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Abstract. The Bern Simple Climate Model (BernSCM) is a free open source reimplementation of a reduced form carbon

cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the

carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major

nonlinearities, and the substitution of complex component systems with impulse response functions (IRF). The IRF approach

allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near linear behavior.5

Illustrative simulations of scenarios from previous multi-model studies show that BernSCM is broadly representative of the

range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was

written from scratch with transparency and extensibility in mind, and is provided as open source. BernSCM makes scientifically

sound carbon cycle-climate modeling available for many applications. Supporting up to decadal timesteps with high accuracy,

it is suitable for studies with high computational load, and for coupling with, e.g., Integrated Assessment Models (IAM).10

Further applications include climate risk assessment in a business, public, or educational context, and the estimation of CO2

and climate benefits of emission mitigation options.

1 Introduction

Simple climate models (SCM) consist of a small number of equations, which describe the climate system in a spatially and

temporally highly aggregated form. SCMs have been used since the pioneering days of computational climate science, to15

analyze the planetary heat balance (Budyko, 1969; Sellers, 1969), and to clarify the role of the ocean and land compartments

in the climate response to anthropogenic forcing through carbon and heat uptake (e.g., Oeschger et al., 1975; Siegenthaler and

Oeschger, 1984b; Hansen et al., 1984). Due to their modest computational demands, SCMs enabled pioneering research using

the limited computational resources of the time, and continue to play a useful role in the hierarchy of climate models today.

Recent applications of SCMs are often found in research where computational resources are still limiting. Examples include20

probabilistic or optimization studies involving a large number of simulations, or the use of a climate component as part of a

detailed interdisciplinary model. SCMs are also much easier to understand and handle than large climate models, which makes
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them useful as practical tools that can be used by non-climate experts for applications where detailed spatio-temporal physical

modeling is not essential. This applies to interdisciplinary research, educational applications, or the quantification of the impact

of emission reductions on climate change.

An important application of SCMs is in Integrated Assessment Models (IAMs). IAMs are interdisciplinary models that

couple a climate component with an energy-economy model, to simulate emissions and their climate consequences. Another5

application of simple models (e.g., Boucher and Reddy, 2008; Bruckner et al., 2003; Enting et al., 1994; Good et al., 2011;

Hooss et al., 2001b; Huntingford et al., 2010; Joos and Bruno, 1996; Oeschger et al., 1975; Raupach, 2013; Siegenthaler and

Oeschger, 1984a; Smith et al., 2017; Tanaka et al., 2007; Urban and Keller, 2010; Wigley and Raper, 1992) is to compare,

analyze or emulate more complex models (Geoffroy et al., 2012b, a; Meinshausen et al., 2011; Raper et al., 2001; Thompson

and Randerson, 1999). Simple models also play a significant role in previous assessments of the Intergovernmental Panel on10

Climate Change (e.g., Harvey et al., 1997). The comprehensive scope and interdisciplinarity of such models raise the challenge

of maintaining a high and balanced scientific standard across all model components, especially when human resources are

limited. This may apply particularly to the climate component, as IAMs are mostly used within the economic and engineering

disciplines. Climate and carbon cycle representation are central parts of an IAM and have been critically assessed in the

literature (Joos et al., 1999a; Schultz and Kasting, 1997; Vuuren et al., 2009).15

BernSCM is a zero-dimensional global carbon cycle-climate model built around impulse-response representations of the

ocean and land compartments, as described previously in Joos et al. (1996); Meyer et al. (1999). The linear response of more

complex ocean and land biosphere models with detailed process descriptions is captured using impulse-response functions

(IRFs). These IRF-based substitute models are combined with nonlinear parametrizations of carbon uptake by the surface

ocean and the terrestrial biosphere as a function of atmospheric CO2 concentration and global mean surface temperature. Pulse20

response models have been shown to accurately emulate spatially resolved, complex models (Joos et al., 1996; Joos and Bruno,

1996; Meyer et al., 1999; Joos et al., 2001; Hooss et al., 2001a).

BernSCM (Figure 1) is designed to compute decadal-to-millennial scale perturbations in atmospheric CO2 in climate and

in fluxes of carbon and heat relative to a reference state, typically preindustrial conditions. The uptake of excess, anthropogenic

carbon from the atmosphere is described as a purely physico-chemical process (Prentice et al., 2001). As in pioneering model-25

ing approaches with box-type (Oeschger et al., 1975; Revelle and Suess, 1957) and general ocean circulation models (Maier-

Reimer and Hasselmann, 1987; Sarmiento et al., 1992) modification of the natural carbon cycle through potential changes in

circulation and the marine biological cycle (Heinze et al., 2015) are not explicitly considered. While such modifications and

their potential socio-economic consequences are vividly discussed in the literature (Gattuso et al., 2015), associated climate-

CO2 feedbacks are likely of secondary importance. Estimated uncertainties in the marine carbon uptake due to climate change,30

including warming-driven changes in CO2 solubility, are found to be smaller in magnitude than uncertainties arising from

imperfect knowledge of surface-to-deep physical transport (see Figure 2d,e in Friedlingstein et al., 2006b). The exchange of

CO2 between the atmosphere and the surface ocean is described by two-way fluxes, from the atmosphere to the surface ocean

and vice versa, and the net flux of CO2 into the ocean is proportional to the air-sea partial pressure difference. CO2 reacts with

water to form carbon and bicarbonate ions (Dickson et al., 2007; Orr et al., 2015), and acid-base equilibria are here described35
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using the well-established Revelle factor formalism (Siegenthaler and Joos, 1992; Zeebe and Wolf-Gladrow, 2001). The first

order climate-carbon feedback of a decreasing solubility in warming water is considered. Surface-to-deep exchange, the rate

limiting step of ocean carbon and heat uptake, is described using an IRF. On time scales of up to a few millennia, processes

associated with ocean sediments and weathering can be neglected. In such a closed ocean-atmosphere-land biosphere system,

excess CO2 is partitioned between the ocean and the atmosphere and a substantial fraction of the emitted CO2 remains in the5

atmosphere and in the surface ocean in a new equilibrium (Joos et al., 2013). This corresponds to a constant term (infinitely

long removal time scale) in the IRF representing surface-to-deep mixing. On multi-millennial time scales, excess anthropogenic

CO2 is removed from the ocean-atmosphere-land system by ocean-sediment interactions and changes in the weathering cycle

(Archer et al., 1999; Lord et al., 2016), and the IRF is readily adjusted to account for these processes, important for simulations

extending over many millennia.10

BernSCM simulates global mean surface temperature and the heat uptake by the planet. The latter is equivalent to the net

top-of-the-atmosphere energy flux. Changes in the Earth’s heat storage in response to anthropogenic forcing are dominated

by warming of the surface ocean and the interior ocean (Stocker et al., 2013b) due to their large heat capacity in comparison

with that of the atmosphere and their large thermal conductivity in comparison to that of the land surface. Consequently, the

atmospheric and land surface heat capacity is formally lumped with the heat capacity of the surface ocean in the BernSCM.15

The uptake of heat by the ocean (or planet) is, as for carbon, formulated as a two-way exchange flux. The flux of heat from the

atmosphere into the surface ocean is taken to be proportional to the radiative forcing resulting from changes in CO2 and other

agents (Etminan et al., 2016). The upward loss of heat from the surface is proportional to the product of the simulated surface

temperature perturbation and the (prescribed) climate sensitivity λ (Siegenthaler and Oeschger, 1984a; Winton et al., 2010).

As with carbon, surface-to-deep transport is the rate limiting step for ocean heat uptake and thus for the adjustment of surface20

temperature to radiative forcing. This transport is key to determine the lag between realized warming and equilibrium warming

(Frölicher and Paynter, 2015). Again, this transport is described using an IRF. This IRF encapsulates the finite volume of the

entire ocean. It also represents the range of transport time scales associated with advection, diffusion and convection ranging

from decades for the ventilation of thermocline to more than a millennium for deep Pacific ventilation as evidenced by transient

tracers such as CFCs and radiocarbon (Olsen et al., 2016). The simulated surface ocean temperature perturbation, taken as a25

measure of global mean surface air temperature change, may be combined with spatial patterns of change in temperature,

precipitation or any other variable of interest to compute regionally explicit changes (Hooss et al. (2001b); Joos et al. (2001);

Stocker et al. (2013a) (Figure 1).

Non-CO2 radiative forcing may be prescribed, e.g., following estimates from complex climate-chemistry models (Myhre

et al., 2013) or from simple emission driven non-CO2 chemistry-radiative forcing modules (Joos et al., 2001; Smith et al.,30

2017) and reconstructions of solar and volcanic forcing (Eby et al., 2012; Jungclaus et al., 2017) and considering the forcing

efficacy of non-CO2 agents relative to CO2 forcing (Hansen et al., 2005). Climate sensitivity characterizing the response to

radiative forcing, is a free parameter in the BernSCM. Climate sensitivity may change under increasing warming, particularly

in high emission scenarios (Geoffroy et al., 2012a; Gregory et al., 2015; Pfister and Stocker, 2017). Here, climate sensitivity

is assumed to be time-invariant and a potential state dependency of climate sensitivity is not considered. This may be changed35
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when more solid information on state dependency becomes available or for the purpose of sensitivity analyses. Similarly, ocean

heat uptake efficacy (Winton et al., 2010), influencing the atmospheric temperature response to ocean heat uptake forcing, is

set to one here.

The present version 1.0 of BernSCM is fundamentally analogous to the Bern Model as used already in the IPCC Second As-

sessment Report, Bern-SAR (whereas different versions of the Bern model family were used in the more recent IPCC reports).5

BernSCM represents the relevant processes more completely than Bern-SAR, thanks to additional alternative representations

of the land and ocean components, which contain a more complete set of relevant sensitivities to temperature and atmospheric

CO2.

Here, BernSCM model simulations are compared to previous multimodel studies. The model is run for an idealized atmo-

spheric pulse CO2 emission experiment of Joos et al. (2013); for an idealized CO2 forcing experiment similar to simulations10

from the Climate Model Intercomparison Project 5 (CMIP5); and for the SRES A2 emission scenario used in the C4MIP study

(Friedlingstein et al., 2006a).

Together with this publication, BernSCM v1.0 is provided as an open source Fortran code for free use. The code was

also rewritten from scratch, with flexibility and transparency in mind. The model is comprehensively documented, and easily

extensible. New alternative model components can be added using the existing ones as a template. A range of numerical15

solution schemes is implemented. Up to decadal timesteps are supported with high accuracy, suitable for the coupling with,

e.g., emission models of coarse time resolution. However, the published code is a ready-to-run standalone model which may

also be useful in its own right.

BernSCM offers a physically sound carbon cycle-climate representation, but it is small enough for use in IAMs and

other computationally tasking applications. In particular, the support of long time steps is ideally suited to the application20

of BernSCM an IAM component, as these complex models often use time steps on the order of 10 years.

BernSCM also offers a tool to realistically assess the climate impact of carbon emissions or emission reductions and sinks,

for example in aviation, forestry (Landry et al., 2016), blue carbon management, peat development (Mathijssen et al., 2017), life

cycle assessments (Levasseur et al., 2016), or to assess the interaction of climate engineering interventions such as terrestrial

carbon dioxide removal with the natural carbon cycle (Heck et al., 2016).25

In this paper, we describe the model equations (section 2 and appendix B), illustrative simulations in comparison with

previous multi-model studies and uncertainty assessment (section 3), followed by a discussion (section 4) and conclusions

(section 5).

2 The BernSCM model framework and equations

BernSCM simulates the relation between CO2 emissions, atmospheric CO2, radiative forcing (RF), and global mean Surface30

Air Temperature (SAT) by budgeting carbon and heat fluxes globally between the atmosphere, the (abiotic) ocean, and the land

biosphere compartments. Given CO2 emissions and non-CO2 RF, the model solves for atmospheric CO2 and SAT (e.g., in
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the examples of section 3), but can also solve for carbon emissions (or residual uptake) when atmospheric CO2 (or SAT and

non-CO2 RF) is prescribed, or for RF when SAT is prescribed.

The transport of carbon and heat to the deep ocean, as well as the decay of land carbon result from complex, but in first order

linear behavior of the ocean and land compartments. These are represented in BernSCM using impulse response functions

(IRF, or Green’s function). The IRF describes the evolution of a system variable after an initial perturbation, e.g., the pulse-5

like addition of carbon to a reservoir. It fully captures linear dynamics without representing the underlying physical processes

(Joos et al., 1996). More illustratively, the ocean and land models can be considered to consist of systems of uncoupled first-

order ordinary differential equations or “box models”, which are an equivalent representation of the IRF model components

(Figure 1).

The net primary production (NPP) of the land biosphere and the surface ocean carbon uptake depend on atmospheric CO210

and surface temperature in a nonlinear way. These essential nonlinearities are described by parametrizations linking the linear

model components.

2.1 Carbon cycle component

The budget equation for atmospheric carbon is

dmA
dt

= e− fO −
dmL
dt

, (1)15

where mA denotes the atmospheric carbon stored in CO2, e denotes CO2 emissions, fO the flux to the ocean, mL the land

biosphere carbon stock, and t is time. Here,mL refers to the (potential) natural biosphere. Human impacts on the land biosphere

exchange including land use and land use changes are not simulated in the present version, and treated as exogenous emissions

(e). These emissions may be prescribed based on results from spatially-explicit terrestrial models. An overview of the model

variables and parameters is given in tables A1 and A2.20

The change in land carbon is given by the balance of net primary production (NPP) and decay of assimilated terrestrial

carbon,

dmL
dt

= fNPP− fdecay (2)

Decay includes heterotrophic respiration (RH), fire and other disturbances due to natural processes.

Carbon is taken up by the ocean through the air-sea interface (fO) and distributed to the mixed surface layer (mS) and the25

deep ocean interior (fdeep):

fO =
dmS

dt
+ fdeep (3)

Global NPP (fNPP) is assumed to be a function of the partial pressure of atmospheric CO2 (pCO2 ) and the SAT deviation

from preindustrial equilibrium (functions for the implemented land components are given in Appendix A),

The net flux of carbon into the ocean is proportional to the gas transfer velocity (kg) and the CO2 partial pressure difference30

between surface air and seawater:

fO = kgAO ε(pCO2

A − pCO2

S ), (4)
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where AO is ocean surface area and ε the atmospheric mass of C per mixing ratio of CO2.

The global average perturbation in surface water ∆pCO2

S is a function of dissolved inorganic carbon change (∆DIC) in the

surface ocean at constant alkalinity (Joos et al., 1996) and SAT (Takahashi et al., 1993); ∆DIC and pCO2

A are related to model

variables (see Appendix A),

∆DIC =
mS

HmixAO %Mµmol 10−15Gt/g
(5)5

pCO2

A =mAε
−1 (6)

The carbon cycle equation set is closed by the specification of fdecay and fdeep (section 2.3), as well as ∆T , i.e., the coupling

to the climate component (section 2.2).

2.2 Climate component10

BernSCM simulates the deviation in global mean SAT from the preindustrial state. SAT is approximated by the temperature

perturbation of the surface ocean ∆T , which is calculated from heat uptake by the budget equation

d∆T

dt
cS = fHO − fHdeep, (7)

where cs is the heat capacity of the surface layer, fHO is ocean heat uptake, and fHdeep is heat uptake by the deep ocean (and

accounts for the bulk of the effective heat capacity of the ocean). Continental heat uptake is neglected due to the much higher15

heat conductivity of the ocean in comparison to the continent.

fHO is taken to be proportional to RF (Forster et al., 2007) and the deviation of SAT from radiative equilibrium (∆T =

∆T eq(RF ); see table A2 for parameter definitions),

fHO = RF

(
1− ∆T

∆T eq

)
AO
aO

(8)

This relation follows from the assumption that feedbacks are linear in ∆T (e.g., Hansen et al., 1984). ∆T eq is given by20

∆T eq = RF
∆T2×

RF2×
, (9)

where ∆T2× is climate sensitivity (defined as the equilibrium temperature change corresponding to twice the preindustrial

CO2 concentration). Equation (8) describes ocean heat uptake as the difference between RF and the climate system’s response,

λ ·∆T, with λ=RF/∆T eq the climate sensitivity expressed in W m−2 K−1.

Climate sensitivity is an external parameter, as the model does not represent the processes determining equilibrium climate25

response. RF of CO2 is calculated as (Myhre et al., 1998)

RFCO2 = ln

(
pCO2

A

pCO2

A0

)
RF2×

ln(2)
, (10)
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where pCO2

A0 is the preindustrial reference concentration of atmospheric CO2, and RF2× is the RF at twice the preindustrial

CO2 concentration. RF of other GHGs, aerosols etc. can be parametrized in similar expressions involving GHG and pollutant

emissions and concentrations (Prather et al., 2001). In the provided BernSCM code, non-CO2 RF is treated as an exogenous

boundary condition. Total RF is then

RF = RFCO2
+ RFnonCO2

(11)5

The calculation of fHdeep (section 2.3) completes the climate model.

2.3 Impulse response model components

The response of a time-invariant linear system to a time-dependent forcing f can be expressed by

m(t) =

t∫
−∞

f(t′)r(t− t′)dt′ (12)

The function r is the system’s impulse response function (IRF), as can be shown by evaluating the integral for a Dirac impulse10

(f(t′) = δ(t′)). The IRF indicates the fraction remaining in the system at time t of a pulse input at a previous time t′. Because

of linearity of the integral, any physically meaningful integrand f can be represented as a sequence of such impulses of varying

size.

In BernSCM, an IRF is used to calculate the perturbation of heat and carbon in the mixed surface ocean layer (mixed layer

IRF, (Joos et al., 1996). For carbon,15

mS(t) =

t∫
−∞

fO(t′)rO(t− t′)dt′, (13)

and similarly, for heat

∆T (t)cS =

t∫
−∞

fHO (t′)rO(t− t′)dt′ (14)

This approach has been shown to faithfully reproduce atmospheric CO2 and SAT as simulated with the models from which

the IRF is derived (Joos et al., 1996). For temperature, the linear approach works since relatively small and homogeneous20

perturbations of ocean temperatures do not affect the circulation strongly and can be treated as a passive tracer (Hansen et al.,

2010). Note that for compatibility with commonly used units, carbon fluxes are expressed in Gt per year, while heat fluxes are

expressed in Joule per second (Watt) in equations 13 and 14, respectively.

Equation (13) closes the ocean C budget equation (3), as can be seen by taking the derivative with respect to time (using

r(0) = 1),25

dmS

dt
= fO(t)−

− t∫
−∞

fO(t′)
drO
dt

(t− t′)dt′


︸ ︷︷ ︸

fdeep

, (15)
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where fdeep is the flux to the deep ocean. Similarly, equation (14) closes the heat budget equation (7) for the surface ocean,

d∆T

dt
cS = fHO (t)−

− t∫
−∞

fHO (t′)
drO
dt

(t− t′)dt′


︸ ︷︷ ︸

fHdeep

(16)

Another IRF is used for the carbon mL in living or dead biomass reservoirs of the terrestrial biosphere,

mL(t) =

t∫
−∞

fNPP(t′)rL(t− t′)dt′ (17)

Again, equation (17) closes the budget equation for the land biosphere (2), as shown by the derivative with respect to time,5

dmL
dt

= fNPP(t)−

− t∫
−∞

fNPP(t′)
drL
dt

(t− t′)dt′


︸ ︷︷ ︸

fdecay

(18)

The time derivative of the land IRF is also known as the decay response function (e.g., Joos et al., 1996).

The above IRFs can be expressed as a sum of exponentials,

r(t) = a∞+
∑
k

ake
−t/τk (19)

where the constant term a∞ corresponds to an infinite decay timescale.10

The ocean IRF contains a positive constant coefficient a∞, indicating a fraction of the perturbation that will remain indef-

initely (implied by carbon conservation in the ocean model). CaCO3 compensation by sediment dissolution and weathering

(Archer et al., 1999) are not considered here, but could be described using analogous elimination processes with time scales

on the order of 104 to 105 yr (Joos et al., 2004). We emphasize that the implementation considering only the partitioning of

excess carbon between atmosphere, land and ocean (hence a∞ 6= 0), neglecting ocean sediment-interactions and weathering15

flux perturbations, is only valid for time scales shorter than about 2,000 years. In land biosphere models, in contrast, organic

carbon is lost to the atmosphere by oxidation to CO2 at non-zero rates, and consequently all timescales are finite (i.e., a∞ = 0),

and the IRF tends to zero (Figure 2).

Inserting formula (19) in the pulse response equation (12) yields (f is a perturbation flux when a∞ 6= 0)

m(t) =
∑
k

t∫
−∞

f(t′)ake
−(t−t′)/τk dt′+

t∫
−∞

f(t′)a∞dt′ (20)20

Thus the expression (12) separates into a set of independent integrals mk corresponding to the number of time scales of the

response. Taking the time derivative of expression (20) reveals the equivalence to a system of uncoupled first-order ordinary

differential equations

dmk

dt
= f(t)ak −mk/τk;

dm∞
dt

= f(t)a∞

m=
∑
k

mk +m∞ (21)
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The direct numerical evaluation of the equation (12) involves integrating over all previous times at each timestep. The differen-

tial form (21) allows a recursive solution, which is much more efficient, especially for long simulations (the recursive solution

implemented in BernSCM is described in Appendix B).

The differential equation system (21) can be considered to consist of several boxes, whereby each boxmk receives a fraction

ak of the input f , and has a characteristic turnover time τk (Figure 1). In the following this is referred to as a “box model”. For5

the mixed ocean surface layer the carbon content of box k is given by:

dmSk

dt
= fO(t)aOk −mSk/τOk ;

dmS∞

dt
= fO(t)aO∞ (22)

and the change in total carbon content in the mixed layer is:

mS =
∑
k

mSk +mS∞ (23)

Similar equations describe the heat content in the ocean surface layer, as well as the carbon stored in the land biosphere10

(Figure 1).

The timescales of an IRF describing a linear system are equivalent to the inverse eigenvalues of the model matrix of that sys-

tem and may also be interpreted in the context of the Laplace transformation (Enting, 2007; Raupach, 2013). For example, the

timescales of the mixing layer IRF are the inverse eigenvalues of a matrix describing a diffusive multilayer ocean model (Hooss

et al., 2001a). A large model matrix yields a spectrum of many eigenvalues and timescales and corresponding model boxes. In15

practice, IRFs are approximated with fewer fitting parameters and, equivalently, timescales (4-6 in the case of BernSCM). Joos

et al. (1996) used IRFs combined from two or more functions to minimize the number of parameters needed for an accurate

representation. In BernSCM, simple IRFs of the form (19) are used exclusively. This allows adequate accuracy and a consistent

interpretation as a multibox model.

Thinking of IRF components as box models is conceptually meaningful. The simple Bern 4 box biosphere model (Siegen-20

thaler and Joos, 1992), for example, contains boxes corresponding to ground vegetation, wood, detritus, and soil (Appendix A).

The High-Resolution Biosphere Model (HRBM) land component (Meyer et al., 1999), on the other hand, is abstractly defined

by an IRF, but corresponds to boxes which correlate with biospheric reservoirs. However, since different box models may show

a similar response, in practice the coefficients ak and time scales τk may not be uniquely defined by the IRF, and should be

interpreted primarily as abstract fitting parameters (Enting, 2007; Li et al., 2009).25

The IRF representation is, strictly speaking, only valid if the described subsystem is linear and the time scales of the system

are time-invariant. Then, the response function r does not depend on time and on state variables. In the BernSCM, major

nonlinearities in the carbon cycle, namely air-sea gas exchange and the nonlinear carbonate chemistry and changes in NPP

in response to changes in environmental conditions are treated by separate nonlinear equations (equations (4) and (5)), while

surface-to-deep ocean transport of carbon and heat and respiration of carbon in litter and soils are viewed as approximately30

linear processes using IRFs. Yet ocean circulation and the respiration of carbon from soil and litter is likely to change under

global warming, violating assumption of linearity. In practice, the IRF representation remains a useful approximation as long

as the impact of associated nonlinearities on simulated atmospheric CO2 and temperature remain moderate.
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The interpretation of the IRF representation as a box model provides a starting point for considering nonlinearities in the

response. To account for nonlinearities, the response time scales τk and the coefficients ak may be gradually adjusted as

a function of state variables such as temperature. As the integral form (12) involves integration over the whole history at

each time step, changing parameters along the way would result in inconsistencies. In contrast, the differential or box-model

form (21) does not depend on previous time steps. Changing the model parameters from one step to the next thus equates to5

applying a slightly different model at each time step. Within each time step, the parameters remain constant, and the solution

for the linear case applies. As time steps are small compared to the whole simulation, this discretization yields accurate results,

which is confirmed by the close agreement between the different time resolutions (Table A5).

Varying coefficients have been successfully implemented and tested for the HRBM land component and its decay IRF (Meyer

et al., 1999). In this way, the enhancement of biomass decay by global warming is captured (s.a. Appendix A and section 3.1).10

In such a modification, the advantage of the IRF and the equivalent box model representation - the faithful representation of

the characteristic response time scale of a model system - is largely maintained, while at the same time the impact of time and

state-dependent system responses on simulated outcomes is approximated.

3 Illustrative simulations with the BernSCM

3.1 Model setup for sensitivity analyses and uncertainty assessment15

The carbon cycle-climate uncertainty of simulations with BernSCM can be assessed in two ways. First, to assess structural

uncertainty, different substitute models for the ocean and land components can be used. Currently, this approach is quite

limited by the set of available substitute models (see Appendix A). Second, parameter uncertainty can be assessed by varying

the temperature and CO2 sensitivities of the model, based on a standard set of components that represent the key dependencies

as completely as possible (here, the IRF substitutes for the High-Latitude Exchange/Interior Diffusion-Advection (HILDA)20

ocean model (Joos et al., 1996) and for the HRBM land biosphere model (Meyer et al., 1999) are used in the standard setup).

The uncertainties of the global carbon cycle concern the sensitivity of the modeled fluxes of carbon and heat to changing

atmospheric CO2 and climate. Key uncertainties strongly affecting the overall climate response are associated with land C

storage: the dependency of NPP on CO2 (CO2 fertilization), and the dependency of land C on temperature (fdecay increases

with warming). This gives rise to large and opposed carbon flux perturbations which are both very uncertain in magnitude25

(Le Quéré et al., 2016). While all substitute land models available for BernSCM include CO2 fertilization, only the HRBM

substitute model represents temperature sensitivity of biomass decay (Appendix A2).

As for the ocean, the uncertainty of heat uptake into the surface ocean is treated in terms of climate sensitivity (eq. 8). The

efficiency of the uptake of heat (fHdeep) and carbon (fdeep) into the deep ocean is not sensitive to temperature, as the currently

available substitute models all represent a fixed circulation pattern (IRF/box-model parameters are not temperature dependent,30

Appendix A1). The nonlinear chemistry of CO2 dissolution in the surface ocean (eq. 4), which determines the sensitivity of

ocean C uptake to atmospheric CO2, is scientifically well established (Dickson et al., 2007; Orr and Epitalon, 2015), and is
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not treated as an uncertainty in BernSCM. The temperature sensitivities of NPP and CO2 dissolution in the surface ocean are

treated as uncertain here, but have secondary influence on the climate response.

Similar to previous studies using models from the Bern family (Plattner et al., 2008; Joos et al., 2001; Meehl et al., 2007;

Van Vuuren et al., 2008), the parameter uncertainty range is assessed using the following setups:

“coupled”: All temperature and CO2 sensitivities at their standard values5

“uncoupled”: All sensitivities zero (except from the ocean CO2 dissolution chemistry)

“C-only”: Only CO2 dependencies considered (CO2 fertilization)

“T-only”: Only temperature dependencies considered in land module (NPP, decay)

We performed simulations with these different setups. In section 4.2, we probe the time scales of the temperature response

in simulations where atmospheric CO2 is abruptly (instantaneously) quadrupled or by increasing CO2 radiative forcing lin-10

early within 140 years. In section 4.3, we probe the response of the coupled system to a pulse-like release of 100 GtC into

the atmosphere. Finally in section 4.4, we analyze carbon cycle-climate feedbacks relying on simulations over the industrial

period and for the SRES A2 scenario. BernSCM results are compared with the results from three multi-model intercomparison

projects: the Climate Model Intercomparison Project 5 (CMIP5) with results as summarized by Frölicher and Paynter (2015);

an analysis of carbon dioxide and climate impulse response functions (Joos et al., 2013, here referred to as IRFMIP), and the15

C4MIP Climate-Carbon Cycle Feedback Analysis (Friedlingstein et al., 2006a).

3.2 Fraction of realized warming and idealized forcing experiments

The climate response of BernSCM is illustrated using idealized simulations with prescribed forcing. One series of simulations

(a) was run for CO2 concentration increasing exponentially from the preindustrial value by 1% per year over 140 years to

approximately four times the preindustrial concentration, corresponding to a linear increase in RF (Figure 3, panel a); in a20

second series of simulations (b), CO2 was abruptly increased to four times the preindustrial concentration (Figure 3, panel b).

Frölicher and Paynter (2015) compare similar simulations of Earth System Models (ESM) performed within the Coupled

Model Intercomparison Project Phase 5 (CMIP5), and Earth System Models of Intermediate Complexity (EMIC) (Joos et al.,

2013). As a model comparison metric sensitive to the long-term climate response, Frölicher and Paynter (2015) use the fraction

of realized warming, defined by the ratio of the temperature response at a given year and the equilibrium temperature for the25

corresponding RF. They show that the smaller realized warming of ESMs in comparison to EMICs (Figure 3) is connected

to a higher long-term warming response; this implies an increase in the coefficient relating global warming to cumulative

carbon emissions on multi-centennial timescales and suggests a lower quota on allowed emissions for a given global warming

target (Frölicher and Paynter, 2015). The realized warming fraction simulated with BernSCM is in good agreement with the

responses of the ESMs (and lower on average than that of the EMICs). The validity of the IRF approach has also been shown30

by Good et al. (2011) using a SCM to reconstruct and interpret AOGCM projections. For the 150-year time scale of the CMIP5
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experiments, Geoffroy et al. (2012b, a) show that the climate response of AOGCMs is well captured by a two-layer energy

balance model with two effective response time scales.

In BernSCM, the fraction of realized warming depends primarily on the choice of climate sensitivity, and is qualitatively

similar for the different model setups. Such a clear relationship is not seen in the EMS and EMICS. Thus the structural

uncertainty and model differences of complex models is not fully represented in BernSCM. The BernSCM climate response to5

abrupt warming (Figure 3, panel b) is qualitatively similar, especially on multi-centennial time scales.

3.3 Impulse response experiment

Coupled carbon cycle-climate models can be characterized and compared based on their response to a CO2 emission pulse

to the atmosphere (Joos et al., 2013). The airborne fraction (AF) denotes the fraction of emissions found in the atmosphere

at at a given time. In IRFMIP, the AF for a pulse of 100 GtC, emitted on top of current (i.e., year 2010) atmospheric CO210

concentrations, was simulated by a set of 15 carbon cycle-climate models of different complexity. For three of these models

(Bern3D-LPJ, GENIE, MAGICC), ensembles sampling the parameter uncertainty of these models are included in IRFMIP.

Thus, IRFMIP captures structural as well as parameter uncertainty.

The IRFMIP pulse experiment was repeated with BernSCM, exploring parameter uncertainty of the carbon cycle (sec-

tion 3.1), as well as structural uncertainty, using the ocean model IRFs HILDA and Princeton (Sarmiento et al., 1992) in15

various combinations with the land biosphere components HRBM and Bern-4box (Figure 4). Simulations were run for equi-

librium climate sensitivities of 3◦C (standard setup), 2◦C, and 4.5◦C.

The AF simulated with BernSCM broadly agrees with the set of simulations from IRFMIP. 100 years after the pulse, it is

0.40 (0.34–0.57) for a climate sensitivity of 3◦C (for coupled setup with uncertainty range in brackets). Climate sensitivity

uncertainty only slightly affects the upper end of this range (Figure 4). For AF simulated with BernSCM, the standard coupled20

setup is close to the IRFMIP multimodel median. The BernSCM uncertainty range is asymmetric, like the IRFMIP multi-

model range. For the MAGICC and GENIE ensembles, the medians also correspond with the BernSCM standard case, while

the uncertainty ranges are more symmetric.

The BernSCM SAT response also broadly agrees with IRFMIP. The standard coupled simulation is somewhat lower than

the IRFMIP median, which is explained in part by the climate sensitivity (3◦C) being slightly lower than the IRFMIP average25

(3.2◦C). The short term temperature response of BernSCM in particular is on the lower side of the IRFMIP range, suggesting

stronger ocean mixing. The quickest initial temperature increase of the BernSCM simulations is obtained with the Princeton

ocean model component (dashed lines), which shows a slower initial mixing to the deep ocean than the other implemented

components (Figure 2). The comparability of the SAT projections is limited, as the range of climate sensitivities considered

in the BernSCM simulations (2-4.5◦C) differ somewhat from that of the IRFMIP multimodel set (1.5-4.6◦C) and the single30

model ensembles (1.9-5.7◦C), and are compounded with RF differences resulting from the uncertainty in atmospheric CO2.

Figure 5 shows how the added carbon is redistributed within the Earth system. In the coupled setup, the fraction of the initial

pulse sequestered by the land and by the ocean increases over the first century, while the airborne fraction decreases. After 100

years, slightly more than 20% of the added carbon is stored in the land and about 40% in the ocean. The ocean continues to
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sequester excess carbon in the following centuries to become the dominant sink for excess carbon. In contrast, the land returns

part of the sequestered carbon back to the atmosphere and ocean as decreasing atmospheric CO2 is reducing the modeled CO2

fertilization of the land biosphere. In the T-only setup, where CO2 fertilization is not operating, the land is a source of carbon

to the atmosphere due to accelerated soil turnover in response to warming. The largest land sink is simulated in the C-only

setup, where soil turnover timescales remain invariant and CO2 fertilization is on. The different BernSCM setups span a range5

of plausible land biosphere and ocean responses to continued anthropogenic CO2 emissions as reflected in the simulated range

in the airborne fraction (Figure 4a, 5).”

3.4 Carbon cycle-climate feedbacks

Climate models with explicit and detailed carbon cycle components exhibit a wide range of responses, as shown in the inter-

comparison studies of climate models with a detailed carbon cycle, C4MIP (Friedlingstein et al., 2006a) and CMIP5 (Jones10

et al., 2013). The authors analyzed the feedback of carbon cycle-climate models using linearized sensitivity measures. These

are derived from a simulation with temperature dependence (“coupled”) and one without (“uncoupled”; note that these names

have a different meaning in BernSCM). Total CO2 emissions for the “coupled” (left hand side) and “uncoupled” (right hand

side) simulations can be expressed as

∆CcA(ε+βL +βO +α(γL + γO)) = ∆CuA(ε+βL +βO) (24)15

where ∆CA is the cumulative change in atmospheric CO2 (in ppm) in the coupled (c) or uncoupled (u) case, and the terms

in parentheses represent the total sensitivity of C storage to ∆CA; in particular, β is the sensitivity of carbon storage to

atmospheric CO2 (in GtC/ppm) on land (βL) or in the ocean (βO). γ is similarly the sensitivity in carbon storage to climate

change, and α is the linear transient climate sensitivity to CO2 (◦C per ppm) as in Friedlingstein et al. (2006b); ε converts ppm

to GtC (cf. Table A2; the formula in the original paper implies identical units for atmospheric and stored carbon).20

The climate-carbon cycle feedback is measured by the feedback metric g, defined by

∆CcA
∆CuA

=
1

1− g
(25)

and is thus estimated by

g =− α(γL + γO)

ε+βO +βL
(26)

Thus the feedback strength scales with the assumed climate sensitivity and the temperature sensitivities, and is reduced by25

CO2-induced sinks.

The C4MIP study used a SRES A2 emission scenario to compare the carbon cycle sensitivities of a range of models. As

in the C4MIP exercise, BernSCM was run for SRES A2 without any non-CO2 forcings (Figure 6; prescribed historical and

scenario emissions were smoothed with the R smooth.spline function (R Core Team, 2015) for 41 degrees of freedom for use

with different time steps). Land use was treated as an exogenous CO2 emission, while the land model simulates an undisturbed30

biosphere.
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The BernSCM sensitivity setups can be expressed in terms of the C4MIP sensitivity metrics: T-only corresponds to βL = 0,

C-only to γL = γO = 0, and uncoupled to βL = γL = γO = 0. This can be used to estimate climate-carbon cycle feedback g

captured in BernSCM. The sensitivity metrics for the BernSCM standard simulation (HILDA-HRBM with coupled carbon

cycle) lie within the C4MIP range (Table 1). The uncertainty range for BernSCM, however, is not congruent with the multi-

model range of C4MIP. Maximum and standard sensitivity for BernSCM are practically identical. Notably, this sensitivity is5

smaller (absolutely) than the C4MIP average for the land carbon response to CO2 increase and warming. The resulting gain

g is also smaller, though this results in large part from the lower climate sensitivity in BernSCM (which corresponds to 2.5◦C

as used for the Bern-CC model contribution to C4MIP). The lower end (in absolute terms) of the BernSCM carbon cycle

sensitivity range is, on the other hand, zero per definition for all but the ocean-CO2 sensitivity βO (see section 3.1). As a

consequence, the climate-carbon cycle feedback range also includes zero. In contrast, the C4MIP range does not include zero10

for all sensitivity parameters.

The land carbon uptake until 2100, under the different BernSCM configurations, varies over 500 GtC (Figure 6), more than

three times the range of ocean uptake (180 GtC). This partly reflects the limited coverage of the uncertainty in ocean mixing,

but also the fact that the land carbon sink is, together with the land use-related source, the most uncertain item in the budget

(Le Quéré et al., 2009).15

4 Discussion

We simulated illustrative scenarios from two recent multi-model studies, C4MIP and IRFMIP, to compare BernSCM to the lit-

erature of carbon-cycle climate models. The results show that BernSCM is broadly representative of the current understanding

of the global carbon cycle-climate response to anthropogenic forcing (in a time-averaged sense that does not address internal

variability). The BernSCM uncertainty range in CO2 and SAT projections is broadly similar to the ranges spanned by prob-20

abilistic single-model ensembles, and multi-model “ensembles of opportunity” such as the 15 IRFMIP models. The shown

BernSCM uncertainty range consists mainly of parameter uncertainty and to a small extent of structural uncertainty. For the

standard, coupled model setup, the sensitivities of ocean and land carbon uptake to changing CO2 and climate (Table 1) of

BernSCM are within the range of the detailed carbon cycle models in C4MIP. However, as some C4MIP models show much

higher sensitivities, the BernSCM range does not capture the full C4MIP multi-model range. On the other hand, the C4MIP set25

is unlikely to sample uncertainty exhaustively, as each model contributed only a single, “most likely” simulation. Thus it does

not include zero (or weak) sensitivities, whereas the BernSCM range does.

As Figure 6 shows, solutions with different timesteps and numerical schemes as implemented in BernSCM are largely

equivalent for a sufficiently smooth forcing. This offers the flexibility to opt for simplicity of implementation or maximum

speed as required by the application (see also Appendix B).30

BernSCM does not explicitly distinguish between surface atmosphere and surface ocean temperature to compute global

mean surface air temperature perturbation. This is in contrast to some energy balance calculations used to analyze results

from state-of-the-art Earth System Models (e.g., Geoffroy et al., 2012b). The BernSCM approach follows earlier work of
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Siegenthaler and Oeschger (1984a). It is further guided by the similarity in reconstructions of marine night time air and sea

surface temperature perturbations (Stocker et al., 2013b) that are consistent with the short, monthly relaxation time scale for

air-sea heat exchange. The focus of the BernSCM is on the representation of the transport of heat from the surface into the

thermocline and the deep ocean on decadal to multi-century time scales, while information on seasonal and spatial changes

such as on land-sea air temperature differences or polar amplification may be obtained by applying suitable spatial perturbation5

patterns as derived from state-of-the-art models.

Currently, a limited set of substitute models is available and included with BernSCM. The simple structure and open source

policy of BernSCM allows users to address these current limitations according to the needs of their applications. More compo-

nents can be added using the existing ones as a template. This requires the specification of the IRF and the parametrization of

gas exchange for the surface ocean, or NPP for the land biosphere, respectively (as described in Joos et al., 1996; Meyer et al.,10

1999).

Ocean transport is known to vary under climate change with some consequences for heat and carbon uptake (Joos et al.,

1999b). Here, we applied time-invariant ocean transport parameters (aOk , τOk ). It is in principle possible to represent temper-

ature dependency of ocean transport in a similar way as it is done for the climate dependency of heterotrophic respiration for

the HRBM land biosphere substitute model (Meyer et al., 1999). In the current BernSCM version, the same IRF parameters are15

applied for the transport of carbon and heat from the surface ocean to the interior ocean. Thereby, it is implicitly assumed that

the spatial pattern of change is the same for temperature and carbon. This appears to be a reasonable first-order approximation

on decadal-to-century time scales as perturbations in temperature and carbon show similar patterns with decreasing perturba-

tions from the surface to depth. In future efforts, one may differentiate the ocean IRF for heat and carbon, in particular when

more information from long-term multi-century to millennial-scale ESM simulations becomes available. The application of the20

same IRF for carbon and heat in individual model runs implies that modeled carbon and heat transport tend to be physically

consistent. In contrast, some other simple models employ different transport parameters for heat and carbon and varied these

parameters independently in probabilistic studies.

A distribution of time scales applies to ocean transport processes as evidenced by observations of transient and time de-

pendent tracers such as chlorofluorocarbons, bomb-produced and natural radiocarbon and biogeochemical tracers (Key et al.,25

2004; Olsen et al., 2016). This continuum is sometimes approximated by one time scale, also termed heat uptake efficiency

(e.g., Gregory et al., 2009) and by two time scales, as in (Geoffroy et al., 2012b). The one-to-two time scale approximations

were used to analyze relatively short Earth System Model simulations that do not yet reveal the multi-century response time

scales of the deep ocean. We note that the equivalent ocean depth of the simple energy balance model of Geoffroy et al. (2012b)

for their AOGCM ensemble is only 1,182 m compared to a mean ocean depth of about 3,800 m. The ocean IRFs used in the30

BernSCM are derived from long simulations with ocean-only or simplified models. The range of distinct time scales used to

construct the IRF faithfully approximates the sub-annual to multi-century response continuum of the parent models as shown

in earlier work (Joos et al., 1996). Further, the BernSCM IRF model represents the heat capacity of the entire ocean.
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The BernSCM model may be extended to model perturbation in the signatures and exchange fluxes of the carbon isotopes
13C and 14C as demonstrated in earlier work (Joos et al., 1996). This was not implemented here to keep the code as simple as

possible and as most potential users are likely concerned with the evolution of climate and atmospheric CO2 .

A potential future application of BernSCM is to use it as an emulator of the global long-term response of complex climate-

carbon cycle models by adding the corresponding substitute model components. Additionally, pattern scaling can be applied5

to transfer the global mean temperature signal into spatially resolved changes in surface temperature, precipitation, cloud

cover, etc., exploiting the correlation of global SAT with regional and local changes (Hooss et al., 2001a). This allows to

drive spatially explicit models, e.g., of terrestrial vegetation (as in Joos et al., 2001; Strassmann et al., 2008) or climate change-

related impacts (e.g., as in Hijioka et al., 2009). Patterns of change are generally similar across models for temperature, whereas

patterns in precipitation are more uncertain and show greater variability between models (Knutti and Sedlacek, 2013) and are10

forcing dependent (Shine et al., 2015). We also note that natural variability strongly influences the space-time evolution of

climate change (Deser et al., 2012). Patterns may be scaled with changes in global mean surface air temperature as indicated

in Figure 1 or dependencies on radiative forcing may be considered (Shine et al., 2015)

The addition of further alternative model components will extend the structural uncertainty that can be represented with

BernSCM. A sufficient coverage of structural uncertainty could allow the interpolation between alternative model components,15

to represent uncertainty with scalable parameters (and removing the distinction between structural and parameter uncertainty).

Such a parametrization of the uncertainty would enhance the possibilities for probabilistic applications of BernSCM, although

more sophisticated models are available for observation-constrained probabilistic quantification of climate targets (Holden

et al., 2010; Steinacher and Joos, 2016; Steinacher et al., 2013).

5 Conclusions20

BernSCM is a reduced-form carbon cycle-climate model that captures the characteristics of the natural carbon cycle and the

climate system essential for simulating the global long term response to anthropogenic forcing. Simulated atmospheric CO2

concentrations and SAT are in good agreement with results from two comprehensive multi-model ensembles. Process detail

is minimal, due to the use of IRFs for system compartments that can be described linearly, and nonlinear parametrizations

governing the carbon fluxes into these compartments. This framework allows, in particular, to represent the wide range of25

response time scales of the ocean and land biosphere, and the nonlinear chemistry of CO2 uptake in the surface ocean - both

essential for reliably simulating the global climate response to arbitrary forcing scenarios.

Due to its structural simplicity and computational efficiency, BernSCM has many potential applications. In combination with

pattern scaling, BernSCM can be used to project spatial fields of impact-relevant variables for applications such as climate

change impact assessment, coupling with spatially explicit land biosphere models, etc. With alternative numerical solutions30

of varying complexity and stability to choose from, applications range from educational to computationally intensive inte-

grated assessment modeling. BernSCM also offers a model-based alternative to GWPs for estimation of the climate impact of

16



emissions and can be used to quantify climate benefits of mitigation options by applying emissions- or concentration-driven

simulations.

The generic implementation of linear IRF-components offers a transparent, extensible climate model framework. Current

limitations concern the number of available substitute models (limiting the uncertainty range represented), and ocean transport

not influenced by climate change. An addition of further alternative model components, and more flexible representation5

of sensitivities in terms of continuously variable parameters would further increase the models usefulness, for example for

probabilistic applications.

Code availability. The source code of the Bern Simple Climate Model is available from the github repository at https://doi.org/10.5281/zenodo.1038117

Appendix A: Model parameters and parametrizations

A1 Ocean10

Currently available ocean components include substitute models for the High-Latitude Exchange/Interior Diffusion-Advection

model (HILDA Joos et al., 1996), Bern2D (Stocker et al., 1992), and the Princeton GCM (Sarmiento et al., 1992). Ocean

model parameters of the equations described in the main text are listed in Table A3 for the mixed-layer IRF/box models and

in Table A2 for other equations. The IRF/box model parameters given here are recalculated by fitting a sum of 6 exponential

functions and one constant to the original response functions as given in Joos and Bruno (1996). The original functions treated15

the first few years separately; the approximation to a purely exponential form simplifies the equations and has a negligible

effect on accuracy. The parametrization of ocean surface CO2 pressure is the same for all available ocean components and is

given below.

Ocean surface CO2 pressure perturbations are fitted as a function of the globally averaged unperturbed surface temperature T ∗

and perturbations in DIC by Joos et al. (1996) using carbonate chemistry coefficients summarized by Millero (1995):20

∆ pCO2

S

∣∣∣
T∗

=(1.5568− 1.3993 · 10−2T ∗)∆DIC + (7.4706− 0.20207T ∗)10−3 ∆DIC2− (1.2748− 0.12015T ∗)10−5 ∆DIC3

+ (2.4491− 0.12639T ∗)10−7 ∆DIC4− (1.5468− 0.15326T ∗)10−10 ∆DIC5

The expression holds for unperturbed global average surface water temperature T ∗ between 17.7 and 18.3◦C and for ∆pCO2

S

between 0 and 1320 ppm.

Ocean surface CO2 pressure for global surface temperature perturbation ∆T (Takahashi et al., 1993):

pCO2

S = pCO2

S

∣∣∣
T∗
· e0.0423∆T25

A2 Land biosphere

Currently available land biosphere components include substitute models for the High-Resolution Biosphere Model (Meyer

et al., 1999) and the 4Box biosphere model (Siegenthaler and Joos, 1992).
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For the HRBM model, temperature-dependent IRF/box model parameters as given by Meyer et al. (1999) are implemented:

ãk =
ak e

sakT∑
j aj e

sajT
,

τ̃k = τk e
−sτkT ,

where ãk, τ̃k are the adjusted and ak, τk the unperturbed parameters. The IRF/box model parameter values for HRBM and the

4box model are listed in Table A4. The temperature sensitivities of the HRBM IRF are parametrized for a warming of up to

5◦C.5

Net primary production for HRBM is given by (Meyer et al., 1999):

NPP(p)|∆T=0 =− e3.672801 + e−0.430818 · p− e−6.145559 · p2 + e−12.353878 · p3− e−19.010800 · p4 + e−26.183752 · p5

− e−34.317488 · p6− e−41.553715 · p7 + e−48.265138 · p8− e−56.056095 · p9 + e−64.818185 · p10

where p is atmospheric CO2 pressure. This expression holds up to a CO2 concentration of 1274 ppm and is capped at that

value. The model includes growth enhancement by SAT increase (but without a dynamical vegetation):

NPP(p,∆T ) = NPP0 · (1 + 0.11780208tanh(∆T/50.9312421) + 0.002430513 · tanh(∆T/8.85326739))10

This expression is holds up to a SAT increase of 5◦C.

Net primary production for the 4Box model is described after (Enting et al., 1994; Schimel et al., 1996):

NPP = NPP0 + NPP0 ∗β ∗ log(pCO2/pCO2
0 )

where NPP0 is undisturbed NPP.

Appendix B: Implementation of the pulse-response model15

B1 Discretization

For the solution of the pulse-response equation (12), two discrete approximations are implemented, using the separation by

time scales in equation (20) or, equivalently, in the differential equation system (21). The recursive solution for a time step ∆t

can be obtained from equation (20) by substituting t= tn = tn−1 + ∆t, and s= t′− tn−1,

mn =m∞n +
∑
k

mkn

mkn =mkn−1 e
−∆t/τk +

∆t∫
0

f(tn−1 + s)ake
−(∆t−s)/τk ds

m∞n =m∞n−1 +

∆t∫
0

f(tn−1 + s)a∞ds

(B1)20
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where mn =m(tn) =m(tn−1 + ∆t).

First, f can be taken as constant over a sufficiently short timestep ∆t= ti− ti−1. Evaluating equations (B1) yields

mkn =mkn−1 e
−∆t/τk + f(t∗)akτk(1− e−∆t/τk)

m∞n =m∞n−1 + f(t∗)a∞∆t (B2)

where t∗ is chosen to be tn−1 (for explicit forward solution) or tn (for implicit backward solution).

Second, for longer timesteps, a better approximation is obtained by assuming linear variation of f over each time step. This5

yields

mkn =mkn−1 e
−∆t/τk + fn−1 akτk

( τk
∆t

(1− e−∆t/τk)− e−∆t/τk
)

+ fnakτk

(
1− τk

∆t
(1− e−∆t/τk)

)
m∞n =m∞n−1 +

fn−1 + fn
2

a∞∆t (B3)

B2 Numerical schemes

For the solution of the BernSCM model equations, both explicit and implicit time stepping is implemented.

The stability requirement for the numerical solution depends on the equilibration time for the ocean surface CO2 pressure10

pCO2

S . Due to the buffering of the carbonate chemistry, the CO2 equilibration time is smaller than the gas diffusion time scale

(∼ 10yr) by a ratio given by the buffer factor. For undisturbed conditions (buffer factor ' 10) the equilibration time is about

1 yr. With increasing DIC, the buffer factor increases and the equilibration time shortens, making the equation system stiffer.

Accordingly, when the model is solved explicitly with a time step of 1 yr, instability typically occurs after sustained carbon

uptake by the ocean, which can occur in many realistic scenarios.15

For the tested scenario range, the explicit solution is stable at a time step on the order of 0.1 yr, for which the piecewise

constant approximation is accurate. For larger step size, an implicit solution is required to guarantee stability.

The piecewise constant approximation is adequate for time steps up to 1 yr, and the piecewise linear approximation for up

to decadal time steps. An overview of the performance of three representative settings (set at compile time) for the C4MIP A2

scenario is given in Table A5.20

The explicit solution is only implemented for the piecewise constant approximation (B2) and the implicit solution for both

the piecewise constant (B2) and the piecewise linear approximation (B3). Equations (B2,B3) are expressed in a common

equation by substituting

mkn =mkn−1 pmk + fn pfk + fn−1 p
old
fk (B4)

In the following, the implicit solution for the piecewise constant discretization is derived. Here, the fully implicit scheme for25

land and ocean exchange is discussed, but for stability, it is only crucial to treat ocean uptake implicitly. The parameters of

equation (B4) for this case are

pmk = e−∆t/τk

pfk = akτk(1− e−∆t/τk)

pold
fk = 0 (B5)
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Consider first the equation system for carbon, assuming temperature to be known (or neglecting temperature dependence of

model coefficients). Equation (B4) is applied to land carbon exchange for the constant approximation (B5),

mLn =mc∆
L + ∆fNPP

∑
k

pfkL

mc∆
L =

∑
k

mLkn−1pmkL + fNPPn−1

∑
k

pfkL (B6)

where mc∆
L is the land carbon stock obtained after one time step if NPP remained constant (“constant flux commitment”), and

∆fNPP = (fNPPn− fNPPn−1) is the change in NPP over one time step.5

For ocean carbon uptake,

mSn =mc0
S + fOn

∑
k

pfkO

mc0
S =

∑
k

mSkn−1 pmkO (B7)

where mc0
S is the value of mS after one time step if fOn = 0 (“zero-flux commitment”).

To solve the implicit system, the nonlinear parametrizations need to be linearized around tn−1. Linearizing ocean surface

CO2 pressure as a function of surface ocean carbon and inserting in equation (4) yields10

fOn ' kgAO(mAn− εpCO2

S,n−1) + kgAO ε
dpCO2

S

dmS

∣∣∣∣∣
n−1

(mSn−1−mSn) (B8)

where equations (5,6) were used. Similarly, NPP as a function of atmospheric carbon is linearized,

∆fNPPn '
dfNPP

dmA

∣∣∣∣
n−1

(mAn−mAn−1) (B9)

using equation (6).

The system is completed with the discretized budget equation (1)15

mAn =mAn−1 + (en− 1
2
− fOn)∆t − (mLn−mLn−1) (B10)

Here, en− 1
2

is assumed to be known (though this only applies to the “forward” solution for atmospheric CO2 from emissions,

solving for emissions from CO2 is also implemented in the model code).

After calculating the “committed” valuesmc∆
L n, m

c0
S n from the model state at tn−1, equations (B7) through (B10) are solved

∆fNPP =

dfNPP

dmA

∣∣∣
n−1

UV +W

(
mLn−1−mc∆

L + ∆ten− 1
2

+ ∆tkgAO

(
εpCO2

S,n−1−mAn−120

+ ε
dpCO2

S

dmS

∣∣∣∣∣
n−1

[
mc0
S −mSn−1 +

∑
k

pfkO
(mLn−1−mc∆

L

∆t
+ en− 1

2

)]))
(B11)

20



with the auxiliary variables

U = kgAO ε
dpCO2

S

dmS

∣∣∣∣∣
n−1

∑
k

pfkO + 1 (B12)

V =
dfNPP

dmA

∣∣∣∣
n−1

∑
k

pfkL + 1 (B13)

W = ∆tkgAO (B14)

and, after inserting into equation (B6),5

fOn =
kgAO
U +W

(
mAn−1− εpCO2

S,n−1− ε
dpCO2

S

dmS

∣∣∣∣∣
n−1

(mc0
S −mSn−1)− (mLn−mLn−1) + ∆ten− 1

2

)
(B15)

The remaining variables are then calculated using equations (B7) and (B10), whereby first the components mkn are calculated

as in equation (B4) and then summed. Finally, the nonlinear parametrizations are recalculated with the updated model state.

The order of these equations matters, as the updated variables are successively inserted into the following equations. The10

land part is solved first, and can be substituted by an explicit step or a separate model, while keeping the ocean step implicit.

An implicit time step is also implemented for calculating SAT from RF (again, solving RF from SAT is also implemented but

not discussed here). RF(tn) can be assumed as known, as atmospheric CO2 is calculated first (i.e., no linearization necessary).

Applying equation (B4) to temperature,

∆TncS = ∆T c∆cS + ∆fHO
∑
k

pfkO15

∆T c∆ =
∑
k

∆Tkn−1 pmkO + fHO n−1/cS
∑
k

pfkO (B16)

where ∆T c∆ is the “committed temperature” for constant heat flux to the ocean, and ∆fHO = fHOn− f
H
On−1 is the change in

heat flux over one time step. Equations (8, 9, B16) are solved for fHO ,

fHOn =
RFn− RF2×

∆T2×
∆T c∆ + fHn−1

∑
k pfkO

RF2×
∆T2× cS

RF2×
∆T2× cS

∑
k pfkO + aO/AO

(B17)

Temperature change ∆Tn then follows from equation (B16).20

The case of piecewise linear approximation (B3) differs from the piecewise constant one ( (B2)) only in a non-zero contri-

bution of fn−1 and a slightly different budget equation,

mAn =mAn−1 +

(
en− 1

2
−
fOn + fOn−1

2

)
∆t − (mLn−mLn−1) (B18)

The first difference merely changes the calculation of “committed” changes, and only the second difference affects the solution

of the implicit time step. In practice, however, this can be neglected without loss of accuracy, and thus equations (B11 – B15)25

and (B17) are also used to solve the piecewise linear system (while equation (B18) is used to close the budget).
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B3 Temperature dependent parameters

BernSCM allows for temperature-dependent model parameters for IRF-based substitute models. This generalization of the

IRF-approach is possible using a box-model form (section 2.3). Currently, temperature-dependent coefficients and time scales

are implemented for the HRBM land biosphere substitute model (Appendix A2).

BernSCM updates any temperature-dependent model parameters by approximating the current temperature ∆Tn by the5

“committed” temperature ∆T c∆ as defined in equation (B16). Accuracy is further improved by substituting ∆T c∆ for ∆Tn in

evaluating equation (B8) with temperature dependent parametrizations.
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Figure 1. BernSCM as a box-type model of the carbon cycle-climate system based on impulse response functions. Heat and carbon taken

up by the mixed ocean surface layer and the land biosphere, respectively, is allocated to a series of boxes with characteristic time scales

for surface-to-deep ocean transport (τO) and of terrestrial carbon overturning (τL). The total perturbations in land and surface ocean carbon

inventory and in surface temperature are the sums over the corresponding individual perturbations in each box, (mSk,∆Tk,mLk). Using

pattern scaling, the response in SAT can be translated to regional climate change for fields v(x, t) of variables such as SAT or precipitation.
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Figure 2. IRFs of ocean (blue) and land (green) model components (without temperature dependence). Ocean components are normalized

to a common mixed layer depth of 50m (multiplied by Hmix/50m), causing initial response to deviate from 1.
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Figure 3. Fraction of realized warming (temperature divided by the equilibrium temperature for the current RF) for idealized experiments

with prescribed atmospheric CO2 concentration increase from preindustrial; panel a shows an exponential CO2 increase by 1% per year

over 140 years to approximately four times the preindustrial concentration (and linear increase in RF); panel b shows an abrupt increase to

fourfold CO2 concentration. BernSCM simulations are shown for climate sensitivities of 2, 3, and 4.5 K and the three available ocean model

substitutes as indicated in the legend. Arrows in panel a indicate the corresponding warming fractions at year 99 compiled by (Frölicher

and Paynter, 2015, SI Tables 1,2 ) for Earth System Models (ESM, right-pointing) and Earth System Models of Intermediate Complexity

(EMICS, left-pointing); arrow colors indicate climate sensitivities below 2.5 K (green), between 2.5 and 3.5 K (black), and above 3.5 K (red).
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Figure 4. IRFMIP pulse response range compared to BernSCM range for parameter uncertainty (colors according to legend) and structural

uncertainty, with model versions HILDA/HRBM (solid lines), HILDA/4box (dots), Princeton/HRBM (dashed). Standard climate sensitivity

is 3◦C, and a climate sensitivity range of 2–4.5◦C is shown by the white area (envelope of all BernSCM runs). Single-model ensemble ranges

from IRFMIP are included as errorbars indicating the 5-95% range and dots indicating the median. The multimodel IRFMIP range is shown

by boxplots indicating median (bold black line), first quartiles (box), extreme values (whiskers) excluding outliers deviating from the median

by more than 1.2 times the interquartile distance (asterisks).
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Figure 5. Land, ocean, and airborne fractions of the 100 GtC CO2 pulse shown in Figure 4 for the coupled (solid lines and colored areas),

the T-only (dashed), the C-only (dotted) and the uncoupled (dash-dotted) model setup. In the T-only case, the land biosphere exhibits a net

release (light green shading), and the ocean uptake consists of the sum of this area and the area delimited by the dashed line below the line

at 1; for the uncoupled case, land uptake is zero and ocean uptake extends from the dash-dotted line to unity.
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Figure 6. BernSCM simulations of the SRES A2 scenario used for C4MIP, with a climate sensitivity of 2.5◦C and the HILDA/HRBM

ocean/land components. Results for three numerical schemes are overlaid; 0.1 yr Euler forward timestep (solid thin line), ii. 1 yr implicit

timestep (dashed bold line), iii. 10 yr implicit timestep with piecewise linear approximation of fluxes (circles); the difference at this resolution

is only visible in the C uptake. The C4MIP model range at 2100 is indicated by grey bars; numbers above or below the bars indicate values

outside of the chart range.
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Table 1. C4MIP sensitivity metrics. The BernSCM range covers the carbon cycle settings as discussed in section 3.1, and different combina-

tions of model components (HILDA-HRBM, HILDA-4box, Princeton-HRBM); the C4MIP range covers all participating models.

α βL βO γL γO g

Unit 10−3 ◦C
ppm

GtC
ppm

GtC
ppm

GtC
K

GtC
K

10−2

BernSCM

Standard 4.4 0.75 1.2 -46 -31 8.3

Range 4.1–4.6 0–0.75 1.0–1.2 -46–0 -31–0 0–8.4

C4MIP ensemble

Average 6.1 1.35 1.13 -79 -30 15

Range 3.8–8.2 0.2–2.8 0.8–1.6 -177– -20 -67– -14 4–31
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Table A1. Model variables

Variable Meaning Unit

mA Atmospheric CO2 carbon GtC

mL Land biomass carbon GtC

mS Dissolved inorganic C perturbation in ocean mixed layer GtC

∆DIC Perturbation of dissolved inorganic C concentration in mixed layer µmol/kg

pCO2
A/S Atmospheric/ocean surface CO2 pressure ppm

RF Radiative forcing Wm−2

∆T Global mean surface (ocean) temperature perturbation ◦C

∆T eq Equilibrium ∆T for current RF ◦C

e CO2 emissions GtC/yr

fO Air-sea C flux GtC/yr

fdeep Net C flux from mixed layer to the deep ocean GtC/yr

fNPP NPP GtC/yr

fdecay Decay of terrestrial biomass C GtC/yr

fHO Air-sea heat flux W

fHO deep Net heat flux from mixed layer to the deep ocean W
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Table A2. Model parameters

Parameter Meaning Unit HILDA Bern2D Princeton

Hmix Depth of mixed ocean surface layer m 75 50 50.9

AO Ocean surface area m−2 3.62·1014 3.5375·1014 3.55·1014

kg Gas exchange coefficient yr−1A−1
O 1/9.06 1/7.46 1/7.66

T ∗ Global average ocean surface temperature °C 18.17 18.30 17.70

All models

aO Ocean fraction of earth surface - 0.71

ε Atmospheric mass of C per mixing ratio GtC/ppm 2.123

% Density of ocean watera kg/m3 1028 (1026.5)

cp Specific heat capacity of water J/kg/K 4000

cs Mixed layer heat capacity J/K cp %HmixAO

Mµmol Mass of DIC per micromole gC/µmol 12.0107 · 10−6

RF2× RF per doubling of atm. CO2 Wm−2 3.708

∆T2× Equilibrium climate sensitivity for CO2 doubling ◦C free

aThe first value is used in the climate component equations, the value in parentheses in the C cycle component equations.
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Table A3. Mixed-layer IRF/Box parameters

HILDA

Input coefficients a (-) 0.27830 0.24014 0.23337 0.13733 0.051541 0.035033 .022936

Time scales τ (yr) 0.45254 0.03855 2.1990 12.038 59.584 237.31

Bern2.5D

Input coefficients a (-) 0.27022 0.45937 0.094671 0.10292 0.0392835 0.012986 .013691

Time scales τ (yr) 0.07027 0.57621 2.6900 13.617 86.797 337.30

Princeton GCM

Input coefficients a (-) 2.2745 -2.7093 1.2817 0.061618 0.037265 0.019565 0.014818

Time scales τ (yr) 1.1976 1.5521 2.0090 16.676 65.102 347.58
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Table A4. Land C stock IRF/Box parameters

HRBM

Input coefficients a (-) -0.15432 0.56173 0.074870 0.41366 0.10406

Time scales τ (yr) 0.20107 1.4754 8.8898 74.098 253.81

sensitivities sa (-) 0.14 0.056 0.072 0.044 0.069

sτ (-) 0.056 0.079 0.057 0.053 0.036

4Box

Input coefficients a (-) -1.5675 2.0060 0.26828 0.29323

Time scales τ (yr) 2.1818 2.8571 20 100
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Table A5. Performance and accuracy for time steps 1–10 yr relative to a reference with a time step of 0.1 yr. The reference simulation is

solved explicitly, otherwise an implicit solution was used. The average execution time of the time integration loop is given as a fraction of

the explicit case. For atmospheric CO2 and SAT, the root mean square difference to the explicit case, divided by the value range over the

simulation is given. All values are for the C4MIP A2 scenario (years 1700 – 2100), using the HILDA ocean component and the HRBM land

component with standard temperature and carbon cycle sensitivities (coupled).

∆t 1yr 10yr

discretization piecewise const. piecewise lin.

execution time 15% 2 %

CO2 RMS/range 0.31‰ 0.45‰

SAT RMS/range 0.52‰ 0.53‰
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