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Abstract. The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of

lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied in a set of 35-year hindcast

simulations. Additionally, sensitivity tests related to the parameterization of snow albedo were conducted. Our results show

that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2-m temperature

and precipitation, but the downside is that an existing wintertime cold bias in the model is enhanced. The lake surface water5

temperature, ice depth and ice season length were analyzed in detail for ten Finnish, four Swedish, two Russian and one

Estonian lakes. The results show that the model can reproduce these characteristic with reasonably high accuracy. The cold

bias during winter causes e.g. overestimation of ice layer thickness at several of the studied lakes, but overall the values from

the model are realistic and represent well the lake physics in a long-term simulation. We also analyzed the snow depth on ice

from ten Finnish lakes and vertical temperature profiles from five Finnish lakes and the model results are realistic.10

1 Introduction

The interactions between the atmosphere and the underlying surface are among the most important factors in climate and

numerical weather prediction (NWP) modelling (Mironov, 2008; Samuelsson et al., 2010). Land and sea surfaces are dominant

globally, but regionally, lake surfaces can play a significant role. Locations like northern Europe, Asia and North America have

rather high lake area densities, and the interactions between the atmosphere and lake surface can be a major driver in regional15

and local climate. Thus, in order to make reliable climate simulations, models should include lake modules that have reasonable

complexity to simulate interactions between the atmosphere and lakes (Kirillin et al., 2012).

In regional climate models (RCM), lakes have been historically taken into account by setting the related variables (e.g.

surface temperature and ice conditions) to follow external data, which often has been derived from the same data source

as the lateral boundary data for the atmospheric variables. This approach can be applied in regions with a low fractional20

area of lakes whereas regions with a large fractional area of lakes suffer from the limited interactions between lakes and the
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atmosphere. Deficiencies or missing representation of lake processes can cause artificial features in climate model results. For

example, Kotlarski et al. (2014) showed that over Fenno-Scandinavia many EURO-CORDEX (Coordinated Regional Climate

Downscaling Experiment for European domain) RCMs have artificial heat sources during winter. These can be directly linked

to the large fractional area of lakes, whose prescribed surface temperatures violate surface-atmosphere interactions. Some of

the models still use a simple approach where the lake temperatures and ice conditions are linked to the closest sea point. In5

reality, Fenno-Scandinavian lakes usually freeze before the nearest sea area, because there the lakes are more shallow and

consist of freshwater (Kirillin et al., 2012). This means that with the nearest sea point approach, lakes continue to emit heat and

moisture to the surrounding atmosphere for far too long during early winter, thus causing artificial heat and moisture fluxes to

the atmosphere.

To overcome the deficiencies in lake representation, lake models have been implemented in some RCMs (e.g. Martynov10

et al., 2010; Samuelsson et al., 2010; Gula and Peltier, 2012; Mironov et al., 2012; Bennington et al., 2014) and NWP models

(e.g. Mironov et al., 2010; Yang et al., 2013). In most cases these models resolve the vertical profiles of lake variables in 1-D

without any direct horizontal influence. This approach is widely used, because it is computationally efficient and has been

shown to reproduce realistic lake and climate related variables (Kourzeneva et al., 2012; Stepanenko et al., 2013; Mallard et al.,

2014). There are also 2-D and 3-D lake models (e.g. León et al., 2007), but these models are usually much more computationally15

demanding than 1-D models. Furthermore, 3-D lake models require a higher resolution computational grid (∼2 km) and lake

specific inflow and outflow information (Martynov et al., 2010). In principle, a high resolution 3-D lake model could be coupled

with a RCM of lower resolution by various down-scaling approaches, but this would further increase the computational costs.

One widely used 1-D freshwater lake model is FLake (Mironov, 2008), which has been coupled into several climate and

weather models (Stepanenko et al., 2013). For example, Mironov et al. (2010) introduced FLake into the numerical weather20

prediction model COSMO and showed that the coupling improved the prediction of lake surface temperatures, the freeze-up

of lakes and the ice break-up across Europe. The COSMO-FLake system eliminated the significant overestimation of the lake

surface temperatures during winter. Samuelsson et al. (2010) showed that the implementation of Flake to the Rossby Centre

regional climate model RCA reduces known biases by increasing the 2m temperature over Europe by up to 1 ◦C and the

precipitation by 20-40% when compared to a simulation without lakes. Martynov et al. (2012) simulated North American25

climate with the Canadian Regional Climate Model (CRCM) using two different lake models: FLake and Hostetler (Hostetler

and Bartlein, 1990). The authors showed that FLake performed very well over their domain giving better results than the

Hostetler model while the large and deep lakes caused some problems for both models. Finally, Mallard et al. (2014) showed

that in the Weather Research and Forecasting (WRF) model, FLake significantly improved the timing and extent of ice coverage

and reduced errors in lake temperatures.30

In this study, FLake has been interactively coupled with the regional climate model REMO. With the new model version

called REMO-FLake, we have simulated over 35 years of the Fenno-Scandinavian climate and compared the results against the

default model version and measurement data. Moreover, the lake related variables (e.g. surface temperature, ice thickness and

snow depth on ice) have been compared to observations for ten Finnish, four Swedish, two Russian and one Estonian lakes.

Additionally, some analysis has been made for vertical temperature profiles in five Finnish lakes.35
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The article is structured as follows: first, REMO, FLake and the implementation structure are described in Section 2; in

Sections 3 and 4 a detailed analysis of the results is given; finally, in Section 5, the main conclusions are discussed.

2 Methods

2.1 REMO

In this work, the hydrostatic version of the REgional MOdel REMO (version REMO2015) has been used (Jacob and Podzun,5

1997; Jacob, 2001). REMO is a three-dimensional atmosphere model developed at the Max Planck Institute for Meteorology

in Hamburg, Germany, and currently maintained at the Climate Service Center Germany (GERICS) in Hamburg. The model

is based on the Europa Model, the former NWP model of the German Weather Service. The prognostic variables in REMO

are horizontal wind components, surface pressure, air temperature, specific humidity, cloud liquid water and ice. The physical

packages originate from the global circulation model ECHAM4 (Roeckner et al., 1996), although many updates have been10

introduced (e.g. Hagemann (2002); Semmler et al. (2004); Pfeifer (2006); Kotlarski (2007); Teichmann (2010); Pietikäinen

et al. (2012); Preuschmann (2012); Wilhelm et al. (2014)).

REMO uses a leap-frog scheme with time filtering by Asselin (1972) for the temporal discretization. To allow for longer

time steps a semi-implicit correction is used. REMO’s vertical atmospheric levels are represented in a hybrid sigma-pressure

coordinate system, which follows the surface orography in the lower levels and is independent of it at higher atmospheric15

model levels. Horizontally, REMO has a spherical Arakawa-C grid (Arakawa and Lamb, 1977), where all prognostic variables,

except winds, are calculated at the center of a grid box. The wind components are calculated at the edges of the grid boxes.

At the lateral boundaries of the model domain, REMO uses the relaxation scheme developed by Davies (1976). In this

scheme, the prognostic variables of REMO are adjusted towards large-scale forcing at the 8 outermost grid boxes. The outside

forcing decreases exponentially in this zone towards the inner model domain. At the surface, the sea surface temperature20

(SST) and sea ice distribution are prescribed by the lateral boundary forcing data-set. At land points, a fractional land surface

scheme is used and details can be found, for example, in Kotlarski (2007) and Rechid (2009). Shortly, the scheme uses a

tile approach with 3 tiles: land, water and ice (Semmler et al., 2004). The biogeophysical characteristic of the land tile are

described through surface parameters. The leaf area index, fractional green vegetation cover and background surface albedo

are prescribed with monthly values accounting for the seasonality of the vegetation characteristics (Hagemann, 2002; Rechid25

and Jacob, 2006). The background albedo has some further developments in terms of pure soil and pure vegetation albedo

(Rechid, 2009; Rechid et al., 2009). Soil temperature profile is resolved using 5 soil layers of increasing thicknesses reaching

10 m depth. The soil hydrology is based on a simple bucket scheme by Manabe (1969) with an improved accounting of the

subgrid scale heterogeneity of the field capacities within a climate model gridbox (Hagemann and Gates, 2003). The vertical

diffusion fluxes due to sub grid scale turbulence are calculated for the lowest layer (surface layer) according to Louis (1979).30

The 2-meter temperature calculation is based on these fluxes (Roeckner et al., 1996). The snow parameterization is based on

the ECHAM4 approach, which was later improved by Semmler (2002) for better performance in high-latitude regions. The

snow layer is divided into two parts for the heat conductivity calculations. A top layer (0.1 m thickness) is used for defining
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the surface temperature of the snow pack and serves as an interface to the atmosphere. The temperature in the rest of the snow

pack is calculated using the top snow layer temperature and the top soil layer temperature. If the temperature of these two snow

layers reach melting point, any further energy input is used for snow melt. The density of the snow and the heat conductivity

are parameterized as a function of the snow layer temperature (Roeckner et al., 1996; Kotlarski, 2007).

Lakes are included in REMO through the default land cover map: Global Land Cover Characteristics Database (GLCCD;5

Loveland et al., 2000; US Geological Survey, 2001). However, the standard land surface scheme does not have a tile for lakes

and thus does not allow for their explicit treatment. Instead, the model uses the nearest sea-point approach for all non-sea

water fractions to determine the water temperature and ice conditions. As indicated above, the nearest sea-point approach can

lead to a significant distortion of the simulated climate, which suggests that REMO would benefit from a coupling with a

physical/process based lake model.10

2.2 FLake lake model

FLake is a thermodynamic freshwater lake model, which predicts the mixing conditions and vertical temperature structure of

lakes on time scales from a few hours to several years (Mironov, 2008; Mironov et al., 2010). FLake’s water module calculates

the heat and kinetic energy budget for the upper mixed-layer and the basin bottom. The model can be used for various basin

depths and even though it has been intended for use in NWP and climate models, it can be used as a standalone model as well.15

FLake uses a bulk-approach and is based on a self-similarity (assumed-shape) representation of the temperature profile in the

mixed-layer and thermocline. In addition, it calculates the mixed-layer depth as well as the temperature and thickness of both

ice and snow on ice. Optionally, FLake can calculate the flux between the bottom sediment and the lake bottom. In this case,

thickness and temperature of the thermally active upper sediment layer are calculated. A more detailed description of FLake

can be found in Mironov et al. (2010), where the authors give a detailed list of FLake parameters and more information about20

the numerical core.

2.3 Implementation of the FLake model

REMO’s surface fractions are based on the Global Land Cover Characteristics (GLCC) database (US Geological Survey,

2001). This database has a nominal 1-km spatial resolution and includes lakes as one variable. REMO’s surface pre-processor,

which creates the surface related parameters including the fractions of different tiles (land, water and ice), was modified in this25

work to include also the lake fraction as an output variable. Thus, while the standard version of REMO lumps sea, lakes and

rivers together in the water tile, here a separate tile is created for lakes and rivers. The lake depth data were taken from the

detailed dataset developed by Choulga et al. (2014), which gives the mean depths of lakes in a global grid (version v3). Using

a dataset with realistic lake depths is important, as shown by Samuelsson et al. (2010). Additionally, the dataset by Choulga

et al. (2014) includes lake fractions, but to be consistent with the rest of the model, the GLCC lake fractions were used. In30

practice, this means that whenever there is a lake in the GLCC dataset, the lake depth is taken from the Choulga et al. (2014)

dataset. For points where Choulga et al. (2014) has no data, a default value is used and it can be set beforehand within the
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surface pre-processor. In this work, a default value of 7 m was used, which is a typical mean depth for our domain based on

the data by Choulga et al. (2014).

FLake is directly implemented to REMO so that in every time step all the lake-related parameters are calculated online. The

lake tile is assumed to be either completely open (ice fraction 0) or completely frozen (ice fraction 1). This differs from the

original water area approach, which is separated into water and ice tiles. This is due to the 1-D approach of FLake, which does5

not distinguish between different lakes within one gridbox. In practice, this means that the lake tile has three possible states:

open water, ice-covered without snow, or ice-covered with snow on the ice. This differs from the original approach, where the

fraction of sea and ice was taken from the driving data. However, as there is a resolution difference between our simulations

(roughly 18 km resolution) and the driving data (ERA-Interim, approximately 80 km (Dee et al., 2011)), the fractional ice-

cover values for lakes from the driving data are either 0 or mostly between 0.9 and 1. Thus, in practice, the ice fraction values10

are close to binary already in the standard version of the model. All the tile-specific variables (e.g. specific humidity, surface

temperature, surface fluxes and albedo) are now calculated for the lake tile by taking into account the tile’s state. The tile-

related variables are averaged based on their fraction in a gridbox and the host model uses these averaged values in the physics

calculations.

The FLake model also includes a surface-flux parameterization (SfcFlx). However, as REMO resolves the state of the surface15

and related fluxes for other tiles, for consistency we let it calculate those for lake tile as well. Below the land surface, REMO

uses a diffusion equation solver in a 5-layer model with zero heat flux at the bottom (10m). For the lake tile, this has not been

used; instead, FLake’s own lake bottom sediment module has been implemented to REMO. This module calculates the heat

flux at the water-bottom sediment interface by using the depth of the upper layer of bottom sediments that is penetrated by the

thermal wave, and the temperature at that depth. However, the bottom sediment module is important only for shallow lakes20

and thus, we use a 5 meter cut-off limit: for lakes deeper than this the bottom sediment module has been switched off (FLake

webpage, http://www.flake.igb-berlin.de). Moreover, as FLake is not suitable for deep lakes (Mironov et al., 2010), a “false

bottom” approach has been used. In this approach, the maximum lake depth has been set to 50 m. As a security check, the

bottom sediment module has been switched off for lakes deeper than 50 m. This has a negligible impact on the results, because

typically there are no significant temperature changes in such depths for fresh-water lakes (Samuelsson et al., 2010). Although25

the 5 meter cut-off limit already switches off the bottom sediment for lakes deeper than 50 m, we have kept both of these

options for future testing purposes.

Even though the snow module of FLake has not been thoroughly tested, there is some evidence that especially in climate

simulations the snow module gives realistic results (D. Mironov, personal communications, 2015). We have also updated the

coefficients used to calculate snow density and heat conductivity as suggested by Mironov et al. (2012). These changes are30

needed as the original approach yielded too low snow density and too high snow temperature conductivity. Moreover, we have

implemented an alternative approach for snow heat conductivity, with an effective snow heat conductivity kseff as proposed by

Semmler et al. (2012):

kseff = ks +(ki − ks)× e−hs×c, (1)
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where ks is the heat conductivity of snow (0.14 W/(mK)), ki is the heat conductivity of lake ice (2.29 W/(mK)), hs is the

snow depth (m) and c is an empirical constant (5 m−1). In practice, this approach increases the heat conductivity for thin snow,

because it is highly probable that there is also bare ice in the vicinity of thin snow due to snow redistribution by wind drift; thus,

the kseff is actually a mixture of snow and ice conductivity. Due to stability issues, we start to accumulate snow over ice only

when the ice layer is at least 3 cm thick. In addition, the ice albedo limits from Semmler et al. (2012) have been implemented5

(similar changes were also made by Yang et al. (2013)). The default albedos in FLake is from 0.1 to 0.6 for ice and snow,

respectively, while the ice albedo range applied in Semmler et al. (2012) is from 0.3 to 0.5. Moreover, we have changed the

snow albedo limits and these changes will be shown in details in the next section.

For all other FLake model related variables and parameters the default FLake configuration has been used (Mironov, 2008;

Mironov et al., 2010).10

2.4 The snow albedo

Snow albedo is an important part of the energy cycle and at least in global climate models, the simulated temperature can be

quite sensitive to relatively small changes in snow albedo (e.g. Räisänen et al., 2017). Lakes in the Nordic countries are usually

always covered with snow during winter. The snow module of FLake does not calculate snow albedo separately and uses the

same albedo for snow as for ice. Thus, as a snow albedo scheme had to be implemented for the lake tile, we have also looked15

into the details of the current snow albedo scheme in REMO as well as studied a possible alternative approach for it.

Three treatments of snow albedo αsn are considered in this work: a temperature-dependent scheme, a snow albedo scheme

originating from the Biosphere-Atmosphere Transfer Scheme (BATS; Dickinson et al., 1993), and their combination. By de-

fault, REMO employs a temperature-dependent snow albedo scheme. The shortwave radiation module for REMO separates

visible and near-infrared spectral regions (VIS and NIR, respectively) for surface albedo, but in the default treatment, a broad-20

band approach (the same albedo for the VIS and NIR regions) is used for snow albedo. The snow albedo over land is tempera-

ture dependent and gets its maximum value αsnmax = 0.8 when the snow temperature is below −10 ◦C. At higher temperatures

αsn decreases linearly until it reaches the snow albedo minimum αsn = 0.4 at the freezing point. Moreover, the forest fraction

of the grid cell influences linearly the albedo maximum and minimum values so that they reach values of αsnmax
= 0.4 and

αsnmin
= 0.3 at a forest fraction of unity (details in Kotlarski (2007)). However, these values of forested αsnmax

and αsnmin
25

are slightly higher than those shown in the literature (e.g. Roesch et al., 2001, and references therein), and therefore, in the

present work we have reduced both αsnmax and αsnmin to 0.25 for completely forest-covered gridboxes, following Gao et al.

(2014).

The temperature-dependent αsn takes into account that the snow albedo is lower when snow is wet, i.e. is near the freezing

point. However, this approach does not take into account the aging of snow, soot loading, grain size or the influence of solar30

zenith angle. As these play a role in αsn, in this work, we have implemented the snow albedo scheme from the Biosphere-

Atmosphere Transfer Scheme (BATS; Dickinson et al., 1993). In this scheme, αsn takes into account the aging of snow and

solar zenith angle, and is calculated separately for VIS and NIR. The aging of snow is based on three terms: the first represents

the effect on snow grain growth due to vapor diffusion, the second represents the additional effect near and at freezing of melt
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water, and finally the third one introduces the influence of soot and dirt through a global time-independent constant (details

in Dickinson et al. (1993)). The VIS αsn is allowed to get values between 0.9 and 0.5 and the NIR αsn between 0.65 and

0.25, where the highest values are employed for new snow. The forest fraction decreases these values as with the temperature-

dependent broadband approach so that a fully forested gridbox has a VIS snow albedo of 0.25 and a NIR albedo of 0.2.

The temperature-dependent scheme aims to describe the reversible changes in the crystal structure of snow when the tem-5

peratures approach the melting point. On the other hand, the BATS scheme describes the irreversible crusting of a snow layer

and the accumulation of aerosols and other impurities in the snow through the aging factor. As these both are important in

reality, we modified the source code so that one can choose either the original scheme, the new BATS scheme, or a combined

approach similar to that employed in the JSBACH model (Raddatz et al., 2007; Brovkin et al., 2013; Reick et al., 2013). In the

JSBACH approach, the schemes are weighted and in this work we have used equal weights.10

The albedo reduction due to forests only occurs over land areas. Therefore, snow albedo (and for the BATS scheme, snow

aging) is calculated separately for land and lake tiles as one gridbox can have snow on both tiles. The gridpoint snow albedo is

then calculated as an area-weighted mean value of the tile albedos.

2.5 Simulations

We have made simulations for the Northern Europe for the period of July 1979 – March 2015. The simulations employed15

a warm-start method, which means that at the start of the simulation soil temperature, soil moisture and lake variables were

obtained from existing simulation data. In the warm-start method, the model was run for the whole time period with default

initial values (for REMO and REMO-FLake separately) and then the model’s state in July 2014 was used as the initial state for

the actual and analyzed simulations (starting in July). More details about the method for the same domain can be found in Gao

et al. (2014) and Gao et al. (2015).20

The horizontal resolution of the simulations was 18 km×18 km (0.167◦) with 27 vertical layers (the model top reaching 25

km altitude while 6 lowest levels are on average within the planetary boundary layer in our domain) and 90 s time step. The

lowest levels is at a height of about 60 m above the surface. The lateral meteorological boundary forcing was obtained from

ERA-Interim data with a 6-hourly update frequency (Dee et al., 2011). The simulation domain can be seen in Fig. 1, where the

used lake fraction, mean depth, surface elevation, and locations and names of the analyzed Finnish lakes are shown. We have25

conducted a total of 5 simulations: 1 without FLake and 4 with FLake (Table 1). The simulation without FLake (REMO-ST)

was conducted using the default configuration of the model. The simulations with FLake included a baseline run (REMO-FL)

with the temperature-dependent snow albedo scheme, a run with the BATS snow albedo scheme (REMO-FLB), and a run with

the combined temperature-BATS albedo scheme (REMO-FLTB). The fourth simulation (REMO-FLOS) was otherwise similar

to REMO-FL but used FLake’s original snow heat conductivity approach instead of the Semmler et al. (2012) approach. For30

all temperature-dependent snow albedo simulations (REMO’s default configuration) the broadband albedo has been used, but

for all simulations including the BATS scheme, the VIS and NIR separation approach has been used (details in Section 2.4).
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2.6 Lake data

The modelled lake variables are evaluated against three different measurement data. Firstly, the main data source covering all

analyzed lakes in Finland is the measurement data from the Finnish Environment Institute (SYKE). Measurement data of SYKE

includes lake surface water temperatures (LWT), ice cover periods and ice thickness with snow on ice for all studied lakes.

Vertical water temperature profiles are available for five lakes. Secondly, the International Lake Environmental Committee5

(ILEC) data is used for lake surface temperatures and ice cover period outside Finland (ILEC, 1988-1993). Lastly, for some

lakes in Sweden, Russia and Estonia the ice cover period is taken from the National Snow and Ice Data Center’s (NSIDC)

Global Lake and River Ice Phenology data (Benson and Magnuson, 2000, updated 2012).

The Great Saimaa Lake is the largest lake by area in Finland (see Table 2 and Fig. 1). However, its areal definition is not

unambiguous, because it is a combination of several open lake areas connected by straits. In our study, we have divided the10

Great Saimaa Lake into two parts. Lake Haukivesi is a lake in between Varkaus and Savonlinna cities and represents the north-

western part of the Great Saimaa Lake. Another focus area in our study is the southern part, where the open lake area is actually

called Saimaa, i.e. in our study, the name Lake Saimaa points to the southern area of the Great Saimaa Lake.

Table 2 shows the mean lake depths and the means calculated from the data by Choulga et al. (2014). It also shows the

longitudinal and latitudinal boundaries that are used to define the lake area in the analysis of the model results. As can be seen,15

the average depths are reasonably similar between the literature and model data, except at Lappajärvi, where the dataset by

Choulga et al. (2014) gives a 16 m depth for the whole lake while in reality it is closer to 7 m, and at Kallavesi, Haukivesi

and Näsijärvi, where the FLake database does not have information about the depth and the default value of 7 m is used, at

Mälaren, where the overall shape of the lake is not well represented in the database and causes underestimation of the mean

depth, and at Vättern, where the difference is slightly over 10 m. There is also over 10 m difference at northern part of lake20

Ladoga, but there the literature based average depth for the whole lake has been also used for the northern part and this causes

error.

Table S1 (supplementary) introduces the measurement locations from the SYKE database (the locations can be seen from

Fig. 1). It defines the actual locations (lake name is used if the measurement is done at the open lake or if it represents the

whole lake area) and shows how many measurements sites are used in the actual analysis. If an analyzed variable has more25

than one source for some time period, a mean value has been used. Different sources give more information about the spatial

differences of the analyzed area, which reduces the error when comparing point measurements against larger model grids. The

LWTs are measured at 8 o’clock in the morning (local time) and all modelled LWTs are also taken from this same time of the

day. Ice thickness and the snow depth on ice have been measured at different times of the day and thus the modelled daily mean

value is used. The SYKE measurements for LWT, ice depth and snow on ice are done close to the lake shore, which causes30

some error when compared to lake’s average modelled values. This will be discussed in more details in the following sections.
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3 Climate impacts

We have compared the modelled 2-m air temperature and precipitation fields against the E-OBS version 16 gridded dataset

(Haylock et al., 2008). For this comparison, the modelled values were remapped to the E-OBS grid, which is slightly coarser

(0.25◦) than the REMO grid. The accuracy of the E-OBS data depends on the density of the underlying measurement network

and naturally this introduces some error (e.g. Kotlarski et al., 2014, and references therein). We do not explicitly consider5

the observational uncertainties like undercatch of precipitation, but they should be kept in mind (Prein and Gobiet, 2017).

Moreover, the relaxation zone, i.e. the area where the lateral forcing directly influences the results, has been removed from the

analysis. All shown 2-m air temperatures values have been corrected with the lapse rate γ = 0.0064 ◦C/m to compensate for

the effect of orography difference on temperature.

In the analysis part (Section 3.1) we will show only the differences between the E-OBS measurement data and model results.10

The absolute values from E-OBS for 2-m air temperature and precipitation are shown in Fig. 2. The values are multi-year

seasonal means for 2-m temperature and multi-year mean seasonal sums for precipitation.

3.1 Influence of the lake model FLake

The comparison of the model results against the E-OBS 2-m air temperature and surface precipitation for the standard REMO

run (REMO-ST) and for the REMO-FLake (REMO-FL; details in Tab. 1) is shown in Fig. 3. The areas marked with dots15

indicate their statistical significance, with p-values < 0.05. As the E-OBS data is based on measurements over land and the

values given over lakes are an interpolation of these measurements, a direct comparison against the model’s results causes

artificial biases over gridboxes with a high lake fraction. To reduce these biases, we have excluded all grid points where the

lake fraction is equal or larger than 0.5. While we have no direct measurements of 2-m temperatures over lakes, we will analyze

in Sections 4.1 and 4.2 the LWTs, which are generally close to the 2-m temperatures over lakes when they are not frozen.20

During the winter season, REMO-ST shows an overall temperature bias of -0.9 K for the domain while REMO-FL has a -2.4

K bias, as can be seen from Fig. 3. The spatial distribution of T2m in REMO-ST shows that the model has a cold bias in the east

and warm biases in northern Finland and throughout Sweden. The reason for the cold bias is still unknown, but the warm biases

originate from the treatment of lakes. While in reality the lakes should be frozen, in the model they are open due to the nearest

sea point treatment. This causes artificial heating and shows as warm biases in the spatial maps. With REMO-FLake, the warm25

bias is gone as the model now interactively calculates the LWTs and ice periods. This, on the other hand, leads to a very strong

cold bias throughout the domain. The bias is statistically significant nearly throughout the whole domain. Our analysis (not

shown here) indicates that the bias only occurs when there is snow on the ground, which strongly suggests that the cause of the

bias is linked to the surface treatment of the model rather than, for example, missing low-level clouds (without totally ruling

out this possibility). Figure 4 shows the surface specific humidity and 10-m wind speed from REMO-ST and the difference30

between REMO-FL and REMO-ST. We can clearly see that when FLake is included, the humidity decreases at the surface

during winter time as the artificial moisture sources are not anymore available. There are, however, some increased values

over lakes Ladoga and Onega, which tells that with FLake these lake have more open lake periods during winter than what
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was originally simulated based on the nearest neighbor approach. The 10-m wind speeds are also influenced by the roughness

length (larger wind speeds when the roughness length is smaller). Following the humidity, the winter-time 10-m wind speeds

are decreased in REMO-FL as the heating of the atmosphere is reduced and boundary layer stability is increased.

The spring season biases follow qualitatively the winter results in Fig. 3. REMO-ST has a smaller cold bias due to warmer

temperatures over lakes (-0.7 K). REMO-FL increases the cold bias to -1.4 K as the lakes stay frozen longer than in REMO-ST5

and do not artificially pump heat to the atmosphere (Fig. 4). The cold bias is weaker than in winter as the fraction of snow

covered surfaces decreases. Statistically, the differences in spring are significant. During summer, REMO-ST has a small cold

bias over the domain and REMO-FL a slight warm bias. Overall, the summer temperatures are captured very well in both

model versions. Autumn temperatures are warm biased in REMO-ST, but much better captured by REMO-FL. The REMO-ST

biases primary occur near lakes and are statistically significant. This indicates that the original approach for lakes starts to heat10

the atmosphere unrealistically while in reality lakes cool faster.

Figure 3 also shows the precipitation biases of REMO-ST and REMO-FL against E-OBS observational data. These differ-

ences are statistically significant in all seasons. REMO-ST has a winter bias of 22.7% over the whole domain while REMO-FL

has a 13.5% bias. The difference between the model versions is coming from the areas with high lake density. Although the

biggest lake areas have been masked out, due to transport processes the excess in moisture that triggers precipitation will show15

up also near the masked areas. This is visible especially in northern Finland, where Lake Inari is located. Also, from Fig. 4

we can see how REMO-FL reduces the winter moisture and decreases the wind speeds. Thus, it is clear that the use of FLake

removes the artificial heat and moisture sources and thus decreases the wet bias. The precipitation biases during spring are

also smaller with FLake (REMO-ST 54.5% and REMO-FL 47.3%) and the largest biases occur in northern Finland and the

surrounding areas. The difference to winter is that a wet bias occurs throughout the domain indicating that REMO captures20

better the snow precipitation rates than warm precipitation rates, i.e. rain.

The use of FLake increases significantly the precipitation bias in summer. REMO-ST has a 28.4% bias, but REMO-FL

yields a 46.6% bias with largest excess in precipitation in central-eastern Finland. Some overestimation can be also seen over

Sweden. The increased wet bias seems to be connected to the fraction of lakes (Fig. 1) and is caused by the increased convective

precipitation (analysis not shown here). Fig. 4 shows that the surface specific humidity and 10-m wind speeds increase in these25

areas. With the current horizontal resolution (18km×18km), the model uses a convective parameterization to calculate the

convection processes and it is based on the mass-flux scheme from Tiedtke (1989) with modifications by Nordeng (1994).

With REMO-FL, the lake surfaces are warmer and thus there is more evaporation and humidity, which tends to trigger the

convection. Although not shown here, we analyzed the lake surface temperatures also from the lateral boundary data, which

are the ones standard REMO uses. Our analysis showed that the LWTs in REMO-FL are 3-7 ◦C higher on average during30

summer than those in REMO-ST. This explains why there is more heat available for triggering the convection over lakes in

REMO-FL. Moreover, the increased 10-m wind speeds in REMO-FL enhance the evaporation, which can be seen as increased

near-lake surface humidity in REMO-FL. Nevertheless, we have not investigated in detail why there is excess in convective

precipitation and only suggest possible reasons. The convection scheme works during a single time step, i.e. convective clouds

form and precipitate during one time step, which causes precipitation to be too localized over lakes and there is not sufficient35
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transport of moisture. Another factor might be that the cloud cover is too small in the model, because convective clouds are not

radiatively active (i.e. the radiation scheme does not “see” convective clouds directly, but the model accounts for their transport

of moisture in the large-scale cloud scheme). Naturally, the LWTs in REMO-FL could be too high, but this does not seem to

be the reason, as will be seen in the later analysis.

The precipitation bias for REMO-ST during autumn (22.6%) is higher than for REMO-FL (17.8%). Like in winter, the wet5

bias in REMO-ST originates from lake areas: in reality, lakes cool faster than with the nearest sea point approach and this leads

to excess in heat and moisture near lakes in the nearest sea point approach. This can be also seen from Fig. 4 where REMO-FL

shows decreased surface humidity values when compared to REMO-ST. When FLake is used, temperature and moisture are

more realistic leading to smaller biases during autumn.

3.2 Snow analysis10

We have compared the model’s albedo to the CLARA-A2 dataset (Karlsson et al., 2017), which contains a global dataset

of surface radiation products based on the measurements of the Advanced Very High Resolution Radiometer (AVHRR) on-

board the polar orbiting National Oceanic and Atmospheric Administration (NOAA) and MetOP satellites (Schulz et al., 2009;

Karlsson et al., 2012; Riihelä et al., 2013). Since the satellite dataset does not cover mid-winter months due to too low solar

elevations, we have compared the monthly mean albedos for March and April. During these months, our domain still has snow15

and additionally, we can see the impacts of the snow melting period. Moreover, as the purpose of the comparison is to show

how much the different snow albedo methods influence the results, we limit the comparison to land and lake surfaces.

Figure 5 shows the multi-year monthly measured albedos and the model bias (model-measurements) for the time period of

1982 to 2014. We compare three model versions, which are the default REMO-FLake (REMO-FL), REMO-FLake with the

BATS albedo scheme (REMO-FLB) and REMO-FLake with the combined BATS and temperature albedo scheme (REMO-20

FLTB). Based on the albedo values, there is quite a lot of snow in our domain during March, whereas during April, the

southern part of the domain is snow-free. The different model versions show some differences in March; for example, over the

central-eastern part of the domain, REMO-FLB gives higher albedos than the simulations using the original (REMO-FL) or the

combined albedo parameterization (REMO-FLTB). Overall over land, REMO-FL tends to underestimate the albedo when there

is snow, but it is quite close to the measurements otherwise. The albedo over lakes in March is fairly well captured, although25

slightly overestimated with REMO-FLTB and especially in REMO-FLB. In March, the lake albedos seem to be overestimated

in all model versions, although with REMO-FL only slightly. The overestimation is due to the cold bias in the model, which

delays the melting of snow and ice. The same features can be seen as in April: the albedo in regions with snow is slightly

underestimated. We also analyzed how much the changes made to the snow albedo in forested regions impact the results (see

Sec. 2.4), but the difference is insignificant and cannot explain the overestimation (details not shown here).30

The impact of the different snow albedo parameterizations on simulated 2-m temperature and precipitation can be seen by

comparing REMO-FL in Fig. 3 with REMO-FLB and REMO-FLTB in Fig. S1. Overall, the impact is small. In the experiment

with the temperature-based snow albedo scheme (REMO-FL), snow melts somewhat faster than in the other two experiments,

but the domain-mean differences in seasonal-mean T2m bias are quite small, within ≈ 0.2 K. A partial explanation for this

11



is that as the model domain is quite northerly, the intensity of solar radiation is relatively low especially during winter. This

suggests that the cause of the bias is more linked to the thermodynamics of the snowy surface or boundary layer treatment in

the model, although the possibility of missing low-level clouds cannot be excluded.

We have also made some sensitivity experiments to see the impact of the snow heat conductivity. The changes by Semmler

et al. (2004), applied only over lakes, give better results than the original approach in REMO-FLOS (see Supplementary Fig.5

S1). The mean over the domain during winter does not differ significantly (REMO-FL -2.4 K vs. REMO-FLOS -2.7 K),

but from supplementary Fig. S1 we can see that the spatial pattern in the bias changes quite a lot. This also indicates that

thermodynamics of the snow layer can play a big role in the cold-bias problem. The differences in precipitation are also small

throughout the whole year. Overall, REMO-FLOS tends to precipitate slightly more than REMO-FL. Based on the results in

this and previous sections, we chose to use REMO-FL as the main source for analysis in the following sections, thus skipping10

the other versions.

4 Lake analysis

We have chosen to analyze only big lakes due to the resolution of the simulations. This means that all lakes analyzed extend

to at least 2 gridboxes (limits for the analyzed areas are shown in Table 2). When computing mean values for a specific lake,

values for the gridboxes covering this lake were weighted by the lake fraction in these gridboxes (weighted arithmetic mean).15

This way, the whole lake could be accounted for, even if the lake only covers a fraction of a specific gridbox. This approach

causes some error to our analysis as parts of other lakes in the analyzed gridbox might influence the results, but since the

model’s resolution is relatively high and the number of these cases is small, we consider this to be a realistic approach for

the lake analysis. If the resolution were to be increased, this method could eventually be replaced by direct analysis of the

gridboxes covering a lake. We also analyzed the variance from the 35-year averaged results for all variables and it was found20

to be so small that we have excluded it from the shown results.

4.1 Finnish lakes

We have analyzed the measured and modelled LWTs, ice thicknesses and snow depths on ice from 10 lakes in Finland. The

measured snow layer thickness is calculated from the snow water equivalent (SWE) using the same density formulation as is

used in the FLake (Mironov, 2008). This way, the results are more comparable and the actual thicknesses can be used instead25

of water-equivalents. More detailed information about the measurement locations can be found from Table S1 (supplementary)

and Fig. 1.

Figure 6 shows the results for all Finnish lakes included in this study. Overall, the main features are captured, but spring/early-

summer LWTs are 3-10 ◦C lower in the model than what is measured and the modelled summer time maximum are overes-

timated by 2-3 ◦C at eastern lakes. Spring underestimation can be linked to the model’s overestimation in the ice thickness30

due to the cold temperature bias shown in Sec. 3. A factor that may also contribute is that the modelled lakes always have an

ice cover of either 0 or 1. This is probably reasonable in autumn, as lakes overall freeze quite fast in the Nordic countries. In
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spring, however, lakes are known to have a time period with mixed open and frozen lake areas. The assumption of an ice cover

of 1 in such conditions can reduce the absorption of solar radiation in lakes (even though ice albedo is then generally rather

low), and thereby lead to underestimated LWTs. It can also cause the modelled ice season to be a bit longer than in reality, and

the moisture flux to be underestimated in spring. However, due to the cold LWTs, the moisture flux is small also in reality. We

anticipate that the impact of using binary ice cover (0 or 1) on LWTs is small, but this would be worth checking in future work.5

Finally, the spring underestimation of LWTs could be partly artificial. The LWT measurements are done close to the lake’s

shore, where ice disappears first, and therefore, the measured LWTs are warmer during spring than open-lake mean surface

water temperature (which the modelled values correspond to).

Summer time maxima are overestimated at lakes Pielinen, Kallavesi and Haukivesi. One explanation can be that these lakes

are shallower in the model than in reality (Table 2) and they heat up too fast. This would also explain why the spring LWTs are10

first underestimated, but later on overestimated: the cold bias delays the ice break-up in the model, but as soon as the open-lake

season starts, these shallower lakes start to heat up faster than in reality. Another reason for the overestimation can be that

these lakes have quite significant incoming and outgoing river discharge. This will cause some error when comparing LWT

measurements with a lake model without river discharge. Otherwise the summer maxima are well captured, which indicates

that although the annual open-lake time period is overall not as long as in the measurements, the summer is long enough for15

the lakes to warm to near-observed maximum temperatures. Autumn temperatures and features are well captured at all lakes

by the model, although a small underestimation (1-3 ◦C) can be seen. The near-shore measurement location means that the

measured autumn LWTs are actually colder than the mean lake mean surface water temperature, because shallower shores cool

faster than the open lake areas. This indicates that the measured autumn temperatures are actually a bit more underestimated in

the model than shown in Fig. 6.20

The ice thickness is reasonably well captured at most of the analyzed places, although the modelled values tend to be on the

upper end of the measured ones. The measured values have wider spread, because multi-year daily means are shown and the

measurement day varies from year to year. This causes the measurement data to have the wider spread, but it also gives some

information about the variation in the measured thicknesses. As was discussed earlier, the model has a very small variance in

the means, which indicates that the means shown in Fig. 6 are very representative for the whole period. Thus, it becomes clear25

that the model has a tendency to overestimate the ice thickness. The areas with biggest cold bias in Fig. 3 can be linked to

the lakes with the highest ice thickness overestimation (up to 20 cm) in Fig. 6 (Haukivesi, Saimaa, Näsijärvi and Päijänne; in

the south and east part of Finland). The overestimation is evident also in the Table A1 values (appendix), where the measured

mean ice-freeze-up and break-up times and ice period lengths are compared with the modelled values. Table A1 shows that

the model tends to form ice 2-3 weeks too early, captures the ice-break up period reasonably well (1-2 weeks too late) and as30

a sum of these, overestimates the ice period length typically by three weeks. Naturally, there are no thickness measurements

for the beginning or end of the ice season as the ice is too shallow to make these manual measurements. This explains why

yearly ice depth distribution is missing values from the tails. Also, as there are missing measurements, the values near freezing

and melting of lakes can be slightly biased high. The measurement location also influences the measured ice thickness. One

example is Saimaa, where the measurements are done close to the Saimaa Canal. This shortens the measured ice season by35
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delaying the start and advancing the end of it. Moreover, the definition of the actual date when a lake freezes or ice cover

breaks-up is not straightforward. For example, during spring the shores can be ice free, but the open areas are still covered with

ice. In the model, the ice season ends when there is no ice left in the whole analyzed area.

The amount of snow on ice seems to accumulate slightly too fast in the model, leading to an overestimation in the winter

maximum values. The overestimation varies from lake to lake and is roughly 5-20 cm. As with ice thickness, the model mean5

values are closer to the measured mean maxima. Besides the model precipitation biases, which are small during winter (Fig.

3), there are a few physical reasons for the overestimation. Like with the ice thickness, measurements have more variability,

whereas the modelled means are representative for the whole period (small variance). Wind is one factor that influences the

snow layer thickness and its natural variability at all lakes. As FLake is a 1-D model, there is no wind-driven transport of snow

between the gridboxes and transport of snow is not accounted in REMO either. This missing process can increase the modelled10

snow layer thickness quite significantly. This is especially important for more windy locations, such as lakes Lappajärvi and

Pyhäjärvi. Both of these lakes are located in the western part of Finland, which is very flat and due to the proximity of Gulf of

Bothnia also windy (see the orography in Fig. 1). Another factor influencing snow thickness is the lake size. While in FLake all

snow, even if falling on a thin ice layer, will accumulate over ice, in reality, the precipitated snow usually first forms a porous

snow-ice layer before it starts to accumulate as pure snow. This happens especially over big lakes and thus, the modelled15

overestimation in the snow thickness can be partly explained by this process. On the other hand, this implies that the model

overestimates the ice thickness even more than discussed above in connection to Fig. 6, because the measured ice thicknesses

include both black ice and porous ice. Moreover, if we look at the Fig. S2 in the supplementary material where the measured

and modelled snow amount on ice as well as the amount over land near lakes are shown, we can see that the modelled snow

thicknesses over lakes are roughly between the measured thicknesses over ice and land. Lakes Lappajärvi and Pyhäjärvi make20

an exception as at these lakes the modelled snow thicknesses are close to the ones measured over land. This suggests that the

main reason for the overestimated snow thickness at these lakes is the missing snow transport due to wind. Naturally, there is

some transport also over land areas, but it is not as efficient as over lakes, because the land surfaces are usually not as flat as the

lake surfaces leading to less efficient snow transport over land. Nevertheless, supplementary Fig. S2 shows that the modelled

snow thicknesses on ice are not unrealistically high as they are within the measured snow thicknesses over lakes and land. In25

summary, we have identified three factors contributing to the overestimated snow thickness on lakes: the missing porous ice

and snow transport processes, and the too early ice season, which allows snow to accumulate longer.

4.2 Swedish, Russian and Estonian lakes

Lake temperatures in Sweden, Russia and Estonia are well captured by the model, as can be seen from Fig. 7. The model shows

a small tendency to overestimate the lake temperatures, especially during spring. On the other hand, the autumn temperatures30

are well captured. The annual cycle is reproduced at all locations, although at lake Onega the summer peak is roughly 5 ◦C too

high. Overall, the model gives realistic LWTs at all analyzed locations.

Figure 7 shows that the model overestimates the ice period length on all locations, except at Võrtsjärv, where it is captured

very well. At other locations, the start of the ice period is 1-2 months too early and the ice cover lasts roughly one month too
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long. The ice period definition issues are one part of the problem, but if we look at how much there is still modelled ice when

the measurements show the end of the ice period, we can see that the values are still reasonably high (10-40 cm). This tends to

indicate that the main problem is the cold bias in by the model, especially when taking into account the too early start of the

ice season.

The ice period length analysis includes some error due to the definitions problems already discussed in the previous section5

(how to define when a lake is ice free). In addition, the cold temperature bias over the large area of the domain increases the

length of the modelled ice periods. The bias has an impact especially over the lakes in Russia. Some of the error is also coming

from the measurements. For example, for the lake Vättern, the ice period start time was calculated by using the mean of only

two years (1981 and 1984; there were no other data for the years 1981-1985) and the start time differed in these two years by

a month. In addition, the timing of the ice period can be quite difficult and this difference could be an explaining factor for10

differences in spring LWTs. One would expect that due to the earlier end of the ice season in the measurements, the LWTs

would be higher in the measurements than in the model results, but this is generally not the case; rather, REMO-FLake even

tends to overestimate the LWTs. Also, the measurement location can also play a role here; if it is close to the lake’s shore,

the modelled spring values will be underestimated and autumn time overestimated. However, there is no clear signal like this,

which would indicate that the measurement location is not a crucial factor here.15

4.3 Vertical profiles from specific lakes

We have also compared the vertical profiles of LWTs. The analysis has been done only for 5 Finnish lakes, because mea-

surement data were not available for all the locations analyzed in Sec. 4.1 (see Table S1 from the supplementary material).

Measurements are done during summer from a boat and winter through ice. The frequency of measurement data is usually 3

times per month and has some gaps during thin ice periods. This makes the measurement data frequency quite coarse compared20

to model data output frequency. Thus, we have filtered the model results to match the same dates as when the measurements

were made. Additionally, as the measurements have some gaps, we have excluded from the analysis all mean values which are

based on 1 or 2 measurement data points, to avoid the artificial inflation of the weight of sparse data points.

The calculation of the modelled vertical profiles is done by using the shape factor, mixing layer depth, mixing layer tem-

perature and bottom temperature (details of these variable and the calculation method can be found from Mironov (2008)).25

During the ice period, FLake does not change the mixing layer depth; instead the last value before the ice period is used for

the whole ice season. In the analysis, we have set the mixing layer depth to zero during the ice season and otherwise used the

modelled depth. The mean depths of the lakes are similar in the model as in reality (see Table 2), but the maximum depths are

not available from Choulga et al. (2014). Thus, in Fig. 8 the measurement depth and model lake depth are on separate y-axes.

In this way, we can compare the shapes of the temperature profiles while also looking into the actual temperatures. However,30

as the depths differ quite significantly, the profiles only tell how well the model captures the measured values in the current

depth setup. With more realistic depths, the profiles could change and this error source should be kept in mind.

The vertical profiles in Fig. 8 have been averaged seasonally. The overall shapes of the temperature profile during winter

is captured by the model, but there is some underestimation of the deeper temperatures. In this respect, lake Päijänne makes
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an exception as there REMO-FL shows higher temperatures close to the lake bottom than the measurements. The use of deep

soil temperature for lake bottom sediment temperatures can cause error, which could explain the differences near lake bottoms.

Nevertheless, the overall difference in temperature during winter is only up to 2 ◦C in any of the lakes. During spring the profiles

differ more than during winter. The near-surface temperatures show a larger discrepancy, which probably results again from

the model’s cold bias: it prolongs the ice season during spring, thus lowering the near surface temperatures. The temperature5

profile at lake Päijänne is influenced quite a lot by the cold bias impacts and they shift the profile from the measured warmer

top and colder bottom to the modelled colder top and warmer bottom. The spring difference in near-surface temperatures can

be seen also from Fig. 6. At other locations, the modelled profiles are closer to the measured ones and overall the temperature

difference stays within a few degrees.

During summer the profiles are fairly well captured. The measured and modelled surface temperatures are within 1-2 ◦C10

at all locations, but the near-surface temperatures differ at all locations. This is most probably caused by the assumed-shape

representation of the temperature profile in the model combined with different depths between the model and measurements.

Also, the near-bottom temperatures have a cold bias, especially at lake Pyhäjärvi, where it is almost 10 ◦C. This indicates

that the bottom sediment temperature has some error, a 35-year long spin-up run was performed. The bottom temperatures are

mainly lower in the model than in measurements at all locations and all seasons. This is somewhat surprising as the lakes are15

shallower in the model than in reality and thus, one could expect higher heat transfer from the atmosphere to the lake bottom

in the model during open-lake seasons. It is possible that the initial bottom temperatures, i.e. the deep soil temperature taken

from the ERA-Interim data, were too cold and the spin-up time was too short to correct this. However, we see no drift in the

lake bottom temperatures which would suggest that this is not the reason.

The shapes of the temperature profiles during autumn are in reasonable accord with the measurements. The measured values20

are higher than the modelled ones at all locations. The near-surface values are within a couple of degrees, but the near-bottom

temperatures differ by up to 5 ◦C. However, despite the differences and uncertainties related to analysis coming from the

different lake depths, the seasonally averaged vertical profiles are realistic and show that the REMO-FLake has the capability

to reproduce the vertical profiles of the lake temperatures.

5 Conclusions25

In this work, the regional climate model REMO was interactively coupled with the lake model FLake (REMO-FLake). With

the new version we have simulated the Fenno-Scandinavian climate over 35 years and evaluated the model in terms of climate

and lake-related variables. Fenno-Scandinavia has a large number of lakes of various sizes, making it a very suitable domain

for a coupled regional-lake model. In addition, we have tested how sensitive the model is to different lake parameters and how

much the snow albedo scheme influences the winter time climate.30

REMO-FLake can reproduce the Fenno-Scandinavian climate realistically. However, the REMO model tends to have an

overall cold bias over northern areas when there is snow on the ground. This is also visible in REMO-FLake, which in fact

enhances the cold bias in winter. The reason for this is that the standard model version gets the lake temperature and ice cover
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from the nearest sea-point, leading to unrealistic heat and moisture sources, and thus decreasing the underlying bias problem.

Excluding the snowy seasons, REMO-FLake captures the Fenno-Scandinavian temperatures better than the original version.

In terms of precipitation, REMO-FLake outperforms standard REMO in all others seasons than summer. During summer, the

convective precipitation is too active in REMO-FLake leading to a wet bias over areas with a high lake density.

We analyzed in detail the lake water temperatures (LWT), ice thicknesses and snow amounts over ice from 10 different5

Finnish lakes. The results show that the model can capture the LWTs well, although there are some differences during spring

due to the longer modelled ice period associated with the cold bias. The ice thicknesses tend to be overestimated, especially in

areas where the cold bias is strongest. The snow thickness on ice also shows slight overestimation, which is caused either by

the missing porous ice formation in FLake or the missing horizontal snow transport due to wind. Overall, the model performs

well in terms of the variables analyzed. We also did some LWT and ice depth analysis for lakes outside Finland. This analysis10

showed that the model performs very well throughout the Fenno-Scandinavian domain. Ice depth and ice season length had

some overestimations due to the cold bias in the model, but overall, the differences to measurements were small. The vertical

lake temperature profiles were also analyzed and they showed that the modelled profiles have very similar features as the

measured ones, while the modelled near-bottom temperatures are generally underestimated.

We did not analyze in detail the reasons for the cold bias in this work. However, we did test how sensitive the model is to the15

snow albedo scheme, which is originally based on a snow temperature approach. We implemented another scheme originating

from the Biosphere-Atmosphere Transfer Scheme (BATS), which takes into account the aging of snow, soot loading, grain

size and the influence of solar zenith angle. Our test simulations shows that the snow albedo has only a minor impact on the

cold bias. Although the snow albedos had differences between the two schemes, the impact on simulated climate is reduced by

the rather low intensity of solar radiation during the snow season in Fenno-Scandinavia. A detailed analysis of the cold bias20

problems and causes behind it will be left for forthcoming model development steps and publications. In particular, it would be

worth looking at the representation of snow physics at land, including snow heat conductivity. From a technical point of view,

the computational costs of the implemented lake model are insignificant, thus further suggesting the use of the new model

version.

6 Code availability25

The source code for FLake is publicly available (http://www.flake.igb-berlin.de/). The sources for REMO(-FLake) are available

on request from the Climate Service Center Germany (contact@remo-rcm.de).

7 Data availability

Due to the very large size of the data files, the data are not publicly available, but they can be requested from the first author.
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Table 1. Simulation names with the configurations showing whether FLake is used or not, which snow albedo scheme (αsn) is used and

which snow heat conductivity (ks) method is used.

Simulation FLake αsn ks (lakes)

REMO-ST No T-scheme -

REMO-FL Yes T-scheme Semmler et al. (2012)

REMO-FLB Yes BATS Semmler et al. (2012)

REMO-FLTB Yes T-scheme + BATS Semmler et al. (2012)

REMO-FLOS Yes T-scheme FLake original

Figure 1. Lake fraction (left, based on GLCC data) and lake depth (center, based on Choulga et al. (2014) data) of the calculation domain.

Additionally, the surface geopotential height of Finland and the locations and names of the analyzed Finnish lakes (right, based on Aalto

et al. (2016) data).

Appendix A: Ice cover period analysis
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Table 2. Analyzed lakes with their mean depth, mean depths applied in REMO and the lake area information for the REMO analysis (SYKE

refers to the Finnish Environment Institute).

Lake Data source Mean depth [m] REMO area mean REMO area REMO area

depth [m] longitudes latitudes

Haukivesi (Fin) SYKE 9.1 7.0 27.9↔ 28.9 61.9↔ 62.3

Inari (Fin) SYKE 14.3 13.3 27.0↔ 28.6 68.7↔ 69.2

Kallavesi (Fin) SYKE 9.7 7.0 27.4↔ 28.0 62.5↔ 63.0

Lappajärvi (Fin) SYKE 6.9 16.0 23.4↔ 23.9 63.1↔ 63.3

Näsijärvi (Fin) SYKE 13.7 7.0 23.5↔ 23.9 61.5↔ 61.9

Oulujärvi (Fin) SYKE 7.0 6.8 26.7↔ 28.0 64.1↔ 64.6

Pielinen (Fin) SYKE 10.1 9.8 29.0↔ 30.2 62.9↔ 63.6

Pyhäjärvi (Fin) SYKE 5.5 5.4 22.1↔ 22.4 60.9↔ 61.1

Päijänne (Fin) SYKE 14.2 14.5 25.1↔ 25.9 61.2↔ 62.2

Saimaa (Fin) SYKE 10.8 13.6 27.7↔ 28.8 61.1↔ 61.6

Hjälmaren (Swe) ILEC (1988-1993) 6.2 5.9 15.3↔ 16.3 59.1↔ 59.3

Mälaren (Swe) ILEC (1988-1993) 13.0 6.1 16.1↔ 17.1 59.2↔ 59.6

Vänern (Swe) ILEC (1988-1993) 27.0 22.0 12.3↔ 14.1 58.4↔ 59.4

Vättern1 (Swe) ILEC (1988-1993) 41.0 29.0 14.1↔ 15.0 57.8↔ 58.8

Benson and Magnuson (2000, updated 2012)

Ladoga1 (Rus) northern part ILEC (1988-1993) 51.0 62.4 29.8↔ 33.0 60.8↔ 61.8

Ladoga1 (Rus) whole lake Benson and Magnuson (2000, updated 2012) 51.0 47.3 29.8↔ 33.0 59.9↔ 61.8

Onega1 (Rus) ILEC (1988-1993) 30.0 25.7 34.3↔ 36.5 60.9↔ 62.9

Benson and Magnuson (2000, updated 2012)

Võrtsjärv2 (Est) ILEC (1988-1993) 2.7 3.0 25.9↔ 26.2 58.1↔ 58.4
1 lake temperature from ILEC (1988-1993) and ice cover period from Benson and Magnuson (2000, updated 2012)
2 lake temperature and ice cover period from ILEC (1988-1993)
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Figure 2. The reference values of 2-m temperature and precipitation from E-OBS data. The seasonally averaged results are for the time

period of October 1979 - March 2015.

Table A1. Measured ice-period start and end days (as the day of the year) and the length of the ice period in days. The differences to modelled

values are also shown (model−measurements, i.e. when the values are negative, the model is too early in its prediction and when the values

are positive, the model is late in its prediction). If the difference between measured and modelled ice-period start, end or length is less than

two weeks, the values are boldfaced. The values have been averaged for the time period of 1979-2015.

measured model measured model measured model

ice-period start difference ice-period end difference ice-period length difference

Haukivesi 339 -15 127 7 154 22

Inari 313 -13 151 6 204 19

Kallavesi 340 -17 130 5 156 22

Lappajärvi 330 3 126 7 162 4

Näsijärvi 350 -22 123 3 139 25

Oulujärvi 326 -17 138 5 178 22

Pielinen 330 -14 134 8 170 22

Pyhäjärvi 342 -9 116 5 140 14

Päijänne 347 -13 123 12 142 25

Saimaa 344 -17 119 11 141 28
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Figure 3. 2-m temperature and precipitation biases of standard REMO (REMO-ST) and REMO with the FLake module (REMO-FL) com-

pared to E-OBS data. The seasonally averaged results are for the time period of October 1979 - March 2015. Dots indicate statistically

significant differences with p-values < 0.05.
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Figure 4. Specific humidity at the surface and 10-m wind speeds from standard REMO (REMO-ST) and the difference between REMO with

the FLake module (REMO-FL) and REMO-ST. The seasonally averaged results are for the time period of October 1979 - March 2015.
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Figure 5. Monthly mean albedos for March and April from satellite data (CLARA-A2; Karlsson et al., 2017) and the corresponding bias

(model-measurements) in the REMO-FL, REMO-FLB and REMO-FLTB runs. The monthly means are for the time period of 1982-2014 and

only for land and lake surfaces.
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0

10

20

30

40

50

60

70

80

Ic
e

a
n

d
sn

o
w

th
ic

k
n

e
ss

[c
m

]

0

10

20

30

40

50

60

70

80

Jan Feb Mar Apr MayJun Jul Aug Sep Oct Nov Dec
0

5

10

15

20

25

30

L
W

T
[◦

C
]

PIELINEN

0

10

20

30

40

50

60

70

80

Ic
e

a
n

d
sn

o
w

th
ic

k
n

e
ss

[c
m

]

0

10

20

30

40

50

60

70

80

Jan Feb Mar Apr MayJun Jul Aug Sep Oct Nov Dec
0

5

10

15

20

25

30

L
W

T
[◦

C
]

KALLAVESI

0

10

20

30

40

50

60

70

80

Ic
e

a
n

d
sn

o
w

th
ic

k
n

e
ss

[c
m

]

0

10

20

30

40

50

60

70

80

Jan Feb Mar Apr MayJun Jul Aug Sep Oct Nov Dec
0

5

10

15

20

25

30

L
W

T
[◦

C
]

LAPPAJÄRVI
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Figure 6. The measured and modelled daily averaged lake water temperatures (LWTs), ice thicknesses and the amount of snow on ice. The

values have been averaged for the time period of October 1979 - March 2015.
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VÄNERN (SWE) 1981-1985

Measured temperatures

REMO-FLake temperatures

Measured ice period

REMO-FLake ice thickness

0

10

20

30

40

50

60

Ic
e

th
ic

k
n

e
ss

[c
m

]

Ja
n

Feb
M

ar
A
pr

M
ay

Ju
n

Ju
l

A
ug

Sep O
ct

N
ov

D
ec

−5

0

5

10

15

20

25

L
W

T
[◦

C
]
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Figure 7. Measured and modelled lake water temperatures (LWTs) and ice periods from Sweden, Russia and Estonia. The lake temperatures

for Lake Ladoga are calculated only for the northern part (following the measurement approach), but the ice period and depth are for the

whole lake.
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Figure 8. Vertical profiles of the measured and modelled seasonally averaged lake water temperatures (LWTs) in different lake depths.

The values have been averaged for the time period of 1979-2015. The lake depth is shown for measurements (red color) and model results

separately (blue color). Also, we have averaged the model results only over those days when measurements were available, because the

measurement frequency was low (a few times per month).
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