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Abstract. We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the 

numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β -plane. 

The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E, and B 10 

horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wave 

numbers are discussed. A companion paper, Part I, discusses the impacts of the discretization on the inertia-gravity modes on 

a midlatitude f -plane. 

 The results of our normal-mode analyses for the Rossby waves overall support the conclusions of the previous studies 

obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution. 15 

1. Introduction 

In a companion paper (Konor and Randall, 2017; hereafter Part I) we discuss the horizontal discretization of the linearized 

anelastic equations on the Z, C, D, CD, (DC), A, E and B grids, and vertical discretization on the L and CP grids. We 

introduced the DC-grid in Part I to test the hypothesis that the CD-grid (and DC-grid) solutions are dominated by the 

corrector step and the grid used with it. Part I focuses on the dispersion of nonhydrostatic inertia-gravity modes on an f -20 

plane. The present paper gives a corresponding analysis of the dispersion of three-dimensional Rossby modes on a 

midlatitude β -plane. Previous studies (e.g., Neta and Willilams, 1989, and Dukowicz, 1995) have mostly used the discrete 

shallow-water equations on a midlatitude β -plane. Thuburn (2008) analyzed the inaccuracies of the Rossby modes on the 

hexagonal C grid, and proposed a discretization that minimizes these inaccuracies. Previous studies (e.g., Neta and 

Willilams, 1989, and Dukowicz, 1995) have mostly used the discrete shallow-water equations on a midlatitude β -plane. 25 

Thuburn (2008) analyzed the inaccuracies of the Rossby modes on the hexagonal C grid, and proposed a discretization that 

minimizes these inaccuracies. 

 We use the quasi-geostrophic and quasi-static equations in our analysis because Rossby waves are not significantly 

influenced by ageostrophic or nonhydrostatic effects. Furthermore, the quasi-hydrostatic equations produce an exact solution 
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on the β -plane while the basic dynamical equations, including fully compressible and anelastic equations, produce exact 

solutions only for particular cases. A more detailed discussion is given in the supplementary material. 

 In Sect. 2 we present the continuous linearized anelastic equations with the quasi-geostrophic and quasi-static 

approximations on the midlatitude β -plane, and discuss the dispersion of the Rossby modes. Section 3 discusses the 

discretization of these equations on the seven horizontal grids listed above, and the discrete dispersion of the modes. At the 5 

end of Sect. 3, we present a comparison of the performance of the grids in simulating the Rossby modes. The vertical 

discretization using the L- and CP-grids is discussed in Sect. 4. Finally, a summary and conclusions are provided in Sect. 6.  

2. Linearized anelastic equations with an isothermal basic state 

In this section, we derive the basic linearized equations with the quasi-geostrophic (and quasi-static) approximations, 

referring to the equations of Part I when possible, for brevity. 10 

2.1 Basic equations  

Following Arakawa and Konor (2009), we assume quasi-geostrophic (and quasi-static) balance with the midlatitude β -plane 

approximation to obtain the dispersion relationship for the baroclinic and barotropic Rossby waves. 

Baroclinic Rossby modes. Baroclinic modes involve vertical motions and are influenced by the static stability ( B ≠ 0  and 

w ≠ 0 ). The equations for this case can be obtained by assuming ∂D ∂t = 0  and ∂w ∂t = 0  in Eqs. (2 of Part I)–(7 of Part 15 

I), adding a β -term in the form of − β f0( ) ∂P ∂x( )  to the vorticity equation, and replacing f  by f0  in the divergence 

equation. The results are   

 
∂ω z

∂t
= − f0D −

β

f0

∂P

∂x
, (1) 

  0 = f0ω z − ∇H

2 P ,  (2) 

and 20 

  N 2D =
∂2

∂z2
−

1

2ρ0

∂ρ0

∂z
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥
∂P

∂t
.  (3) 

Note that for an isothermal atmosphere 1 ρ0( ) ∂ρ0 ∂z( ) = −1 H  and N 2 = gκ H . By using Eq. (10 of Part I) in Eqs. (1)–

(3), we obtain the continuous dispersion relation for the baroclinic Rossby waves as 
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ν =
−βk

k 2 + ℓ2( ) + f0
2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

.  (4) 

Barotropic Rossby modes. Barotropic modes involve purely horizontal motion and are not affected by the static stability (

B = 0 ). They also satisfy w = 0 , D = 0 , and ∂ ∂z − 1 2ρ0( ) ∂ρ0 ∂z( )[ ]P = 0 . The equations that govern the barotropic 

motion can be obtained by using these assumptions in Eqs. (2.1)–(2.3) as 

  
∂ω z

∂t
= −

β

f0

∂P

∂x
,  (5) 5 

and 

  0 = f0ω z − ∇H

2 P  . (6) 

Similarly, the continuous dispersion relation for the barotropic modes is given by 

  
 
ν =

−βk

k 2 + ℓ2
  (7) 

3. Horizontal discretization on different grids and discrete dispersion equation 10 

In this section we discuss the discretization of the basic equations and derive the discrete dispersion relation on each 

horizontal grid. At the end of this section, we present an illustrative discussion of the dispersion equations showing 

frequency plots that are similar to the ones presented in Part I. 

3.1 Solutions for the Z grid  

Baroclinic Rossby modes. We horizontally discretize Eqs. (1)–(3) on the Z-grid shown in Fig. 1a of Part I as 15 

  
∂

∂t
ω z( )

i , j
= − f0 Di, j −

β

f0

Pi+1, j − Pi−1, j
2d

,  (8) 

  0 = f0 ω z( )
i , j
−
1

d 2
Pi+1, j + Pi−1, j + Pi , j+1 + Pi , j−1 − 4Pi , j( ) , (9) 

and 
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  N 2Di , j =
∂2

∂z2
−

1

2ρ0

∂ρ0

∂z
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥
∂Pi , j
∂t

, (10)   

respectively. By using Eq. (16 of Part I) in Eqs. (1)–(3), we obtain the discrete dispersion relation as 

  

 

ν =
−β !ξk

ξ 2k 2 +η 2ℓ2( ) + f0
2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

  (11) 

where 

  
 
!ξ ≡

sin kd( )
kd

 , ξ ≡
sin 1

2 kd( )
1
2 kd

  and 
 
η ≡

sin 1
2 ℓd( )

1
2 ℓd

  (12) 5 

Barotropic Rossby modes. We horizontally discretize Eqs. (5) and (6) on the Z-grid as 

  
∂

∂t
ω z( )

i , j
= −

β

f0

Pi+1, j − Pi−1, j
2d

,  (13) 

and 

  0 = f0 ω z( )
i , j
−
1

d 2
Pi+1, j + Pi−1, j + Pi , j+1 + Pi , j−1 − 4Pi , j( ) ,  (14) 

respectively. Eqs. (12) and (14) can also be obtained by assuming D = 0  in Eqs. (8)–(9), respectively. The discrete 10 

dispersion equation for the barotropic modes is 

  
 
ν =

−β !ξk

ξ 2k 2 +η 2ℓ2
  (15) 

where  
!ξ , ξ  and η  are given by Eq. (12), which have the same definitions in Part I. For d → 0 , both Eqs. (11) and (15) 

become identical to their continuous counterparts given by Eqs. (4) and (7), respectively. This confirms that the discrete 

solutions are consistent, and that they correspond to the solutions of the continuous equations. On the other hand, as the 15 

zonal scale approaches the shortest resolvable zonal scale (hereafter SRZS), i.e., kd →π  and  
!ξ → 0 , the discrete modes 

lose their ability to recognize the β  effect, and the frequency of the modes becomes zero at the SRZS. This result has been 

derived using the β -plane approximation. It is not immediately clear whether or not it holds in true spherical geometry. This 

could be studied through a discrete normal-mode analysis on the sphere and/or numerical integrations of the linearized 

equations on the sphere. 20 
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As in Part I, we present plots of the discrete dispersion of the Rossby modes generated by using the Z, C, D, CD, A, E and B 

grids. The basic state and plot design are the same as Part I. We use β = 1.62 × 10−11 m−1s−1 , which is typical for a middle 

latitude plane. 

The dispersion plots for baroclinic and barotropic Rossby modes with the Z grid are presented in Fig. 1. The most striking 

feature is that the frequencies of all modes, for all vertical scales and horizontal grid spacings, approach zero at the SRZS. 5 

We use  k = ℓ  to plot these results. This is a consequence of the use of the centered finite-difference to approximate the zonal 

pressure gradient at cell centers. As a result, the β  effect cannot be recognized by any of the modes at the SRZS. 

Consequently, a dynamically inert mode is generated. Again, it should be checked whether or not this conclusion carries 

over to the linearized equations on the sphere. 

3.2 Solutions for the C grid  10 

Baroclinic Rossby modes. We horizontally discretize Eqs. (1) and (2) on the C-grid shown in Fig. 1b of Part I as 

  
∂ ω z( )

i+1 2, j+1 2

∂t
= − f0

1

4
Di , j + Di+1, j + Di , j+1 + Di+1, j+1( ) − β

f0

Pi+3 2, j+1 2 − Pi−1 2, j+1 2
2d

⎛
⎝⎜

⎞
⎠⎟

,  (16) 

where Pi+1 2, j+1 2 ≡
1
4 Pi , j + Pi+1, j + Pi , j+1 + Pi+1, j+1( )  , and 

 0 = f0
1

4
ω z( )

i+1 2, j+1 2
+ ω z( )

i+1 2, j−1 2
+ ω z( )

i−1 2, j+1 2
+ ω z( )

i−1 2, j−1 2
⎡⎣ ⎤⎦ −

1

d 2
Pi+1, j + Pi−1, j + Pi , j+1 + Pi , j−1 − 4Pi , j( ) .  (17) 

Equations (16), (17) and (10) complete the set of discrete equations for the C grid. By using Eqs. (16 of Part I) and (22 of 15 

Part I), we obtain the discrete dispersion relation as 

  

 

ν =
−µ 2 !ξβk

ξ 2k 2 +η 2ℓ2 +
µ 2 f0

2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

  (18) 

where  
!ξ ,  ξ  and η  are given by Eq. (12), and 

   µ ≡ cos 1
2 kd( )cos 1

2 ℓd( ) .  (19) 

The definition of µ  is identical to that used in Part I. 20 

Barotropic Rossby modes. By using D = 0  in Eqs. (16) and (17) and then using Eqs. (16 of Part I) and (22 of Part I), we 

obtain the discrete dispersion relation for barotropic Rossby modes on the C-grid as 
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ν =

−µ 2 !ξβk

ξ 2k 2 +η 2ℓ2
.  (20) 

The discrete baroclinic and barotropic dispersion relations Eqs. (18) and (20) for the C-grid include an averaging factor µ 2 . 

This is a difference from their Z-grid counterparts Eqs. (11) and (15). Averaging of pressure termP  from the cell centers to 

the corners in Eq. (17) leads to the factor of µ 2  in the numerators of Eqs. (18) and (20). A factor of µ 2  also appears in the 5 

inertia term at the denominator of Eq. (18), due to the averaging of divergence and vorticity to each other’s grid points. Since 

µ  and  
!ξ  are both equal to zero at the SRZS, dynamically inert modes exist for both the baroclinic and barotropic Rossby 

modes on the C-grid, similar to those that exist in the Z-grid solutions. 

 The C-grid solutions shown in Fig. 2 are qualitatively similar to the Z grid solutions, but the C grid solution deviates 

slightly because the dispersion relation for the C grid given by Eq. (18) contains an averaging factor µ 2  in the numerator. 10 

Since µ  also approaches zero at the SRZS, and  
!ξ  approaches zero, the small-scale modes on the C grid move or oscillate 

more slowly than on the Z grid. As mentioned above, at the SRZS, a dynamically inert mode is generated with the C grid. 

3.3 Solutions for the D grid  

Baroclinic Rossby modes. We horizontally discretize Eqs. (1) and (2) on the D grid shown in Fig. 1c of Part I as 

  
∂ ω z( )

i , j

∂t
= − f0

1

4
Di−1 2, j−1 2 + Di+1 2, j−1 2 + Di−1 2, j+1 2 + Di+1 2, j+1 2( ) − β

f0

Pi+1, j − Pi−1, j
2d

,  (21) 15 

and 

 0 = f0
1

4
ω z( )

i+1, j+1
+ ω z( )

i , j+1
+ ω z( )

i+1, j
+ ω z( )

i , j
⎡⎣ ⎤⎦−

1

d 2
Pi+3 2, j+1 2 + Pi+1 2, j+3 2 + Pi+1 2, j−1 2 + Pi−1 2, j+1 2 − 4Pi+1 2, j+1 2( ) ,  (22) 

respectively. In Eq. (22), Pi+1 2, j+1 2 ≡
1
4 Pi , j + Pi+1, j + Pi , j+1 + Pi+1, j+1( ) . By adding the discrete version of Eq. (3.3)(10) given by 

  N 2 1

4
Di−1 2, j−1 2 + Di+1 2, j−1 2 + Di−1 2, j+1 2 + Di+1 2, j+1 2( )⎡

⎣⎢
⎤
⎦⎥
−

∂2

∂z2
−

1

2ρ0

∂ρ0

∂z
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥
∂

∂t
Pi , j = 0   (23) 

to Eqs. (21) and (22), we complete the discrete equations for the D grid. The resulting discrete dispersion relation is 20 
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ν =
− !ξβk

ξ 2k 2 +η 2ℓ2 +
f0
2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

.  (24) 

Barotropic Rossby modes. By using D = 0  in Eqs. (21) and (22), and using Eqs. (16 of Part I) and (22 of Part I), we obtain 

the discrete dispersion relation for the discrete barotropic modes as 

  
 
ν =

− !ξβk

ξ 2k 2 +η 2ℓ2
.  (25) 5 

The dispersion equation for the discrete baroclinic and barotropic Rossby modes on the D-grid is identical to that of the Z-

grid solution. In the linear system, every averaging introduces a factor µ . For nontrivial solutions of Eqs. (21)–(23), the 

factors of µ  cancel each other. As a result, the dispersion equation is identical to that of the Z-grid. 

 Fig. 1 is effectively a plot of the frequencies for the D grid because the dispersion equations for the Z grid given by Eqs. 

(11) and (15) are identical to those for the D grid, as given by Eqs. (24) and (25), respectively. 10 

3.4 Solutions for the CD grid  

Baroclinic Rossby modes. By dropping the finite-difference time-derivatives of divergence and vertical velocity in Eqs. 

(3.21(33) of Part I)–(3.31(43) of Part I) and adding  −!
i 12 τµ β f0( ) !ξkP̂  and  −!

iτ β f0( ) !ξkP̂  to Eqs. (33 of Part I) and (39 of 

Part I), respectively, we write the CD-grid equations for a midlatitude β -plane as 

 Predictor step on the C-grid:  Corrector step on the D-grid: 15 

 
 
ω̂ z

∗( ) = µω̂ z

n( ) − 1
2 τ f0 D̂ −

!
i 12 τµ

β

f0
!ξkP̂ , (26)  

 
ω̂ z

n+1( ) = ω̂ z

n( ) − τ f0 µD̂ −
!
iτ

β

f0
!ξkP̂ ,  (31) 

 0 = f0ω̂ z

n( ) + L2P̂ , (27)  0 = f0ω̂ z

∗( ) + µL2P̂ , (32)  

 
 
0 = −

!
im +

1

2H
⎛
⎝

⎞
⎠ P̂ + B̂ n( ) ,  (28) 

 
0 = −

!
im +

1

2H
⎛
⎝

⎞
⎠ P̂ + B̂ ∗( ) , (33)  

 B̂ ∗( ) = B̂ n( ) − 1
2 τN

2ŵ ,  (29) B̂ n+1( ) = B̂ n( ) − τN 2ŵ ,  (34) 

 
 
D̂ +

!
im −

1

2H
⎛
⎝

⎞
⎠ ŵ = 0 ,  (31) 

 
µD̂ +

!
im −

1

2H
⎛
⎝

⎞
⎠ ŵ = 0 , (35) 20 

 In these equations,  
!ξ  is given by Eq. (12),  L

2 ≡ ξ 2k 2 +η 2ℓ2 , ξ  and η  are given by Eq. (12) and µ  
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  is given by Eq. (15).   

In this system, the divergence is a diagnostic variable, defined on the cell corners. This is why the divergence D̂  is 

multiplied by the averaging factor µ  in Eq. (31), but not in Eq. (26). Using Scheme I, as discussed in Part I, we eliminate 

ω̂ z

∗( )  by using Eq. (26) in Eq. (32), and eliminate B̂ ∗( )  by using Eq. (29) in Eq. (33). Then Eq. (43 of Part I) is used to obtain 

the real frequency and amplification factor equations as follows: 5 

  e
2ν iτ µ 2N 2L2 + f0

2σ m

2( )sin 2ν rτ( ) + 1
2 τe

2ν iτµ 2N 2β !ξk cos 2ν rτ( )   

   +τe
ν iτµ 2N 2 cos ν rτ( )β !ξk + 2 f02eν iτ µ 2 − 1( )σ m

2 sin ν rτ( ) + 1
2 τ µ

2N 2β !ξk = 0 ,  (36) 

and 

  eν iτ =
−b + b2 − 4ac

2a
,  (37) 

where 10 

   a ≡ µ 2N 2L2 cos 2ν rτ( ) − 1
2 τ µ

2N 2β !ξk sin 2ν rτ( ) + f0
2σ m

2 cos 2ν rτ( ) ,  (38a) 

   b ≡ 2 f0
2 µ 2 − 1( )σ m

2 cos ν rτ( ) − τ µ 2N 2β !ξk sin ν rτ( ) ,  (38b) 

and 

  c ≡ f0
2 1− 2µ 2( )σ m

2 − µ 2N 2L2 .  (38c) 

Barotropic Rossby modes. By eliminating the divergence, vertical velocity and buoyancy in Eqs. (26)–(35), we obtain the 15 

two-part dispersion equation for the barotropic modes as 

  
 
0 = L2( )2 − 1

2 τβ !ξk( )2⎡⎣ ⎤⎦sin ν rτ( ) + τ β !ξkL2 cos ν rτ( ) ,  (39) 

and 

  
 
eν iτ =

L2

L2 cos ν rτ( ) − 1
2 τ β !ξk sin ν rτ( ) .  (40) 

At the SRZS, for which  
!ξ = 0  and µ = 0 , the real frequency ν r  becomes zero in Eqs. (36) and (39) and the amplification 20 

factor eν iτ  becomes one in Eqs. (37) and (40). The supplementary material gives a more detailed derivation of the discrete 

equations. 
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 The CD grid solution shown by Figs. 3 is virtually identical to that for the Z (and D) grid solutions shown in Figs. 1 and 

2, respectively. 

3.4.1 DC-grid 

As stated above, the CD grid behaves similarly to the D-grid rather than the C grid in the numerical solution of the Rossby 

waves on a midlatitude β -plane. The normal-mode analysis of the Rossby waves with the DC-grid produce a solution that is 5 

very close to the C-grid solution. A detailed discussion and frequency plots are presented in the supplementary material. This 

is consistent with the findings of Part I that the correction step dominates the solutions with the CD and DC grids. 

3.5 Solutions for the A grid  

Baroclinic Rossby modes. We horizontally discretize Eqs. (1)–(3) on the A-grid shown in Fig. 1e of Part I as 

  
∂

∂t
ω z( )

i , j
= − f0Di , j −

β

f0

Pi+1, j − Pi−1, j
2d

,  (41) 10 

and 

  0 = f ω z( )
i , j
−
1

4d 2
Pi+2, j + Pi , j+2 + Pi , j−2 + Pi−2, j − 4Pi , j( ) ,  (42) 

respectively. Similarly, we obtain the discrete dispersion relation for the baroclinic Rossby modes as 

  

 

ν =
−β !ξk

!ξ 2k 2 + !η 2ℓ2 +
f0
2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

,  (43) 

where the definition of  
!ξ  is given by Eq. (12) and 15 

  
 
!η ≡

sin ℓd( )
ℓd

.  (44) 

The frequency becomes zero at the SRZS because  
!ξ  is zero in the nominator of Eq. (43). This indicates the existence of a 

non-moving and non-oscillating computational mode. Moreover, the factor of  
!ξ 2  in the denominator causes the frequency 

behaves badly near the smallest resolvable horizontal scale. 

Barotropic Rossby modes. By dropping f0
2 N 2( ) m2 + 1 4H 2( )  in Eq. (43), the discrete dispersion relation for the 20 

barotropic Rossby modes can be obtained as 
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ν =

−β !ξk
!ξ 2k 2 + !η 2ℓ2

.  (45) 

The frequency of the barotropic modes becomes strongly negative (retrogressing) at the SRZS. This means that small-scale 

barotropic Rossby modes can behave very badly. We discuss the behavior of these modes in connection with the plots 

below. 

 Figs. 4 shows the frequency of the Rossby modes obtained on the A grid. The A grid produces very fast retrogression 5 

speeds of the barotropic mode at the SRZS. The baroclinic modes with short vertical scales retrograde faster than the true 

solution near the SRZS, but right at the SRZS, they do not move at all. 

3.6 Baroclinic and barotropic Robby modes with the E grid  

Part I discusses in detail the horizontal discretization on the E grid. There it is pointed out that the E-grid can be viewed as 

the superposition of the two C-grids, in which the cell centers of one C-grid are placed at the corners of a second C-grid. It is 10 

also shown that from the vorticity and divergence point of view E grid can be viewed as a superposition of two independent 

and noninteracting Z grids, as shown in Fig. 1f of Part I. The dispersion relation for the E grid is identical that for the Z grid, 

but the smallest resolvable zonal scale extends to kmax = 2π d  (and  ℓmax = 2π d ) for the E grid. Therefore, the dispersions 

of baroclinic and barotropic modes on the E grid are governed by Eqs. (11) and (15) with kmax   and  ℓmax  as described above. 

Recall that we use a grid spacing of 2d  with the E grid to maintain the same cell density as with the other grids. 15 

 The E grid produces the wildest solutions, as shown in Fig. 5. It is the only grid that generates prograding Rossby modes. 

The modes with all vertical scales and horizontal grid spacings used in the models generate prograding solutions near the 

SRZS. The deeper the mode is, the faster the progradation speed is. The prograding modes are generated near the SRZS 

because the factor  
!ξ  yields negative values for k > π d . A interpretation is that the finite-difference pressure gradient 

determined over the two-grid distance is subject to aliasing errors for zonal waves with k > π d , which causes the system to 20 

recognize the pressure gradient with the wrong sign. 

3.6 Solutions for the B grid  

Baroclinic Rossby modes. We can obtain the equations for the B grid by ignoring ∂D ∂t  in Eq. (63 of Part I), replacing f  

by f0 , and using Eqs. (8) and (9). Similarly, we obtain the discrete dispersion relation for the baroclinic Rossby modes on the 

B-grid as 25 



11 
 

  

 

ν =
− !ξβk

ξ 2k 2 +η 2ℓ2 −
1
2
d 2ξ 2k 2η 2ℓ2 +

f0
N 2

m2 +
1
4H 2

⎛
⎝

⎞
⎠

 , (46) 

where the factors ξ , η   and  
!ξ   are defined by Eq. (12). The frequency becomes zero for the SRZS because  

!ξ  is zero. The 

Laplacian term  ξ
2k 2 +η 2ℓ2 − 1

2 d
2ξ 2k 2η 2ℓ2  also approaches zero in the numerator of Eq. (46) as the zonal wavenumber 

approaches the SRZS. This makes the frequency behave similarly to that of the A grid. 

Barotropic Rossby modes. By dropping f0
2 N 2( ) m2 + 1 4H 2( )  in Eq. (46), we obtain the discrete dispersion relation of 5 

the barotropic Rossby modes as 

  

 

ν =
− !ξβk

ξ 2k 2 +η 2ℓ2 −
1
2
d 2ξ 2k 2η 2ℓ2

.   (47) 

The denominator approaches zero at the SRZS, which yields an infinite retrogression speed for these modes. 

 Figs. 6 shows the frequency of the Rossby modes on the B grid. As with the A grid solutions, the B grid produces 

infinitely fast retrogression speeds for the barotropic mode at the SRZS, and the shallow baroclinic modes retrograde faster 10 

than the true solution near the SRZS, and do not move at all at the SRZS. 

 As discussed in subsection 3.8 of Part I. The A, E and B grids generate multiple (or non-unique) solutions and 

dynamically inert modes. Here we see that the impact of the dynamically inert modes on the short Rossby waves is very 

severe. 

 The results of our normal-mode analysis of the nonhydrostatic anelastic barotropic and baroclinic Rossby waves on a 15 

midlatitude β -plane for the C, D, A, E and B grids overall agree with the results of Dukowicz’s (1995) normal-mode 

analysis with the shallow-water equations. An exception is that we include the prograding modes with the E-grid solutions, 

whereas Dukowicz (1995) excludes them as “inadmissible.” 

4. Vertical discretization of the linear anelastic equations on the L and CP grids and discrete dispersion equation 

Part I presents a discussion on the vertical grids, including a historical perspective, used in atmospheric models. Our purpose 20 

in this section is to assess and compare the performance of the L and CP grids in simulating Rossby modes on a midlatitude 

β -plane through a normal-mode analysis. 
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4.1 The L grid  

By replacing f  by f0  in Eqs. (65 of Part I) and (66 of Part I), adding the β  term − β f0( ) ∂Pk ∂x( )  to the right hand side 

of Eq. (65 of Part I), and dropping ∂Dk ∂t  and ∂wk+1 2 ∂t  in Eqs. (66 of Part I) and (67 of Part I), respectively, and using 

Eq. (70 of Part I), we obtain (after some manipulations) the discrete dispersion relation for the baroclinic Rossby modes as 

  

 

ν =
−µz

2βk

µz

2 k 2 + ℓ2( ) + f0
2

N 2
ζ 2m2 + µz

2 1
4H 2

⎛
⎝

⎞
⎠

,  (48) 5 

where 

  ζ ≡
1

1
2 mδ z

sin 1
2 mδ z( )  and µz ≡ cos

1
2 mδ z( ) .  (49) 

By dropping f0
2 N 2( ) ζ 2m2 + µz

2 4H 2( )  in Eq. (48), we obtain the discrete dispersion relation for the barotropic Rossby 

mode as 

  
 
ν =

−βk

k 2 + ℓ2
.  (50) 10 

In Eq. (48), the numerator is proportional to µz

2 , which is zero for the smallest resolvable vertical scale  (SRVS), for which 

mδ z = π . This means that, for all horizontal scales, the modes with the SRVS cannot propagate. They are dynamically inert 

(computational) modes. The pressure in the β  term cannot recognize the SRVS buoyancy perturbation in the vertical 

velocity equation Eq. (67 of Part I) with the quasi-static assumption ( ∂wk+1 2 ∂t ≈ 0 ). The frequency of the discrete 

barotropic mode given by Eq. (50) is identical to the true frequency Eq. (7), which is expected because the barotropic mode 15 

has no vertical structure, and therefore is not affected by the vertical discretization. 

4.2 The CP grid  

We now derive the discrete dispersion relation for the baroclinic and barotropic Rossby modes on the CP-grid, following the 

same strategy used with the L grid. The results are 

  

 

ν =
−βk

k 2 + ℓ2( ) + f0
2

N 2
ζ 2m2 + µz

2 1
4H 2

⎛
⎝

⎞
⎠

,  (51) 20 

and 
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ν =

−βk

k 2 + ℓ2
,  (52) 

respectively. The dispersion equation for the baroclinic Rossby modes on the CP grid given by Eq. (51) does not have an 

averaging factor in the numerator, and therefore it does not allow a dynamically inert mode with zero frequency at the SRZS. 

 Figure 7 shows the frequencies as functions of composite horizontal wavenumber of barotropic and baroclinic Rossby 

modes obtained with the L- and CP-grids. The true frequencies are also shown in separate panels of the figure. The figure 5 

shows the results for two vertical wavenumbers (or number of layers), namely nmax = 320  and 80 . We included additional 

frequency lines corresponding to more vertical wavenumbers than were used in the plots of Sect. 3 (indicated by thinner 

solid lines in the plots). In the L-grid solutions shown in Fig. 7. b and e, the frequency of the smallest vertical resolvable 

mode, identified by nmax  , deviates greatly from the true frequency, which yields zero values. Similar to the case of the 

inertia-gravity modes, as the vertical scale approaches the smallest resolvable scale, the modes gradually lose their ability to 10 

recognize the effects of buoyancy, and therefore baroclinicity. For the mode with the smallest scale, the buoyancy and 

baroclinicity are completely decoupled from the wind field; for that mode, the buoyancy is dynamically inert. In contrast, the 

frequency of the CP-grid solutions shown in Fig. 7 c and f is generally close to the true frequency, but slightly higher. 

5. Summary and Conclusions 

We have discussed the effects on the dispersion of middle-latitude Rossby waves of the horizontal and vertical 15 

discretizations of the quasi-geostrophic (quasi-static) linearized equations on the A, B, C, CD, (DC), D, E, and Z horizontal 

grids and the L and CP vertical grids. We present a summary of the discrete dispersions of Rossby modes for the horizontal 

and vertical grids in Table 1 for an easy comparison. 

 The Z, C, D, CD (DC) grids generate similar dispersion of the baroclinic and barotropic Rossby modes. All have a 

dynamically inert mode at the SHZS because these scales cannot recognize the β  effect. The dispersion equations for the A 20 

and B grids give infinite frequencies at the SHZS. Among all horizontal grids, the E grid produces the wildest solutions. The 

Rossby modes of all vertical scales near the SHZS prograde while the true modes retrograde. The A, E and B grids generate 

multiple (non-unique) solutions, including dynamically inert (computational) modes. The impact of the computational modes 

on the short Rossby modes appears very severe on these grids. 

 The results of our normal-mode analysis of the Rossby waves for the C, D, A, E and B grids overall agree with the results 25 

of Dukowicz’s (1995) normal-mode analysis with the shallow-water equations. Dukowicz (1995) considers the prograding 

modes with the E-grid solutions “inadmissible,” however, while we include them. 
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 The selection of the vertical grid impacts the dispersion of the Rossby modes as much as the horizontal grid selection. 

The modes with the smallest resolvable vertical scale on the L grid do not retrograde. The CP-grid solutions are much more 

accurate than the L-grid solutions. 
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Figure 1: Plots of the absolute value of frequency of the baroclinic (red lines) and barotropic (dashed red lines) Rossby 

modes obtained on the Z grid for the grid spacings (a) 2 km, (b) 10 km, (c) 25 km, and (d) 100 km, and for the various 

vertical wave numbers. The blue thin and thick green dashed lines are the corresponding true baroclinic and barotropic 

frequencies, respectively. 5 
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Figure 2: Same as Fig. 1, but on the C-grid. 
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Figure 3: Same as Fig. 1, but on the CD-grid. 
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Figure 4: Same as Fig. 1, but on the A-grid. 

 

 

 5 
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Figure 5: Same as Fig. 1, but on the E-grid. 
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Figure 6: Same as Fig. 1, but on the B-grid. 
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Figure 7: Plots of (a and d) true and discrete frequencies for the baroclinic and barotropic Rossby modes obtained on (b and 

e) the L and (c and f) CP grids. The thick blue and green dashed lines on the left panels indicate the true baroclinic and 

barotropic frequencies, respectively. The thick red and red dashed lines on the center and right panels indicate the discrete 

baroclinic and barotropic frequencies, respectively. The upper and lower panels show the plots for the maximum vertical 5 

integer wave numbers of nmax = 320  (δ z = 250 m ) and nmax = 80  (δ z = 1 km ), respectively. 
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                                        True                                                                                                                        Z and  D grid  

Baroclinic modes:                                             Barotropic modes:                       Baroclinic modes:                                                      Barotropic modes:                             

 

ν =
−βk

k 2 + ℓ2( ) + f0
2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

    
 
ν =

−βk

k 2 + ℓ2
                     

 

ν =
−β !ξk

ξ 2k 2 +η 2ℓ2( ) + f0
2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

      

 
ν =

−β !ξk

ξ 2k 2 +η 2ℓ2
 

    

m ≡ πn zT  for  n = 1, 2, 3, ⋅⋅⋅                       ξ ≡ sin 1
2 kd( ) 1

2 kd( ) ,  η ≡ sin 1
2 ℓd( ) 1

2 ℓd( ) , 

                      
!ξ ≡ sin kd( ) kd( )  0 ≤ kd, ℓd[ ] ≤ π   

 

             C grid                                                                                                                                      E grid 
 

Baroclinic modes:                                                       Barotropic modes:               Baroclinic modes:                                                  Barotropic modes:                             
 

 

ν =
−µ 2 !ξβk

ξ 2k 2 +η 2ℓ2 +
µ 2 f0

2

N 2
m2 +

1
4H 2

⎛
⎝

⎞
⎠

    
 
ν =

−µ 2 !ξβk

ξ 2k 2 +η 2ℓ2
                            Same as Z grid but for  0 ≤ kd, ℓd[ ] ≤ 2π                                   

  µ ≡ cos 1
2 kd( )cos 1

2 ℓd( )   

                                                                                                                           CD grid                                                                                                                                       
Baroclinic modes:                                                                                                                  Barotropic modes:                

 e
2ν iτ µ 2N 2L2 + f0

2σ m

2( )sin 2ν rτ( ) + 1
2 τe

2ν iτµ 2N 2β !ξk cos 2ν rτ( )               
 
0 = L2( )2 − 1

2 τβ !ξk( )2⎡⎣ ⎤⎦sin ν rτ( ) + τ β !ξkL2 cos ν rτ( )   

           +τe
ν iτµ 2N 2 cos ν rτ( )β !ξk + 2 f02eν iτ µ 2 − 1( )σ m

2 sin ν rτ( )                 e
ν iτ = L2 L2 cos ν rτ( ) − 1

2 τ β !ξk sin ν rτ( )[ ]   

                                                                      +
1
2 τ µ

2N 2β !ξk = 0         L
2 ≡ ξ 2k 2 +η 2ℓ2 , σ m

2 ≡ m2 + 1 4H 2( ) ,  0 ≤ kd, ℓd[ ] ≤ π  

eν iτ = −b + b2 − 4ac( ) 2a( )   for a, b and c, see Eqs. (38a)–(38c).  

             A grid                                                                                                                                      B grid 
 

Baroclinic modes:                                                     Barotropic modes:          Baroclinic modes:                                                   Barotropic modes:                             
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1
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⎛
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⎞
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ν =
− !ξβk
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2 +

f0
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1
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⎛
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⎞
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ν =

−β !ξk

LB
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 !η ≡ sin ℓd( ) ℓd( )         0 ≤ kd, ℓd[ ] ≤ π                                            LB
2 ≡ ξ 2k 2 +η 2ℓ2 − 1

2 d
2ξ 2k 2η 2ℓ2     

             L grid                                                                                                                                       CP grid  
                                                                                                                                      

Baroclinic modes:                                                           Barotropic modes:           Baroclinic modes:                                                      Barotropic modes: 

 

ν =
−µz

2βk

µz

2 k 2 + ℓ2( ) + f0
2

N 2
ζ 2m2 + µz

2 1
4H 2

⎛
⎝

⎞
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ν =

−βk

k 2 + ℓ2
            

 

ν =
−βk

k 2 + ℓ2( ) + f0
2

N 2
ζ 2m2 + µz

2 1
4H 2

⎛
⎝

⎞
⎠

          
 
ν =

−βk

k 2 + ℓ2
           

 ζ ≡ sin 1
2 mδ z( ) 1

2 mδ z( )    µz ≡ cos
1
2 mδ z( )      0 ≤ mδ z = nπδ z zT ≤ π    for  n = 1, 2, 3, ⋅⋅⋅    

Table 1: A summary of the continuous and discrete dispersion relations with various horizontal and vertical grids. 


