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Abstract. Geoscientific modeling is constantly evolving, with next generation geoscientific models and applications placing

large demands on high performance computing (HPC) resources. These demands are being met by new developments in HPC

architectures, software libraries, and infrastructures. In addition to the challenge of new massively parallel HPC systems,

reproducibility of simulation and analysis results is of great concern. This is due to the fact that next generation geoscientific

models are based on complex model implementations and profiling, modeling, and data processing workflows. Thus, in order5

to reduce both the duration and the cost of code migration, aid in the development of new models or model components,

while ensuring reproducibility and sustainability over the complete data life cycle, an automated approach to profiling, porting,

and provenance tracking is necessary. We propose a run control framework (RCF) integrated with a workflow engine as a

best practice approach to automate profiling, porting, provenance tracking and simulation runs. Our RCF encompasses all

stages of the modeling chain: 1. preprocess input, 2. compilation of code (including code instrumentation with performance10

analysis tools), 3. simulation run, 4. postprocess and analysis, to address these issues. Within this RCF, the workflow engine

is used to create and manage benchmark or simulation parameter combinations and performs the documentation and data

organization for reproducibility. In this study, we outline this approach and highlight the subsequent developments scheduled

for implementation born out of the extensive profiling of ParFlow. We show that in using our run control framework, testing,

benchmarking, profiling, and running models is less time consuming and more robust than running geoscientific applications15

in an ad hoc fashion, resulting in more efficient use of HPC resources, more strategic code development, and enhanced data

integrity and reproducibility.

1 Introduction

Geoscientific modeling is constantly evolving, leading to higher demands on HPC resources. We distinguish four main devel-

opments which increase HPC demands. (i) Higher spatial resolution, where the added value inherent to simulations at high20

spatial resolutions has been shown, for example, in many studies of regional convection permitting climate simulations (e.g.,
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Prein et al., 2015; Eyring et al., 2015; Heinzeller et al., 2016) and continental hyper-resolution hydrological modeling ap-

proaches (e.g., Kollet and Maxwell, 2008; Maxwell et al., 2015; Keune et al.); (ii) increased model domain size, where models

are now being run at larger scales, for example, global convection permitting models (Schwitalla et al., 2016), high resolution

continental RCMs (Leutwyler et al., 2016), and global hydrology and land surface models which are needed for water resources

modeling (Bierkens et al., 2015); (iii) increased model complexity in which the desire to explore the feedbacks between the5

surface, subsurface, oceans, and atmosphere have led to fully coupled multi-physics global or regional earth system models

(ESM) (e.g., Shrestha et al., 2014; Ruti et al., 2016) posing load balancing issues (Gasper et al., 2014), and (iv) increasing

number of ensemble members in modeling and data assimilation experiments, which means that several instances of a model

will need to run simultaneously (e.g., Han et al., 2016; Kurtz et al., 2016). These developments, combined with long climate

scenario simulation time spans pose specific challenges in terms of computational resources, data volume, data velocity, data10

handling, and analysis.

To keep up with these demands, HPC hardware, software, and tools are developing at a rapid pace. For example, heteroge-

neous HPC architectures that combine multi-core CPUs with accelerators on the same compute node (Brodtkorb et al., 2010)

are considered a suitable architecture for future exascale systems, because of their energy efficiency (i.e., Flops/Watt), low

latency data management, and peak performance per accelerator (Davis et al., 2012; Langdon et al., 2016; Kandalla et al.,15

2016). These coprocessors have tens of cores and can host hundreds of threads per chip, include their own memory with very

high bandwidth (Liu et al., 2012), and use different memory architectures (e.g., cache coherence) or parallel programming

models (e.g., CUDA, OpenCL, OpenACC). Exascale performance and high energy efficiency are also supported by the use

of reconfigurable devices into HPC systems such as the field-programmable gate array (FPGA) integrated circuit (Mavroidis

et al., 2016). While these HPC developments are instrumental towards next-generation exascale HPC systems, during the20

next decade (Attig et al., 2011; Keyes, 2011; Davis et al., 2012; Rigo et al., 2017), MPI-parallel simulation codes on multi-core

shared or distributed memory architectures need a substantial amount of porting, profiling, tuning, and refactoring (Hwu, 2014)

to efficiently use such kind of hardware, in particular because a very high level of vectorization is needed to take advantage

of the ever increasing SIMD units. Moreover, offloading compute intensive code sections to accelerators can also become a

performance bottleneck due to excessive data transfers between host and accelerator. Thus, special care needs to be taken with25

respect to data layout, placement, and reuse.

Therefore, in many cases, complicated legacy codes need substantial investments in model porting, tuning, and refactoring,

in order to efficiently use these upcoming and already existing HPC architectures and achieve a high level of performance.

Invested effort has already paid off for many codes (Meadows, 2012; Hammond et al., 2014; Leutwyler et al., 2016; Heinzeller

et al., 2016), in the form of significantly reduced run times, however, at a significant cost in resources. For example in Leutwyler30

et al. (2016), porting COSMO to GPUs brought reduced simulation times (speedup on the order of 3.6) but needed a team of

developers to bring this about. In order to reduce both the duration and the cost of code migration, and also aid in the devel-

opment of new models or model components, a systematic, rigorous approach is needed to fully analyze and understand the

runtime behavior and I/O characteristics in detail, and identify performance bottlenecks. In this context, the use of performance

analysis tools is crucial. A run control framework with integrated performance analysis tools can automate a performance en-35
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gineering approach as well as gather information from the resulting output and analyse that output. However, depending on

the current focus of the analysis, different tools and techniques may have to be used—sometimes even in combination. For

example, while various tools provide generic information about the runtime behavior of an application, specialized tools exists

that focus on a particular aspect such as vectorization, threading, communication and synchronization, or I/O. Likewise, while

profiling—i.e., the process-local generation of aggregated performance metrics during the execution—can provide a summa-5

rized overview of the performance for the entire application run, it is not able to capture the dynamic runtime behavior. Thus,

it can be complemented by using event tracing, which collects performance-related events in chronological order and therefore

allows to reconstruct the dynamic application behavior in detail. However, care has to be taken when using event tracing, as it

is more expensive than profiling as the amount of data in the trace increases with the runtime of the application (e.g., Geimer

et al., 2010; Carns et al., 2011). Thus, it is usually only applied to selected parts of the execution, for example, a few time steps10

or iterations of a solver, that have been identified using more lightweight techniques such as profiling.

In addition to making efficient use of massively parallel HPC systems, reproducibility of simulation results, based on com-

plex model implementations, profiling, modeling, and data processing workflows, must be a fundamental principle in com-

putational research (Hutton et al., 2016). Recently, Stodden et al. (2016) presented "Reproducibility Enhancement Principles"

(REP) to help ensure that the computational steps in data processing and generation are similarly important as access to the15

data themselves. Hence sharing not only data but also details of software, workflows, and the computational environment via

open repositories is likewise important. Similarly, Hutton et al. (2016) recommend for computational hydrology that work-

flows, which combine data and reusable code, are needed in order to ensure provenance of scientific results. Given that in the

weather and climate sciences data and primary code availability is often ensured, ancillary code availability is addressed in

Irving (2016) as one of the root causes for irreproducibility. With this in mind, we consider the aspect of documenting the20

porting and performance optimization steps as well as provenance tracking during production simulations as highly relevant to

ensure reproducibility. Workflow engines such as ecFlow (Bahra, 2011) or cylc (Oliver et al., 2017) can connect all relevant

steps of a modeling chain, submit jobs with dependencies, and help with necessary parameter sweeps for application software

porting and tuning alike. At the same time they allow for extensive, systematic logging of the processing steps themselves as

well as the log outputs from the individual applications.25

In this article, we present a run control framework (RCF) as a best practice approach to porting, profiling, and documenting

legacy code using the script-based benchmarking framework JUBE (Lührs et al., 2016) as a workflow engine. The framework

can be described as the supporting structure to build the geoscience application workflows, whereas the workflow engine is

the tool used to automate the workflows. We developed profiling, run control, and testing frameworks which are dynamically

built with user input into interdependent tasks and these tasks are run using JUBE. While the use case for this portable run30

control, profiling, and testing workflow engine system discussed in this paper is the software application ParFlow, an integrated

parallel watershed model, and run on machines at JSC, the RCF is generic and can be applied to any other simulation software

or on any other HPC platform. In the remainder of this paper we outline this approach and highlight the subsequent develop-

ments scheduled for implementation born out of the extensive profiling of ParFlow. Additionally, we highlight other uses for

employing a workflow engine which have enabled us to streamline the run control process for model runs.35
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2 RCF approach to profiling, portability, and provenance tracking

In this section, the run control framework which could be described as a run harness, along with JUBE is introduced, where

a harness in this case is used to describe the framework of scripts and other supporting tools that are required to execute a

workflow. The RCF is presented as a means to facilitate portability, profiling, and provenance tracking. This is followed by

the description of the standard profiling toolset which is currently built into our RCF to aid in the ParFlow hydrological model5

development and for production simulation run control as well as the hardware characteristics and the profiling tools available

on the supercomputer used in this study. The RCF for the case study in this paper is given in the supplementary material as a

tarball file.

2.1 JUBE as a workflow engine

Benchmarking scientific code can assess impacts of changes of the underlying HPC software stack (e.g., compiler or library10

upgrades) and hardware (e.g., interconnect upgrades), aid in testing as part of software engineering and code refactoring, and in

finding optimum numerical model configurations. Benchmarking a numerical model system usually involves several runs with

different configurations (compiler, domain, physics parameterizations, solver settings, load balancing), including compilation,

instrumentation (i.e., the injection of special monitoring “hooks” into the program to enable profiling and/or event tracing), var-

ious simulations, profiling, result verification, and analysis. However, with increasing model and HPC environment complexity,15

the parameter space for benchmarking can be large. To avoid errors in managing benchmark parameter combinations, to reduce

the overall temporal effort, and to ensure reproducibility and comparability, benchmarking must be automated. This task can

be accomplished using a workflow engine, which is an application for workflow automation, like the JUBE benchmarking

environment (Lührs et al., 2016).

JUBE is a script-based framework designed to efficiently and systematically define, setup, run, and analyze benchmarks and20

production simulations. The current JUBE v2.1.4 is a Python-based implementation released under GNU GPLv3 actively de-

veloped at the Jülich Supercomputing Centre (JSC, https://www.fz-juelich.de/ias/jsc/EN). JUBE allows to easily define bench-

mark sets via an XML configuration file, in which the workflow and parameter sweeps are specified. When run, JUBE controls

the automatic execution of the designed workflow and takes care of the underlying file structure to allow an individual execution

per run. Automatic bookkeeping separates the different runs and parameter combinations and allows reproducible executions.25

To generate an overview of the overall workflow execution, the user can configure JUBE how to analyze the different output

files to extract information such as the overall runtime or other application-specific data. This allows the system to create a

combined overview of the underlying parameterization and the application outputs. The features above combined with our

RCF described means that users can very quickly get their complicated model workflows up and running without resorting to

developing their own specialized bash or Python scripts to run simulations, which are usually bereft of the features contained30

in our RCF.

Other workflow engines which are commonly used are ecFlow and cylc. JUBE, ecFlow and cylc are all written in Python,

all have tasks/steps which can be triggered based on dependencies (e.g., a run task would only run on successful compilation
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and have variable inheritance where general variable definitions can be overwritten with specific parameters at run time). We

have chosen to use JUBE as it has been designed to be run on JSC machines and we have large compute projects there, we

have direct access to the JUBE developers, and there is a soon to be released version, which can directly interact with the

specialized JSC job scheduler at any point in the production run (and can therefore circumvent the two hour time limitation

for a running process on JSC machines). Additionally, we can influence the development of added functionality such as builtin5

Python scripting for variable declaration, parameter space creation, environment handling, loading files, and substitution. If

in the future, ecFlow and cylc prove advantageous to use over JUBE, we could set them up on a continuously running server

and tunnel in. Currently JUBE, ecFlow and cylc workflow engines can interact with a job scheduler and are designed with the

purpose to facilitate the automation of workflows. One major benefit of using cylc and ecFlow over JUBE is that they both

have a GUI, which can be very powerful for non-developers. In the case that we could run either cylc or ecFlow continuously10

on JSC machines as we can JUBE, it would be hard to pick one over the other. Both appear to have the same features and

functionality. However as both JUBE and ecFlow can read in XML scripts as input, we would lean towards using ecFlow in

future as it would be easy to swap between the two as we have set up our RCF in xml, while we would need to refactor our

RCF for cylc (Bahra, 2011; Oliver et al., 2017). In addition, cylc has been reported to be more complicated when it comes to

building workflows (Manubens-Gil et al., 2016).15

2.2 RCF Description

Whatever workflow engine one decides to use, someone still needs to integrate the workflows or tasks themselves—JUBE,

ecFlow, and cylc are simply tools for workflow automation. Leveraging the generic JUBE framework, we developed a run

control framework, suitable for a typical geoscience model, from a series of XML files integrated with Python scripts to

be executed with JUBE (see Figure 1). These jobs are usually run with the following modeling chain: 1. preprocess input,20

2. compilation of code (includes code instrumentation with profiling tools) 3. simulation run 4. postprocess and analysis. This

modeling chain can be thought of as interdependent tasks set up by the RCF which are then submitted as steps by JUBE. The

current run control framework is under version control and can be cloned from GitLab (Hethey, 2013).

The directory structure for the RCF run harness used in the case study in this paper is shown in Figure 2. A top-level Python

script, jubeRun.py, combines the custom job specifications (custom/weakScalingSinusoidal_Job_Juqueen.xml)25

with the run control benchmark XML script (driver/ParFlowRC_Benchmark.xml) into one XML configuration file

execute.xml which can be parsed through JUBE, and then calls the JUBE run command with the newly created file as an

argument. Machine-specific profiling and job submission parameter sets are imported from XML structs given in the scripts

templates/platform.xml and templates/profiler.xml, respectively, and the ParFlow model input parameter

sets are imported from the structs given in templates/ParFlow_model_input.xml, based on the options specified30

in the custom job. All environment and submission scripts are stored in directories ${machine}_files, all the profiling

specific wrappers and filter files are stored in the directory profiler_data and all ParFlow model input is stored in the

directory model (see Figure 2).
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Figure 1. Schematic overview of the modeling chain as supported by our JUBE-based run harness. Each step is annotated with a brief

description (top) as well as the respective RCF infrastructure (XML files and scripts, bottom).

The driver script contains the steps to run the modeling chain, where the steps themselves can be dependent on the successful

completion of the previous step/s. Compilation parameters are set based on which HPC platform or machine the benchmark

suite is run on and the profiling tool/s chosen. The user can specify the machine, the profiling tool/s, the ParFlow model, the

domain size, the scaling parameters, and overwrite the default compilation and job submission parameters via a custom job

XML script. The user can also describe an analysis step for the postprocessing of output.5

The template scripts are used in our run harness to capture default settings for HPC platform and model related parameters.

Specific default settings can be overwritten when specified in the custom job XML script. In the case study, the template scripts

used contain HPC platform-related default settings for profiling tools (profiler.xml), compilers (platform.xml), and

job submission (juqueen_files) (see Figure 2). In addition there are templates for each type of ParFlow model, where

the idealized overland flow model is defined (see Section 3.1), and the type of scaling typically used for a benchmark suite,10

i.e., weak scaling and strong scaling. The template ParFlow model XML script sets the default settings for a series of ParFlow

models set up over different domains. The template scaling XML script sets the default domain settings for a given ParFlow

model. The scaling parameters can be set such that either one subdomain is spawned per thread (weak scaling) or such that

the domain size does not change (strong scaling). The custom XML script sets the HPC platform used, the profiling tool, the

parflow model type, the domain extent and type of scaling and the postprocessing analysis step. The custom job script can also15

overwrite default settings such as compiler settings and job submission settings.

Our RCF creates benchmark or production model simulation suites, which can run on multiple computer systems and whose

results can be postprocessed and analysed, via the execution of the driver file using JUBE, where the driver file ingests custom

and template input. All parameters which are comma separated are parsed by JUBE as a parameter sweep, so that each comma-

separated variable is iterated over to become a separate run. At the time of writing, our RCF is running on several different20
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Figure 2. Directory structure of the run control framework used in the case study (Section 3).

machines, namely JUQUEEN (a highly scalable cluster at JSC), JULIA (a prototype KNL cluster at JSC), JURECA (a general

purpose cluster at JSC), and JUROPA3 (a prototype testbed system at JSC). All files mentioned in Figure 2 are available in the

tarball supplied as supplementary material for this paper.

2.3 RCF: Aiding code portability

Within the RCF, we have separated all the information pertinent to the existing compilers, required environment modules, and5

workload manager job submission specifics for a given system into a single XML file (see Figure 1, platform.xml). This

platform.xml file can easily be extended to include any new system. When compilers, environment modules, and workload

managers are updated or new features or functionality are added, the platform.xml can be easily altered to include these

updates. For example, as new C and Fortran compiler versions are released with improved code generation and potentially new

optimization flags, it is useful to reassess which compilation flags give the best run time without compromising the accuracy10

of the result. In the case of our RCF, this is as simple as altering the compiler flags parameter in platform.xml with

7



comma-separated values for each different compiler flag, which produces a benchmark suite. In order to ensure accuracy is

not compromised we built in a result comparison test, where the user can compare the result with previously generated output.

However, some thought needs to be taken in setting up the test as ultimately it is up to the user to decide which models and

previously generated output is accurate enough to be the gold standard to test against. If the user is uncomfortable in using their

own models for this test, most geoscience applications (ParFlow included) have a plethora of tests with previously generated5

output to use as a gold standard to test against.

2.4 RCF: Facilitating code profiling

In order to analyze ParFlow’s runtime behavior, determine optimal runtime settings, as well as identify performance bottle-

necks during model development, we use several complementary performance analysis tools. Setup, compilation wrappers,

and analysis profiling steps were built into our RCF (Figure 1: profiler.xml, Appendix A) with support for the following10

tools: Score-P v3.1 (Knüpfer et al., 2012) and Scalasca v2.3.1 (Geimer et al., 2010; Zhukov et al., 2015), where results col-

lected with Score-P and Scalasca can be examined using the interactive analysis report explorer Cube v4.3.5 (Saviankou et al.,

2015), Allinea Performance Reports v7.0.4 (January et al., 2015), Extrae v3.4.3 (Alonso et al., 2012), Paraver v4.6.3 (Labarta

et al., 2006), Intel Advisor 2015 (Rane et al., 2015), and Darshan v3.0.0 (Carns et al., 2011) (see Table A1 in Appendix A for

a more detailed description of each performance analysis tool listed above). The modeling chain for the profiling workflow is15

as follows:

1. Prepare the input data;

2. Load environment modules and set up performance analysis tool specific parameters;

3. Compile or link ParFlow using scripts and wrappers, depending on what is required by the profiling tool; e.g., Score-P

requires compilation and linking using wrappers, whereas Darshan requires only linking after compilation;20

4. ParFlow execution with the necessary tool flags (e.g., Scalasca has various runtime measurement, collection, and analysis

flags which can be turned on or off);

5. Parse and analyze the results interactively (e.g., using interactive visual explorers like Paraver, Cube, etc.) or generate a

textual performance metric report via a post processing step.

Note that code instrumentation with performance analysis tools—that is, the insertion of tool-specific measurement calls25

into the application code which are executed at relevant points (events) during runtime—can introduce significant overhead,

which can be assessed by comparing to an uninstrumented reference run. If the runtime of the instrumented version of the

code under inspection is much longer than the reference run (more than 10-15%), it is recommended to reduce instrumentation

overhead as the measurement may no longer reflect the actual runtime behavior of the application. Typical measures to reduce

the runtime overhead include turning off automatic compiler instrumentation, filtering out short but frequently called functions,30

and applying manual instrumentation using specific APIs provided by the tools.
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Health Check Protocol

A typical workflow when performing an initial "health examination" on a scientific code can be described as follows:

1. “Which function(s) or code region(s) in my program consume(s) the most wallclock time?” This question can usually

be answered using a flat profile, which breaks down the application code into separate functions or manually annotated

source code regions (e.g., initialization vs. solver phase) and aggregates the wallclock time spent in each function/region.5

This ascertains the area(s) of interest in order to streamline performance analysis efforts.

Typical diagnosis tools: Allinea Performance Reports, Score-P + Cube, Extrae + Paraver

2. “Does my application scale as expected?” Typically all scientific applications aim to perform well at scale. To address

this question, profiles need to be collected with varying numbers of processes and the scalability of functions/code

regions within the areas of interest can be examined.10

There are two types of scaling: strong and weak scaling. In case of strong scaling, the overall problem size (workload)

stays fixed but the number of processes increases. Here, the runtime is expected to decrease with increasing number of

processes. By contrast, in case of weak scaling, the workload assigned to each process remains constant with an increase

of processors and, thus, the runtime is ideally expected to be constant as well.

The strong scaling efficiency, Ess is computed as a relation of speedup to the number of processes. Speedup is computed15

as a relation of the amount of time to complete a work unit with one process to the amount of time to complete N of the

same work units with N processes:

Ess =
T1

NTN
(1)

where T1 is the time taken to complete a work unit with one process and TN is the time taken to complete a work unit

with N processes.20

The weak scaling efficiency, Ews is computed as a relation of the amount of time to complete a work unit with one

process to the amount of time to complete N of the same work units with N processes:

Ews =
T1

TN
(2)

Ess and Ews are very common metrics in HPC to quantify and qualify the scalability of the application. These metrics

indicate how efficient an application is when using increasing numbers of processes.25

Typical diagnosis tools: Allinea Performance Reports, Score-P + Cube, Extrae + Paraver

3. “Does my program suffer from load imbalance?” If this is the case, some processes will be performing significantly

more or less work than the others. Load balance is an indication of how well the load is distributed across processors.

If a code is not well balanced, HPC resources will be used inefficiently as imbalances usually materialize as wait states

in communication/synchronization operations between processes/threads. Thus, this may be an area to concentrate code30

refactoring efforts.
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To characterize load imbalance Rosas et al. (2014) invented the load balance efficiency metric, Elb, which is defined as

a relation between average computation, T , and maximal computation time, Tmax:

Elb =
T

Tmax
(3)

Note that load imbalance can either be static or dynamic. While the former can usually be easily identified in profiles,

pinpointing the latter may require more heavyweight measurement and analysis techniques such as event tracing, as5

imbalances may cancel out each other in aggregated profile data.

Typical diagnosis tools: Score-P + Cube, Score-P + Scalasca + Cube, Extrae + Paraver

4. “Is there a disproportionate time spent in communication or synchronization?” Communication and synchronization

overheads can be caused by network latencies (e.g., due to an inefficient process placement onto the compute resources),

or wait states and other inefficiency patterns (e.g., caused by load or communication imbalances). If these overheads10

increase significantly with an increase in resources, this can be a further barrier to scalability.

To quantify and qualify disproportionate time spent in communication or synchronization, Rosas et al. (2014) developed

the communication efficiency metric, Ecom, which is defined as a relation between Tmax and total execution time, Ttot:

Ecom =
Tmax

Ttot
(4)

Typical diagnosis tools: Allinea Performance Reports, Score-P + Scalasca + Cube, Extrae + Paraver15

5. “Is my parallelization strategy efficient?” To answer this question, Rosas et al. (2014) developed an auxiliary efficiency

metric, parallel efficiency, which quantifies and qualifies the parallelization strategy as a whole.

Parallel efficiency is computed as the product of the previously defined metrics load balance efficiency (Step #3) and

communication efficiency (Step #4):

Epar = ElbEcom =
T

Ttot
(5)20

Where a minor value reduction of any component will result in a significant reduction of parallel efficiency.

Efficiency values range from zero to one, where a value of one is the most efficient. Using Cube’s derived metric feature

(Zhukov et al., 2015), we can derive these efficiency metrics from the Score-P profile data automatically.

6. “Is my application limited by resource bounds?” There are several bounds one can reach, such as

(a) CPU bound, i.e., the rate at which processes operate is limited by the speed of the CPU. For example, a tight loop25

that can be vectorized and operates only on a few values held in CPU registers is likely to be CPU bound.

(b) Cache bound, i.e., the simulation is limited by the amount and the speed of the cache available. For example, a

kernel operating on more data than can be held in registers but which fits into cache is likely to be cache bound.
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(c) Memory bound, i.e., the simulation is limited by the amount of memory available and/or the memory access band-

width. For example, a kernel operating on more data than fits into cache is likely to be memory bound.

(d) I/O bound, i.e., the simulation is limited by the speed of the I/O subsystem. For example, counting the number of

lines in a file is likely to be I/O bound.

Typical diagnosis tools: Score-P + PAPI + Cube, Extrae + Paraver, Intel Advisor, Darshan5

7. There are additional questions one can add to the survey, for example: “How many pipeline stalls, cache misses, and

mis-predicted branches are occurring?”, “How can we assess serial performance”, etc.

To describe serial performance, for example, we use the instructions per cycle metric (IPC), i.e., the ratio of total instruc-

tions executed and the total number of CPU cycles. Potential reasons for low IPC values are pipeline stalls, cache misses,

and mis-predicted branches (John and Rubio, 2008). Therefore, additional measurements with hardware counters should10

be made to determine the number of cache misses in L1, stalls, and mis-predicted branches when a low IPC value is

computed.

Typical diagnosis tools: Score-P + PAPI + Cube, Extrae + Paraver, Intel Advisor, Darshan, etc.

As can be seen, different tools can be used to answer the various questions mentioned above. However, they usually employ

different measurement and analysis techniques which may prohibit the use of a particular tool under certain circumstances.15

For example, the combination Extrae + Paraver uses event tracing in conjunction with a manual/visual analysis, which is only

applicable to selected parts of the execution (i.e., the current region of interest). In contrast, Score-P profiling + Cube uses

a more lightweight measurement technique that can handle arbitrarily long executions, but requires a second measurement if

there is a need for a focused in-depth analysis based on event tracing. Moreover, the level of detail provided by the various tools

usually differs. For example, Allinea Performance Reports can provide a very coarse-grained, initial performance overview.20

Such an overview can be sufficient to already rule out certain classes of performance issues, but does not provide enough detail

to track down the root causes of the issues being identified. Thus, it can only give an indication on which more in-depth analysis

to carry out in the next step/s. Also, not all performance analysis tools are available on every platform. For example, Allinea

Performance Reports and Intel Advisor are only available on x86 architectures, but not for the IBM Blue Gene/Q platform

used in this case study. And finally, if two tools provide comparable functionality, users are inclined to use the tool/s they feel25

most comfortable with. Thus, our RCF implements support for all of the diagnosis tools mentioned in the section above (see

Appendix A for more details), covering many different use cases and preferences.

In this case study, we followed the health check using the diagnosis tools (co-)developed by JSC and available on the

JUQUEEN platform, namely 1. Score-P profile measurements, including hardware performance counters collected via PAPI

(Moore et al.), 2. Score-P trace measurements followed by a subsequent automatic Scalasca trace analysis, 3. Manual analysis30

of measurements from the abovementioned steps with an interactive visual browser, i.e., Cube. Where Score-P is a community-

maintained scalable instrumentation and performance measurement infrastructure for parallel codes that can collect both pro-

files and event traces, Scalasca Trace Tools are a collection of scalable trace-based tools for in-depth analyses of concurrent
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behavior, and Cube is an interactive analysis report explorer for Score-P profiles and Scalasca trace analyis reports. Addition-

ally we used Darshan, a tool to capture and characterize the I/O behavior of an application, for I/O profiling. Both Score-P and

Scalasca output their results in CUBE4 format, which can be processed by the Cube GUI and command-line tools. The latter

are used by the RCF to process the result files and to collate specific information from each run in tabular format.

In order to track the health of ParFlow with each new release, we developed an automated performance metric extraction5

workflow and integrated this into our RCF to obtain key performance indicators such as MPI wait time, memory footprint,

cache intensity, etc. in order to quickly assess whether new developments or additions to the code improve or degrade the

overall performance. An example of such a workflow output is given in Figure 3. Metrics shown in Figure 3 not only describe

the application in general, but also assess potential bottlenecks, i.e., I/O, communication, node and core performance, memory

usage (see Appendix B for more details).10

Figure 3. Example output from a performance metric extraction workflow. See Appendix B for a complete explanation of these performance

metrics and why they might be useful.
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2.5 RCF: Provenance tracking

JUBE has many provenance tracking features and tools. JUBE automatically stores the benchmark suite data for each workflow

execution, which can be parsed by JUBE’s analysis tools. Workflow metadata is automatically parsed by JUBE and then

compiled into a report detailing the run and which settings were used for each suite. Subsequent analysis procedures can be

predefined, added, or altered by the user after the experiment to automate data processing. These features and tools are designed5

to facilitate documentation and archiving. Additionally, JUBE’s workflow execution directory structure allows for run time

provenance tracking. JUBE’s workflow management system automatically creates a suite of the parameter sets and steps for

each workflow. JUBE then creates a unique execution unit or work package for a specific step and parameter combination.

Each workflow execution has its own directory named by a unique numeric identifier which gets incremented for subsequent

runs. Inside this directory, JUBE handles the workflow execution’s metadata and creates a directory for each separate work10

package. This avoids interference between different work package runs and creates a reproducible structure. For dependent

work packages, symbolic links are created to the parent work package, for user access.

We added extra provenance tracking features to ParFlow simulation runs such as configuration management (e.g. logging

of time spent in important routines, performance tracking etc), and postprocessing of output to a standardized format enriched

with metadata. The post processing of output entails converting unannotated ParFlow binary file model simulation output to15

a more portable NetCDF output containing standardized meta-data enrichment using CMOR and CF standards (Eaton et al.,

2003; Nadeau et al., 2017) and incorporation of all ParFlow model settings). The CF conventions for climate and forecast

metadata are designed to promote the processing and sharing of files created in NetCDF format. The conventions define

metadata that provide a definitive description of what the data in each variable represents, and of the spatial and temporal

properties of the data. Use of the convention ensures that users of data from different sources can properly compare quantities,20

along with facilitating interoperability and portability. Interoperability in this case means that CMORized NetCDF files can

be used on different architectures (big/little endian) and for different software (for use in various terrestrial systems software

and visualization software). The data conversion postprocessing step was developed in accordance with state-of-the-art data

lifecycle management and to maintain interoperability (Stodden et al., 2016).

In addition, the postprocess and analysis step we developed contains an archive process at the end of the modeling chain,25

which documents and collates the environment variables, model input, model simulation scripts, model submission scripts,

log files, postprocessed output, and application code in such a fashion that the archived output can be downloaded and rerun

following the instructions in the simulation documentation, without need for any additional input, a practice recommended by

Hutton et al. (2016). That is, if a user were to untar an output directory they would be able to compile and rerun the simuilation,

using the XML configuration file with JUBE, on the same machine, without having to obtain information elsewhere. The30

information contained in the tarred directory would also almost cover points 1-4 from Irving (2016)—an option for the user

to reproduce published figures from the postprocessed NetCDF output files produced is not yet built-in. However ensuring the

science remains the same on different HPC architectures needs to be considered when porting models. The developers of the
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software need to employ strategies such as continuous integration on multiple machines to ensure consistency of science across

architectures and compilers. Our RCF could also be adapted to facilitate these strategies.

3 Case study: RCF profiling workflow

In this section, we present the experimental design of the test case, to be used in the profiling study, steps we took in porting

the test case, and results of the profiling study, which demonstrate the usefulness of our RCF. For this study we use the highly5

scalable IBM Blue Gene/Q system JUQUEEN. JUQUEEN features a total of 458 752 cores from 1 024 PowerPC A2 16-core,

four-way simultaneous multithreading CPUs in each of the 28 racks and a total of 448 TB main memory with a Linpack

performance of 5.0 Petaflops. ParFlow is running under Linux microkernels on compute nodes using IBM XL compilers and a

proprietary MPI library and a GPFS filesystem. All profiling results shown in this paper are the result of running the benchmark

described in Section 3.1 10 times to get an average and make sure the benchmark is running as it should, taking notice of the10

variance between results. See the tarball supplied as supplementary material for this manuscript for the complete RCF used for

this case study.

3.1 Case Study: Experimental design

In order to demonstrate the applicability of the RCF, a weak scaling demonstration study with an idealized overland flow

test case was set up for ParFlow (Maxwell et al., 2015). ParFlow (v3.2, https://github.com/parflow) is a massively parallel,15

physics-based integrated watershed model, which simulates fully coupled, dynamic 2D/3D hydrological, groundwater and

land-surface processes suitable for large scale problems. ParFlow is used extensively in research on the water cycle in idealized

and real data setups as part of process studies, forecasts, data assimilation experiments, hind-casts as well as regional climate

change studies from the plot-scale to the continent, ranging from days to years. Saturated and variably saturated subsurface

flow in heterogeneous porous media are simulated in three spatial dimensions using a Newton-Krylov nonlinear solver (Ashby20

and Falgout, 1996; Jones and Woodward, 2001; Maxwell, 2013) and multigrid preconditioners, where the three-dimensional

Richards equation is discretized based on cell-centered finite differences. ParFlow also features coupled surface-subsurface flow

which allows for hillslope runoff and channel routing (Kollet and Maxwell, 2006). Because it is fully coupled to the Common

Land Model (CLM), a land surface model, ParFlow can incorporate exchange processes at the land surface including the

effects of vegetation (Maxwell and Miller, 2005; Kollet and Maxwell, 2008). Other features include a parallel data assimilation25

scheme using the Parallel Data Assimilation Framework (PDAF) from Nerger and Hiller (2013), with an ensemble Kalman

filter, allowing observations to be ingested into the model to improve forecasts (Kurtz et al., 2016). An octree space partitioning

algorithm is used to depict complex structures in three-dimensional space, such as topography, different hydrologic facies, and

watershed boundaries. ParFlow parallel I/O is via task-local and shared files in a binary format for each time step. ParFlow

is also part of fully coupled model systems such as the Terrestrial Systems Modeling Platform (TerrSysMP) (Shrestha et al.,30

2014) or PF.WRF (Maxwell et al., 2011), which can reproduce the water cycle from deep aquifers into the atmosphere.
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A three-dimensional sinusoidal topography as shown in Figure 4 was used as the computational domain with a lateral spatial

discretization of ∆x = ∆y = 1 m and a vertical grid spacing of ∆z = 0.5 m; the grid size, n, was set to nx = ny = 50 and nz =

40 resulting in 100 000 unknowns per CPU core, with one MPI task per core. In order to simulate surface runoff from the high

to the low topographic regions with subsequent water pooling and infiltration, a constant precipitation flux of 10 mm/hour was

applied. This results in realistic non-linear physical processes and thus compute times. The water table was implemented as a5

constant head boundary condition at the bottom of the domain with an unsaturated zone above, 10m below the land surface. The

heterogeneous subsurface was simulated as a spatially uncorrelated, log-transformed Gaussian random field of the saturated

hydraulic conductivity with a variance ranging over one order of magnitude. The soil porosity and permeability were set to

0.25 m/day. This idealized setup was used for the profiling case study as opposed to a real world set up due to the symmetry

inherent in the setup. In contrast, a real world experiment has asymmetry in both the meteorological forcing and also the model10

topography which naturally lead to load imbalances. These asymmetries could therefore obscure whether there are actually

load imbalances due to poor software design.

The weak scaling experiment is defined as how the solution time varies with the number of processors for a fixed problem

size of 100 000 degrees of freedom per processor. The horizontal (nx,ny) grid size is increased but the number of cells in the

vertical direction, nz, remain constant. All model configurations were run for 10 hours with a time step size of ∆t = 0.5 hr.15
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Figure 4. Model setup, showing cross-sectional domain and sinusoidal topography variation from the top of the model (z=20) for each

processor.

3.2 Porting ParFlow to JUQUEEN

When porting ParFlow onto JUQUEEN, we used the IBM XL C compiler available on the platform (v12.1), which provides

several compiler options that can help control the optimization and performance of C programs. We focused on two aspects

of optimization, namely, loop optimization (-qhot) and general optimization levels: -O1 to -O3, where these optimizations

range from local basic block to whole-program analysis. The higher the optimization level, the more sophisticated optimization20
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techniques are applied. For example using optimization level -O1 performs only quick local optimizations such as constant

folding and elimination of local common subexpressions, whereas optimization level -O3 performs rewrites of floating point

expressions, aggressive code motion, scheduling on computations, and loop optimizations and additionally the compiler re-

places any calls in the source code to standard math library functions with calls to the equivalent MASS library functions.

The focus on these two aspects was a result of following the user guidelines set out by IBM in using the XL C compiler IBM5

(2012).

We set up the accuracy test described in Section 2.3 with the gold standard output to test against being results previously

generated with the model described in Section 3.1. The gold standard output was verified via inbuilt water balance and energy

balance tests using ParFlow pftools (a package of utilities and a TCL library that is used to setup and postprocess Parflow binary

files). Accuracy was determined to be met when the output generated does not vary with the gold standard to six significant10

figures.

We found the optimal commonly used compilation flag which did not compromise accuracy with the IBM XL C compiler

for ParFlow to be -O3 -qhot -qarch=qp -qtune=qp, where the architecture and tuning flag was set to be qp, which

indicates the specific architecture of JUQUEEN (see Table 1). Using the -O3 compilation flag resulted in a speedup of close

to factor of 2 when running with 16 MPI tasks on 16 CPU cores (one compute node on Blue Gene/Q, no multithreading).15

The timing results were compiled using JUBE’s result parser functionality, which was run as a post processing step. This is in

agreement with the results in running the fully coupled TerrSysMP model system on JUQUEEN in Gasper et al. (2014).

IBM XL COMPILER FLAGS TIME [S]

-O1 -qhot -qarch=qp -qtune=qp 203

-O2 -qhot -qarch=qp -qtune=qp 203

-O3 -qhot -qarch=qp -qtune=qp 110
Table 1. Time taken to run the ParFlow test case on JUQUEEN (IBM Blue Gene/Q) with 16 MPI processes using three different commonly

used compiler flag optimizations.

3.3 Profiling results and analysis

The following section describes the results from the demonstration scaling study, following the code performance "health

check" protocol given in Section 2.4.20

Analysis of time spent in ParFlow functions: Health check step #1

As a first step, a breakdown of the time spent in each annotated region of ParFlow was obtained via internal timings in

ParFlow and a Score-P profile measurement, visualized as a bar chart in Figure 5. From the breakdown it is clear that the

core component of ParFlow is the computation of the solution to a system of nonlinear equations, reflected in Figure 5, where

most of the wallclock time is spent in the blue regions which make up the time spent getting a solution via a nonlinear solve25
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step. A large part of the nonlinear solver’s workflow can be summarized in two steps, which are as follows: the initialization

of the problem for the specific input and the actual solver loop. The last two steps reside in the KINSol routine which

is a component of the SUNDIALS solver library (Hindmarsh et al., 2005). Therefore, the nonlinear solve routine and its

components are the focus of interest for reducing ParFlow’s runtime. The nonlinear solve loop performs the computational

process of computing an approximate linear solution (KINSpgmrSolve) where the intermediate solution is updated every5

iteration until the desired convergence or tolerance is reached. Those two aforementioned steps within the nonlinear solve loop

are manually annotated in the source code and we will focus on these for our results. For simplicity, we have shortened these

two steps to setup_solver and solver_loop respectively and will refer to them by this nomenclature henceforth.

Figure 5. Time spent in ParFlow functions or routines, where the functions/routines can be divided into four categories, set up, clean

up, I/O, and solve. The functions in the category "set up" are depicted in green: SubsrfSim—setting up the domain, Solver setup—

initializing the solver. The functions in the category "clean up" are depicted in yellow: Solver cleanup—finalizing the solver. The functions

in the category "I/O" are depicted in orange: PFB I/O—ParFlow binary I/O. The functions in the category "solve" are depicted in blue:

Porosity—calculation of the porosity matrix, Geometries—calculation of the simulation domain, MatVec—matrix and vector operations,

PFMG—Geometric Multigrid Preconditioner from HYPRE, Solver functions—miscellaneous functions, HYPRE_Copies—copying data

within HYPRE, NL_F_Eval—setting up the physics and field variables for the next iteration, PhaseRelPerm—setting up the permeability

matrix, KINSol functions—nonlinear solver functions from SUNDIALS.

Scalability: Health check step #2

Our scalability analysis of ParFlow is again based on the Score-P profile measurement. Figure 6 shows a plot of the execution10

time versus the number of MPI processes when running the weak scaling experiment as outlined in Section 3.1, broken down

into the two regions of interest: setup_solver and solver_loop. The behavior of both regions show an increase of

execution time with an increase in the number of processes, though the setup_solver region shows better performance in
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comparison to the solver_loop. However, the strong scaling efficiency profile is comparable to similar codes (Mills et al.,

2007).

Upon examination of the results shown in Table 2, at 32 768 MPI processes, the weak scaling efficiency Ews (see Equation

2), drops to approximately 21%. To try to acertain the routines which hinder scalability, further inspection of the breakdown

between computation and communication (Figure 7) shows that total communication is considerably increasing at scale. This5

indicates that communication could be a scalability breaker and should be investigated further (see health check step #4).

# MPI processes Weak Scaling Efficiency Load Balance Efficiency Communication Efficiency Parallel Efficiency [%]

1 024 1.0 0.96 0.97 0.93

2 048 0.84 0.97 0.97 0.94

4 096 0.84 0.97 0.82 0.80

8 192 0.55 0.98 0.75 0.73

16 384 0.50 0.98 0.69 0.67

32 768 0.21 0.98 0.64 0.63
Table 2. Weak scaling efficiency, load balance efficiency, communication efficiency, and parallel efficiency, running the weak scaling exper-

iment up to 32 768 MPI processes.

Figure 6. Execution time versus the number of MPI processes for the regions of interest, running the weak scaling experiment up to 32 768

MPI processes.
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Figure 7. Wallclock time for communication versus computation for the regions of interest for the weak scaling experiment using the test

case described in Section 3.1.

Load balance: Health check step #3

Table 2 shows that the load balance efficiency at the different scales is between 0.96 and 0.98. This means that the workload is

equally distributed among the processes for our idealized test case, that is, that there is no inherent load imbalance issue in the

algorithm.

Communication: Health check step #45

Values of communication efficiency shown in Table 2 reduce from 0.97 (1 024 processes) to 0.64 (32 768 processes). This

means that time spent in communication is growing at scale. Therefore, it is worthwhile taking a closer look at what is happen-

ing (Figures 7 and 8).

Time spent in communication grows with increasing number of processes. For example, the communication time constitutes

37% of the total time when running the test case with 32 768 MPI processes. The main contributors to communication time10

within the regions of interest are MPI_Allreduce in setup_solver and MPI_Waitall in solver_loop. However,

the main communication problem is outside of setup_solver and solver_loop e.g., in the initialization phase or the

preconditioner as setup_solver and solver_loop communication time do not contribute much. The slight increase in

communication time in those two routines could be attributed to MPI_Allreduce in setup_solver and MPI_Waitall

in solver_loop by further breaking down the communication routines (see Figure 8). A trace analysis using Scalasca15
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Figure 8. Wallclock time for MPI calls for the weak scaling experiment using the test case described in Section 3.1.

identified a costly wait-state pattern constituting 23% of total time in the initialization phase occurring in MPI_Allreduce

in the preconditioner of the HYPRE v2.10.1 library. This is an example where more in-depth analysis is needed after the initial

health examination to clarify which part of the code must be improved.

Assessing the parallelization strategy : Health check step #5

To assess the parallelization strategy of ParFlow as a whole it is necessary to perform steps #3 and #4. Now we are ready5

to compute the parallel efficiency which is shown in Table 2. We can see, values reduce from 0.93 (1 024 processes) to 0.63

(32 768 processes) where the loss in communication efficiency is the main cause of the reduction in parallel efficiency.

Resource bounds: Health check step #6

Using the idealized weak scaling test case described in Section 3.1, Score-P was used to track memory usage of the test case

on JUQUEEN. Due to the idealized behavior (symmetry) of the test case, all MPI ranks needed roughly the same amount10

of memory. For example, at 1 024 processes, each rank needed roughly 95 MB and at 32 678 processes roughly 325 MB.

Memory usage per MPI rank increases with scale as the mesh manager in ParFlow is implemented in such a way that the entire

grid information is redundantly stored on each MPI rank. This becomes a scalability breaker for ParFlow as we can see from
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Figure 9; there is a point at which the memory required will eclipse the memory available (at around 64 000 cores for this test

case) and this is due to storage of the grid information for the mesh manager. In ParFlow, the most memory consuming routines

are: GetGridNeighbors, PFMGInitInstanceXtra, KinSolPC, and AllocateVectorData.

Figure 9. Memory usage of the weak scaling experiment described in Section 3.1 versus the total amount of memory available.

Serial performance: Health check step #7

A Score-P profile measurement with hardware performance counters was used to inspect serial performance (IPC). The serial5

performance for the test case (Section 3.1) with 1 024 MPI processes shows lower than ideal values of IPC. For example,

solver_loop has an IPC value of 0.31 out of 2 (the theoretical limit on the Blue Gene/Q platform).

Therefore, additional measurements with hardware counters were collected which show that a significant number of cache

misses in L1, stalls, and mis-predicted branches occur in the following routines: RichardsJacobianEval, PhaseRelPerm,

Saturation, and NlFunctionEval. Since JUQUEEN is based on an in-order instruction execution model, meaning in-10

structions are fetched, executed, and committed in compiler-generated order, in case of an instruction stall, all ensuing in-

structions will stall as well. Branching on JUQUEEN is therefore very expensive and can cause pipeline stalls. Thus, the

aforementioned routines may account for the low IPC values.
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3.4 Reproducibility

All simulation runs in the scaling study are separated into different subdirectories for each simulation run. Each subdirectory

includes the environment description, the XML scripts used by JUBE, the compilation scripts, the job submission scripts,

the job logs, the model scripts, the postprocessing analysis, and a description of the version of ParFlow used along with the

ParFlow binary itself. Each directory is self-contained such that the model can be rerun on JUQUEEN without using any other5

external tools or files. After the simulation is run and the postprocessing step has been executed, the directory is automatically

archived for long term storage.

3.5 Outcomes of profiling case study and future developments using RCF

The detailed profiling work illuminated the main bottlenecks to scalability. To ensure that ParFlow can scale to machines that

are in the same bracket as JUQUEEN, or higher, memory use, time spent in communication, and time spent in acquiring the10

solution for each time step need to be addressed.

To reduce the memory usage and to reduce the time spent in communication, an Adaptive Mesh Refinement (AMR) library,

p4est, is currently being implemented into ParFlow to function as the parallel mesh manager. The approach was minimally

invasive and preserves most of ParFlow’s data structures, the configuration system, and the setup and solver pipeline. The

current mesh manager is a barrier to scalability as it requires that all cells store information about every other cell. This is15

reduced to neighboring cells under p4est, which results in a decrease in memory use (storage reduction) and a decrease in

time spent in communication (communication reduced to neighboring cells only), allowing ParFlow to scale over all 458,752

cores on JUQUEEN (Burstedde et al., 2017). Using p4est as the parallel mesh manager has the additional potential benefit of

integrating the adaptive mesh refinement functionality into ParFlow in order to address inactive regions (due to heterogeneous

forcing, permeability, etc.) causing load imbalances in the real world models.20

To further improve simulation run times using ParFlow, the RCF is being used to benchmark different accelerator-enabled

numerical libraries, for a simplified version of ParFlow, across different HPC architectures. To reduce time spent in prepro-

cessing model input and postprocessing model output, a NetCDF reader and writer is under development, with testing of this

new feature integrated into the RCF. There is still room for improvement with regards to serial performance. However to tackle

this problem effectively, more in-depth profiling is needed with the aid of performance analysis engineers. For example, we25

are currently working in conjunction with performance analysis specialists to identify and refactor individual loops in spe-

cific functions for vectorization in order to speedup serial performance. Naturally, we will use our RCF to then validate the

effectiveness of these new developments and tuning efforts.

4 Conclusions

Adapting to new developments in HPC architectures, software libraries, and infrastructures, while ensuring reproducibility30

of simulation and analysis results has become challenging in the field of geoscience. Next generation massively parallel HPC
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systems require new coding paradigms, and next generation geoscientific models are based on complex model implementations,

and profiling, modeling and data processing workflows. Thus there is a strong need for a streamlined approach to model

simulation runs, including profiling, porting, and provenance tracking.

In this article, we presented our run control framework as a best practice approach to porting, profiling and provenance track-

ing. Implementing an RCF using a workflow engine for the complete modeling chain consisting of preprocessing, simulation5

run, and postprocessing leads to code that can be ported easily and tuned to any platform and combination of compilers, where

dependencies are available in module format. Each simulation is self-contained and automatically documented, accounting for

provenance tracking, which leads to better supplementary code sharing and ultimately reproducibility. The relevant profiling

toolset can be applied on any platform where the toolset is available, leading to identification of bottlenecks, code tuning,

refactoring, and ultimately more efficient use of HPC resources. For example, the detailed profiling study of ParFlow led to the10

identification of bottlenecks and scalability breakers.

The proposed approach helps the novice user as well as the developer and can be embedded into regression testing and a

continuous integration approach. Using our RCF, testing, benchmarking, profiling, and running models is less time consuming

and more robust than running models in an ad hoc fashion, resulting in more efficient use of HPC resources, more strategic

code development, and enhanced data integrity and reproducibility.15

Code and data availability. The run control framework, data and version of ParFlow used in this paper are available for download via

https://gitlab.maisondelasimulation.fr/EOCOE/Parflow upon request for access. A tarball containing the RCF, data and version of ParFlow

relevant to this study has been included as supplementary information.

Appendix A: Profiling tools implemented into the RCF

Table A1 describes the profiling tools which are currently supported by our RCF. New profiling tools can easily be added into20

the framework by adding to the profiler.xml file (see Figure 2).

Appendix B: Description of performance metrics gathered from the automated performance metric workflow

The list of performance metrics gathered in the automated performance metrics workflow (see Figure 2), with an explanation

of why these particular metrics are useful is given in the tables below. Table B1 contains general performance metrics and

Tables B2 - B5 contain performance metrics pertaining to specific areas such as I/O, communication, memory use, node-level25

performance, and core-level (serial) performance.

Competing interests. The authors declare that there are no conflicts of interest.
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Performance Analysis Tool Description

Score-P Score-P is a community-maintained scalable instrumentation and performance

measurement infrastructure for parallel codes. It can collect both profiles and

event traces.

https://www.score-p.org

Scalasca The Scalasca Trace Tools are a collection of scalable trace-based tools for in-

depth analyses of concurrent behavior, in particular regarding wait states in

communication and synchronization operations as well as their root causes.

Supports Score-P traces since v2.0.

https://www.scalasca.org

Cube Cube is an interactive analysis report explorer for Score-P profiles and Scalasca

trace analyis reports.

http://www.scalasca.org/software/cube-4.x/

Allinea Performance Report Allinea Performance Report is a performance tool which provides a high-level

overview of the runtime using a single-page report.

https://www.allinea.com/products/allinea-performance-reports

Extrae Extrae is a measurement system which is able to collect traces for use with

Paraver.

https://tools.bsc.es/extrae

Paraver Paraver is a flexible and configurable performance analysis tool based on traces

collected by the Extrae measurement system. It supports time-line views as well

as histogram/statistics views on the trace data.

https://tools.bsc.es/paraver

Intel® Advisor Advisor is a tool to analyze node-level performance issues, in particular regard-

ing code vectorization and threading.

https://software.intel.com/en-us/intel-advisor-xe

Darshan Darshan is tool to capture and characterize the I/O behavior of an application.

http://www.mcs.anl.gov/project/darshan-hpc-io-characterization-tool

PAPI PAPI is a library providing a consistent interface for accessing hardware per-

formance counters of CPUs and other components. While it can be called from

application code directly, PAPI is more often used through other performance

measurement systems such as Extrae and Score-P.

http://icl.utk.edu/papi
Table A1. Description of of the performance analysis tools currently supported by our RCF.
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General Performance Metric Description

time[s] Total application wall time to use as a reference.

time_io[s] Average time spent in input/output operations for each rank. When this value

is large compared to the overall run time, the application spends a significant

amount of time in input/output operations. Further measurements can be taken

to illuminate problem areas (see I/O section of Table B2).

time_mpi[s] Average time spent in MPI for each rank. When this value is large compared to

the overall run time, the application spends a significant amount of time in MPI

operations. Further measurements can be taken to illuminate problem areas (see

MPI section of Table B3).

mem_vs_comp Memory bound versus compute bound. Memory bound means that the applica-

tion would be faster if the memory bandwidth was larger and compute bound

means that the application would be faster if the CPU was faster. (close to 1.0

means the application is strongly compute bound, close to 2.0 means the appli-

cation is strongly memory bound).

load_imbalance Ratio of the load imbalance overhead towards the critical path duration. This

ratio signifies the potential for speedup if the load imbalance was non-existent.

For example, if a 20% load imbalance is measured, fixing this load imbalance

would improve the run time of the code by 20%.
Table B1. Description of general performance analysis metrics currently supported by our RCF.

I/O Performance Metric Description

io_volume[MB] Total amount of data in I/O. Can indicate whether I/O is going to be a bottleneck

for the application.

io_calls[nb] Total number of I/O calls. Can indicate whether the I/O subroutines are ineffi-

cient.

io_throughput[MB/s] Speed of I/O. Can indicate whether the HPC architecture is suitable for the

application.

avg_io_ac_size[kB] Average amount of data per I/O call. Can indicate whether performance could

be improved by changing data size (coalescing reads/writes).
Table B2. Description of performance analysis metrics pertaining to I/O, currently supported by our RCF.
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MPI Performance Metric Description

num_p2p_calls[nb] Average number of point-to-point MPI operations per MPI rank. Can indicate

inefficiency of point-to-point communication pattern.

p2p_comm_time[s] Average time spent in point-to-point MPI operations per MPI rank. Can indicate

inefficiency of point-to-point communication pattern.

p2p_message_size[kB] Average size of point-to-point MPI messages per MPI rank. Can indicate

whether performance could be improved by changing message size.

num_coll_calls[nb] Average number of collective MPI operations per MPI rank. Can indicate inef-

ficiency of collective communication pattern.

coll_comm_time[s] Average time spent in collective MPI operations per MPI rank. Can indicate

inefficiency of collective communication pattern.

coll_message_size[kB] Average message size in collective communications per MPI rank. Can indicate

inefficiency of collective communication pattern.

delay_mpi[s] Total amount of MPI time spent in waiting caused by inefficient communication

patterns. If this value is large, it signifies that the application has a significant

amount of delays that cause wait states in MPI operations.

delay_mpi_ratio Ratio of waiting time caused by MPI to total time spent in MPI. If this value

is large, it signifies that the application has a significant amount of delays that

cause wait states in MPI operations.
Table B3. Description of performance analysis metrics pertaining to MPI communication, currently supported by our RCF.

Memory Performance Metric Description

memory_footprint[kB] Average memory footprint per MPI rank. This metric helps to estimate total

amount of main memory that program uses while running.

cache_usage_intensity Ratio of total number of cache hits to the total number of cache accesses. If this

value is small, the application uses the cache inefficiently.
Table B4. Description of performance analysis metrics pertaining to memory use, currently supported by our RCF.
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Node Performance Metric Description

time_omp[s] Total time spent in OpenMP parallel regions. Can indicate load imbalances with

regards to inter- and intra-node operations.

omp_ratio[%] Ratio of the time spent in OpenMP parallel region over the total computation

time. Can indicate load imbalances with regards to inter- and intra-node opera-

tions.

delay_omp[s] Total amount of OpenMP synchronization overhead. If this value is large, it

signifies that the application has a significant amount of delays that cause wait

states in OpenMP constructs.

delay_omp_ratio Ratio of synchronization overhead time in OpenMP to total time spent in

OpenMP. If this value is large, it signifies that the application has a significant

amount of delays that cause wait states in OpenMP constructs.
Table B5. Description of performance analysis metrics pertaining to node-level performance currently supported by our RCF.

Core Performance Metric Description

IPC Ratio of total instructions executed to the total number of CPU cycles. This met-

ric shows the workload of the CPU. Low values usually indicate the presence

of pipeline bubbles and/or cache misses and/or mispredicted branches.

time_no_vec[s] Wall clock time without compiler vectorization.

vec_eff Ratio of total wall time of the reference run to the total wall time without vec-

torization. If this value is low, the application is not vectorized or poorly vector-

ized.

time_no_fma Total wall time with disabled “fused multiply/add” (FMA) instructions.

fma_eff Ratio of total wall time of the reference run to the total wall time without fused-

multiply-add operations (FMA). If this value is low, the application does not or

use FMA or poorly use FMA operations.
Table B6. Description of performance analysis metrics pertaining core-level performance currently supported by our RCF.
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