MPAS-A simulation results without FDDA (top row), FDDA target fields (center row), and MPAS-A simulation results 

with FDDA, and FDDA target minus MPAS-A with FDDA (bottom row) for water vapor mixing ratio (kg kg-1) in layers 1, 28, and 

45, for 00 UTC on 31 January 2013, 30 days into the simulation. 
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Figure 75: Simulation results from MPAS-A using FDDA and FDDA target fields for potential temperature (K) and water vapor 

mixing ratio (kg kg-1) in layer 1 at 00 UTC on 31 January 2013 focused on the contiguous United States.  The difference fields are 

FDDA target minus MPAS-A with FDDA to match the polarity of nudging. 
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Figure 86: Cross-sectional plots of water vapor mixing ratio (kg kg-1) along longitude 80° E from 55° N to 55° S for 00 UTC on 31 

January 2013, (a) from MPAS-A without FDDA, (b) FDDA target field, and (c) from MPAS-A using FDDA at one-tenth strength 

compared to the other nudged variables 
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Figure 97: Global streamline analyses for layer 28 (~500- 300 hPa) at 00 UTC on 31 January 2013, (a) from MPAS-A without 

FDDA, (b) FDDA target field, and (c) from MPAS-A using FDDA.  Streamline color indicates wind speed (m s-1/s). 
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Figure 108: Streamline analyses for layer 28 (~500- 300 hPa) at 00 UTC on 31 January 2013 focused on the contiguous United 

States, (a) from MPAS-A without FDDA, (b) FDDA target field, and (c) from MPAS-A using FDDA.  Streamline color indicates 

wind speed (m s-1/s). 
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Figure 119: Streamline analysis for layer 1 (surface) at 00 UTC on 31 January 2013 focused on the southeastern United States, (a) 

from MPAS-A using FDDA and (b) FDDA target field. Streamline color indicates wind speed (m s-1/s). 
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Figure 120: January 2013 time-series plots of 2- m temperature root mean squared error (RMSE) for MPAS-A without FDDA 

(black line), MPAS-A with FDDA applied using weaker qv nudging (red line), and MPAS-A with FDDA applied at equal strength 

for all variables. The top graph shows results for the entire global domain while the bottom graph shows results for the CONUS 

sub-domain. 5 
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Figure 131: July 2013 time-series plots of 2- m temperature root mean squared error (RMSE) for MPAS-A without FDDA (black 

line), MPAS-A with FDDA applied using weaker qv nudging (red line), and MPAS-A with FDDA applied at equal strength for all 

variables. The top graph shows results for the entire global domain while the bottom graph shows results for the CONUS sub-

domain. 5 
  

Formatted: Subscript



 

34 

 

 

Figure 142: January 2013 time-series plots of 2- m water vapor mixing ratio (qv) root mean squared error (RMSE) for MPAS-A 

without FDDA (black line), MPAS-A with FDDA applied using weaker qv nudging (red line), and MPAS-A with FDDA applied at 

equal strength for all variables. The top graph shows results for the entire global domain while the bottom graph shows results for 

the CONUS sub-domain. 5 
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Figure 153: July 2013 time-series plots of 2- m water vapor mixing ratio (qv) root mean squared error (RMSE) for MPAS-A 

without FDDA (black line), MPAS-A with FDDA applied using weaker qv nudging (red line), and MPAS-A with FDDA applied at 

equal strength for all variables. The top graph shows results for the entire global domain while the bottom graph shows results for 

the CONUS sub-domain. 5 
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Figure 164: January 2013 time-series plots of 10- m wind speed root mean squared error (RMSE) for MPAS-A without FDDA 

(black line), MPAS-A with FDDA applied using weaker qv nudging (red line), and MPAS-A with FDDA applied at equal strength 

for all variables. The top graph shows results for the entire global domain while the bottom graph shows results for the CONUS 

sub-domain. 5 
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Figure 175: July 2013 time-series plots of 10- m wind speed root mean squared error (RMSE) for MPAS-A without FDDA (black 

line), MPAS-A with FDDA applied using weaker qv nudging (red line), and MPAS-A with FDDA applied at equal strength for all 

variables. The top graph shows results for the entire global domain while the bottom graph shows results for the CONUS sub-

domain. 5 
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Figure 186: Time-series plots of total moist air mass (left column), total water vapor mass (center column), and total dry air mass 

(right column) scaled to their initial values for the two test periods.  Results are from MPAS- A without FDDA (green line), 

MPAS-A using weaker qv nudging (red line), and MPAS- A using equal nudging for all variables (blue line). 
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