We thank the anonymous reviewer for taking the time to read this paper thoroughly and providing
the authors with constructive and thoughtful feedback. Addressing this feedback has greatly
improved the paper.

Addressing reviewer 2's concerns:

The paper presents the some of the challenges of geoscientific modelling on HPC
resources, with emphasis on profiling and processing workflows. In order to address
provenance, portability and profiling best practices, a run control framework (RCF)
based on JUBE is described. The demonstration of the RCF is conducted in a weak
scaling experiment in ParFlow, an integrated watershed model. Presentation of the
tests results constitutes a notable - and interesting - part of the paper.

The paper is relatively easy to read in sections, but difficult to read as a whole. It covers several
domains of expertise such as HPC, geoscientific modelling, software engineering, run harness and
profiling. More work is required to present a coherent and uni-formly detailed experiment in its full
context. The profiling element is also substantially more detailed than the others to the point of
overshadowing them. Furthermore, profiling results could be much better linked and/or mapped to
the very informative “health check” section. As for layout of the “health check”, typical diagnosis
tools appended for each item does not convey the specific (overlapping or not) role or features of
each software very well.

The suggestion to map the results back to the health check is a good one. We have also moved
definitions in section 3 up to section 2 to the health check, and mapped each health check step
back to the results presented. We have provided a more in depth description of the profiling tools
used and their overlap. In addition we have detailed the function of the RCF in automating the
health check workflow to try and provide a coherent experiment with which to demonstrate the
advantages of using the RCF.

The authors list in section 3.4 the outcomes of the profiling case study. This entices

the reader to believe that profiling will also advance provenance and portability. The

article presents only a few elements of future work to support the full scope of the

study, at least as the title describes it. It is also difficult for a reader to consider the

tests results - the most detailed element of the paper - as sufficient proof of application of best
practices in profiling, portability and provenance.

Yes we can see how this might cause some confusion. We have deleted Figure 9 and also the text
to surrounding the NetCDF reader/writer to limit confusion for the reader. We have also clarified
that the RCF is a best practice approach to profiling, portability and provenance by altering the title
and also providing a better explanation of what the RCF is and how it is integrated with the
workflow engine, JUBE. We have updated the title to: A run control framework to streamline
profiling, porting and tuning, simulation runs and provenance tracking of geoscientific applications

The test case experimental design for ParFlow reads like a completely disjoint section
to the rest of the paper. It is only very lightly linked with previous or subsequent
sections, for instance on the motivations behind that particular test case and how it
leverages the RCF, the workflows or the HPC resources. It is unclear looking at the
profiling results what are the implications for the test case or to ParFlow itself. This
section offers a great potential to present ParFlow software and models (graphically),
to show alternative test configurations or to contrast with real-world scenarios.

Thanks for these suggestions. We have now included the motivations for using this particular test
case in order to illuminate bottlenecks using the health check procedure and the reasons why a
“real world” test case might obscure certain results such as load balance. We have also shifted the
test case model description to section 3 for better continuity.



The paper mentions two other workflow engines (p.3 33) before rapidly shifting to JUBE (p.4 25).
What are the advantages, limitations, similarities of JUBE compared to these other solutions? As
is, considering that the results analysis of ParFlow provided by the RCF is a large (and interesting)
part of the paper, a reader might be tempted to think that JUBE was selected first and pitted
against other solutions a posteriori. It might be sufficient to cite major findings for the associated
publication.

This was an oversight. We have now included a discussion of the relevant strengths and
weaknesses of JUBE, ecFlow and cylc and have stated the reasons for choosing JUBE but have
also made it clear that the RCF could be adapted for other workflow engines and they share a lot
of the same functionality.

Address specific comments

Specific Comments
1. Some sentences are too long (p.1 8-10, p.3 8-10, p.17 6-10). The messages con-
veyed by these long sentences is important for the coherence of the whole.

Agreed- we have fixed these sentences.

2. Figure 9 could be changed to a textual list without loss of content. Is there an overlap or
interrelation between those developments? Is there development to do outside the scope of
ParFlow, for instance in the run harness or workflows? What does “towards exascale” refers to
exactly (cite or describe)? At what scale is the system operating at right now? What are the hurdles
from terascale/petascale onto exascale that the presented work will limit or remove?

We have followed your suggestion and removed Figure 9. From the profling results it can be seen
that due to memory required being greater than memory available, at around 64000 cores,
ParFlow as it stands is not approaching exascale. Exascale computing refers to computing
systems capable of at least one exaFLOPS, or a billion billion calculations per second. ParFlow
coupled with p4est as the parallel mesh handler, allows ParFlow to scale to the whole Juqueen
machine (petascale). We have made this clearer in section 3 and introduced the exascale concept
in the same section.

3. Avery large part of the relevant information related to Figure 2 is in its legend. The

reader might not care very much about the screen layout of the output. The reader

might be interested in numerical values for each result on some occasions, but most

values aren’t described or introduced previously in the article. Most of all, the reader will most
probably be interested in the metrics themselves and how they relate to profiling - or to some
extend to portability or provenance, if applicable.

This is a good idea. The reader would benefit from knowing what each metric is used for. We have
tried to explain what each metric means and why it might be useful in table format in appendix A2
and thus reduced the length of the figure caption.

4. Section 3.1 is very short compared to others at this level, which diminishes its
impact. It does not help with readability and flow. The section would benefit from an
extension of concepts or reinforcement of links with other sections. It may also be
merged elsewhere.

We have altered section 2 to include a more thorough description of the accuracy test we used to
test compilation flags. We have expanded section 3.1 to include a reference to this test as well as
a discussion of the relevant compilation flags used for the specific IBM XL and why we focused on
the two specific flags as opposed to others available.

5. Some of the claims in the article are very lightly substantiated, insufficiently nuanced or lacking



details. For instance (p.1 16 and p.19), the author claims that RCF is less time consuming and
more robust, but less/more than what? Than without use of an RCF? The article concludes by
claiming a more efficient use of HPC resources that

was not clearly demonstrated; it reads like this is only implied because best practices

were followed. If that is the case, it is suggested to better define and highlight these

best practices.

Yes less time consuming than running by hand or developing a series of specialized scripts which
only work for one model without integrated profiling tools. We have tried to make this clearer in all
sections of the manuscript where this is mentioned and have updated the conclusions accordingly.

6. The paper also mention in a few places costs notions (“invested effort”, “paid off”,
“cost in resources”) without providing any data or basic financial analysis. What was
the approximate amount invested by articles cited? How much money or energy was
saved? This comment is provided without diminishing the (substantial) presented work
or assuming that this information is essential.

We are assuming you mean the references mentioned in page 3, 2" paragraph and have updated
this to include an example (Leutwyler et al. 2016) of speedup values (~3.6) and also the invested
effort required (a team of developers)

7. The paper briefly mentions hybrid and heterogeneous architectures, but do not

mention cloud computing. While a very different architecture than HPC, a reader might
interested to see if any of the work presented can be applied in cloud computing environments
(worfklows? packaged code? profiling? tools? models?). Commercial

and scientific offers in HPC-as-a-service might prove an interesting option for the RCF.
Absence of cloud computing discussion is not seen here as a limitation of the article,

only a potential topic of interest.

Thanks for pointing this out. Yes the RCF could be adapted for cloud computing or a web based
interface. However this would be a substantial effort for a technology that is as yet severely limited
by bandwidth such that it performs substantially worse than just using one HPC system. So we
think this is out of scope for what is currently available to HPC users.

8. There are also almost no mention of standards, except a brief sentence on (p.10
3-5). A reader might expect that such large scale systems with claims on portability
and provenance do indeed follow standards instead of reinventing the wheel.

A brief mention of these standards without explanation was because the authors assumed that the
readers would be familiar what standards we follow (CF and CMOR Metadata Conventions) in the
section on provenance tracking. We've now expanded this section to include a discussion to
describe the CF conventions and their purpose. We have also now added to this section a
discussion on how Irving 2016's minimum standard points 1-4 are covered by the RCF.

9. The code profiling section (p.6 6) makes it difficult to the reader to separate author
contribution - by means of the RCF - to outputs from ScoreP and Scalasa. There

is a long list of what software can “examine” those outputs. Why are those outputs
compatible with all these software? Is it a standardized file format or structured data?

This is true. We have tried to make this clearer by explaining what ScoreP, Scalasca and Cube are
in the text (rather than in the appendix) and to clarify what RCF does (collect and collate the
performance metrics by parsing the various reports generated by the tools). There is a standard
format for ScoreP and Scalasca output which Cube can parse and read.

10. Alinea Performance Reports and Intel Vectorization Advisor are present in each
item of the health examination, but both software weren’t used. Still, they are recommended by the
authors. Is the toolset of the experiment sufficient? What is the



additional insight offered by Alinea and Intel's products that the other tools can’t?

The toolset used was determined by what was available on JUQUEEN. We've now explained this
in section 2. There is a lot of overlap with different tools and we have now explained this in the
same section. As to what tool one uses it depends on 1. what is available on a given machine and
2. personal preference. For example, Alinea products offer a nice way of presenting coarse-grained
metrics for a novice user but do not offer more features than many other tools. And Intel vector
advisor additionally can provide some more guidance than other software when it comes to
identifying potential loops to be vectorized but this is not part of the initial health check guidelines
and so these results are not mentioned.

11. Interoperability is largely undefined throughout the text. There is only a single
mention of interoperability (p.10 6) for “extra” features. Interoperability between what
and what exactly? Was interoperability a critieria either in the conception of the test,
the run harness or the workflow?

What the authors meant by interoperability and did not explain very well, is that CMORized
NetCDF files can be used on different architecture (big and little endian) and for different software
(for use in various terrestrial systems software and visualization software). In the section we've
added about CF conventions we have also mentioned how this facilitates interoperability and what
we mean by interoperability in this instance.

12. The subsequent paragraph - a very long sentence - mention download and rerun.
Results on reruns would be welcomed if possible, either on JUQUEEN or better, on
other infrastructures.

Yes, the profiling results obtained are the result of running the benchmark described 10 times to
get an average and make sure the benchmark is running as it should- i.e. there should not be a
huge variance between results. And we have now added this explanation to section 3. The authors
think that showing how this benchmark performs on other architecture is really beyond the scope of
the paper as we are primarily discussing the RCF and how it aids portability, profiling and
provenance tracking. Of course discussion of the portability aspect should include what other
machines the RCF is running on (good suggestion) so we have mentioned that this RCF is also
being run on Julia (a prototype KNL cluster at JSC), Jureca (a general purpose cluster at JSC) and
Juropa3 (a prototype testbed system at JSC) in the description of the RCF.

13. The paper states that platform.xml can be easily extended or altered to include

new systems. It is always easy to modify XML files, but not trivial to know what constitutes a valid
modification and to successfully deploy it on other systems. Is there

any tools to help a user, a developer, an administrator? Most discussion on portability

revolves around XML files, compiler/linker flags and use of Python language. The paper
concludes that the RCF using a workflow engine leads to code that can be ported

easily. These conditions are important, but insufficient. A more thorough description

of “environment preparation setup” might help a reader to better assess how close this particular
run harness is compared to his own environment(s).The article would benefit from a better
definition of portability. Ported from where to where? Any example of a second HPC infrastructure
in your network? Precise what future work will advance portability. Other topics that could help a
reader - this reviewer in particular - to assess portability could include virtual environments,
software containers, software repositories and continuous integration frameworks.

This is a valid point. The RCF facilitates the environment set up through the use of loading
modules, most if not all HPC systems contain this feature, thus this is one of the reasons why the
RCF is portable- we have now mentioned this in section 2. Within the platform XML file, there are
structs defined with standard parameters for run time arguments and compilation flags which can
then be used for any HPC system with particular versions of compilers and profiling tools. We have
added this to the description in section 2.3 (code portability).



14. Table 2 presents efficiencies measured during the weak scaling experiment. The

authors states that more in-depth analysis is needed, but no strategy, best practices or future work
is offered to the reader. Is this analysis to be conducted by a specialist, is it tool-assisted, what is
the state of the art?

Good point. More in depth profiling would be much more effective together with performance
analysis engineers. We have added this explanation and have put in an example of future work
that we are currently conducting with the aid of performance analysis specialists: vectorization of
individual loops.

15. There is an assumption that the directory structure (Figure B1) “allows for run time

provenance tracking” and “such that the model can be rerun without using any other

external tools”. The directory structure presented is most probably correct as a part of

the RCF implementation. Still, it is unclear this is sufficient to insure provenance tracking or rerun.
Is a tool set available to explore these directories and/or rerun models? Is it indexed in some form?
Is there some other semantic information available that can be used?

What is meant is that whole simulation can be rerun as the code, the forcing data, the environment:
modules loaded, including a list of dependencies their versions, all extraneous scripts including job
submission scripts and a complete model description are bundled together in one output directory.
If a user were to untar an output directory, they would be able to compile and rerun the experiment
using the XML file contained in the directory, with JUBE, on the same machine and obtain the
same results. We have tried to improve the description on page 3 and in section 3. Also we have
mentioned that there are additional features beyond the users control such as different hardware
when porting models and ways to ensure the scientific results remain the same.



