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GMD Paper Review Response – Reviewer 1 

Review 1 – Andrew Wickert 

Skinner and coauthors’ sensitivity analysis of landscape evolution models is a much needed addition 
to the geomorphic literature. Many evolution models often have been treated as sandboxes in which 
to experiment with quantified conceptual process understandings rather than as predictive models, 
with a few exceptions that include earlier work led by coauthor Coulthard using the CAESAR model. I 
also think that I have known of this work in progress for some time, as my lab donated some compute 
time at the request of coauthor Schwanghart. 
 
Conceptually, I find the idea of a sensitivity analysis to be a very good approach. Often, landscape 
evolution models include competing processes designed to simulate the effects of real processes. Such 
additions typically include descriptions (qualitative and/or quantitative) if their impact on a landscape, 
but often do not include a more mathematical analysis of how these processes influence the solution 
space. 
 
Thank you very much for the comments. We are glad you appreciate the complexity of the task – there 
is a great deal of information in and behind the paper and choosing what to highlight and discuss was 
a repeated issue in the paper’s formulation. 
 
The work of Skinner and coauthors is significant and publishable, but on reading their paper, I found 
multiple causes for concern. I could not find easy answers to the most major concerns, enumerated 
below. 
• The sediment transport formula was the dominant source of uncertainty, but I believe that this may 
in part be because these sediment transport formulas were not appropriate for Tin Camp Creek 
(Australia). 
– The grain size distributions for the rivers displayed significance of sand in the UK and a dominance 
of sand in Australia. Both the Wilcock and Crowe (2003) and the Einstein (1940’s-50’s) formulas are 
tested with coarse sand as the smallest grain size class. In the Australian case, about 50% of the sand 
is finer the grain size used to produce the sediment transport formula. 
This is at the upper limit of the curve in Figure 6 of Wilcock and Crowe (2003), where their solution 
begins to bend more sharply but the data end. Therefore, there is great uncertainty and little 
constraint in the formulation. 
 
We are not attempting to fit the model perfectly to each environment, and the use of Einstein and 
Wilcock and Crow (W&C) was largely because these are the formulae available in the un-modified 
model as downloaded. This acknowledged in lines 488-491 in the marked-up revised manuscripts –  
 
“These were not selected as they represent the best fit for the catchments simulated but because they 
are the formulae available in the unmodified version of CAESAR-Lisflood.” 
 
There is a general point about sediment transport formulae and their applicability – that they generally 
perform well on the data they were generated from, but much less so when applied to other 
circumstances (eg Gomez and Church, 1989 and others since). So in taking any sediment transport rule 
out of its ‘comfort zone’ we will encounter issues.  
 
For the second point, looking at Wilcock and Crowe (2003) they use sand fractions of 0.0005 to 0.64 m 
(Figures 1, 2 & 3, and P121) in their 48 flume experiments from which their formula was derived. For 



our first catchment (the Swale) there is a pretty good agreement between the sediment grainsizes used 
and the W&C ones. In the second catchment – yes, there are finer sands and a greater proportion of 
sand in those simulations than used in the formula development. However, we find the same sensitivity 
to sediment transport formula in both basins, despite the different grain size mixes. Sediment transport 
formula choice has a much stronger impact than grainsizes as shown in our Figure 3.  
 
The issue of choice of sediment transport model and its applicability to any site is difficult to address 
as there is no general model. One can either calibrate to the site or develop a model specifically for the 
site which is impossible for most applications. This is no different to hydrological modelling where no 
model fits all situations. All model outputs are limited by this. We hope to get this point across in the 
paper.  
 
The application to real basins – with their representative grainsizes is a nice thing to have – but the 
important finding is the similar sensitivity to sediment formula choice in two quite different 
settings/basins. Therefore, we argue that whilst our application of the W&C to the Australian example 
may be outside the limits of the initial W&C development – it does not mean that the overall finding is 
incorrect. There is certainly scope for a study/paper on the role of sediment transport rules in LEMs 
(see later comments). 
 
– The Australian example has a dominance of sand. Are there bedforms that appear in the river? If so, 
could you discuss the role of their form drag, which to my knowledge is not included in your model, 
and how it could affect sensitivity to choice of sediment transport formulations? 
 
To clarify, there are bedforms in the creek – and form drag is not included in the model. CAESAR-
Lisflood will not generate realistic bedforms at this scale/resolution of application and these are not 
factored into the sediment transport formulas. 
 
– I find your discussion of sediment transport in section 4.3 to be unnecessarily vague. It is not unusual 
to see in the landscape evolution modelling literature a statement to the effect of “sediment transport 
formulas are problematic and it is a difficult thing so the error is probably there”. Scientifically, this is 
unhelpful and in my opinion a little lazy. I think that here you have the opportunity to analyze why this 
is your major source of uncertainty, which is one way in which I hope this study can rise up above the 
others. Regardless of whether anyone trusts the form of your sediment transport formulations for the 
chosen grain size, form drag, etc., you have two mathematical formulations that must produce 
divergent outcomes for the set of provided hydrologic and topographic states. (I am presuming that 
over your 30-year time scales of interest, overall topography changes little.) Based on an analysis of 
these formulations, can you make a prediction of the factors that lead to this divergence? 
 
These are really good points, well made. There is much scope (in another study) to look at how different 
sediment transport formulae respond (in the different settings) in this model that would be incredibly 
instructive to the LEM community and this is something we are working on (but first we need to look 
at how all the model parameters interact and influence model behaviour). 
 
While not a direct comparison as prescribed in this paper but in the context of model testing Coulthard 
and Hancock have examined geomorphic change by comparing CAESAR and SIBERIA models over 
millennia. These tests show a lack of divergence and an equifinality of final form.  
 
However, we would also like to emphasise that the primary purpose of this paper is a methods paper, 
introducing a method to assess the sensitivity of LEMs to changes in parameter values. Therefore, a 
detailed analysis of different sediment transport formulae is beyond the scope of this paper and also 
beyond the scope of GMD and would be better placed in an Earth surface based journal. However, we 



agree that this would be incredibly valuable and a more in-depth test utilising more sediment transport 
formulae is planned. We see this paper as the introduction of a longer and larger set of experiments 
as part of the Landscape Evolution Model Sensitivity Investigation Project (LEMSIP) to which we would 
invite the community to contribute. 
 
• Your discussion notes that the sediment transport formula’s importance may be overstated due to 
the smaller number of options for this than for the other variables. However, you do not analyze this 
possibility. or whether this would even lead to sediment transport formula remaining the dominant 
influence. Could you argue how your conclusion about sediment transport formulas is (or is not) still 
valid, considering this? I make a suggestion below (530-533). 
 
This has been addressed in Section 4.5 – Limitations from Line 787. 
 
“The main limitation of the MM is the subjectivity in selection of parameter values and ranges. Here, 
this has been mitigated by consistently selected ranges of +/- 50 % of a default value obtained from 
previous calibrations (where feasible). An issue emerges with categorical parameters, such as SED, 
where multiple values cannot be placed in spectrum across a range between minimum and maximum 
values. The MM has no formal method for dealing with  such categorical parameters, so here it has 
been assumed that switching from one formula to another is a single iterative step change, and this 
would be the same even with more choices available. This reflects the purpose of the MM, which is to 
inform about the relative importance of choices of parameter values on the performance/behaviour of 
the model. However, to assess the impact of this single step-change assumption, we performed a 
further analysis, where it was assumed that switching formula was a change of four iterative steps. 
This analysis shows that the relative sensitivity of the model to the sediment transport formula choice 
becomes less important, with other parameters such as Manning’s n Roughness and grain size sets 
increasing in relative influence (see Supplementary Material S2 for full results of this analysis).” 
 
• Your premise is to test landscape evolution models, but the 30-year model run period is much 
shorter than most geomorphic models are used. Indeed, I wonder how much landscape evolution 
occurs, versus how much, over these time-scales, CAESAR can be thought of as a sediment-routing 
model with erosion or deposition being negligible (and therefore avoiding the nonlinearity in which 
changes in topography affect the long-term response of a LEM.) I think that this short time scale should 
be made explicit early in the paper. A discussion of how these results can (or cannot) be transferred 
to different time scales would be helpful as well. 
 
Yes, this is a much shorter timescale than typically applied, but establishing a dominance on a process 
or set of processes over shorter times will still provide us with insight into longer term processes. 
Lessons learnt over the short time scales will apply over longer time scales. The 30 year time scale was 
largely chosen of model run time convenience – but it is also a timescale that is relevant to 
contemporary management decision making. Decision making processes based on geomorphic 
modelling require a far greater standard of understanding and handling of modelling uncertainties 
than currently employed by the LEM community, and lessons can be learnt from the hydrological and 
meteorological modelling communities.  
 
In addition to these, the paper would be improved by a careful set of proofreading. It is repetitive in 
several places and includes a number of issues in both grammar and style. The overarching issues here 
are: 
• Many proper nouns are capitalized; why? 
• Your abbreviations should be used with an “s” to indicate whether or not they are 
plural in a given instance 



• The Morris Method is mentioned 2–3 times before it is defined or described. Its description should 
be more closely tied to its in-text mentions. 
 
This was also raised by reviewer 2 and we will make sure the method is defined earlier in the revised 
manuscript. 
 
Morris Method is now defined much earlier, from Line 138. 
 
• You define the difference between an objective function approach and a sensitivity analysis at 
multiple points; reduce this to one. 
 
We have included a glossary of terms from Line 280.  
 
• In general, many explanations are very “hand-wavey”. Please do a thorough read-through to reduce 
the fluff and improve the density of new information. If this is not done, it will be hard for a reader to 
see what interesting new conclusions you have come to. 
 
We will sharpen up our descriptions. 
 
Line-by-line and section-by-section comments are as follows: 
 
Abstract: Why 3 paragraphs? I think you can shorten and tighten this. 
 
We have rewritten the Abstract. 
 
18. em dash after models; comma after example. Sensitivity Analyses one example 
here of something that is capitalized for reasons I don’t understand; I don’t think that 
this is just UK English. 
 
Capitalised as it should be defining the acronym SA, but this is not included. Have edited accordingly. 
 
47. I do not believe that your above references cover glacial or aeolian processes. Disregard if I am 
incorrect (does CAESAR include aeolian processes?); add references or remove these notes if I am. 
They are unimportant anyway to the landscapes that you are studying. 
 
Have changed to just “Earth surface processes” as suggested by reviewer 2. 
 
61. Comment: even few-parameter stream-power-based LEMs are quite heuristic. I do not think that 
your note here is unique to models with large numbers of parameters. 
 
65. Correctness: an analysis cannot investigate, but you can. 
 
79-85. I appreciate this list! 
 
Thank you.  
 
122. Define MM here or list section in which it is defined. 
 
Now defined from Line 138. 
 
128. Sentence fragment after comma 



 
130. Incorrect in general: many landscape evolution models are not designed to be predictive over 
annual to decadal time scales. I find CAESAR to be quite unique in its time-scale flexibility, due (I 
believe) to its explicit integration of flow and sediment transport processes. 
 
This has been edited (from Line 173) to “Moreover, some second-generation LEMs (e.g., CAESAR-
Lisflood) simulate…” to reflect this. 
 
131. I don’t see what you mean by "multi-dimensional approach" 
 
The phrasing is unclear. It means that the performance of the models needs to be assessed across all 
these timeframes. An LEM might produce reasonable behaviour when assessed at a millennial 
timeframe, but the behaviour at smaller timesteps could have no physical-basis. There could also be 
an element of equifinality where similar outputs from longer-term model simulations emerge after 
very different patterns of short-term behaviours. A model should be able to reproduce correct 
behaviours at all these timeframes and should be assessed on this basis. Text changed in Lines 173-
175 to “necessitating data and methods to assess them across variable time scales.” 
 
133. When is an objective function not a score between observed and simulated values? Or do you 
mean that we can have synthetic observations? 
 
Good point – have edited. 
 
149-152. I think that point-based measurements must account for all of the complexity in the system, 
but may not be able to distinguish the source of the measured parameter’s value. 
 
A point-based measurement could never possible account for all the complexity in a system. For 
instance some changes may be spatially restricted – material is eroded, transported, and deposited 
wholly within the catchment so no signal of this change will ever cross the catchment outlet. 
 
155. What is a width function? 
 
According to Lashermes and Foufoula-Georgiou (2007), the “width function of a river network is a one-
dimensional function which summarizes the two-dimensional branching structure of the river network. 
It represents the distribution of travel distances through the network and, under the assumption of 
constant flow velocity, the probability distribution of traveltimes. Thus its significance for 
understanding the hydrologic response of basins and the scaling characteristics of streamflow 
hydrographs is important”. It is described in Hancock and Wilgoose (2001) as cited.  
 
Lashermes, B., Foufoula-Georgiou, E., 2007. Area and width functions of river networks: new results 
on multifractal properties. Water Resources Research 43, W09405–W09405. 
 
We did not feel this level of detail and description was required for the manuscript so have removed 
references to individual methods. 
 
155. Cumulative area distribution – of what area? 
 
Described in Hancock and Wilgoose (2001) as cited – “The cumulative area distribution (CAD) is a 
function defining the proportion of the catchment which has a drainage area greater than or equal to 
a specified drainage area. The CAD describes the spatial distribution of areas and drainage network 
aggregation properties within a catchment.”  



 
As above, we have removed all mentions to individual methods. 
 
156. It is not possible to use variables as an objective function. One needs... a function. This may 
include these variables, of course! 
 
These are not variables but values extracted from physical and numerical experiments, and compared 
as an objective function. This section has been rewritten (from line 224). 
 
162. , and so are (comma) 
 
162. "more objective" is vague: do you mean more in quantity or more as in better? 
 
As above, this section has been rewritten. 
 
165. "data" is plural. "data" is included twice as well, and the sentence is generally 
awkward. 
 
167. Really? These data are not available? Not even in heavily-monitored experimental catchments? 
It is difficult to make sweeping statements, so I would ask you to prove this. 
 
As above, this section has been rewritten to focus on the lack of methods rather than on data. 
 
175. which –> that. This is an important distinction, and is often overlooked. 
 
176. rm "will": tense confusion 
 
185-186. "Medium" and "small" are nearly meaningless; could you provide catchment 
areas? 
 
Have replaced with area values. 
 
200. Is the rainfall time-series uniform in space or not? (I read later that it need not be, 
so please note this here, as this sets CAESAR ahead of other LEMs) 
 
The rainfall time-series is derived from RADAR rainfall estimates and vary spatially for the Swale. The 
data has a spatial resolution of 5 km and a temporal resolution of 1 h (see 2.3.1.). Rainfall is uniform 
for Tin Camp Creek and based on one rainfall station (see 2.3.2.). This has been made clearer in the 
revised manuscript (Line 424-5 & 437). 
 
204-205. Note how erosion and sediment transport are calculated here, as this is central to your 
conclusions. 
 
We tried to limit our explanation of the model as its functionality is very well defined elsewhere and 
we have made no changes for this test. However, more detail on this aspect would be helpful and will 
include. 
 
205. What is an "active layer system"? 
 



Have expanded the description in the manuscript (lines 314-321). The active layer system allows for 
the storage of sub-surface sediment data by keeping it in strata going from a bed rock layer (if used), 
a base layer, several buried layers, and finally a top, active stream bed layer (Van de Wiel et al, 2007). 
 
Van de Wiel MJ, Coulthard T, Macklin M, Lewin J. 2007. Embedding reach-scale fluvial dynamics 
within the CAESAR cellular automaton landscape evolution model. Geomorphology 90: 283–301. DOI: 
10.1016/j.geomorph.2006.10.024 
 
223-224. This is where singular vs. plural usage of acronyms can stand out. 
 
240. What is the Design of Experiment? And how did it use R? 
 
The Methods section describing the implementation of the MM has been rewritten, and this should be 
much clearer now (from Line 337). 
 
250. is –> are  
 
250. these constitute the Main Effect. (otherwise it is not clear how two things become one) 
 
Have made it clearer that the mean of the elementary effects is the main effect, and the standard 
deviation of the elementary effects is separate. Line 365 – 369 – “After all 1600 tests have been 
performed, the main effect (ME) for each objective function and parameter is calculated from the mean 
of the relevant EEs – the higher the ME the greater the model’s sensitivity. Alongside the ME, the 
standard deviation of the EEs is also calculated as this provides an indication of the non-linearity within 
the model.” 
 
266. elevation drop is also called "relief". I understand it here, but "relief" may be more 
common. 
 
Have changed to “relief” (Line 419) 
 
277. Grammar: Contrasting –> In contrast. 
 
279. Comma after "Swale" 
 
280. I thought that "rain gauge" is two words. 
 
Changed. 
 
282. Did you therefore use uniform precipitation for the Swale catchment? 
 
No, rainfall series are based on NIMROD composite RADAR rainfall estimates and vary spatially. The 
resolution is provided in Section 2.3.1. 
 
Table 1: (3 and 4) Do you mean to say that you prescribed a lateral erosion rate that is constant? This 
seems strange to me. (9) In/Out of what? (13) Evaporation or ET? (14) Roughness for channel, 
hillslope, or both? 
 
CAESAR-Lisflood utilises a constant value for lateral erosion rate, which is different to the in-channel 
lateral erosion rate, and is part of the meander development section of the model. (9) the In/Out 



difference is the ratio between water input and water output and is used to decide the timestep the 
model operates at. (13) Should be ET. (14) global value. 
  
311. It is definitively not qualitative, as it gives you numbers! Perhaps “quantitative but subjective”. 
 
Good point, have changed this and similar references. 
 
320. “Laws” is really strong. “Formulas” could be better. Or formulae, as you seem to be leaning Latin. 
Except with Germanic-leaning capitalization. 
 
Yes, have changed to formulae throughout. 
 
Figure 2: Perhaps note the D range of the data with which the sediment transport formulas were 
created 
 
Have included a note about Figure 2 on Line 518-519 – “Note, that the grain size sets presented in 
Figure 2 contain non-cohesive silts and this requires an extrapolation of the sediment transport 
formulae (Van De Wiel et al., 2007).” 
 
340-343. Section 1.3 doesn’t include what you state here. I also find it hard to believe that topography 
and discharge should have no relationship to geomorphic change. You will need to provide some 
evidence. 
 
Should say “Section 1.2”, have edited. 
 
343-344. This is no surprise: they studied equilibrium landforms, while you are studying 30-year time 
scales in which only extreme events can cause significant landscape change. In other words, your time 
scale removes the significance of topographic evolution and its associated feedbacks on the system. 
 
Long-term landscape evolution is disproportionally influenced by successive extreme events. The short 
and long-term dynamics are intrinsically linked. Have removed this reference from the manuscript as 
it repeats parts of the Introduction. 
 
348-350. Yes, you have mentioned this (note my general comment). 
 
370-371. How have you assessed that 10 model years is a sufficient spin-up time? 
 
It was just kept constant between the catchments. There is a wider issue here on the influence of spin-
up time on model behaviour and uncertainties, another aspect we hope to look at as part of the LEMSIP 
work. 
 
381, 383, etc. Consider giving full parameter names where possible to help the reader follow the text. 
 
Originally we did, but the text became unwieldy as some names are long – we have kept them as 
acronyms in the revised manuscript but will take editorial advice on how these ought to be presented. 
Have included expanded forms within figure and table captions. 
 
385. which –> that 
 
Figure 3. Consider full model names; otherwise, you have converted numbers to codes, which readers 
will then have to cross-reference with your table. 



 
Same as above – have included break-down of full names here in figure and table captions. 
 
Figure 5. Is this catchment-wide elevation change, in-channel elevation change, or otherwise? In 
addition, are re you certain that mean elevation change is the appropriate metric? I can imagine that 
significant spatial variation in aggradation vs. incision could occur, and wonder how much this may 
affect your results. In addition, tens of cm of incision over 30 years seems very rapid to me: could you 
comment on this? 
 
Catchment wide, sub-divided by the stream order definition – entire area under appropriate shadings.  
 
We don’t believe mean elevation change is necessarily a good metric but use it for illustrative purposes 
here to demonstrate that there are changes spatially on the 1600 DEMs generated by the simulations. 
Tens of cm of incision over 30 years is not uncommon in certain areas of both catchments – though 
changes in trunk streams in the Swale are controlled (in the field) by bedrock – which is deliberately 
not included in these simulations.  
 
433. Small “s” on “LEMS” 
 
443. How much do you trust gauged suspended sediment discharge and the associated rating curves? 
I do not know that these are so straightforward either. And if you mean bedload + suspended load, 
then I would argue that the data generally do not exist. 
 
Indeed, have acknowledged this (line 688). Similar could also be said about the rainfall time-series used 
to drive the model. 
 
4.1 (general). This section indicates to me that solving the LEM problem may be impractical due to the 
amount of time-lapse spatially distributed data required. Could you comment on this? 
 
With present methods it might be – we have acknowledged this from Line 699 – “Some of the 
challenges of LEM output comparison are similar to those of meteorology/climatology and may require 
a shift in expectation from end users as to what is possible. For example, predicting detailed patterns 
of local erosion and deposition is akin to predicting weather (low comparability especially over longer 
time scales) but more general (spatial and temporal) patterns of basin change are similar to climate 
predictions (better comparability especially for longer time scales).” 
 
But that does not mean we should not try and advance and seek new methods and techniques to try 
and address this. LEMs represent a potentially powerful tool for understanding geomorphic impacts 
due to changing climate, land use, and flood risk interventions, which could be applied for decision 
making purposes. The rewards for solving the LEM problem are worth pursuing a solution. 
 
4.2. This section seems just to read, “we don’t know how these models work and what the general 
rules are”. It is OK to just write that! This seems to beat around the bush. 
 
We have removed this section altogether. 
 
456-457. Environmental models can be transferable between catchments. For example, I would argue 
that a thermal model is very transferable! Please be clear in what you mean by “environmental”. 
 
We are particularly referring to models of open systems which have variable parameters that are 
calibrated. The calibrated model cannot be directly transferred to another catchment, however similar 



they are, and will need a new calibration. The same would apply to a sensitivity analysis. This section 
has been removed. 
 
473. Your sediment transport formulas do not include thresholds. Please explain how this compares 
to thresholded models if you include this point. 
 
Wilcock and Crowe operates with a threshold – Einstein does not, but transport rates increase with a 
(loosely described) cubic function of stream power, in many ways mimicking a threshold in operation.  
 
475. Your formulas include one that performed well in the Gomez and Church test and one that was 
not considered. What is the basis for using GC 1989, therefore, to declare that sediment transport 
formulas are not good? 
 
Gomez and Church (1989) summarise that no formulae work well outside of the data upon which they 
were developed. We use this to illustrate a weakness of sediment transport laws that has been 
identified before.  
 
477. Both of the formulas that you have employed are based on theory, and fundamentally on the 
force balance on a grain via the Shields number. I would suggest to not simply call these “empirical”, 
but to actually note where the boundary between theory and empiricism lies. Indeed, these may be, 
for better or worse, some of the more theory-grounded components of a LEM! (Perhaps 2nd to the 
hydrodynamics) 
 
Good points. We have edited this section from Line 728 – “The variation in the model performance can 
be explained by the derivation of the sediment transport formulae themselves, that are often theory-
based but fitted to limited laboratory and field data, sometimes representing temporal averages over 
equilibrium conditions (Gomez and Church, 1989). The formulae do not, and were likely never intended 
to, represent the full variation of actual flow conditions in natural river. As LEMs commonly 
amalgamate a set of geomorphic models or transport formulae, their performance hinges in the a 
number of individual model components. Therefore, when applied to different situations, they may not 
be appropriate (Coulthard et al., 2007a).” 
 
479. How do you know that they were not intended to represent variations in flow conditions? This 
statement is inconsistent with the fact that the underlying experiments have been performed at a 
wide range of tau=tauc ratios. You should be more specific or remove this comment. 
 
Our wording is “full variation of flow conditions”. It is true that the formulae are derived and tested 
over a wide range of flow conditions, but not the full range that might be experienced in reality. Have 
changed to “The formulae do not, and were likely never intended to, represent the full variation of 
actual flow conditions in natural river” from Line 731. 
 
489-490. Non-stationarity in hydrologic models seems a bit off-topic here. 
 
We do not believe this is off-topic here, but probably requires a lot more expansion and context. We 
have removed this reference. 
 
482-493. Do you think that the issue of scaling and calibration should deserve at least its own 
paragraph, if not its own section? 
 
Yes – have moved this to its own section (4.3) from Line 737. 
 



507-514. Do you mean that LEMs should follow hydrologic models’ approach to uncertainty 
estimation in general (there are many such approaches), or specifically Lisflood-LP, and why? In 
addition, this paragraph gives little information about what these approaches are and why they are 
good. 
 
We mean that LEMs should follow hydrological modelling approaches to uncertainty generally, and 
indeed there are plenty. The Lisflood-FP approach is provided as an example, one which is widely used, 
and makes the most sense for CAESAR-Lisflood for obvious reasons. Will rephrase this paragraph to 
make this clearer. 
 
523. But it is quantitative! I think you are again confusing “subjective” and “nonquantitative”. 
 
Have removed these references. 
 
530-533. This is a bit of a bombshell that you are dropping on yourselves at the end: so you are unsure 
that the experimental design fairly weights the sediment transport formulas compared to the other 
values? There seems to be an easy answer, though: just take the binary extreme values of the other 
variables, and compare a subset of the runs with only 2 states considered for each parameter? 
 
Yes, this is a bombshell, and on reflection one we have dropped on ourselves unfairly. The purpose of 
the test was to use the Morris Method to assess the impacts decisions on parameter values have on 
the behaviour of the model – in this case addressing SED as a binary choice is entirely appropriate and 
justified. The Morris Method is subjective, and its purpose is to guide an operator in calibrating a model 
by identifying which parameters impact the model the most. The choice of SED is binary in this version 
of CAESAR-Lisflood and has the largest impact on the model behaviours. The minimum and maximum 
extents of the other parameters were deliberately set wide (+/- 50 %), wider than would normally be 
considered in a sensitivity test (eg, recent UK Environment Agency guidance suggest varying Manning’s 
n +/- 20% to test a model’s sensitivity*). In this sense we could almost argue the opposite, that the 
impact of the SED choice is understated. 
 
In response to your suggestion, instead we have reprocessed the model results assuming that the two 
SED formulae are the min and max choices across 5 steps. Therefore, switching from one to the other 
is 4 iterative step changes, and we divide all associated elementary effects by 4 and replot the 
normalised data. Here we see that the model shows less sensitivity to the parameter change, with 
others, such as Manning’s n and Grain Size Set overtaking it. This could be argued that it is truer 
reflection of SED’s role in model uncertainty relative to other parameters, but we would argue that the 
information because less useful to the operator as it does not reflect the true impact of the decision on 
the model outputs. 
 
We had modified the discussion from Line 789 – “The main limitation of the MM is the subjectivity in 
selection of parameter values and ranges. Here, this has been mitigated by consistently selected ranges 
of +/- 50 % of a default value obtained from previous calibrations (where feasible). An issue emerges 
with categorical parameters, such as SED, where multiple values cannot be placed in spectrum across 
a range between minimum and maximum values. The MM has no formal method for dealing with  such 
categorical parameters, so here it has been assumed that switching from one formula to another is a 
single iterative step change, and this would be the same even with more choices available. This reflects 
the purpose of the MM, which is to inform about the relative importance of choices of parameter values 
on the performance/behaviour of the model. However, to assess the impact of this single step-change 
assumption, we performed a further analysis, where it was assumed that switching formula was a 
change of four iterative steps. This analysis shows that the relative sensitivity of the model to the 
sediment transport formula choice becomes less important, with other parameters such as Manning’s 



n Roughness and grain size sets increasing in relative influence (see Supplementary Material S2 for full 
results of this analysis).” 
 
 
We have included the additional tests as supplementary material. 

 
*Hankin, B., Arnott, S., Whiteman, M., Burgess-Gamble, L., and Rose, S., 2017. Working with Natural 

Processes – Using the evidence base to make the case for Natural Flood Management. Environment 

Agency Report – October 2017. Project Number - SC150005 

534-543: I think that the compute time and number of models should be mentioned far earlier in the 
paper (methods/results), and then perhaps referred to here as a reason for your decisions. 
 

From line 817 – “The bulk of simulations used Intel i7-5960X processors and using Solid State Drives 

(SSD), yet the run times varied considerably depending on the parameter sets chosen. As an 

indication, the mean simulation run time for the first repeat in each catchment was 11 hours and 23 

minutes for the Swale and 21 minutes for Tin Camp Creek.”   

 



Reviewer comments are shown in black, and author responses are shown in red. Line numbers in 

responses refer to the marked-up version of the revised manuscript 

GMD Paper Review Response – Reviewer 2 

Review 2 – Daniel Hobley 

First of all, sincerest apologies for the extreme delay in providing this review. In this submission 

Skinner and colleagues present a new approach to understanding the sensitivity of landscape 

evolution models using the Morris method, and using model functions in place of objective functions. 

This approach is semi-quantitative and somewhat subjective, but nonetheless has utility in assessing 

sensitivity for such models where computational demands may be prohibitive for a “proper” SA. They 

outline the method and apply it to the CAESAR-Lisflood model being used to simulate a pair of 

catchments. They illustrate that the approach works in this context, and that it highlights the key 

importance of selection and calibration of the sediment flux law above all 

other parameters. They also discuss other aspects of the model utility, using these two cases as 

examples. I enjoyed this manuscript; the approach seems simple, but given the dire state of past 

attempted SA in geomorphic modelling this is a very much worthwhile contribution to the literature. 

In my opinion it requires minor to moderate revision before acceptance, as detailed below. My 

primary concerns relate to lack of clarity in the methods. Per GMD’s review criteria:  

1. I believe this paper sits within the scope of GMD, though I do not feel best placed to judge this. It 

presents a novel approach to the sensitivity analysis of LEMs.  

2. Both ideas and tools are novel.  

3. The paper seems to represent a significant advance in the state of the art of sensitivity analysis 

within the field. 

 4. Assumptions are made clear, but description of methods needs further attention. As it stands, the 

method could not be understood in its entirety based only on the text.  

5. Results support the interpretations and conclusions, assuming I have adequately followed a couple 

of opaque parts of the methods.  

6. See 4. Significantly more methodological detail is needed.  

7. Credit is given. Abstract could even put more emphasis on the “model function” aspect of this work, 

which seems novel and key to the approach.  

8. Title describes paper  

9. Abstract is concise, though needs a touch more definition of terms to make it crystal clear to the 

non-expert.  

10. Presentation is good 

11. Language is fluent and largely precise, though I have flagged up a few instances of imprecision 

related to the naming of model input and output information (“parameters”?).  

12. Symbology is good, though the equation presented perhaps could be tweaked to enhance clarity.  

13. Some clarification is necessary throughout. Structure is good.  

14. References good.  



15. Code is not supplied, but freely available via the net.  

Thank you for the detailed and very constructive review. 

However, the supplementary information is confusing, in that S2 does not appear to be referred to 

from the text. This needs to be thought through and resolved. Given the brevity of the paper and of 

S2, and the importance of the topic it discusses, it should probably be integrated into the main text. I 

have not attempted to formally assess the fit of this manuscript to GMD, though I believe it is 

appropriate. I have also not attempted to check in any way that the detailed requirements for 

publication in GMD (e.g. version numbers, adequate documentation) are all met, and leave this to the 

editor.  

We have rewritten much of the Methods section to make our approaches much clearer. In particular 

the description of the Morris Method has been heavily edited, from line 337 –  

“Our study used the MM described in Ziliani et al. (2013), i.e. the original MM of Morris (1991), as 

extended by Campolongo et al. (2007), and applied the “sensitivity” package in the R Statistical 

Environment (Pujol, 2009) to generate the parameter sets for the SA. 

To set up the MM we selected a number of parameters to be assessed, specifying a minimum and 

maximum range for each, plus a number of iterative steps. The parameter values are equally spaced 

based on the range and number of steps – for example, a parameter with a range of 2 to 10 and 5 

iterative steps would have available values of 2, 4, 6, 8, and 10. This is done for each parameter and, 

where possible, the same number of iterative steps was used for each. 

The MM samples the global parameter space by performing multiple local SAs referred to as repeats. 

The first simulation in each repeat is made up of a randomly assigned selection of parameter values 

from the available values. To set up the second simulation in the repeat a single parameter is 

randomly selected and its value changed by a random number of iterative steps – if we use the 

example above, if simulation 1 used the value 4, changing this to 2 or 6 would be one iterative step 

change, to 8 would be two steps, and using 10 would be three steps. For simulation 3 in the repeat 

another randomly selected parameter is changed although previously changed parameters are no 

longer available to be selected. This is continued until no further parameters are available to be 

changed, therefore in our study each repeat contains 16 tests – 1 starting set of parameters, plus 15 

parameter changes. In this study we have used 100 repeats, for a total of 1600 individual simulations 

– for comparison, the implementation of the MM by Ziliani et al. (2013) used 10 repeats. 

The sensitivity of the model to changes in parameter values is evaluated by the changes of objective 

function values between sequential tests within repeats relative to the number of incremental steps 

the parameter value has been changed by. The change in objective function score between two 

sequential tests divided by the number of incremental step changes is an elementary effect (EE) of 

that objective function and the parameter changed (Equation 1). After all 1600 tests have been 

performed, the main effect (ME) for each objective function and parameter is calculated from the 

mean of the relevant EEs – the higher the ME the greater the model’s sensitivity. Alongside the ME, 

the standard deviation of the EEs is also calculated as this provides an indication of the non-linearity 

within the model.”  

Most of my comments are best suited to a line-by-line approach. However, a brief overview is 

warranted:  

* The main issue I had with the manuscript was related to lack of detail in the methods, and some 

sections where key concepts needed expounding on more. The inline comments detail this, but this is 



essential work. It is difficult to interpret the presented results for yourself because some crucial, 

detailed information is missing.  

We have heavily edited the Methods in line with the comments. Please see above. 

* In particular, the methods are very opaque when thinking about the time component of the models, 

in that you basically don’t talk about it. How is it determined when a model run is “done”? Is there 

some external constraint on total time to run for? Please provide more information.  

All runs were 30 years, including a 10 year spin-up period. This is inferred in places but you are correct 

that this is not explicitly stated. This is now stated in Lines 272-274. 

* The importance of the sediment equation choice. Skimming Andy’s review, I think I largely agree 

with his criticisms on this front, though see below for detail in this review. I suspect a lot of this 

criticism is again coming from too brief a description of this part of the methods. You may be able to 

head off a number of my concerns simply by expanding, and taking a more pragmatic approach to why 

you’ve made these assumptions (i.e., this is how a lot of models are applied “in the wild”, ignoring 

known geomorphic complexity, so this is how you’ve done it here; this is an illustrative study so almost 

the details of the actual geomorphology in those places don’t matter; it’s instructive to see if there’s 

any influence from known imperfections in the model assumptions; etc) 

We have made this clearer in the revised manuscript. From line 263 – “It is important to state that this 

study is an illustration of the potential for using the MM to inform an operator of how model parameter 

choices can impact the performance and behaviour of their model. It is not an attempt to reproduce or 

calibrate the CAESAR-Lisflood model to real-world observations, although the model has been applied 

to each catchment previously.”  

*I found it hard to keep some of your terminology straight, largely around which “parameters” or 

“metrics” you meant at points later in the text. Take more time to define things more clearly at first 

use, then be very careful to define those two terms as one of your other input/output classes 

whenever used subsequently (there’s a lot of detail on this below).  

We have tightened up our use of this terminology and provide a glossary of key terms from lines 280. 

* A variety of stylistic/text things, though most of these a copyeditor will catch (e.g., rogue 

capitalisation)  

Have edited throughout. 

* Some concepts need to be introduced earlier in the manuscript, e.g., Morris method definition, 

model function.  

The Morris Method is now introduced much earlier in the manuscript, from Line 138. 

* I think the importance and novelty of the Model Function approach in this context is quite 

underplayed, and could be brought out more.  

We have made the model functions more prominent throughout, including in the abstract and by 

introducing them earlier. From line 224 – “The paucity of observational data and the lack of measures 

that amalgamate the complexity of spatio-temporal landscape change into a single metric have 

prevented the objective function approach to be common in modelling landscape evolution. Instead, 

LEMs can be evaluated by observing the changes in model outputs reflective of model behaviour – 

these model functions can be used in lieu of objective functions to allow the sensitivity of LEMs to be 

assessed.  Model functions would be best used as a set in combination to allow assessment across a 



range of model behaviours, and would also be transferable across a range of catchments. Such an 

approach formalises existing methods of evaluating LEM outputs and provides a framework from 

which multi-criteria objective function approaches can be applied when suitable observation become 

available.”  

In summary, I thought this was a succinct, neatly packaged study that achieved its stated objectives, 

and warrants publication in GMD once it has been expanded a little. I am of course happy to provide 

further clarification by GMD’s discussion mechanism. I look forward to seeing it promoted out of 

discussion paper status soon. Dan Hobley  

Inline comments:  

Abstract: I think the briefest of introductions to objective functions, and model functions would be 

appropriate inside the abstract, since they are the core of the paper.  

We have rewritten the abstract. From line 16 – “The evaluation and verification of Landscape Evolution 

Models (LEMs) has long been limited by a lack of suitable observational data and statistical measures 

which can fully capture the complexity of landscape changes. This lack of data limits the use of 

objective function based evaluation prolific in other modelling fields, and restricts the application of 

sensitivity analyses in the models and consequential the assessment of model uncertainties. To 

overcome this deficiency, a novel model function approach has been developed, with each model 

function representing an aspect of model behaviour, which allows for the application of sensitivity 

analyses. The model function approach is used to assess the relative sensitivity of the CAESAR-Lisflood 

LEM to a set of model parameters by applying the Morris Method sensitivity analysis for two 

contrasting catchments. The test revealed that for both catchments the model was most sensitive to 

the choice of the sediment transport formula, and that each parameter influenced model behaviours 

differently, with model functions relating to internal geomorphic changes responding in a different 

way to those relating to the sediment yields from the catchment outlet. The model functions proved 

useful for providing a way of evaluating the sensitivity of LEMs in the absence of data and methods for 

an objective function approach.” 

31: “dominant” 

47: perhaps “from Earth surface processes, for instance, ...” 

Changed, line 64 

61: Surely “legitimated by theories” -> “directly physically constrained or measurable” 

Changed, line 78-79 

66: Probably add something to the effect of: SAs are key in scenarios where input parameters are 

tuned (i.e., link to the prev bit about parameterisation more firmly)  

Acknowledged, line 84 – “This is useful for identifying key parameters for later calibration but this has 

rarely been conducted for LEMs”. 

74: A bit more context to set the scene here: which fields in environmental sciences have been doing 

this well? Can you give a couple of examples?  

Acknowledged fields using these methods more clearly from line 116 – “The use of SA as a routine 

component of model assessment and calibration is common place in climatic, meteorological, 

hydrological, hydraulic and many other modelling fields.” 



92: capitalisation  

116: “The study” – Ziliani ref has not appeared any time recently in the text. Rephrase this bit, and set 

the context for why you’re about to discuss this specific study.  

Changed at line 155 following the earlier introduction of MM. 

118: Perhaps “see below” for the MM Section 1.1 – I found this to be very clear.  

130-131: Grammar issue to do with word “both”  

127-141: Another major issue is that even with data in hand, it is challenging to derive meaningful 

metrics from them. E.g., a pixel-by-pixel map of topography is not a good optimisation target, since 

small error in the exact position of the channel gets magnified when in fact the model may be doing a 

good job overall. So integrative metrics must be found, and that in turn is subjective. There’s also the 

related issue of stochastic processes inside landscape response being hard to capture in a spatially 

resolved way; see, e.g., work by Mary Hill (I see this gets discussed obliquely around ln 150, but be a 

bit clearer about it – i.e., give us the logic by which Hancock & Wilgoose (ln 154) started using statistical 

measures in the first place).  

This is a very good point. We think as model operators we seek a single catch-all measurement from 

which we can derive an objective function. LEMs are likely to be more spatially varied (or rather spatial 

variations have a greater impact) than hydrological models for example, so this one single measure 

probably does not exist. Instead, we ought to pursue multi-criteria approaches as objective functions.  

We have made numerous small edits to this section to reflect these points. Notably from Line 209 – 

“Finally, the spatially and temporally heterogeneous response of erosion and deposition patterns in 

LEMs also makes “pixel-to-pixel” comparisons difficult. For example, in a valley reach, gross patterns 

of erosion and deposition may be identical but with the channel on the other side of the valley – yielding 

a poor pixel-to-pixel comparison.” 

157: “the LEM SIBERIA”  

This reference has been removed 

160-161: “these measurements” not clear which measurements. Rephrase.  

This has been removed in the rewriting of this section. 

Ln 164: For me, “/reliability” is redundant here. If I was you, steer clear of the implication that an 

accurate model is necessarily good for future prediction, as that’s a slightly different thing.  

As above. 

172: “MM” You need to introduce the Morris Method in the intro somewhere to say why it’s 

important, who has tried using it before, etc etc. Calling forward to the methods for most of it is fine, 

but the intro needs a little more.  

Now introduced much earlier, at line 138. 

172: Dash is probably a new para.  

175: As for the MM, the intro also needs to define a “model function” before you get here. (Also, 

consistency of capitalisation!)  



Model functions also introduced much earlier. From line 224 – “The paucity of observational data and 

the lack of measures that amalgamate the complexity of spatio-temporal landscape change into a 

single metric have prevented the objective function approach to be common in modelling landscape 

evolution. Instead, LEMs can be evaluated by observing the changes in model outputs reflective of 

model behaviour – these model functions can be used in lieu of objective functions to allow the 

sensitivity of LEMs to be assessed.  Model functions would be best used as a set in combination to allow 

assessment across a range of model behaviours, and would also be transferable across a range of 

catchments. Such an approach formalises existing methods of evaluating LEM outputs and provides a 

framework from which multi-criteria objective function approaches can be applied when suitable 

observation become available.” 

Ln 184: As above, please deal with the MM definition before we get here.  

Line 138. 

195-6: This needs a supporting reference.  

Have removed this statement. 

2.2 – a big chunk of this stuff should be sat in the intro, as it introduces the method and its background.  

This has been moved to the introduction – line 138. 

244: ”stochastically”->”randomly”?  

246-7: “a number”: how many? Is this constant? Do we step around the values in a random-walk 

fashion, or is this more like a ratchet to move through all possibilities? i.e., more detail here.  

The description of the MM implementation has been rewritten. 

250: the Main Effect can’t be both the mean and SD of the EEs, as the text here implies as written. 

Presumably it’s the mean, but make it clear. The role and handling of the SD in general in this method 

is unclear, partly due to folding it into the ME here then talking later about parameter normalisation 

against the ME. This makes it difficult to parse whether the SD is normalised or not, and if not, why 

not. (cf lns 362, 377->, fig 3) Expand and take more time over the details here.  

Included in revised section, from line 365 – “After all 1600 tests have been performed, the main effect 

(ME) for each objective function and parameter is calculated from the mean of the relevant EEs – the 

higher the ME the greater the model’s sensitivity. Alongside the ME, the standard deviation of the EEs 

is also calculated as this provides an indication of the non-linearity within the model.” 

ln 255: something not right with this equation – it doesn’t read sensibly. Neither r nor j appears in the 

RHS of the equation. Feels like there should be subscript outside the bar symbology indicating how 

we move through j space. Check the equation, consider again if this is the clearest way you can show 

it, and be considerably more generous with the explanation. The fact that an EE is parameterised as 

“d” seems somewhat perverse... This would be a lot clearer if you gave a concrete example here, e.g., 

say what the data structure would look like for a given model output measure *and* Model Function. 

It’s very opaque how model output measures and model functions differ. Make this explicit both here 

and especially later in 2.5.  

This is not a new equation nor is it our equation – we present it here as it has appeared in previous 

literature and would not wish to change terms, such as “d”. However, we have clarified our own 

description as it was unclear (lines 406-409).  



It calculates the EE, as the change in the model function value (i), when a single parameter value is 

changed (j is the parameter changed). Where “model output measure” is used, it should read “model 

function”. In other words, it calculates the change in function score between one test and the next one 

within a repeat. 

271: repeated how? Presumably there are other inputs to the model besides precip (e.g., land use, 

topo, etc etc) so either talk about them all here, or none of them. What’s the source of the DEM in 

each case?  

Included more details in the revised manuscript. 

2.3.2: as at 271; more of this info is presented here, but it still needs more.  

More details included.. 

2.3.1 & 2.3.2: What e.g. Shrahler order are these streams? This needs saying to present a contrast 

with your different order measure, lns 285-287. 

See below (285-7)  

Fig 1 caption: Add “Note difference in scale”  

285-7: What is the justification for this division, which, AFAIK, is novel? Explain why an existing stream 

order method is not chosen.  

This is a novel method. Existing methods, eg Strahler stream numbers, can result in different order 

numbers due to the connectivity of the catchment at a particular moment, and can also be influenced 

by the resolution of the DEM – eg, smaller stream orders would not be picked out on the relatively 

coarse 50m grid used for the Swale. The new method was used to compare to two very different 

catchments and DEMs in a consistent way, and no further claims are made to its physical basis or 

usefulness. Included an acknowledgement of this line 447 – “This method is novel and was developed 

to provide a consistent method of sub-dividing both catchments independent of factors such as 

connectivity and DEM resolution.” 

303-304: “excluding... dune and soil development”. Return to 2.1 and explain in more detail which 

processes are turned on and off in CAESAR-Lisflood. (Note this is not the same thing as which are being 

tested as part of the SA.)  

From line 274 – “CAESAR-Lisflood model is used in catchment mode, the simulations have no 

representation of suspended sediments and bed rock, and the dune and soil evolution modules are not 

used.” 

305: Please give information on the typical run time of each model run on whatever rig was used to 

give the reader some context on what this information means.  

From line 817 – “The bulk of simulations used Intel i7-5960X processors and using Solid State Drives 

(SSD), yet the run times varied considerably depending on the parameter sets chosen. As an indication, 

the mean simulation run time for the first repeat in each catchment was 11 hours and 23 minutes for 

the Swale and 21 minutes for Tin Camp Creek.”   

Ln 311: I believe the fragment about it being a qualitative method is unnecessary here- delete it. I’m 

not sure it is technically true, and not needed anyway.  



Have edited this, from line 479 – “MM is subjective in that the relative sensitivities shown depend on 

the minimum and maximum range values set by the user.” 

312-318: “it’s difficult to define what this means” I agree...! I get the gist of this, but you need to 

tighten it up and expand significantly. Delete the sentence about “broadly equal” – which isn’t true, 

since I assume the values themselves are not equal, and say what you actually mean (“to have an 

approximately equal influence on the output, as defined by...?” Or something??) If you get it right, 

you can and should remove the “It is difficult to define what this means”. 

Have rephrased this section, from lines 479-486. 

Ln 316 – On what basis is it sometimes not appropriate to do this?  

Lines 484-486 – “(for example, the Manning’s n Roughness for Tin Camp Creek where +/- 50 % would 

have resulted in obviously physically unrealistic values – see Table 1 for values used).” 

Ln 317/8 – give us the specifics of the steps you used for Manning’s n, to make this more concrete.  

All the stepped values are presented in Table 1. Included reference in line 486. 

320-22: This could do with a lot of expansion, as it becomes key to the results and discussion. On what 

basis were these two laws selected from the large field of possibilities? The second sentence needs a 

lot more detail. This is the first time we’re hearing that the MM can be used to tackle epistemic 

uncertainty in model set-up, rather than common-or-garden parameter uncertainty. Tell us a lot more 

about how this works and why you’re doing it, then explain with more detail what exactly “as binary 

two-step” means. I presume you mean the choice of law becomes a parameter in the MM, but in that 

case, aren’t you also switching in and out another big subset of the parameters? So how is your data 

now comparable? Doesn’t the parameter set have to stay static for the MM to work? I may have 

misunderstood, but if I have, it’s a sign you need lots more detail on how the MM works.  

Simple answer to this is that these are the two sediment transport formulae available in the 

downloadable model, and therefore those available to a typical operator without modifying the model 

code. 

Line 489 – “These were not selected as representing the best fit for the catchments simulated but 

because they are the formulae available in the unmodified version of CAESAR-Lisflood.” 

We apply the choice of one or the other as a parameter, so in the Morris Method it will switch between 

them once in each repeat. When it changes no other parameters in the model are changed at all. We 

will make this clearer when we rework the methods section. 

Line 492 – “(no other parameter values were varied when this occurs, as per the description of MM in 

Section 2.2).” 

327/8: Formatting of ref. Otherwise, I like this GS description.  

Ln340-344: This could be clearer. Surely some statistical methods have promise; after all, you’re about 

to devise one. You need something in here to refine the scope of the methods you’re talking about, 

e.g., do you just mean to exclude previously attempted methods? Is it the fact that single 

discrimination criteria don’t work, and that’s the problem? Etc  

Yes, this was not clear. We have rephrased this section between lines 523-534 – “The common method 

of assessing a model’s sensitivity to parameters values via SA, and the method employed by the MM, 

is to observe the variations to objective function measures. However, the difficulties in applying an 



objective function approach to LEMs were highlighted in Section 1.2, and in order to apply an SA a 

novel approach is required. The method we have developed eschews the objective function approach 

and instead assesses the model against a series of model functions designed to reflect some of the core 

behaviours displayed in the model – these can be seen in Table 2. This represents a philosophical 

difference to traditional applications of SA – here we are not testing the model against its skill in 

simulating the physical environment, but rather how the model responds behaviourally to changes in 

the user-defined parameters detailed in Section 2.4. The 15 model functions (Table 2) are simple, 

scalable and transferable between different catchment types, and can be applied to simulations of 

different timeframes. The model functions are based on outputs which are not unique to CAESAR-

Lisflood, so can be applied to other LEM and geomorphic models.” 

Ln 344: say why these reviewed methods failed, since referring out the 2001 work doesn’t provide the 

context.  

This reference is no longer included in the revised section. 

Ln 349: You need to be clearer in defining that Model Functions are a new thing that you’re creating 

in this work, and that this is a major contribution of this work. The introduction should reflect this (and 

thoroughly introduce the idea), as should the abstract. If of course it isn’t your idea and it’s coming 

from somewhere else, please make that clearer and add the relevant references more clearly. Also, 

as noted earlier, please explicitly discuss more clearly how model output measures differ from/work 

with/are part of Model Functions (See also 360-2).  

Have included more prominent references to the model function throughout, including in the revised 

Abstract and the Introduction. 

Ln 353: dash is a sentence break  

This section has been revised. 

360-362. Rephrase; this doesn’t fully make sense. Do you really mean “versus”? I think part of this 

needs to read “was normalised to the highest ME for any parameter within the Model Function”. 

Again, it’s really hard to follow and keep straight the respective roles and interrelationships of: the 

parameters back in the equation (i.e., i, j), vs what you mean by “parameters”, vs Model Functions, vs 

model output measures, vs MEs, etc etc. I’m fairly some of these are equivalent to each other, but it’s 

very hard to keep straight, even when flicking back and forward back to the methods. Make your 

terminology bulletproof, crisply defined, and repeat yourself as needed for maximum clarity – as this 

is very hard to follow. As above, illustration by example would make this a lot clearer.  

We hope the inclusion of the glossary of terms and the tightening of our use of terms have improved 

the clarity of this section. 

362/364: “aggregated”. I’m conceptually uncomfortable with taking a mean (right? That’s what you 

mean?) of numbers which have already been turned into the equivalent of percentages and scaled to 

each other. This will create some odd statistical dynamics, I think. I guess this is fine given the method 

is already pretty qualitative, but it makes me uneasy. I’d invite the authors to reflect on this, and 

consider putting something in to reassure the sceptical reader. More concretely, how are you 

aggregating standard deviation measurements? Are these scaled alongside the MEs? If so, that will 

very quickly get confusing. Explicitly tell us what you are doing to handle these, and let the reader sort 

it out for themselves (cf, ln 250).  



Yes, the aggregated values are the means of the normalised ME and the means of the normalised 

standard deviations of the EEs. This was used to illustrate the large amount of information we had and 

admittedly is far from perfect – it does provide a useful, concise summary of which parameters 

influence the model the most across a range of model functions. We will edit the text to make it clear 

that this is illustrative and that operators using this method should rely on the results for each 

individual model function (it is unusual for the Morris Method to be used to assess so many different 

functions). 

Have included a caveat in line 560 – “To summarise the large amount of information produced, the ME 

of each parameter and model function combination was normalised based on the proportion of the 

ME for highest ranking parameter for that model function” 

Have included description of aggregating the SD, line 565 – “The same was also done, separately, for 

the standard deviations of each parameter and model function.” 

365-371: I think this means that, implicitly, these methods won’t work to compare true transient 

behaviours? It’s impossible to understand without telling us how the method treats time in general. 

Which leads to... General comment: In the methods, the role of time in this approach is very unclear. 

Time elapsed is never referred to until you’re talking about trimming off spinup. Is EE calculated 

continuously through time, and you stop at the best possible value? Are you comparing time series? 

Or just best fit at a time slice? This information must be present. In general, this is a symptom of your 

description of the key numerical methods being very brief. Be much more generous, with examples 

etc. as you work through from EEs to ME to Model Function aggregates. Take as much space as you 

need and let this “breathe” as much as you can.  

The tests were 30 years in length, but the first 10 years were excluded from calculating the model 

functions – this is stated in line 272.  

Line 546 – “Model function values were calculated at the end of each simulation.” 

Figure 3: I’m concerned (possibly unnecessarily?) about cross-correlation of the means and SDs here 

(cf, ln 362). If you normalise the SD’s by the maximum ME, then you’re building in dependence of one 

on the other. If you don’t, how did you aggregate those SDs? Are these means of means of SDs for 

each EE cluster, or are you taking statistical measures of ME distributions themselves? You need more 

methods clarity to make this easy to understand and intuitive to interpret.  

The normalised values were produced separately – one for the main effects and one for the standard 

deviations, stated in line 565. 

Fig5: please add the abbreviation to each graph caption. Each sub-graph also needs a label a, b, c etc. 

Although the caption specifies it, a heading on each column of graphs giving the location would make 

the figure easier to read. Adding “(biased smaller)” and “(biased larger)” annotations above 1-2 and 

4-5 for the GSS graph would prevent the reader having to flick back a number of pages seeking the 

description of what these are. 

Have reproduced Figure 5 accordingly. 

3.3: On what basis were SED, CVS and GSS selected for this section? Justify.  

Illustrative purposes only – these were the most interesting ones to us so we chose them to show. 



425: This is too terse to make it clear. Expand & rephrase to be more precise about what you mean. 

It’s not clear where you are talking about the all the figures in the figure at once, when just one site 

vs the other, or when you mean variation between parameters in patterns shared across both sites.  

Have rewritten this section, from line 652 – “Figure 5 illustrates how changes in parameter values 

might influence the spatial patterns of landscape change using SED, VEG and GSS as examples. For SED 

(Fig 5.A and 5.B), the most obvious difference is the scale of changes seen using each formula with 

Einstein generally showing greater change.  For Tin Camp Creek (Fig 5.B) the spatial changes are 

similar, but for the larger Swale (Fig 5.A) there are differences in relative rates in 2nd and 4th order 

areas. In the Swale, VEG (Fig 5.C) appears to have little impact on the patterns and scale of changes, 

yet in Tin Camp Creek (Fig 5.D) there is reduction in the rates of erosion across the catchment with 

higher values, except in the 5th order areas which remain at a similar level. Finally, both catchments 

show a reduction in rates of erosion with a greater proportion of larger grain sizes, yet this is more 

pronounced 4th order areas in Tin Camp Creek (Fig 5.F).” 

General note: The subsections in section 4 are formatted differently to everywhere else.  

Have corrected this. 

431: “The implications... have been discussed”. I don’t feel like I’ve seen a discussion of the 

implications; the methods were very factual (rightly). You need to re-summarise whatever 

implications you are thinking of here. If you mean results, say so – though this would seem somewhat 

redundant.  

Have removed this. 

435/7: “metrics”. Your terminology has been imprecise throughout – we can now add “metrics” to 

“parameters”, “Model Functions”, “model output measures” and “MEs” as a list of terms it’s really 

easy to lose track of and mix up. I would advise you to remove all mention of metrics and parameters 

from the manuscript, or at least define which thing you mean by it each time. So here, I think you 

mean model output measures, right? Get everything internally consistent.  

Have changed this to Model Functions (line 677) 

450: “basin’s”. Nice points here.  

463-5: “nonstationary”. If I’ve followed (cc past comments on approach taken through time), I don’t 

think the approach described in this paper as currently deployed would be able to analyse this kind of 

nonstationarity. You should say that explicitly here, though the point is well taken.  

No, this method doesn’t, but is a step towards using ensemble parameter sets which can in some part 

address this. Have removed this section entirely. 

4.3: Again, points well taken, but this is more a literature discussion. This should be grounded more in 

your specific results. You’ve shown that this is the most important choice you can make in CAESAR-LF, 

so what does that mean? Should users be calibrating as for e.g. Siberia? Is there reason to expect this 

overwhelming importance to be carried over to other sites? Does this mean calibrating SED well is by 

far the most important thing, so other effects are secondary? This section is negative/bear-ish, and 

doesn’t outline any actual approaches, advice, or other opportunities to use the SA productively to 

get around this problem. How bad actually is the lack of constraint on SED? Even a statement along 

the lines of “this analysis suggests that detailed justification and calibration of model choices around 

sediment transport will lead to the most effective gains in model skill” would help. This seems like a 

key result here.  



This is difficult – as deterministic sediment transport laws applied spatially over a LEM grid yield can 

result in chaotic responses (erosion/deposition stores, the ability to supply limit sediment etc.). A LEM 

CAN be calibrated in a fashion – but given the chaotic response of the sediment system this can only 

be general. And then will also be subject to the difficulty of calibrating only to the events (and 

catchment history) of the calibration sequence. The response of the sediment system to changes in 

rainfall is exponential (see Coulthard et al., 2012) so even small increases in RF inputs outside of the 

calibration set may give disproportionately large outputs (or not as its chaotic!). A further issue for 

calibration is the lack of field data with which to calibrate LEMs.  

We have divided this section into two in the revised manuscript, one dealing with the role of sediment 

transport formula in LEMs, and another considering the implications for the calibration of such models 

(at line 737). 

From line 750 – “Furthermore, this analysis suggests that detailed justification and calibration of model 

choices around sediment transport will lead to the most effective gains in model skill.” 

And leading on from this -> Ln 528: “binary”. I also have some issues here regarding the 

implementation of the SED equations – you say the choice was binary, but how then did you calibrate 

the internal parameters in each equation (cf, comments in methods section above)? This might be 

resolved by more clarity in the methods, but also, it seems like maybe you could have got inside this 

element of the model a bit more and explored those subparameters too, per Andy’s comments. Are 

you simply applying the different equation with the same parameters in each? Or do you allow some 

kind of pre-optimisation to get the params to where they need to be in each field site? Additional 

material in the methods clarifying this is essential, and I’d also strongly advise you to refer explicitly 

to how this choice of sed law parameterisation is affecting the importance of the SED param, both 

here and in 4.3 above. I see material in S2 discusses this, yet isn’t referenced from the text. I’d 

advocate pulling that material into the main text as part of addressing this comment.  

We have explained this above where you previously raised this – when the Morris Method switches 

from one formula to the other, all other parameter values remain constant. There is no optimisation 

as we made no attempt to optimise the model (indeed, there are no observation data to even try!). 

Conclusion: please switch out MNR, GSS and VEG, IOD, etc etc for text equivalents to make this 

conclusion more stand-alone. I also feel like the influence of SED is a key result, and should also be 

mentioned in here. Otherwise, I like this as a summary. 

Have made these edits. 
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Abstract  14 

 15 

The evaluation and verification of Landscape Evolution Models (LEMs) has long been limited by a lack 16 

of suitable observational data and statistical measures which can fully capture the complexity of 17 

landscape changes. This lack of data limits the use of objective function based evaluation prolific in 18 

other modelling fields, and restricts the application of sensitivity analyses in the models and 19 

consequential the assessment of model uncertainties. To overcome this deficiency, a novel model 20 

function approach has been developed, with each model function representing an aspect of model 21 

behaviour, which allows for the application of sensitivity analyses. The model function approach is 22 

used to assess the relative sensitivity of the CAESAR-Lisflood LEM to a set of model parameters by 23 

applying the Morris Method sensitivity analysis for two contrasting catchments. The test revealed that 24 

for both catchments the model was most sensitive to the choice of the sediment transport formula, 25 

and that each parameter influenced model behaviours differently, with model functions relating to 26 
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internal geomorphic changes responding in a different way to those relating to the sediment yields 27 

from the catchment outlet. The model functions proved useful for providing a way of evaluating the 28 

sensitivity of LEMs in the absence of data and methods for an objective function approach. 29 

Landscape Evolution Models have a long history of use as exploratory models, providing greater 30 

understanding of the role large scale processes have on the long-term development of the Earth’s 31 

surface. As computational power has advanced so has the development and sophistication of these 32 

models. This has seen them applied at increasingly smaller scale and shorter-term simulations at 33 

greater detail. However, this has not gone hand-in-hand with more rigorous verifications that are 34 

commonplace in the applications of other types of environmental models- for example Sensitivity 35 

Analyses. 36 

 37 

This can be attributed to a paucity of data and methods available in order to calibrate, validate and 38 

verify the models, and also to the extra complexity Landscape Evolution Models represent - without 39 

these it is not possible to produce a reliable Objective Function against which model performance can 40 

be judged. To overcome this deficiency, we present a set of Model Functions - each representing an 41 

aspect of model behaviour - and use these to assess the relative sensitivity of a Landscape Evolution 42 

Model (CAESAR-Lisflood) to a large set of parameters via a global Sensitivity Analysis using the Morris 43 

Method. This novel combination of behavioural Model Functions and the Morris Method provides 44 

insight into which parameters are the greatest source of uncertainty in the model, and which have the 45 

greatest influence over different model behaviours. The method was repeated over two different 46 

catchments, showing that across both catchments and across most model behaviours the choice of 47 

Sediment Transport formula was the dominate source of uncertainty in the CAESAR-Lisflood model, 48 

although there were some differences between the two catchments. Crucially, different parameters 49 

influenced the model behaviours in different ways, with Model Functions related to internal 50 

geomorphic changes responding in different ways to those related to sediment yields from the 51 

catchment outlet.  52 
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 53 

This method of behavioural sensitivity analysis provides a useful method of assessing the performance 54 

of Landscape Evolution Models in the absence of data and methods for an Objective Function 55 

approach. 56 

 57 

1. Introduction 58 

 59 

Landscape Evolution Models (LEMs) investigate how the Earth’s surface evolves over timescales 60 

ranging from hundreds to millions of years (Coulthard and Van De Wiel, 2012; Martin and Church, 61 

2004; Pazzaglia, 2003; Tucker and Hancock, 2010; Van De Wiel et al., 2011). They represent the earth’s 62 

surface with a regular or irregular mesh and simulate how the surface evolves over time as a function 63 

of tectonic processes, and erosion and deposition from fluvial, glacial, aeolian and hillslopeEarth 64 

surface processes. LEMs have proved to be very useful scientific tools to understand how Earth surface 65 

processes interact to shape the landscape.  66 

More recently, LEMs have improved considerably in their ability to simulate the physical environment, 67 

and this has developed in parallel with improvements in computational efficiency and power. This 68 

allows LEMs to go beyond highly simplified models of landform development but and to also 69 

incorporate increasingly complex processes such as pedogenesis (Vanwalleghem et al., 2013; 70 

Welivitiya et al., 2016) and periglacial processes (Andersen et al., 2015; Egholm et al., 2015). Other 71 

processes are now being handled in more detail such as hydrodynamic flow models and aeolian 72 

processes (Adams et al., 2017; Coulthard et al., 2013; Liu and Coulthard, 2017). These developments 73 

led to Coulthard et al. (2013) describing them as ‘second generation’ LEMs that extend previously 74 

explanatory and explorative models to be used for prediction of future changes in landscapes, such as 75 

for the mining industry (e.g. Hancock et al., 2017; Saynor et al., 2012).  76 
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However, more detailed physical representations of the processes that shape the Earth’s surface 77 

involve a larger number of parameters that are typically estimated from proxy data or theoretical 78 

considerations, or are completely unknown not legitimated by theories but must be determined from 79 

empirical data or are incompletely known (Oreskes et al., 1994; Petersen, 2012). If LEMs are to be 80 

operationally used for prediction or as decision-making tools in the future, their outputs must be 81 

evaluated against the uncertainty in input parameters – a task that is increasingly difficult for a large 82 

number of parameters. Sensitivity Through sensitivity analysis (SA) investigates how variations in the 83 

output of a numerical model can be attributed to its input factors (Pianosi et al., 2016)., This is useful 84 

for identifying key parameters for later calibration but this has rarely been conducted for LEMs. The 85 

aim of this study is thus to conduct a SA of the widely used and highly parameterized LEM CAESAR-86 

Lisflood (Coulthard et al., 2013) -  in particular, we wish to be able to detect the parameters that have 87 

the greatest influence on the model’s simulation output. As model sensitivity may be influenced by 88 

different landscapes, we run the SA in two individual and distinct catchments. 89 

 90 

1.1 Sensitivity Analysis and Landscape Evolution Models 91 

 92 

The application of SA in environmental modelling has a history spanning four decades (Norton, 2008) 93 

and forms an important component of using models for decision-making, including model 94 

development, calibration and uncertainty analysis (Yang, 2011). SA addresses five key questions 95 

(Cariboni et al., 2007; Neumann, 2012; Song et al., 2012, 2015): 96 

 97 

1. Which parameters have the greatest influence on the model? 98 

2. If additional data could be used to reduce the uncertainty in a parameter, which would most 99 

reduce the model output variance? 100 

3. Are there parameters with such low influence that their values could be fixed without impact 101 

on the model outputs? 102 
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4. If parameter values emerge as incorrect, how will they influence model outputs? 103 

5. Which parameters influence model outputs in different regions (parameter space)? 104 

 105 

Clearly, based on the above, an appraisal of model sensitivity is important to fully understand and 106 

apply model results. In a review of applications of SA in environmental models, Yang (2011) identified 107 

two common approaches to SA – local and global. Local SA are limited, considering only the impacts 108 

of factors on model outputs locally, i.e. within a restricted region of the model’s parameter space, 109 

whilst global SA typically utilise Monte-Carlo methods to assess the sensitivity of impacts across the 110 

whole parameter space (Yang, 2011). For complex models with non-linear behaviours, the use of Local 111 

SA can be highly biased as they neglect the non-linear interactions between parameters (Oakley and 112 

O’Hagan, 2004; Pappenberger et al., 2006; Yang, 2011). Global SA are more computationally 113 

expensive, but as the methods are more reliable, they are attractive to modellers (Yang, 2011). 114 

 115 

The use of SA as a routine component of model assessment and calibration is common place in 116 

climatic, meteorological, hydrological, hydraulic and many other modelling fields. However, for LEMs 117 

there are surprisingly few examples of SA being carried out. This can be explained by three inter-118 

related issues: (i) LEMs typically have a large number of model parameters; (ii) long model run times 119 

can make multiple simulations for SA impractical; and (iii) model behaviour can bhe highly non-linear 120 

(e.g. Coulthard and Van De Wiel, 2007; Larsen et al., 2014; Van De Wiel and Coulthard, 2010), leading 121 

to potentially complex SA interpretations. Large numbers of model parameters and long run times, in 122 

particular, make Monte-Carlo methods extremely time consuming – and therefore often unviable.  123 

 124 

There are several past studies investigating on how LEMs respond to variable forcing, process changes 125 

and model parameters, including changes in climate variability and precipitation resolution (Armitage 126 

et al., 2017; Coulthard and Skinner, 2016a; Ijjasz-Vasquez et al., 1992; Tucker and Bras, 2000), channel 127 

widths (Attal et al., 2008), vegetation (Collins, 2004; Istanbulluoglu and Bras, 2005), and variations in 128 
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initial conditions (Hancock, 2006; Hancock et al., 2016; Ijjasz-Vasquez et al., 1992; Willgoose et al., 129 

2003). (Campforts et al.,  (2016) investigated how different numerical solvers affect LEM simulation. 130 

Yet few studies explicitly perform SA and most of the applications described above are exploring LEM 131 

sensitivity to processes, or changes in environmental conditions, and are more correctly referred to 132 

as exploratory tests (Larsen et al., 2014). On the other hand, investigations to ascertain the model’s 133 

response to potential uncertainties (e.g from model parameterisation) can be deemed as true SA (eg, 134 

Armitage et al., 2017; Coulthard and Skinner, 2016a; Hancock et al., 2016). 135 

 136 

Hydrological models faced similar issues to LEMs in the past, i.e. model complexity and long processing 137 

times when applying SA. To overcome them, hydrologists have used the Morris Method (MM; (Morris, 138 

1991). The MM can be regarded as a global SA, although it actually performs multiple local SAs 139 

sampled from across the full parameter space – this produces a series of local evaluations, the mean 140 

of which is an approximation of the global variance (van Griensven et al., 2006; Norton, 2009; Saltelli 141 

et al., 2000). The main strength of the MM is its computational efficiency. (Herman et al., (2013) 142 

showed that the MM could estimate similar variance in model outputs to the Sobol’ Variance-based 143 

global SA method (Sobol’, 2001), yet required 300 times less evaluations, and significant less data 144 

storage for an application to a distributed catchment hydrological model. The robustness of this 145 

approach has been further shown by numerous workers (e.g. Brockmann and Morgenroth, 2007; 146 

Pappenberger et al., 2008; Yang, 2011). However, the MM cannot provide a full quantitative 147 

assessment of parameter sensitivity and is dependent upon the user-defined bounds to the parameter 148 

space. It can successfully rank parameters between the least and most influential to model outputs, 149 

but cannot determine parameters’ exact relative influence (Brockmann and Morgenroth, 2007). These 150 

advantages and limitations entail that MM has primarily been used during the pre-screening stage of 151 

models, isolating the most influential parameters for further SA with quantitative, yet more 152 

computationally expensive, methods (e.g. Ratto et al., 2007; Song et al., 2015; Yang, 2011; Ziliani et 153 

al., 2013). 154 
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(Ziliani et al., 2013)  performed a two-stage SA for the CAESAR LEM, utilising the MM (as adapted by 155 

(Campolongo et al., 2007)Campolongo et al., 2007). Whilst this study demonstrated the feasibility of 156 

applying the MM as a global SA to a reach-scale LEM, it was applied as a pre-screening stage to identify 157 

the most relevant parameters for model calibration. In contrast, our study focuses on SA as a tool to 158 

investigate parameter influence on model behaviour. 159 

The study by Ziliani et al. (2013) is another example of a LEM SA, seeking to spatially calibrate a reach-160 

scale application of the CAESAR LEM to field observations. They performed a two-stage SA, utilising 161 

the Morris Method (MM) (as adapted by Campolongo et al., 2007) as a pre-screening before a more 162 

complex local SA was applied. The study investigated the model’s sensitivity to 12 user-defined 163 

parameters, using MM to exclude those showing the least influence on performance measures from 164 

the subsequent SA and calibration. Whilst Ziliani et al. (2013) demonstrated the feasibility of applying 165 

MM as a global SA to a reach-scale LEM, it was applied as a pre-screening stage to identify parameters 166 

to focus model calibration on, and not to observe model behaviour. 167 

 168 

1.2 Metrics for Landscape Evolution Model Assessment 169 

 170 

Evaluating LEMs is challenged by the paucity of comprehensive field data against which they can be 171 

assessed and the lack of measures for calibration and validation (Hancock et al., 2016; Hancock and 172 

Willgoose, 2001; Tucker and Hancock, 2010). Moreover, some second-generation LEMs (e.g. CAESAR-173 

Lisflood) simulate short (annual to decadal) and long-term (millennial time scales and longer) 174 

landscape changes, necessitating data and methods to assess them across variable time scales.  Thus, 175 

while SA of environmental models often rely on objective functions (e.g. the Nash-Sutcliffe score 176 

between observed and simulated values; (Nash and Sutcliffe, 1970)), this approach is generally not 177 

practical for LEMs. With few exceptions (e.g. (Ziliani et al., 2013), results from LEMs are therefore 178 

frequently assessed qualitatively, relying on visual interpretation of the simulated landforms or cross-179 
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section profiles(e.g. Coulthard and Skinner, 2016b; Hancock et al., 2010, 2015; Hancock and Coulthard, 180 

2012).  181 

An issue with the testing of LEMs is finding the field data and statistical tools that can actively 182 

discriminate between what is a good model and a bad model, and for parameterisation (Hancock and 183 

Willgoose, 2001; Hancock et al., 2016; Tucker and Hancock, 2010). As the models are designed to 184 

assess both short (annual to decadal) to long-term (geological time scale), the data and assessment 185 

methods require both a multi-dimensional approach.  The application of SA to environmental models 186 

often assesses the impacts of factors based on variations in values of an objective function, which is 187 

often an error score between observed and simulated values – for example, a common approach in 188 

hydrology would to use the Nash-Sutcliffe score (Nash and Sutcliffe, 1970) as an objective function, 189 

and catchment discharges as a value. The objective function approach was used by Ziliani et al. (2013), 190 

matching the outputs of a reach simulation in CAESAR to observed patterns of wet/dry pixels, 191 

erosion/deposition, and vegetation. However, the objective function approach is generally not 192 

practical for LEMs due to a paucity of observed data to use as a value, so often the results from LEMs 193 

are assessed qualitatively, relying on visual interpretation of the final simulated landforms or cross-194 

section profiles (eg. Hancock et al., 2010; 2015; Hancock and Coulthard, 2012; Coulthard and Skinner, 195 

2016a). 196 

 197 

The use of Ccatchment outlet statistics, such as sediment yield time series, allow for comparison 198 

between simulations to indicate a catchment’s response to perturbations (e.g. Coulthard et al., 2012; 199 

Coulthard and Skinner, 2016b; Hancock and Coulthard, 2012). However, sediment yield time series 200 

rarely provide a sufficiently complete picture of a catchment’s geomorphic response.although this 201 

provides some information about the catchment response as it gives an incomplete picture. For 202 

example, Coulthard and Skinner (2016b) showed that simulations calibrated to provide equivalent 203 

sediment yields, to compensate for loss of spatial and temporal resolution in rainfall inputs, produced 204 

different landscape shapeslandforms. For planning purposes these internal catchment changes are 205 
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likely to be more useful than catchment sediment yields. Moreover, changing topography potentially 206 

instigates a feedback process that leads to complex, often non-linear catchment behaviour (Coulthard 207 

and Van De Wiel, 2007, 2013; Hancock et al., 2016; Jerolmack and Paola, 2010; Van De Wiel and 208 

Coulthard, 2010). Finally, the spatially and temporally heterogeneous response of erosion and 209 

deposition patterns in LEMs also makes “pixel-to-pixel” comparisons difficult. For example, in a valley 210 

reach, gross patterns of erosion and deposition may be identical but with the channel on the other 211 

side of the valley – yielding a poor pixel-to-pixel comparison.Statistics based on measurements from 212 

the catchment outlet cannot account for factors such as geomorphic equifinality, self-organised 213 

criticality, and autogenics, which act as a non-linear filter on the response (Coulthard and Van De Wiel, 214 

2007, 2013; Hancock et al., 2016; Jerolmack and Paola, 2010; Van De Wiel and Coulthard, 2010). 215 

 216 

Few studies have tested metrics to compare topographic data or physical experiments to simulated 217 

elevation changes by LEM (Hancock et al., 2010, 2011; Hancock and Willgoose, 2001; Ibbitt et al., 218 

1999). However, although the metrics often suggested a good agreement, visual analysis of the final 219 

DEMs indicated clear differences between the physical models and the simulations (Hancock and 220 

Willgoose, 2001). There is, therefore, a clear need for better statistical methods for critically evaluating 221 

and comparing landscapes that can also be used for evaluating the accuracy (or otherwise) of LEMs.  222 

 223 

The paucity of observational data and the lack of measures that amalgamate the complexity of spatio-224 

temporal landscape change into a single metric have prevented the objective function approach to be 225 

common in modelling landscape evolution. Instead, LEMs can be evaluated by observing the changes 226 

in model outputs reflective of model behaviour – these model functions can be used in lieu of objective 227 

functions to allow the sensitivity of LEMs to be assessed.  Model functions would be best used as a set 228 

in combination to allow assessment across a range of model behaviours, and would also be 229 

transferable across a range of catchments. Such an approach formalises existing methods of 230 

Formatted: Font: 11 pt
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evaluating LEM outputs and provides a framework from which multi-criteria objective function 231 

approaches can be applied when suitable observation become available.  232 

Hancock and Willgoose (2001) reviewed statistical attempts to define catchment geomorphology, 233 

including width function, cumulative area distribution, area-slope relationship, and hypsometric 234 

curve, and used these as an objective function between physical experiments and numerical 235 

experiments using SIBERIA. However, although statistically similar, there were visually clear 236 

differences between the physical models and the simulations. Other methods employed include 237 

changes to mean elevations (Hancock et al., 2010, 2011), and Optimal Channel Network (Ibbitt et al., 238 

1999). However, although visual difference may be observed between simulations, variations within 239 

these measurements have proved to be small for timescales of 1000 years and less (Hancock et al., 240 

2010, 2011), so are limited in their scalability. There is, therefore, a clear need for more objective 241 

statistical methods for critically evaluating and comparing landscapes that can also be used for 242 

evaluating the accuracy/reliability (or otherwise) of LEMs. Field data at the catchment scale that 243 

includes erosion and deposition data, vegetation type and change as well as sediment transfer at 244 

critical points along the stream network is required. Such all-encompassing catchment scale data is 245 

currently not available. 246 

 247 

1.3 A Global SA for a catchment LEM 248 

 249 

This study demonstrates the first application of a gGlobal SA illustrate parameter influence on model 250 

behaviour in to a catchment LEM (CAESAR-Lisflood), using the MM to assess the model’s sensitivity to 251 

user-defined parameters. – in total 15 parameters are selected based onWe selected 15 model 252 

parameters chosen either because of their known importance to the model or because the model’s 253 

response to the parameter is presently poorly understood. Although not all the 15 model parameters 254 

chosen are universal between LEMs, many LEMs have equivalents. A Moreover, we developed a set 255 

of 15 model functions has been developed which reflects that reflect core behavioural responses of 256 
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the model., and theseThese will indicate whether the same parameters influence all behaviours, or 257 

whether the different behaviours respond to different parameters. The choice of 15 model 258 

parameters and 15 model functions is coincidental. The method is applied toWe conducted the SA in 259 

two contrasting catchments (scale, environment and climate)with contrasting environmental settings 260 

to assess how transferable an individual SA is to different conditions. 261 

 262 

It is important to state that this study is an illustration of the potential for using the MM to inform an 263 

operator of how model parameter choices can impact the performance and behaviour of their model. 264 

It is not an attempt to reproduce or calibrate the CAESAR-Lisflood model to real-world observations, 265 

although the model has been applied to each catchment previously.  266 

 267 

2. Methods 268 

 269 

We apply the MM to perform a global SA on the CAESAR-Lisflood model for two contrasting 270 

catchments (more detail in Section 2.3):  the Upper Swale, UK (181 km2, temperate, perennial), and 271 

Tin Camp Creek, Australia (0.5 km2, tropical, ephemeral). Each individual simulation runs for a 30 year 272 

period, where the first 10 years are used as a spin-up to reduce the impacts of transient model 273 

behaviour and therefore output analysis starts after year 10 of the simulation. CAESAR-Lisflood model 274 

is used in catchment mode, the simulations have no representation of suspended sediments and bed 275 

rock, and the dune and soil evolution modules are not used. For each catchment, we assess the 15 276 

user-defined parameters against a set of 15 model functions. Finally, we also assess the changes in 277 

elevations across different sections of the catchments. 278 

  279 

For clarity, we here define some terms used frequently throughout this manuscript:  280 

 281 
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• Parameter – Adjustable value within a model. The value is determined during model 282 

set-up and remains constant throughout a given simulation. The value is often based 283 

on recorded values or adjusted during calibration. 284 

• Objective function – an error score between model outputs and observations used to 285 

evaluate model performance. 286 

• Model function – a measure derived from model outputs used to evaluate model 287 

behaviour in lieu of an adequate objective function. 288 

• Elementary effect (EE) – a value used as part of the Morris Method, indicating the 289 

change in function value (objective or model) resulting from a change of parameter 290 

value during a single repeat. 291 

• Main effect (ME) – the mean of the elementary effects from all repeats, for a specified 292 

parameter and a specified function. 293 

The test applies the MM method to perform a global SA on the CAESAR-Lisflood model for two 294 

contrasting catchments – the Upper Swale, UK (medium sized, temperate, perennial), and Tin Camp 295 

Creek, Australia (small sized, tropical, ephemeral). For each catchment, 15 user-defined parameters 296 

are assessed against a set of 15 model functions. Finally, the changes in elevations across the 297 

catchments are assessed. 298 

 299 

2.1 CAESAR-Lisflood 300 

 301 

The LEM used is the CAESAR-Lisflood model (Coulthard et al., 2013). CAESAR-Lisflood is a second 302 

generation LEM, capable of simulations with greater physical realism than first generation models but 303 

also with increased complexity – the model features a large number of fixed, physically-based, or user-304 

defined parameters. This additional complexity may result in an increased non-linearity and sensitivity 305 

to model parameters.We used CAESAR-Lisflood v1.8, without any additional modifications to the 306 

model’s functionality from the version freely available online. 307 
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 308 

A full description of the CAESAR-Lisflood model can be found in Coulthard et al. (2013), and its core 309 

functionality is only summarised here. The model utilises an initial DEM built from a regular grid of 310 

cells, and in the catchment mode (as used in this model set up) is driven by a rainfall timeseries which 311 

can be lumped or spatially distributed (Coulthard and Skinner, 2016b). At each timestep the rainfall 312 

input is converted to surface runoff using a version of TOPMODEL (Beven and Kirkby, 1979), and 313 

distributed across the catchment and routed using the Lisflood-FP component (Bates et al., 2010). The 314 

CAESAR component of the model drives the landscape development using sediment transport 315 

formulae based on flow depths and velocities derived from the Lisflood-FP component. Bed load is 316 

distributed to neighbouring cells proportionally based on relative bed elevations. This study has not 317 

used the suspended sediment processes in the model. The model can handle nine different grain sizes, 318 

and information is stored in surface and sub-surface layers where only the top surface layer is ‘active’ 319 

for erosion and deposition. A comprehensive description of this process can be found in (Van De Wiel 320 

et al., 2007).The Lisflood-FP component generates flow depths and velocities, which are used by the 321 

CAESAR component to simulate fluvial erosion, transport and deposition, across 9 grain sizes, using an 322 

active layer system, and altering the elevation values of the grid (Van De Wiel et al., 2007). 323 

 324 

CAESAR-Lisflood is freely available and since 1996 there have been 62 over 60 published studies using 325 

the model over a wide range of temporal and spatial scales (Skinner and Coulthard, 2017). These 326 

previous studies provide useful background into model parameter interactions helping to inform the 327 

choice of the user-defined parameters used for the SA as described in Section 2.4. Some studies have 328 

also investigated the model’s sensitivities to external factors - for example, Coulthard and Skinner 329 

(2016) investigated the sensitivity of the CAESAR-Lisflood model to the spatial and temporal resolution 330 

of precipitation. Other studies have investigated the influence of individual processes or 331 

forcings.which could be described as both SA and an exploratory test with,  Ffor example, Coulthard 332 

and Van De Wiel (2017) examined how land-use influences the outputs of the model.examining how 333 
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the use of a spatially variable ‘m’ parameter, representing the land use of an area, could influence the 334 

outputs of the model. 335 

 336 

2.2 Morris Method 337 

 338 

Our study used the MM described in Ziliani et al. (2013), i.e. the original MM of Morris (1991), as 339 

extended by Campolongo et al. (2007), and applied the “sensitivity” package in the R Statistical 340 

Environment (Pujol, 2009) to generate the parameter sets for the SA. 341 

 342 

To set up the MM we selected a number of parameters to be assessed, specifying a minimum and 343 

maximum range for each, plus a number of iterative steps. The parameter values are equally spaced 344 

based on the range and number of steps – for example, a parameter with a range of 2 to 10 and 5 345 

iterative steps would have available values of 2, 4, 6, 8, and 10. This is done for each parameter and, 346 

where possible, the same number of iterative steps was used for each. 347 

 348 

The MM samples the global parameter space by performing multiple local SAs referred to as repeats. 349 

The first simulation in each repeat is made up of a randomly assigned selection of parameter values 350 

from the available values. To set up the second simulation in the repeat a single parameter is randomly 351 

selected and its value changed by a random number of iterative steps – if we use the example above, 352 

if simulation 1 used the value 4, changing this to 2 or 6 would be one iterative step change, to 8 would 353 

be two steps, and using 10 would be three steps. For simulation 3 in the repeat another randomly 354 

selected parameter is changed although previously changed parameters are no longer available to be 355 

selected. This is continued until no further parameters are available to be changed, therefore in our 356 

study each repeat contains 16 tests – 1 starting set of parameters, plus 15 parameter changes. In this 357 

study we have used 100 repeats, for a total of 1600 individual simulations – for comparison, the 358 

implementation of the MM by (Ziliani et al., (2013). used 10 repeats. 359 



15 
 

 360 

The sensitivity of the model to changes in parameter values is evaluated by the changes of objective 361 

function values between sequential tests within repeats relative to the number of incremental steps 362 

the parameter value has been changed by. The change in objective function score between two 363 

sequential tests divided by the number of incremental step changes is an elementary effect (EE) of 364 

that objective function and the parameter changed (Equation 1). After all 1600 tests have been 365 

performed, the main effect (ME) for each objective function and parameter is calculated from the 366 

mean of the relevant EEs – the higher the ME the greater the model’s sensitivity. Alongside the ME, 367 

the standard deviation of the EEs is also calculated as this provides an indication of the non-linearity 368 

within the model.  369 

Hydrological models faced similar issues to LEMs in the past, in regards to model complexity and 370 

resulting processing times when applying SA. To overcome them, hydrologists have used the method 371 

of Morris (1991). The MM can be regarded as a global SA, although it actually performs multiple local 372 

SA sampled from across the full parameter space – this produces a series of local evaluations, the 373 

mean of which is an approximation of the global variance (Saltelli et al., 2000; van Griensven et al., 374 

2006; Norton, 2009). The main strength of the MM is its computational efficiency. Herman et al. (2013) 375 

showed that the MM could estimate similar variance in model outputs to the Sobol’ Variance-based 376 

global SA method (Sobol’, 2001), yet required 300 times less evaluations, and significant less data 377 

storage for an application to a distributed catchment hydrological model. The robustness of this 378 

approach has been further shown by numerous workers (e.g. Brockmann and Morgenroth, 2007; 379 

Pappenberger et al., 2008; Yang, 2011). However, the MM cannot provide a full quantitative 380 

assessment of parameter sensitivity and is dependent upon the user-defined bounds to the parameter 381 

space. It can successfully rank parameters between the least and most influential to model outputs, 382 

but cannot determine parameters’ exact relative influence (Brockmann and Morgenroth, 2007). This 383 

combination of advantage and limitation has seen it used extensively as a pre-screening stage, 384 
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isolating the most influential parameters for further SA with quantitative, yet more computationally 385 

expensive, methods (e.g. Ratto et al., 2007; Song et al., 2015; Yang, 2011; Ziliani et al., 2013). 386 

 387 

This paper uses the MM described in Ziliani et al. (2013), i.e. the original MM of Morris (1991), as 388 

extended by Campolongo et al. (2007). The Design of Experiment (DOE) used the R Statistical 389 

Environment and the “sensitivity” software package (Pujol, 2009). A full description of the method can 390 

be found in these papers, but a summary is provided here. 391 

 392 

MM operates as a series of local SA starting with a stochastically selected set of initial parameters 393 

drawn from the global parameter space. For each parameter, a defined boundary of available values 394 

is set and divided into a series of equal incremental steps - each parameter is subsequently altered 395 

one-at-a-time (OAT) by a number of incremental steps, until each parameter has been altered once. 396 

The change in the model output measures, or model factors, is observed between each test – these 397 

are the Elementary Effects (EE). This process is repeated a number of times and the mean and standard 398 

deviations of the EE for each parameter is calculated – the Main Effect (ME). The higher the mean ME 399 

for a parameter shows greater influence of that parameter on the factor, and a higher standard 400 

deviation indicates greater non-linear relationships with other parameters. The calculation of an EE 401 

can be summarised as in Equation 1 –  402 

Equation 1 403 

𝑑𝑖𝑗 = |
𝑦(𝑥1𝑥2 … , 𝑥𝑖−1, 𝑥𝑖 + ∆𝑖,𝑥𝑖+1, … , 𝑥𝑘) − 𝑦 (𝑥1𝑥2 … , 𝑥𝑖−1, 𝑥𝑖,𝑥𝑖+1, … , 𝑥𝑘)

∆𝑖
| 404 

 405 

where 𝑑𝑖𝑗  is the value of the jth EE (𝑗 =  1, … , 𝑟; where r is the number of repetitions (here r = 100)) 406 

of the ith parameter (e.g. i =1 refers to sediment transport formula, see Table 1), xi is the value of the 407 

ith parameter, k is the number of parameters investigated (here 15), 𝑦(𝑥1, 𝑥2, … , 𝑥𝑘) is the value of 408 

the selected objective function, and ∆𝑖 is the change in incremental steps parameter i was altered by. 409 
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where, 𝑑𝑖𝑗 is the jth EE of the ith model output measure (eg, i =1 refers to Sediment Transport Formula, 410 

see Table 1), k is the number of parameters investigated (here 15), 𝑦(𝑥1𝑥2,…,𝑥𝑘) is the value of the 411 

model output measure, r is the number of repetitions (here r = 100), and ∆𝑖  is the change in 412 

incremental steps parameter i was altered by. 413 

 414 

2.3 Study Basins 415 

 416 

2.3.1. Upper Swale, UK 417 

 418 

The Swale catchment, UK, is a medium sized basin (181 km2) with 500 m of elevation droprelief (Figure 419 

1). It has been used extensively in previous CAESAR/CAESAR-Lisflood applications (Coulthard et al., 420 

2012; Coulthard and Macklin, 2001; Coulthard and Skinner, 2016a; Coulthard and Van De Wiel, 2013). 421 

For this SA, it represents a medium basin in a temperate climate. All simulations on the Swale are 422 

based onuse a 50 m resolution DEM based on airborne LiDAR.and 30 years in duration. Precipitation 423 

inputs are 10 years of NIMROD composite RADAR rainfall estimates (Met Office, 2003), applied at a 1 424 

h temporal and 5 km spatial resolution, and repeated three times for a 30 year timeseries.(1 h – 5 km 425 

resolution) repeated.  426 

 427 

2.3.2. Tin Camp Creek, Australia 428 

 429 

The Tin Camp Creek catchment is a small sub-catchment (0.5 km2) of the full Tin Camp Creek system 430 

(Hancock et al., 2010; Hancock, 2006) (Figure 1). The basin has a 45 m of elevation droprelief and is in 431 

the tropical region of the Northern Territory, Australia. Contrasting In contrast to the Swale, Tin Camp 432 

Creek is much smallera small basin and the region has pronounced wet and dry seasons, with short 433 

intense rainstorms a feature of wet season precipitation. The DEM is at 10 m grid cell resolution 434 

produced from high resolution digital photogrammetry (Hancock, 2012)., and like the Swale 435 
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simulations are 30 years in length. The rainfall input is taken from observations from a single raingauge 436 

at Jabiru Airport, providing a 1 h – lumped (single catchment-average) resolution timeseries for 23 437 

years, with the first 7 years repeated to produce a continuous 30 year timeseries.which was looped to 438 

create the 30 year record required.  439 

 440 

2.3.2 Stream Orders 441 

 442 

For both basins theThe changes in the mean elevation across different areas of the catchments will 443 

bewere assessed as a representationan illustration of spatial differences in geomorphic change. of 444 

changes in the geomorphology. Each basin was sub-divided into regions corresponding to the 445 

watersheds of five stream orders based on the proportion of the catchment drained in the initial DEM 446 

– 1st = < 1 %; 2nd = > 1 %; 3rd = > 10 %; 4th = > 25 %; 5th = > 50 % (see Figure 1). This method is novel and 447 

was developed to provide a consistent method of sub-dividing both catchments independent of 448 

factors such as connectivity and DEM resolution. 449 

 450 

Formatted: Font: Bold



19 
 

451 

Figure 1 – Elevation map for the Upper Swale catchment, UK (top), and Tin Camp Creek catchment, Australia 452 

(bottom) – note the differences in scale between catchments. Each catchment is sub-divided into watersheds 453 

of five stream orders based on the proportion of the catchment drained. 454 

 455 

 456 

 457 

2.4 User-Defined Parameters 458 

 459 

The MM implemented here used 15 user-defined parameters, each with 5 iterative step values (as 460 

described in Section 2.2). The only exception was the choice of sediment transport formula parameter 461 
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(SED, Table 1) where only two options are available. The parameters, their ranges, and available values 462 

are shown in Table 1. 463 

 464 

Table 1 – User-defined parameters used and the min-max values for the two study catchments. 465 

Code Parameter Steps Upper Swale  Tin Camp Creek  

(1) SED Sediment Transport Formula 2 1 Wilcock & Crowe / 2 Einstein 1 Wilcock & Crowe / 2 Einstein 

(2) MEL Max Erode Limit (m) 5 0.01; 0.015; 0.02; 0.025; 0.03 0.001; 0.0015; 0.002; 0.0025; 

0.003 

(3) CLR In Channel Lateral Erosion Rate 5 10; 15; 20; 25; 30 10; 15; 20; 25; 30 

(4) LAT Lateral Erosion Rate 5 2.5e-6; 3.75e-6; 5e-6; 6.25e-6; 7.5e-6 1.5e-6; 2.25e-6; 3e-6; 3.75e-6; 4.5e-6  

(5) VEG Vegetation Critical Shear Stress (Pa) 5 10; 15; 20; 25; 30 2; 3.25; 4.5; 5.75; 7 

(6) MAT Grass Maturity Rate (yr) 5 0.5; 0.75; 1; 1.25; 1.5 0.5; 0.875; 1.25; 1.625; 2 

(7) SCR Soil Creep Rate (m/yr) 5 0.00125; 0.001875; 0.0025; 

0.003125; 0.00375 

0.00125; 0.001875; 0.0025; 

0.003125; 0.00375 

(8) SFT Slope Failure Threshold (°) 5 40; 42.5; 45; 47.5; 50 40; 42.5; 45; 47.5; 50 

(9) IOD In/Out Difference (m3.s-1) 5 2.5; 3.75; 5; 6.25; 7.5 0.1; 0.175; 0.25; 0.325; 0.4 

(10) MinQ Min Q Value (m) 5 0.25; 0.375; 0.5; 0.625; 0.75 0.025; 0.0375; 0.05; 0.0625; 0.075 

(11) MaxQ Max Q Value (m) 5 2.5; 3.75; 5; 6.25; 7.5 2.5; 3.75; 5; 6.25; 7.5 

(12) SEC Slope for Edge Cells 5 0.0025; 0.00375; 0.005; 0.00625; 

0.0075 

0.0025; 0.00375; 0.005; 0.00625; 

0.0075 

(13) EVR Evaporation Rate (m/d) 5 0.00067; 0.001005; 0.00134; 

0.001675; 0.00201 

0.0025; 0.004375; 0.00625; 

0.008125; 0.01 

(14) MNR Manning's n Roughness 5 0.03; 0.035; 0.04; 0.045; 0.05 0.03; 0.0325; 0.035; 0.0375; 0.04 

(15) GSS Grain Size Set 5 Set 1; Set 2; Set 3; Set 4; Set 5 Set 1; Set 2; Set 3; Set 4; Set 5 

 466 

The MM varies the value of each parameter tested once per repeat, and here we use 100 repeats. 467 

Therefore, careful consideration was required in the selection of parameters as each parameter tested 468 

added 100 model runs to the test – there are 49 user-defined parameters in the version of CAESAR-469 

Lisflood model used (v1.8), and even excluding parameters associated with dune and soil 470 

development, there are still 35 user-defined parameters. To test each would require 3600 model runs 471 
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for each catchment, yet the inclusion of some parameters is likely to add little value. Therefore, in 472 

total,Thus this was narrowed to a set of 15 user-defined parameters were tested (Table 1) and with 473 

the selection was based largely on prior knowledge of the importance of these parameters, or due to 474 

a lack of previous knowledge of the influence of the parameters on the model – full justification of the 475 

selection of parameters, and descriptions of their purpose within the model, can be found in 476 

Supplement S1 of the Supplementary Material S1.  477 

 478 

The MM is subjective in that the relative sensitivities shown depend on the minimum and maximum 479 

range values set by the user. Therefore, it is necessary to set each parameter’s range to be broadly 480 

equal to the others in order to obtain useful information. To be consistent, where possible we have 481 

used a default value taken from past calibrations and varied this by +/- 25 % and +/- 50 %. There are 482 

some instances where this was not appropriate and a minimum and maximum bound was set instead, 483 

with 5 iterative steps of equal distance determined (for example, the Manning’s n Roughness for Tin 484 

Camp Creek where +/- 50 % would have resulted in obviously physically unrealistic values – see Table 485 

1 for values used). 486 

 487 

The sediment transport formulae employed for SED were Einstein (Einstein, 1950) and Wilcock & 488 

Crowe (Wilcock and Crowe, 2003). These were not selected as representing the best fit for the 489 

catchments simulated but because they are the formulae available in the unmodified version of 490 

CAESAR-Lisflood. The sediment transport formulae parameter was applied as a binary choice, with the 491 

model switching from one formula to the other once per repeat (no other parameter values were 492 

varied when this occurs, as per the description of the MM in Section 2.2). It was assumed that this 493 

change constituted a single iterative step change for calculating related EEs. 494 

The Morris Method is a qualitative method and the results are subjective on the range of values and 495 

number of iterative steps set by the user. Therefore, it is necessary to set each parameter’s range to 496 

be broadly equal to the others. Whilst it is difficult to define what this means it is also difficult to 497 
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estimate without prior knowledge - something this study is attempting to address. Here, as a general 498 

rule, we have used a default value taken from past calibrations and varied this by +/- 25 % and +/- 50 499 

%. There are some instances where this was not appropriate, and instead a minimum and maximum 500 

bound was set instead, and 5 iterative steps of equal distance determined (for example, the Manning’s 501 

n Roughness for Tin Camp Creek). 502 

 503 

The Sediment Transport Laws employed for SED were Einstein (Einstein, 1951) and Wilcock & Crowe 504 

(Wilcock and Crowe, 2003). This was applied as a binary two-step, switching from one Law to the 505 

other. 506 

507 

Figure 2 – Sediment grain size distribution sets for the Upper Swale (left) and Tin Camp Creek (right), 508 

showing the cumulative proportions. 509 

 510 

Grain size distribution has been shown to influence erosion patterns and erosion rate(Hancock and 511 

Coulthard, 2012)). It is more difficult to define iterative steps for the sediment grain size sets which 512 

include 9 different grain sizes and proportions in each. Instead, these were skewed by altering the 513 

proportions of the five smallest grain sizes +/- 25 % and 50 %, and the opposite to the four largest 514 
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grain sizes, before adjusting the final proportions to equal one based on the relative values. This 515 

produces two sets biased for smaller grain sizes (Sets 1 and 2), and two sets biased for larger grain 516 

sizes (Sets 4 and 5), as well as the default grain size set (Set 3) (Figure2).. The grain size distributions 517 

can be seen in Figure 2. Note, that the grain size sets presented in Figure 2 contain non-cohesive silts 518 

and this requires an extrapolation of the sediment transport formulae (Van De Wiel et al., 2007). 519 

 520 

2.5 Model Functions 521 

 522 

The common method of assessing a model’s sensitivity to parameters values via SA, and the method 523 

employed by the MM, is to observe the variations to objective function measures. However, the 524 

difficulties in applying an objective function approach to LEMs were highlighted in Section 1.2, and in 525 

order to apply an SA a novel approach is required. The method we have developed eschews the 526 

objective function approach and instead assesses the model against a series of model functions 527 

designed to reflect some of the core behaviours displayed in the model – these can be seen in Table 528 

2. This represents a philosophical difference to traditional applications of SA – here we are not testing 529 

the model against its skill in simulating the physical environment, but rather how the model responds 530 

behaviourally to changes in the user-defined parameters detailed in Section 2.4. The 15 model 531 

functions (Table 2) are simple, scalable and transferable between different catchment types, and can 532 

be applied to simulations of different timeframes. The model functions are based on outputs which 533 

are not unique to CAESAR-Lisflood, so can be applied to other LEM and geomorphic models.The 534 

common method of assessing a model’s sensitivity to parameters values via SA is to observe the 535 

variations to objective function measures, yet as discussed in Section 1.3 the use of objective functions 536 

is often not feasible or appropriate when simulating using LEMs. Also in Section 1.3, previous attempts 537 

to quantify changes to the geomorphology of catchments were discussed, showing that no statistical 538 

methods, whether based on catchment outlet or some feature of the landscape within the catchment, 539 
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fully captured or reflected the geomorphic change. The methods reviewed in Hancock and Willgoose 540 

(2001) have also been shown to be of little value for simulations of 1000 years and less. 541 

 542 

Table 2 – Model Functions and the associated core behaviours. 543 

Model Function Core Behaviour 

Total Sediment Yield (m3)   

Mean Daily Sediment Yield (m3)   

Peak Daily Sediment Yield (m3) Catchment Sediment Yield 

Time to Peak Sediment Yield (s)   

Days when Sediment Yield > Baseline (d)   

Total Net Erosion (m3)   

Total Net Deposition (m3) Internal Geomorphology 

Area with > 0.02 m Erosion (m2)   

Area with > 0.02 m Deposition (m2)   

Total Discharge (m3)   

Mean Daily Discharge (m3)   

Peak Daily Discharge (m3) Catchment Discharge 

Time to Peak Discharge (s)   

Days when Discharge > Baseline (d)   

Total Model Iterations (calculations) Model Efficiency 

 544 

The model functions were applied to the MM as described in Section 2.2, substituting the model 545 

functions in place of the objective functions with no further changes to the method. Model function 546 

values were calculated at the end of each simulation. 547 

The method we have used is to abandon the objective function approach and instead assess the model 548 

against a series of Model Functions designed to reflect some of the core behaviours displayed in the 549 

model. It should be noted that this is a philosophical difference to traditional applications of SA – here 550 

we are not testing the model against its skill in simulating the physical environment, but rather how 551 

the model responds behaviourally to the uncertainty in the user-defined parameters detailed in 552 

Section 2.4 – in this sense it also differs from methods of assessing parameter uncertainty, such as the 553 

Generalised Likelihood Uncertainty Estimation (GLUE) of Beven and Binley (1992), yet is an important 554 

step towards the adoption of such techniques with LEMs. The 15 model functions (Table 2) are simple, 555 

scalable and transferable between different catchment types, and can be applied to simulations of 556 
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different timeframes. The model functions are based on outputs which are not unique to CAESAR-557 

Lisflood, so can be applied to other LEM and geomorphic models. 558 

 559 

The To summarise the large amount of information produced, the ME of each parameter versus 560 

eachand model function combination was normalised based on the proportion of the ME for highest 561 

ranking parameter for that model function – therefore the highest ranked parameter for each model 562 

function always scored 1. The scores for each parameter were aggregated for across all model 563 

functions based on the mean of the scores. The model functions were sub-divided into core behaviour 564 

groups (Table 2), and the scores aggregated again for each core behaviour. The same was also done, 565 

separately, for the standard deviations of each parameter and model function. 566 

 567 

LEMs are subject to transient model behaviour (an internal model adjustment), as the model reacts 568 

to effects of the initial DEM surface and the global grain size distribution. During the initial period of 569 

model simulation this results in accelerated sediment processes as the model removes uneven 570 

surfaces and noise, and easily mobilises smaller grain sizes in the channel. This is commonly accounted 571 

for by allowing the model to run for a ‘spin-up’ period before the simulation begins. It is possible that 572 

small differences in the model could be exaggerated during this period, therefore the first 10 years of 573 

each simulation has been discounted for the calculation of the model functions. 574 

 575 

3. Results 576 

 577 

3.1 All Model Functions 578 

 579 

Figure 3 shows the spread of parameter influence for both catchments, where the a higher the mean 580 

of the aggregated MEs indicates greater sensitivity in the model to that parameter, and the ahigher 581 

standard deviation shows greater non-linearity to when interacting with other parameters. Table 3 582 
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shows the parameters ranked for both catchments, based on the aggregated mean ME values. The 583 

most influential parameter is SED (see Table 1 for full description of parameter abreviations), ranked 584 

top for both catchments and also being most influential by a reasonable margin, having an aggregated 585 

mean of at least 0.2 higher than the 2nd ranked parameter. Other parameters, such as VEG, IOD, MNR, 586 

MinQ and GSS, rank highly or mid-range. There is a visually close correlation between the most 587 

influential parameters and those which that display the most non-linearity (Figure 3). 588 

 589 

Table 3 – Parameters ranked by means for each catchment from the aggregated scores for all Elementary 590 

Effects. SED = sediment transport formula; MEL = maximum erode limit; CLR = in channel lateral erosion rate; 591 

LAT = lateral erosion rate; VEG = vegetation critical shear stress; MAT = grass maturity rate; SCR = soil creep 592 

rate; SFT = slope failure threshold; IOD in/out difference; MinQ = minimum Q value; MaxQ = maximum Q 593 

value; SEC = slope for edge cells; EVR = evaporation rate; MNR = Manning’s n roughness coefficient; and GSS 594 

= grain size set. 595 

Rank  

(by mean: 1 = most 

influential) 

Upper Swale  

 

Tin Camp Creek  

 

1 SED SED 

2 MNR SEC 

3 IOD VEG 

4 GSS GSS 

5 EVR MinQ 

6 VEG IOD 

7 MinQ MNR 

8 LAT MAT 

9 CLR SCR 

10 SCR MEL 

11 SEC LAT 
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12 MAT CLR 

13 MEL MaxQ 

14 MaxQ SFT 

15 SFT EVR 

 596 

 597 

Figure 3 – Aggregated scores for all Elementary Effects where: 1 = sediment transport formula (SED); 2 = 598 

maximum erode limit (MEL); 3 = in channel lateral erosion rate (CLR); 4 = lateral erosion rate (LAT); 5 = 599 

critical vegetation shear stress (VEG); 6 = grass maturity rate (MAT); 7 = soil creep rate (SCR); 8 = slope 600 

failure threshold (SFT); 9 = in/out difference (IOD); 10 = minimum Q value (MinQ); 11 = maximum Q value 601 

(MaxQ); 12 = slope for edge cells (SEC); 13 = evaporation rate (EVR); 14 = Manning’s n roughness coefficient 602 

(MNR); and 15 = grain size set (GSS).1 = SED; 2 = MEL; 3 = CLR; 4 = LAT; 5 = VEG; 6 = MAT; 7 = SCR; 8 = SFT; 9 = 603 

IOD; 10 = MinQ; 11 = MaxQ; 12 = SEC; 13 = EVR; 14 = MNR; and 15 = GSS.  604 

 605 

3.2 Catchment Sediment Yield Vs Internal Geomorphology 606 

 607 
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The core behaviours of cCatchment sSediment yYield and iInternal gGeomorphology show a different 608 

response to the changes in parameter values, as can be seen in Figure 4, and also the rankings in Table 609 

4. For both catchments, SED is ranked as most influential for cCatchment sSediment yYields. For 610 

influence on the iInternal gGeomorphology, SEC ranks higher in the Tin Camp Creek catchment. The 611 

Upper Swale catchment displays a similar response with both behaviours, with SED and MNR most 612 

influential and by similar amounts, although GSS has less influence on iInternal gGeomorphology. The 613 

change in response for Tin Camp Creek is more varied – SED is less influential on iInternal 614 

gGeomorphology, and SEC is the most influential with a higher aggregated mean. GSS is slightly less 615 

influential, and MNR slightly more, and VEG is more influential on the iInternal gGeomorphology than 616 

it is on cCatchment sSediment yYield. For both model functions, there again is a strong visually 617 

correlation between those parameters showing the most influence and those showing the most non-618 

linear behaviour. 619 

 620 

Table 4 – Parameters ranked by means for each catchment from the aggregated scores for catchment 621 

sediment yields (SY) and internal geomorphology (IG) elementary effects. SED = sediment transport formula; 622 

MEL = maximum erode limit; CLR = in channel lateral erosion rate; LAT = lateral erosion rate; VEG = vegetation 623 

critical shear stress; MAT = grass maturity rate; SCR = soil creep rate; SFT = slope failure threshold; IOD in/out 624 

difference; MinQ = minimum Q value; MaxQ = maximum Q value; SEC = slope for edge cells; EVR = evaporation 625 

rate; MNR = Manning’s n roughness coefficient; and GSS = grain size set. 626 

Parameters ranked by means for each catchment from the aggregated scores for Catchment Sediment Yields 627 

(SY) and Internal Geomorphology Elementary Effects (IG). 628 

Rank 

(by mean: 1 

= most 

influential) 

Upper Swale  Tin Camp Creek  

SY IG SY IG 

1 SED SED SED SEC 

2 MNR MNR SEC SED 
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3 GSS GSS GSS VEG 

4 LAT VEG MinQ MNR 

5 VEG CLR VEG MinQ 

6 EVR LAT MNR GSS 

7 MinQ MinQ IOD SCR 

8 SCR MaxQ MAT MAT 

9 IOD EVR SCR IOD 

10 SEC IOD MEL LAT 

11 MAT MAT CLR MEL 

12 SFT SEC LAT CLR 

13 CLR SCR MaxQ MaxQ 

14 MEL MEL SFT SFT 

15 MaxQ SFT EVR EVR 

 629 
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 630 

Figure 4 – Aggregated scores for sediment yield (top) and internal geomorphology (bottom) where: 1 = 631 

sediment transport formula (SED); 2 = maximum erode limit (MEL); 3 = in channel lateral erosion rate (CLR); 4 632 

= lateral erosion rate (LAT); 5 = critical vegetation shear stress (VEG); 6 = grass maturity rate (MAT); 7 = soil 633 

creep rate (SCR); 8 = slope failure threshold (SFT); 9 = in/out difference (IOD); 10 = minimum Q value (MinQ); 634 
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11 = maximum Q value (MaxQ); 12 = slope for edge cells (SEC); 13 = evaporation rate (EVR); 14 = Manning’s n 635 

roughness coefficient (MNR); and 15 = grain size set (GSS).Aggregated scores for Sediment Yield Elementary 636 

Effects (top) and Internal Geomorphology (bottom) where: 1 = SED; 2 = MEL; 3 = CLR; 4 = LAT; 5 = VEG; 6 = 637 

MAT; 7 = SCR; 8 = SFT; 9 = IOD; 10 = MinQ; 11 = MaxQ; 12 = SEC; 13 = EVR; 14 = MNR; and 15 = GSS. 638 

 639 

3.3 Changes in the Mean Elevations 640 

 641 
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642 
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643 

Figure 5 – Illustration of changes in the mean elevations for Upper Swale (A, C and E), and Tin Camp Creek (B, 644 

D and F) for the tests split by SED (A and B), VEG (C and D), and GSS (E and F) where 1 and 2 are biased smaller, 645 

and 4 and 5 are biased larger. The catchment is sub-divided into watersheds of five stream orders, based on 646 

proportion of catchment drained.Changes in the mean elevations for Upper Swale (left), and Tin Camp Creek 647 

(right) for the tests split by SED (top), VEG (middle), and GSS (bottom). The catchment is sub-divided into 648 

watersheds of five stream orders, based on proportion of catchment drained. 649 

 650 
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The test results were binned by the parameter values used, and the mean changes in the mean 651 

elevations across the 5 stream orders calculated – Figure 5 illustrates how changes in parameter values 652 

might influence the spatial patterns of landscape change using SED, VEG and GSS as examples. For SED 653 

(Fig 5.A and 5.B), the most obvious difference is the scale of changes seen using each formula with 654 

Einstein generally showing greater change.  For Tin Camp Creek (Fig 5.B) the spatial changes are 655 

similar, but for the larger Swale (Fig 5.A) there are differences in relative rates in 2nd and 4th order 656 

areas. In the Swale, VEG (Fig 5.C) appears to have little impact on the patterns and scale of changes, 657 

yet in Tin Camp Creek (Fig 5.D) there is reduction in the rates of erosion across the catchment with 658 

higher values, except in the 5th order areas which remain at a similar level. Finally, both catchments 659 

show a reduction in rates of erosion with a greater proportion of larger grain sizes, yet this is more 660 

pronounced 4th order areas in Tin Camp Creek (Fig 5.F).shows the changes in each catchment for 661 

parameters SED, VEG and GSS. In general, the patterns of changes remain similar despite changing 662 

parameter values, yet rates of change do vary – for example, for GSS, the mean reduction in elevations 663 

decreases across the catchments using grain size sets biased towards larger grain sizes. In both 664 

catchments, the largest variations are observed in the 4th and 5th stream orders. 665 

 666 

4. Discussion 667 

 668 

The results reveal some important insights into the application of the SA to LEMs generally, and also 669 

on specific behaviours of the CAESAR-Lisflood model. Here we discuss model functions (Section 4.1), 670 

sediment transport formulae (Section 4.2), implications for calibrating LEMs (Section 4.3), full 671 

uncertainty analyses of LEMs (Section 4.4), and limitations of this study (Section 4.5). 672 

The SA has been applied here to a single LEM, CAESAR-Lisflood, and the implications for that model 673 

have been discussed above. Yet the results also reveal some important insights concerning metrics, 674 

transferability, sediment transport laws, and full uncertainty analysis, which are relevant to all LEMS.  675 

 676 
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1. Metrics4.1 Model Functions 677 

 678 

Interestingly, theOur findings show that different metrics model functions provide us with different 679 

indications of model sensitivity. This has important implications for how to measure LEM performance 680 

– and more widely how to quantify and assess geomorphic change within a basin. For example, Figure 681 

4 and Table 4 show how any LEM assessment must depend on the applied metric for comparison. 682 

Model functions that quantify sediment yield (derived at the catchment outlet) indicate different 683 

sensitivities compared to model functions that quantify the internal landform response that the model 684 

has different responses when assessed using sediment yield model functions (calculated from the 685 

catchment outlet) to when using the internal geomorphology model functions (based on spatial 686 

measures from within the catchment). Whilst at-a-point sediment yields are straightforward to extract 687 

from simulation data and easily related to field measurements (e.g. gauges, although these have their 688 

own associated uncertainties), similar or identical yields may conceal very different behaviours within 689 

the basin. This highlights an important aspect of LEM calibration:is important for users to realise that 690 

when calibrating LEMs, changes in sediment yields from a catchment outlet only provide partial 691 

information of what is changing internally. We therefore argue that metrics incorporating spatial 692 

changes in the basin (as well as bulk figures) are vital for assessing LEM performance. (i.e. time series 693 

of high resolution DEM data from LiDAR/photogrammetrya nested set of flumes within a catchment 694 

to quantify discharge and sediment output) This is especially important as the shape of the landscape 695 

– where material has been eroded and deposited – is effectively the basins geomorphic memory and 696 

will directly influence subsequent model performance. For other basin scale models (e.g. hydrological 697 

models) this aspect is possibly not so important over longer-terms given the limited temporal extent 698 

memory of basin antecedence. Some of the challenges of LEM output comparison are similar to those 699 

of meteorology/climatology and may require a shift in expectation from end users as to what is 700 

possible. For example, predicting detailed patterns of local erosion and deposition is akin to predicting 701 

weather (low comparability especially over longer time scales) but more general (spatial and 702 
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temporal) patterns of basin change are similar to climate predictions (better comparability especially 703 

for longer time scales). 704 

 705 

2. Transferability 706 

 707 

For environmental models, a single selection of calibrated parameter values is not transferable 708 

between catchments as the conditions are different. The same is true for SAs and here we have clear 709 

different behaviours between the two catchments tested – some of this can be attributed to the 710 

different conditions in each catchment and associated data, but also to the choice of parameter values 711 

used in the SA (ie, the minimum and maximum bounds set). The bounds of the parameter values are 712 

chosen to be appropriate to the catchment they are applied to. Hence, SA are not transferable 713 

between catchments, and should be performed as a preliminary phase for any new investigation. 714 

Another consideration is that a single calibrated parameter set is also likely to be non-stationary, 715 

especially when factors such as climate and land-use are also non-stationary, and similarly this may 716 

impact on model behaviour over time. 717 

 718 

34.2. Sediment Transport Formulae 719 

 720 

Our SA shows that the choice of sediment transport formula (SED) had a very strong impact on the 721 

model functions., and asAs sediment transport formulae are also integrated into other LEMs and 722 

geomorphic models they will affect their outcomes too. This is, however, to be expected as previous 723 

studies have shown that erosion thresholds in sediment transport for LEMs have a significant impact 724 

on a model’s sensitivity to climate forcings (Tucker, 2004). Looking at sediment transport formulae 725 

themselves, (Gomez and Church, (1989) tested 11 different sediment transport formulae to the same 726 

data sets and showed widespread variation in predictions – in some cases over orders of magnitude. 727 

The variation in the model performance can be explained by the derivation of the sediment transport 728 
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formulae themselves, that are often empirically theory-based on but fitted to limited laboratory and 729 

field data, sometimes representing temporal averages over equilibrium conditions (Gomez and 730 

Church, 1989). The formulae do not, and were likely never intended to, represent the full variation of 731 

actual flow conditions in natural river. As LEMs commonly amalgamate a set of geomorphic models or 732 

transport formulae, their performance hinges in the a number of individual model components. 733 

Therefore, when applied to different situations, they can be wrongmay not be appropriate. (Coulthard 734 

et al., 2007a).  735 

 736 

4.3 Implications for Calibrating LEMs 737 

 738 

This, however, presents researchers using LEMs with a considerable problema challenge, as it is highly 739 

likely that the sediment transport formula to be used was not neither designed nor calibrated for that 740 

a particular model application. The SIBERIA model (Hancock et al., 2010, 2016, 2017; Hancock and 741 

Willgoose, 2001; Willgoose et al., 2003) overcomes this issue by having a version of the Einstein 742 

sediment transport law formula (Einstein, 1950) that is calibrated or tuned to field data on erosion 743 

rates. However, even when calibrated, LEMs (and their sediment transport formulae) face another 744 

hurdle with the non-stationarity of basin sediment yields. For example, a calibrated LEM will be 745 

adjusted to perform for a set of observed sediment outputs or erosion and deposition patterns. If, due 746 

to climate change for example, rainfall and channel flows significantly increase then the initial 747 

calibration may no longer be valid (Coulthard et al., 2007b). This is similar to issues faced by calibrating 748 

hydrological models (e.g., (Li et al., 2012) though the non-linear sediment response of LEMs like 749 

CAESAR-Lisflood (Coulthard et al., 2012) may make LEMs more sensitive to this.  Furthermore, this 750 

analysis suggests that detailed justification and calibration of model choices around sediment 751 

transport will lead to the most effective gains in model skill.The issue of non-stationarity has been a 752 

considerable focus of the hydrological community in recent years.  However, despite all the above 753 

limitations, LEMs – when applied correctly – have generally been found to compare well with available 754 
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field data. Nonetheless, the issue of the scaling of parameters for different catchments and even more 755 

importantly DEM grid size is an issue that remains to be addressed. 756 

 757 

4.4 Full Uncertainty Analysis 758 

 759 

It is important to note that the MM does not provide an absolute value of sensitivity, but ranks each 760 

factor based on its relative influence on the model. This means it can be used to assess the main 761 

sources of uncertainty on a particular model set up. The next step would beis then to establish how 762 

the uncertainty caused by model parameters (e.g. the choice of sediment transport formula) 763 

compares to other identified sources of uncertainty, such as rainfall input uncertainty, DEM 764 

observation and resolution uncertainty, and length of spin-up period. For example, it may be that the 765 

choice of sediment transport formula may only be a minor source of uncertainty compared to the 766 

DEM resolution, or equally, it might be the most significant source of uncertainty in a LEM’s ouput. 767 

  768 

Importantly, whilst the simulation of long-term development of landscapes may be somewhat 769 

resilient to some uncertainties, e.g. initial conditionsy (Hancock et al., 2016), any attempt to 770 

reproduce, predict or forecast physical changes , especially if there is a decision-making element, 771 

should have the same appreciation of uncertainty and rigorous testing that is applied to models in 772 

other fields (e.g., hydrology and hydraulics). There are many methods available, but when discussing 773 

CAESAR-Lisflood the applications applied to Lisflood-FP seem a reasonable place to start. has been 774 

applied to models such as Lisflood-FP. For example, the Lisflood-FP has been rigorously tested and 775 

benchmarked for decision-making purposes (Hunter et al., 2005; Neelz & Pender, 2013), and the use 776 

of SA to assess model response and uncertainty is standard practise (Di Baldassarre et al., 2009; 777 

Fewtrell et al., 2008, 2011; Hall et al., 2005; Horritt and Bates, 2001, 2002; Hunter et al., 2008; Neal et 778 

al., 2011; Sampson et al., 2012), often as a stage of calibration using the GLUE method (Aronica et al., 779 

2002; Bates et al., 2004; Horritt et al., 2006; Hunter et al., 2005; Pappenberger et al., 2007; Wong et 780 
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al., 2015). Uncertainty in model predictions can be accounted for by utilising probabilistic measures 781 

and uncertainty cascades (for example, Pappenberger et al., 2005; Stephens et al., 2012). This is not 782 

considered unique to CAESAR-Lisflood, and any application of an LEM or other geomorphic model for 783 

operational, decision-making or forecasting applications should make full consideration of all 784 

associated uncertainties. 785 

 786 

4.5. Limitations 787 

 788 

The main limitation of the MM is the subjectivity in selection of parameter values and ranges. Here, 789 

this has been mitigated by consistently selected ranges of +/- 50 % of a default value obtained from 790 

previous calibrations (where feasible). An issue emerges with categorical parameters, such as SED, 791 

where multiple values cannot be placed in spectrum across a range between minimum and maximum 792 

values. The MM has no formal method for dealing with  such categorical parameters, so here it has 793 

been assumed that switching from one formula to another is a single iterative step change, and this 794 

would be the same even with more choices available. This reflects the purpose of the MM, which is to 795 

inform about the relative importance of choices of parameter values on the performance/behaviour 796 

of the model.. However, to assess the impact of this single step-change assumption, we performed a 797 

further analysis, where it was assumed that switching formula was a change of four iterative steps. 798 

This analysis shows that the relative sensitivity of the model to the sediment transport formula choice 799 

becomes less important, with other parameters such as Manning’s n Roughness and grain size sets 800 

increasing in relative influence (see Supplementary Material S2 for full results of this analysis). 801 

There are limitations to the methodology presented here. The MM should not be considered a 802 

quantitative assessment of sensitivity – it is designed to be an efficient pre-screening method to isolate 803 

key parameters for further assessment or for calibration, and ranks parameter values based only on 804 

their relative influence of the model. It is also subjective in the sense that the user defines the 805 

parameter space explored by setting minimum and maximum values. The range of these values and 806 
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the number of iterative steps between them will have an influence on the relative influence shown – 807 

here, the fact that SED was binary, with no intermediate steps, whereas most other parameters had 808 

five equal and iterative steps, will have affected its overall relative influence. Reducing the number of 809 

iterative steps would likely increase the EEs calculated, and increasing would reduce them, and shift 810 

the other parameters’ relative influence against that for SED. This is acknowledged here, but the range 811 

of parameter values and the steps used were appropriate to represent the possible uncertainties in 812 

the model (i.e., they were based on proportional deviations from previous calibrated parameter sets).  813 

 814 

An obvious limitation to this exercise is computational resource. This studytest incorporated 1600 815 

individual model runs to test the behavioural response of the model to 15 parameters, in just two 816 

catchments, and this partly influenced the choice to limit the simulation periods to 230 years. The bulk 817 

of simulations used Intel i7-5960X processors and using Solid State Drives (SSD), yet the run times 818 

varied considerably depending on the parameter sets chosen. As an indication, the mean simulation 819 

run time for the first repeat in each catchment was 11 hours and 23 minutes for the Swale and 21 820 

minutes for Tin Camp Creek.  We used a batch mode functionality of CAESAR-Lisflood to run 821 

simulations of each repeat (16 model runs each) consecutively, and distributed batches across 822 

different machines – this is feasible for the model set ups described. However, for long-term 823 

simulations for catchments the size of the Upper Swale, individual model runs can take several weeks 824 

and running several runs consecutively becomes prohibitive. One solution would be to distribute the 825 

jobs on High Performance Computing (HPC) facilities, where the time for a single model run would not 826 

significantly decrease, but several hundred, even thousands, of individual model runs can be 827 

performed coincidently. 828 

 829 

Here, tThe methodology has only been applied to the CAESAR-Lisflood model, and although some of 830 

the findings will have implications to other LEMs, most will be unique to CAESAR-Lisflood and the 831 

model set ups presented, they have implications for all LEMs. Importantly, tThe methodology should 832 
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can serve as a highly useful tool for users to determine the behaviour of each any LEM model set up 833 

prior to calibration and/or simulation. For CAESAR-Lisflood itself, future SA should analyse more 834 

catchments of different sizes and environmental conditions.  The two model set ups used here should 835 

be analysed again but using a long-term timeframe to understand how the model behaviour might 836 

evolve over longer simulations. 837 

 838 

5. Conclusions 839 

 840 

The feasibility of performing global SA to a highly parameterised catchment LEM has been 841 

demonstrated through the application of the MM to the CAESAR-Lisflood model. The test analysis was 842 

repeated over two different catchments suggesting some model behaviours are universal, and others 843 

vary depending on the catchment characteristics providing crucial information to inform future model 844 

developments. This analysis confirms that the sediment transport formulae are a significant source of 845 

uncertainty in LEMs, and in the CAESAR-Lisflood model the use of one formula over another can result 846 

in an order of magnitude differences in sediment yields when all other factors are kept constant. 847 

Another finding with relevance to SA and calibration of LEMs was the influence of parameters on each 848 

model function, showing that one aspect of model behaviour (e.g. catchment sediment yield) is not 849 

fully reflective of other, albeit related, model behaviours (e.g. internal geomorphology). 850 

 851 

In addition to the above, the results reveal the parameters in CAESAR-Lisflood which exert the greatest 852 

influence, and whilst we can only apply this to the CAESAR-Lisflood model itself, it is likely that LEMs 853 

with comparable parameters will display similar behaviours. Some of the most influential parameters, 854 

like Manning’s n roughness coefficient, grain size distributions, and vegetation critical shear stress are 855 

physically-based, so any uncertainty can be reduced by more detailed field measurements. We also 856 

show that parameters that determine the numerical efficiency of CAESAR-Lisflood exert a medium 857 

influence on the simulation results.  Although some parameters exerted less influence on model 858 
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behaviour relative to others, there were no parameters which did not influence the model in some 859 

way. 860 

In addition to the above, the results reveal the parameters in CAESAR-Lisflood which exert the greatest 861 

influence, and whilst we can only apply this to the CAESAR-Lisflood model itself, it is likely that LEMs 862 

with comparable parameters will display similar behaviours. Some of the most influential parameters, 863 

like MNR, GSS and VEG are physically-based, so any uncertainty can be reduced by gathering data 864 

from the field – in these tests each of these parameters utilised global values initially, so more detailed 865 

field measurements could be utilised to provide spatially distributed values and further reduce 866 

uncertainty. The parameters which are most likely to be an issue for operators are those which have 867 

a medium influence and are set based on data characteristics for numerical efficiency – these include 868 

IOD, MinQ and MaxQ. For example, the typical and recommended value for MinQ is 1/100 of the DEM 869 

resolution and here, by varying the value yet keeping resolution the same, some variation was 870 

observed in the results – it is not yet determined whether any difference in model results at different 871 

resolutions are due to changes in values of MinQ and MaxQ, or the grid resolutions, or a combination 872 

of the two, and this will be a focus for future work. 873 

 874 

The application of a global SA should become a vital step in any investigation using LEMs. This paper 875 

has demonstrated that the use of the MM is efficient for this purpose and yielded some useful valuable 876 

insights into model behaviour that can be fedultimately feed back into the model set up, and as well 877 

as future model development. 878 
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