
Near-global climate simulation at 1 km resolution: establishing a
performance baseline on 4,888 GPUs with COSMO 5.0
Oliver Fuhrer1, Tarun Chadha2, Torsten Hoefler3, Grzegorz Kwasniewski3, Xavier Lapillonne1,
David Leutwyler4, Daniel Lüthi4, Carlos Osuna1, Christoph Schär4, Thomas C. Schulthess5,6, and
Hannes Vogt6

1Federal Institute of Meteorology and Climatology, MeteoSwiss
2ITS Research Informatics, ETH Zurich
3Scalable Parallel Computing Lab, ETH Zurich
4Institute for Atmospheric and Climate Science, ETH Zurich
5Institute for Theoretical Physics, ETH Zurich
6Swiss National Supercomputing Centre, CSCS

Correspondence to: Oliver Fuhrer (oliver.fuhrer@meteoswiss.ch)

Abstract. The best hope for reducing long-standing global climate model biases is by increasing resolution to the kilometer

scale. Here we present results from an ultra-high resolution non-hydrostatic climate model for a near-global setup running on

the full Piz Daint supercomputer on 4,888 GPUs. The dynamical core of the model has been completely rewritten using a

domain-specific language (DSL) for performance portability across different hardware architectures. Physical parameteriza-

tions and diagnostics have been ported using compiler directives. To our knowledge this represents the first complete atmo-5

spheric model being run entirely on accelerators at this scale. At a grid spacing of 930 m (1.9 km), we achieve a simulation

throughput of 0.043 (0.23) simulated years per day and an energy consumption of 596 MWh per simulated year. Furthermore,

we propose a new memory usage efficiency (MUE) metric that considers how efficiently the memory bandwidth – the dominant

bottleneck of climate codes – is being used.

1 Introduction10

Should global warming occur at the upper end of the range of current projections, the local impacts of unmitigated climate

change would be dramatic. Particular concerns relate to the projected sea-level rise, increases in the incidence of extreme events

such as heat waves and floods, and changes in availability of water resources and the occurrence of droughts (Pachauri and

Meyer, 2014).

Current climate projections are mostly based on global climate models (GCMs). These models represent the coupled atmos-15

phere-ocean-land system, and integrate the governing equations, for instance, for a set of prescribed emissions scenarios.

Despite significant progress during the last decades, uncertainties are still large. For example, current estimates of the equi-

librium global mean surface warming for doubled greenhouse gas concentrations range between 1.5 and 4.5 °C (Pachauri and

Meyer, 2014). On regional scales and in terms of the hydrological cycle, the uncertainties are even larger. Reducing the uncer-

1

tainties of climate change projections, in order to make optimal mitigation and adaptation decisions, is thus urgent and has a

tremendous economic value (Hope, 2015).

How can the uncertainties of climate projections be reduced? There is overwhelming evidence from the literature that the

leading cause of uncertainty is the representation of clouds, largely due to their influence upon the reflection of incoming

solar radiation (Boucher et al., 2013; Bony et al., 2015; Schneider et al., 2017). Horizontal resolutions of current global5

climate models are typically in the range 50-200 km. At this resolution, clouds must be parametrized, based on theoretical

and semi-empirical considerations. Refining the resolution to the kilometer scale would allow the explicit representation of

deep convective clouds (thunderstorms and rain showers, e.g., Figure 1). Studies using regional climate models demonstrate

that at this resolution the representation of precipitation is dramatically improved (Kendon et al., 2014; Ban et al., 2015). The

representation of shallow cumulus cloud layers, which are common over significant fractions of the tropical oceans, requires10

even higher resolution. The United States National academy of sciences has thus recommended (Bretherton, 2012) ”to develop

high-end global models that execute efficiently [...], enabling cloud-resolving atmospheric resolutions (2-4 km) and eddy-

resolving ocean resolutions (5 km)” in the near future.

While the scientific prospects of such an undertaking are highly promising, the computational implications are significant.

Increasing the horizontal resolution from 50 to 2 km increases the computational effort by at least a factor 253 = 15,000. Such15

simulations will only be possible on future extreme-scale high performance computers. Furthermore, power constraints have

Figure 1. Visualization of a baroclinic wave at day 10 of a simulation with 930 m grid spacing. (White shading) Volume render of cloud ice,

cloud water, and graupel≥ 10−3 g/kg. (Blue shading) Isosurface of rain and snow hydrometeors≥ 4 ·10−2 g/kg. The white contours denote

surface pressure.

2

been driving the widespread adoption of many-core accelerators in leading edge supercomputers and the weather and climate

community is struggling to migrate the large existing codes to these architectures and use them efficiently.

But what does efficient mean? While concerns of total cost of ownership of an High Performance Computing (HPC) system

have shifted the focus from peak floating point performance towards improving power efficiency, it is not clear what the right

efficiency metric is for a full-fledged climate model. Today, floating point operations are around 100× cheaper than data5

movement in terms of time and 1,000× in terms of energy, depending on where the data comes from (Borkar and Chien,

2011; Shalf et al., 2011). Thus, while focusing on floating point operations was very relevant 25 years ago, it has lost most

of this relevance today. Instead, domain-specific metrics may be much more applicable to evaluate and compare application

performance. An often used metric for climate models is the throughput achieved by the simulation measured in simulated

years per wall-clock day (SYPD, see Balaji et al. (2017) for a detailed discussion on metrics). For global atmospheric models,10

a suitable near-term target is to conduct decade-long simulations and to participate in the AMIP1 effort. Such simulations

require a 36 year long simulation for the period 1979-2014, driven by observed atmospheric greenhouse gas concentrations

and sea-surface temperatures. Within the context of current climate modeling centers, such simulation would be feasible for a

SYPD greater or equal to 0.2–0.3. At such a rate the simulation would take up to several months. However, domain-specific

metrics such as SYPD are very dependent on the specific problem and approximations in the code under consideration and15

are often hard to compare. Ideally comparisons would be performed for production quality global atmospheric models that

have been extensively validated for climate simulations and cover the full (non-hydrostatic and compressible) dynamics and

the entire suite of model parameterizations.

With the SYPD metric alone, it is hard to assess how efficiently a particular computing platform is used. Efficiency of

use is particularly important because, at the typical scale of climate simulations, computing resources are very costly and20

energy intensive. Thus, running high-resolution climate simulations also faces a significant computer science problem when

it comes to computational efficiency. As mentioned before, floating point efficiency is often not relevant for state-of-the-art

climate codes. Not only is counting floating point operations per second (flop/s) not reflecting the actual (energy) costs well,

but the typical climate code has very low arithmetic intensity (the ratio of floating point operations to consumed memory

bandwidth). Attempts to increase the arithmetic intensity may increase the floating point rate but it is not clear if it improves25

any of the significant metrics (e.g., SYPD). However, solely focusing on memory bandwidth can also be misleading. Thus, we

propose memory usage efficiency (MUE), a new metric that considers the efficiency of the code’s implementation with respect

to input/output (I/O) complexity bounds as well as the achieved system memory bandwidth.

In summary, the next grand challenge of climate modeling is refining the grid spacing of the production model codes to

the kilometer scale, as it will allow addressing long-standing open questions and uncertainties on the impact of anthropogenic30

effects for the future of our planet. Here, we address this grand challenge and demonstrate the first simulation of a production-

level atmospheric model, delivering 0.23 (0.043) SYPD at a grid-spacing of 1.9 km (930 m), sufficient for AMIP-type simula-

tions. Further, we evaluate the efficiency of these simulations using a new memory usage efficiency metric.

1atmospheric model inter-comparison (AMIP), which is part of the climate-model inter-comparison project (CMIP6, see Eyring et al. (2016))

3

2 Current State of the Art

Performing global kilometer-scale climate simulations is an ambitious goal (Palmer, 2014), but a few kilometer-scale landmark

simulations have already been performed. While arguably not the most relevant metric, many of the studies have reported sus-

tained floating point performance. In 2007, Miura et al. (2007) performed a week-long simulation with a horizontal grid spacing

of 3.5 km with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) on the Earth Simulator, and in 2013 Miyamoto5

et al. (2013) performed a 12-hour-long simulation at a grid spacing of 870 m on the K-computer achieving 230 Tflop/s2 double

precision performance. In 2014, Skamarock et al. (2014) performed a 20-day-long simulation with a horizontal grid spacing

of 3 km with the Model for Prediction Across Scales (MPAS) and later, in 2015, participated in the Next Generation Global

Prediction System (NGGPS) model inter-comparison project (Michalakes et al., 2015) at the same resolution and achieved

0.16 SYPD on the full NERSC Edison system. In 2015, Bretherton and Khairoutdinov (2015) simulated several months of10

an extended aquaplanet channel at a grid spacing of 4 km using the System for Atmospheric Modeling (SAM). Yashiro et al.

(2016) were the first to deploy a weather code on the TSUBAME system accelerated using graphics processing units (GPUs).

The fully rewritten NICAM model sustained a double-precision performance of 60 Tflop/s on 2560 GPUs of the TSUBAME

2.5 supercomputer. In 2016, Yang et al. (2016) implemented a fully implicit dynamical core at 488 m grid spacing in a β-plane

channel achieving 7.95 Pflop/s3 on the TaihuLight supercomputer.15

The optimal numerical approach for high-resolution climate models may depend on the details of the target hardware archi-

tecture. For a more thorough analysis, the physical propagation of information in the atmosphere has to be considered. While

many limited-area atmospheric models use a filtered set of the governing equations that suppresses sound propagation, these

approaches are not precise enough for global applications (Davies et al., 2003). Thus, the largest physical group velocity to

face in global atmospheric models is the speed of sound. The speed of sound in the atmosphere amounts to between 280 and20

360 m/s. Thus in a time span of an hour, the minimum distance across which information needs to be exchanged amounts to

about 1,500 km, corresponding to a tiny fraction of 1.4% of the earth’s surface. However, many numerical schemes exchange

information at much larger rates. For instance, the popular pseudo-spectral methodology (e.g., ECMWF (2016)) requires Leg-

endre and Fourier transforms between the physical grid and the spherical harmonics, and thus couples globally at each time

step. Similarly, semi-Lagrangian semi-implicit time-integration methods require the solution of a Helmholtz-type elliptical25

equation (Davies et al., 2005), which implies global communication at each time step. Both methods use long time steps which

may partially mitigate the additional communication overhead. While these methods have enabled fast and accurate solutions

at intermediate resolution in the past, they are likely not suited for ultra-high resolution models, as the rate of communication

typically increases proportional to the horizontal mesh size. Other approaches use time integration methods with only locally

implicit solvers (e.g., Giraldo et al. (2013)), where they try to retain the advantages of fully implicit methods but only require30

nearest neighbor communication.

The main advantage of implicit and semi-implicit approaches is that they allow large acoustic Courant numbers αc =

c∆t/∆x where c denotes the speed of sound and ∆t and ∆x the time step and the grid spacing, respectively. For instance,

21 Tflop/s = 1012 flop/s
31 Pflop/s = 1015 flop/s

4

Yang et al. (2016) use an acoustic Courant number up to 177, i.e., their time step is 177 times larger than in a standard explicit

integration (this estimate is based on the ∆x= 488 m simulation with ∆t= 240 s). In their case, such a large time step may

be chosen, as the sound propagation is not relevant for weather phenomena.

However, although implicit methods are unconditionally stable (stable irrespectively of the time step used), there are other

limits to choosing the time step. In order to appropriately represent advective processes with typical velocities up to 100 m/s5

and associated phase changes (e.g., condensation and fallout of precipitation), numerical principles dictate an upper limit to

the advective Courant number αu = |u|∆t/∆x, where |u| denotes the largest advective wind speed, e.g., (Ewing and Wang,

2001). The specific limit for αu depends on the numerical implementation and time-stepping procedures. For instance, semi-

Lagrangian schemes may produce accurate results for values of αu up to 4 or even larger. For most standard implementations,

however, there are much more stringent limits, often requiring that αu ≤ 1. For the recent study of Yang et al. (2016), who used10

a fully implicit scheme with a time step of 240 s, the advective Courant number reaches values up to αu = 4.2 and 17.2 for the

∆x=2 km and 488 m simulation, respectively. Depending upon the numerical approximation, such a large Courant number

will imply significant phase errors (Durran, 2010) or even a reduction in effective model resolution (Ricard et al., 2013). In

order to produce accurate results, the scheme would require a significantly smaller time step and would require reducing the

time step with decreasing grid spacing. For the NGGPS inter-comparison the hydrostatic Integrated Forecasting System (IFS)15

model used a time step of 120 s at 3.125 km (Michalakes et al., 2015), the regional semi-implicit, semi-Lagrangian model fully

non-hydrostatic model MC2 used a timestep of 30 s at 3.0 km (Benoit et al., 2002), and Météo France in their semi-implicit

AROME model use a time step of 45 s and 60 s for their 1.3 km and 2.5 km implementations, respectively. Since the IFS model

is not a non-hydrostatic model, we conclude that even for fully-implicit, global, convection-resolving climate simulations at

∼1–2 km grid spacing, a timestep larger than 40–60 s cannot be considered a viable option.20

In the current study we use the split-explicit time stepping scheme with an underlying Runge-Kutta time step (Wicker

and Skamarock, 2002) of the COSMO model (see Section 3.1). This scheme uses sub-time-stepping for the fast (acoustic)

modes with a small time step ∆τ , and explicit time stepping for all other modes with a large time step ∆t= n∆τ . Most of the

computations are required on the large time step, with αu ≤ 2, depending on the combination of time-integration and advection

scheme. In contrast to semi-implicit, semi-Lagrangian and implicit schemes, the approach does not require solving a global25

equation, and all computations are local (i.e., vertical columns exchange information merely with their neighbors). The main

advantage of this approach is that it exhibits – at least in theory – perfect weak scaling4. This also applies to the communication

load per sub-domain, when applying horizontal domain decomposition.

5

Figure 2. Illustration of the computational complexity of the COSMO dynamical core, using a Computational Directed Acyclic Graph

(CDAG). The nodes of the graph represent computational kernels (blue ellipses) that can have multiple input and output variables, halo

updates (green rectangles) and boundary condition operations (orange rectangles). The edges of the graph represent data-dependencies.

Since the dynamical core of COSMO has been written using a domain-specific language (DSL), the CDAG can be produced automatically

using an analysis backend of the DSL compiler. The lengthy serial section in the middle of the figure corresponds to the sound waves sub-

stepping in the fast-waves solver. The parallel section on the upper-left corresponds to the advection of the seven tracer variables. CDAGs

can automatically be produced from C++ code.

3 Methods

3.1 Model description

For the simulations presented in this paper, we use a refactored version 5.0 of the regional weather and climate code developed

by the Consortium for Small-Scale Modeling (COSMO) (COSMO, 2017; Doms and Schättler, 1999; Steppeler et al., 2002)

4Weak scaling is defined as how the solution time varies with the number of processing elements for a fixed problem size per processing elements. This is

in contrast to strong scaling, where the total problem size is kept fixed.

6

and – for the climate mode – the CLM-Community (CLM-Community, 2017). At kilometer-scale resolution, COSMO is used

for numerical weather prediction (Richard et al., 2007; Baldauf et al., 2011) and has been thoroughly evaluated for climate

simulations in Europe (Ban et al., 2015; Leutwyler et al., 2017). The COSMO model is based on the thermo-hydrodynamical

equations describing non-hydrostatic, fully compressible flow in a moist atmosphere. It solves the fully compressible Euler

equations using finite difference discretization in space (Doms and Schättler, 1999; Steppeler et al., 2002). For time-stepping,5

it uses a split-explicit three-stage second-order Runge-Kutta discretization to integrate the prognostic variables forward in time

(Wicker and Skamarock, 2002). For horizontal advection, a fifth-order upwind scheme is used for the dynamic variables and a

Bott scheme (Bott, 1989) is used for the moisture variables. The model includes a full set of physical parametrizations required

for real-case simulations. For this study, we use a single-moment bulk cloud-microphysics scheme that uses five species (cloud

water, cloud ice, rain, snow and graupel) described in Reinhardt and Seifert (2006). For the full physics simulations, addition-10

ally a radiation scheme (Ritter and Geleyn, 1992), a soil model (Heise et al., 2006), and a sub-grid scale turbulence scheme

(Raschendorfer, 2001) are switched on.

The COSMO model is a regional model and physical space is discretized in a rotated latitude / longitude / height coordinate

system and projected onto a regular, structured, three-dimensional grid (IJK). In the vertical, a terrain-following coordinate

supports an arbitrary topography. The spatial discretization applied to solve the governing equations generates so called stencil15

computations (operations that require data from neighboring grid points). Due to the strong anisotropy of the atmosphere,

implicit methods are employed in the vertical direction, as opposed to the explicit methods applied to the horizontal operators.

The numerical discretization yields a large number of mixed compact horizontal stencils and vertical implicit solvers, strongly

connected via the data dependencies on the prognostic variables. Figure 2 shows the data dependency graph of the computa-

tional kernels of the dynamical core of COSMO used in this setup, where each computational kernel corresponds to a complex20

set of fused stencil operations in order to maximize the data locality of the algorithm. Each computational kernel typically

has multiple input and output fields and thus data-dependencies as indicated with the edges of the Computational Directed

Acyclic Graph (CDAG) shown in Figure 2. Maximizing the data locality of these stencil computations is crucial to optimize

the time-to-solution of the application.

To enable the running of COSMO on hybrid high performance computing systems with GPU-accelerated compute nodes,25

we rewrote the dynamical core of the model, which implements the solution to the non-hydrostatic Euler equations, from

Fortran to C++ (Fuhrer et al., 2014). This enabled us to introduce a new C++ template library-based domain specific language

(DSL) we call STELLA (Gysi et al., 2015a), to provide a performance-portable implementation for the stencil algorithmic

motifs by abstracting hardware dependent optimization. Specialized backends of the library produce efficient code for the

target computing architecture. Additionally, the DSL supports an analysis backend that records the access patterns and data30

dependencies of the kernels shown in Figure 2. This information is then used to determine the amount of memory accesses and

assess the memory utilization efficiency. For GPUs, the STELLA backend is written in CUDA, and other parts of the refactored

COSMO implementation use OpenACC directives (Lapillonne and Fuhrer, 2014).

Thanks to this refactored implementation of the model and the STELLA DSL, COSMO is the first fully capable weather and

climate model to go operational on GPU accelerated supercomputers (Lapillonne et al., 2016). In the simulations we analyze35

7

here, the model was scaled to nearly 5,000 GPU-accelerated nodes of the Piz Daint supercomputer5 at the Swiss National

Supercomputing Centre. To our knowledge, COSMO is still the only production-level weather and climate model capable of

running on GPU-accelerated hardware architectures.

3.2 Hardware description

The experiments were performed on the hybrid partition of the Piz Daint supercomputer, located at the Swiss National Su-5

percomputing Centre (CSCS) in Lugano. At the time when our simulation was performed, this supercomputer consisted of a

multi-core partition, which was not used in this study, as well as a hybrid partition of 4’936 Cray XC50 nodes. These hybrid

nodes are equipped with an Intel E5-2690 v3 CPU (code name Haswell) and a PCIe version of the NVIDIA Tesla P100 GPU

(code name Pascal) with 16 GBytes6 second generation high bandwidth memory (HBM2). The nodes of both partitions are

interconnected in one fabric (based on Aries technology) in a Dragonfly topology (Alverson et al., 2012).10

3.3 Energy Measurements

We measure energy to solution of our production level runs on Piz Daint using the methodology established and described

in detail by Fourestey et al. (2014). The resource utilization report provided on Cray systems for a job provides the total

energy (En) consumed by each application run on N compute nodes. The total energy (which includes the interconnect) is

then computed using15

Etot =
En +N/4× 100 W× τ

0.95
, (1)

where τ is the wall time for the application, the N/4×100 W×τ term accounts for the 100 W per blade contribution from the

Aries interconnect and the 0.95 on the denominator adjusts for AC/DC conversion.

3.4 Simulation setup and verification

When pushing ahead the development of global high-resolution climate models, there are two complementary pathways. First,20

one can refine the resolution of existing global climate models (Miura et al., 2007). Second, one may alternatively try to expand

the computational domain of high-resolution limited-area models towards the global scale (Bretherton and Khairoutdinov,

2015). Here we choose the latter and develop a near-global model from the limited-area high-resolution model COSMO.

We perform near-global simulations for a computational domain that extends to a latitude band from 80◦S to 80◦N, which

covers 98.4% of the surface area of planet Earth. The simulation is inspired by the testcase used by the winner of the 201625

Gordon Bell Prize (Yang et al., 2016).

The simulations are based on an idealized baroclinic wave test (Jablonowski and Williamson, 2006), which can be considered

a standard benchmark for dynamical cores of atmospheric models. The test describes the growth of initial disturbances in a

dynamically unstable westerly jet stream into finite-amplitude low and high-pressure systems. The development includes a
5See http://www.cscs.ch/computers/piz_daint/index.html for more information.
61 GByte = 109 Bytes

8

http://www.cscs.ch/computers/piz_daint/index.html

Figure 3. Evolution of a baroclinic wave in a dry simulation with 47 km grid spacing on day 8 and 10: (Left) Surface Pressure and (right)

temperature on the 850 hPa pressure level (roughly 1.5 km above sea level).

rapid transition into a nonlinear regime, accompanied by the formation of sharp meteorological fronts, which in turn trigger

the formation of complex cloud and precipitation systems.

The setup uses a two-dimensional (latitude-height) analytical description of a hydrostatically balanced atmospheric base

state with westerly jet streams below the tropopause, in both hemispheres. A large-scale local Gaussian perturbation is then

applied to this balanced initial state which triggers the formation of a growing baroclinic wave in the northern hemisphere,5

evolving over the course of several days (Figure 3). To allow moist processes, the dry initial state is extended with a moisture

profile (Park et al., 2013) and the parametrization of cloud-microphysical processes is activated.

The numerical problem is discretized on a latitude-longitude grid with up to 36,000 × 16,001 horizontal grid points for

the 930 m simulation. In the zonal direction the domain is periodic and at 80◦ North/South confined by boundary conditions,

relaxing the evolving solution against the initial conditions in a 500 km wide zone. The vertical direction is discretized using10

60 stretched model levels, spanning from the surface to the model top at 40 km. The respective layer thickness widens from

20 m at the surface to 1.5 km near the domain top.

For the verification against previous dry simulations, a simulation at 47 km grid spacing is used. The evolution of the

baroclinic wave (Figure 3) very closely follows the solution originally found by Jablonowski and Williamson (2006, see their

Figure 5). At day 8 of the simulation, three low pressure systems with frontal systems have formed, and at day 10 wave breaking15

is evident. At this time, the surface temperature field shows cut-off warm-core cyclonic vortices.

The evolution in the moist and the dry simulation at very high resolution is shown in Figure 4. The high-resolution simula-

tions reveal the onset of a secondary (likely barotropic) instability along the front, and the formation of small-scale warm-core

vortices with a spacing of up to 200-300 km. The basic structure of these vortices is already present in the dry simulation, but

they exhibit considerable intensification and precipitation in the moist case. Formation of a large series of secondary vortices is20

9

Figure 4. Output of the baroclinic wave (day 10): (Top) dry simulation with 1.9 km grid spacing, (bottom) moist simulation with 0.93 km

grid spacing. (Left) surface pressure, (middle) temperature on the 850 hPa pressure level and (right) precipitation.

sometimes observed in maritime cases of cyclogenesis (Fu et al., 2004; Ralph, 1996), but appears to be a rather rare phenom-

ena. However, it appears that cases with one or a few secondary vortices are not uncommon and they may even be associated

with severe weather (Ludwig et al., 2015).

The resulting cloud pattern is dominated by the comma-shaped precipitating cloud that forms along the cold and occluded

fronts of the parent system (Figure 1). The precipitation pattern is associated with stratiform precipitation in the head of the5

cloud and small patches with precipitation rates exceeding 5 mm/h in their tail, stemming from small embedded convective

cells. Looking closely at the precipitation field (Figure 4 right-hand panel), it can be seen that the secondary vortices are

co-located with small patches of enhanced precipitation.

4 Efficiency metric

In the past, the prevalent metric to measure performance of an application was the number of floating point operations executed10

per second (flop/s). It used to pay off to minimize the number of required floating point operations in an algorithm and to

implement the computing system in such a way that a code would execute many such operations per second. Thus, it made

sense to assess application performance with the flop/s metric. However, the world of supercomputing has changed. Floating

point operations are now relatively cheap. They cost about a factor 1,000 less if measured in terms of energy needed to

move operands between memory and registers, and they execute several 100 times faster compared to the latency of memory15

operations. Thus, algorithmic optimization today has to focus on minimizing data movement, and it may even pay off to re-

compute certain quantities if this avoids data movements. In fact, a significant part of the improvements in time to solution in

the refactored COSMO code are due to re-computation of variables that were previously stored in memory—the original code

was written for vector supercomputers in the 1990s. On today’s architectures, it may even pay off to replace a floating point

10

minimal sparse algorithm with a block-sparse algorithm, into which many trivial zero-operations have been introduced (Hutter

et al., 2014). Using the flop/s metric to characterize application performance could be very misleading in these cases.

A popular method to find performance bottlenecks of both compute- and memory-bound applications is the roofline model (Williams

et al., 2009). However, assessing performance of an application simply in terms of sustained memory bandwidth, which is

measured in bytes per second, would be equally deceiving. For example, by storing many variables in memory, the original5

implementation of COSMO introduces an abundance of memory movements that boost the sustained memory bandwidth but

are inefficient on modern processor architectures, since these movements cost much more than the re-computation of these

variables.

Furthermore, full bandwidth utilization on modern accelerator architectures, such as the GPUs used here, requires very

specific conditions. Optimizing for bandwidth utilization can lead the application developer down the wrong path because10

unaligned, strided, or random accesses can be intrinsic to an underlying algorithm and severely impact the bandwidth (Lee

et al., 2010). Optimizations to improve alignment or reduce randomness of memory accesses may introduce unnecessary

memory operations that could be detrimental to time-to-solution or energy efficiency.

Thus, in order to properly assess the quality of our optimizations, one needs to directly consider data movement. Here we

propose a method how this can be done in practice for the COSMO dynamical core, and present the resulting memory usage15

efficiency (MUE) metric.

Our proposal is motivated by the full-scale COSMO runs we perform here, where 74% of the total time is spent in local

stencil computations. The dependencies between stencils in complex stencil programs can be optimized with various inlining

and unrolling techniques (Gysi et al., 2015a). Thus, to be efficient, one needs to achieve maximum spatial and temporal data

reuse to minimize the number of data movement operations and perform them at the highest bandwidth.20

In order to assess the efficiency in memory usage of an implementation on a particular machine, one needs to compare the

actual number of data transfers7 executed, which we denote with D, with the necessary data transfers Q of the algorithm. Q

is the theoretical lower bound (Hong and Kung, 1981) of number of memory accesses required to implement the numerical

algorithm.

The MUE can be intuitively interpreted as how well the code is optimized both for data locality and bandwidth utilization,25

i.e., if MUE = 1, the implementation reaches the memory movement lower bound of the algorithm and performs all memory

transfers with maximum bandwidth. Formally:

MUE = I/O efficiency ·BW efficiency =
Q

D
· B
B̂

(2)

Where B and B̂ represent the bandwidth achieved by an implementation and maximum achievable bandwidth, respectively.

In order to compute the MUE for COSMO, we developed a performance model that combines the theoretical model from30

Hong and Kung (1981), hypergraph properties and graph partitioning techniques to estimate the necessary data transfer, Q,

from the CDAG information of COSMO. By partitioning the CDAG into subcomputations that satisfies certain conditions
7Here, we define data transfers as load/stores from system memory.

11

imposed by the architecture, this model determines the theoretical minimum amount of memory transfers by maximizing the

data locality inside the partitions. To approximate the number of actual transfers D, we use the same technique to evaluate

the quality of current COSMO partitioning. The values B and B̂ were measured empirically - the former by profiling our

application and the latter by a set of microbenchmarks.

The details of how to determine the MUE for COSMO are given in Appendix A. The MUE metric cannot be used to compare5

different algorithms, but is a measure of the efficiency of an implementation of a particular algorithm on a particular machine,

i.e. how much data locality is preserved and what is the achieved bandwidth. It thus complements other metrics such as SYPD

and may complement popular metrics such as flop/s or memory bandwidth. As compared to the frequently applied roofline

model, the MUE metric also includes the schedule of operations, not simply the efficient use of the memory subsystem. It is

thus a stronger but also more complex metric.10

5 Performance Results

To establish a performance baseline for global kilometer-scale simulations we here present a summary of the key performance

metrics for the simulations at 930 m, 1.9 km, and 47 km grid spacing, as well as a study of weak and strong scalability.

5.1 Weak Scalability

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 4400 1 10 100 1000

tim
e

/ t
im

es
te

p
[s

]

#nodes

128x128
160x160
256x256

Figure 5. Weak scalability on the hybrid P100 Piz Daint nodes, per COSMO time step of the dry simulation.

Until this study the GPU version of COSMO had only been scaled up to 1,000 nodes of the Piz Daint supercomputer (Fuhrer15

et al., 2014), while the full machine – at the time of the experiment – provides 4,932 nodes. The scaling experiments (weak

12

and strong) were performed with the dry simulation setup. Including a cloud microphysics parametrization, as used in the

moist simulation (Figure 4), increases time to solution by about 10%. Since microphysics does not contain any inter-node

communication and is purely local to a single column of gridpoints, we do not expect an adverse impact on either weak or

strong scalability.

Figure 5 shows weak scaling for three per-node domain sizes ranging from 128× 128 to 256× 256 grid points in the5

horizontal, while keeping the size in the vertical direction fixed at 60 grid points. In comparison, on 4,888 nodes, the high-

resolution simulations at 930 m and 1.9 km horizontal grid spacing correspond to a domain size per node of about 346× 340

and 173× 170.8 The model shows excellent weak scalability properties up to the full machine, which can at least partially be

explained by the nearest-neighbor halo-exchange pattern. This property reduces the complexity of COSMO’s scalability on Piz

Daint to the strong scaling behavior of the code. Essentially, the number of grid points per node determines the achievable time10

to solution of a given problem.

5.2 Strong Scalability

 0.01

 0.1

 1

 10

 100

 4888 10 100 1000

200x200 200x200

S
Y

P
D

#nodes

∆x = 19 km, P100
∆x = 19 km, Haswell
∆x = 3.7 km, P100
∆x = 3.7 km, Haswell
∆x = 1.9 km, P100
∆x = 930 m, P100

Figure 6. Strong scalability on Piz Daint: on P100 GPUs (filled symbols), and on Haswell CPUs using 12 MPI ranks per node (empty

symbols).

From earlier scaling experiments of the STELLA library (Gysi et al., 2015b) and the GPU version of COSMO (Fuhrer et al.,

2014; Leutwyler et al., 2016) it is known that, for experiments in double precision on Tesla K20x, linear scaling is achieved as

long as the number of grid points per node exceeds about 64× 64 to 128× 128 grid points per horizontal plane. In comparison,15

8The exact domain size of these simulations is slightly different on each node due to the domain decomposition.

13

〈∆x〉 #nodes ∆t [s] SYPD MWh/SY gridpoints

930 m 4,888 6 0.043 596 3.46×1010

1.9 km 4,888 12 0.23 97.8 8.64× 109

47 km 18 300 9.6 0.099 1.39× 107

Table 1. Time compression (SYPD) and energy cost (MWh/SY) for three moist simulations. At 930 m grid spacing obtained with a full 10d

simulation, at 1.9 km from 1,000 steps, and at 47 km from 100 steps

single precision9 measurements on Tesla P100 already start to saturate at a horizontal domain size of about 200× 200 grid

points per node (Figure 6), corresponding to about 32 nodes for a 19 km setup and about 1,000 nodes for a 3.7 km setup. Since

with the 930 m and 1.9 km setup we are already in (930 m) or close to (1.9 km) the linear scaling regime on the full machine,

we here chose a coarser horizontal grid spacing of 3.7 km and 19 km. The lower limit on the number of nodes is given by the

GPU memory of 16 GB. In addition to the GPU benchmarks (filled symbols), we measured the performance with the CPU5

version of COSMO (empty symbols), using 12 MPI ranks per CPU, i.e., one MPI rank per Haswell core10. Exceeding 1,000

nodes (38× 38 grid points per node) execution on CPUs yields a shorter time to solution than on GPUs.

5.3 Time to Solution

On 4,888 nodes, a 10-day-long moist simulation at 930 m grid spacing required a wall time of 15.3 h at a rate of 0.043 SYPD

(Table 1), including a disk-I/O11 load of 5 3D-fields and 7 2D-fields, written periodically every 12h of the simulation. Short10

benchmark simulations at 1.9 km and 47 km, integrated for 1,000 and 100 time steps respectively, yield 0.23 SYPD and 9.6

SYPD. As mentioned earlier, the minimum value required for AMIP-type simulations is 0.2-0.3 SYPD. While for the 47 km

setup scalability already starts to saturate, even with the 18 nodes reported (Table 1), the high resolution simulations, with an

approximate per-node domain size of 346×340×60 and 173×170×60 respectively, are still in a regime of good scalability.

We have also conducted a 1.9 km simulation with a full set of physical parametrizations switched on and this increases the15

time-to-solution by 27% relative to the moist simulations presented here.

In conclusion, the results show that AMIP-type simulations at horitzontal grid spacings of 1.9 km using a full-fledged

atmospheric model are already feasible on Europe’s highest ranking supercomputer. In order to reach resolutions of 1 km a

further reduction of time-to-solution of at least a factor 5 is required.

In the remainder of this section, we attempt a comparison of our results at 1.9 km against the performance achieved by Yang20

et al. (2016) in their 2 km simulation (as their information for some of the other simulations is incomplete). They argue that

for an implicit solver the timestep can be kept at 240 s independent of the grid spacing and report (see their Figures 7 and 9)

values of 0.57 SYPD for a grid spacing of 2 km, on the full TaihuLight system. As explained in Section 2, such large timesteps

9COSMO supports two floating point formats to store numbers, double and single precision, which can be chosen at compile time.
10The CPU measurements were performed on the hybrid partition of Piz Daint as well, since the multi-core partition is much smaller.
11The standard I/O routines of COSMO require global fields on a single node, which typically do not provide enough storage to hold a global field. To

circumvent this limitation, a binary I/O mode, allowing each node to write its output to the file-system, was implemented.

14

level METIS Q COSMO D no-opt D̂

registers 1.51 · 109 1.72 · 109 2.6 · 109

shared memory 64800 107600 229120

L2 cache 1023 1160 2341
Table 2. Data transfer cost estimations of the dynamical core for a theoretical lower bound (METIS), dynamical core implementation using

the STELLA library (COSMO) and non-optimized dynamical core implementation (no-merging).

are not feasible for global climate simulations resolving convective clouds (even when using implicit solvers), and a maximum

timestep of 40-80 s would very likely be needed; this would decrease their SYPD by a factor of 3 to 6. Furthermore, their

simulation covers only 32% of the Earth’s surface (18◦N to 72◦), but uses twice as many levels; this would further reduce their

SYPD by a factor of 1.5. Thus we estimate that the simulation of Yang et al. (2016) at 2 km would yield 0.124 to 0.064 SYPD

when accounting for these differences. In comparison, our simulation at 1.9 km yields 0.23 SYPD, i.e. is faster by at least a5

factor of 2.5. Note that this estimate does not account for additional simplifications in their study (neglection of microphysical

processes, spherical shape of the planet and topography). In summary, while a direct comparison with their results is difficult,

we argue that our results can be used to set a realistic baseline for production-level GCM performance results and represent an

improvement by at least a factor of 2 with respect to previous results.

5.4 Energy to Solution10

Based on the power measurement (see Section 3.3) we now provide the energy cost of full scale simulations (Table 1) using

the energy cost unit MWh per simulation year (MWh/SY). The 10-day-long simulation at 930 m grid spacing running on 4,888

nodes requires 596 MWh/SY, while the cost of the simulation at 1.9 km on 4,888 nodes is 97.8 MWh/SY. For comparison, the

coarse resolution at 47 km simulation on a reduced number of nodes (18) requires only 0.01 MWh/SY.

A 30 year AMIP-type simulation (with full physics) at a horizontal grid spacing of 1 km on the Piz Daint system would15

take 900 days to complete, resulting in an energy cost of approximately 22 GWh - which approximately corresponds to the

consumption of 6,500 households during one year.

Again, we attempt a comparison with the simulations performed by Yang et al. (2016). The Piz Daint system reports a peak

power draw of 2,052 kW when running the HPL benchmark. The sustained power draw when running the 930 m simulation

amounted to 1,059.7 kW, thus 52% of the HPL value. The TaihuLight system reports a sustained power draw for the HPL20

benchmark of 15,371 kW (top, 2017). While Yang et al. (2016) do not report power consumption of their simulations, we

expect the simulations on Piz Daint to be at least 5 times more power efficient12, even when assuming similar achieved SYPD

(see above).

15

metric optimized not optimized ratio

time per step 0.16s 0.25s 0.64

estimated MUE 0.67 0.44 0.65
Table 3. Performance model verification results. Measured dynamical core time step execution time for the STELLA implementation opti-

mized for data locality and the non-optimized implementation compared against the corresponding MUE metric.

5.5 Simulation efficiency

In view of the energy consumption, it is paramount to consider the efficiency of the simulations executed. We do this here by

considering the Memory Usage Efficiency metric introduced in Section 4.

To estimate a solution for the optimization problem described in Appendix A, Eqn. (A1), we use the METIS library (Karypis

and Kumar, 2009). The results are presented in Table 2. The METIS Q column is the approximation of the lower bound Q5

obtained from the performance model using the METIS library. The COSMO D column is the evaluation of current COSMO

partitioning in our model. The no-opt D̂ column shows the amount of data transfers of COSMO if no data locality optimization

techniques are applied, like in the original Fortran version of the code. Since the original CDAG is too large for the minimization

problem of the performance model, three different simplified versions of the CDAG, that focus on the accesses to three different

layers of the memory hierarchy of the GPU are studied: registers, shared memory, and L2 cache.10

The model shows how efficient COSMO is, in terms of data transfers – it generates only 14%, 66%, and 13% more data

transfers than the lower bound in the register, shared memory and L2 cache layers, respectively. The sophisticated data locality

optimization techniques of the STELLA implementation of the dynamical core of COSMO result in very good data reuse. On

the P100, all memory accesses to/from DRAM go through the L2 unit. Therefore we focus on the efficiency of this unit such

that

MUE =
QL2

DL2
· B
B̂

= 0.88 · 0.76 = 0.67,

where DL2 and QL2 stand for estimated number of main memory operations and its lower bound, respectively.

The model also can estimate the efficiency of our optimizations. Assuming that we can reach the peak achievable bandwidth

B̂ if we perform no data locality optimizations (D̂), then:

MUEno_opt =
QL2

D̂L2

· B̂
B̂

= 0.44

It can be seen, that

MUE

MUEno_opt
=

0.67

0.44
= 1.52

This result shows the importance of data locality optimizations - the optimized implementation is more than 50% faster than15

a potential version that achieves peak bandwidth while using no data locality techniques.

12We conservatively assume an application power draw of at least 35% on TaihuLight

16

To validate the model results, we have conducted single-node runs with and without data locality optimizations. Bandwidth

measurements of the non-optimized version are very close to maximum achievable bandwidth (not shown). The fact that the

two ratios in the third column of Table 3 agree is testimony to the high precision of the performance model.

6 Conclusions

The work presented here sets a new baseline for fully-fledged km-scale climate simulations at global scale. Our implementation5

of the COSMO model that is used for production-level numerical weather predictions at MeteoSwiss has been scaled to the

full system on 4,888 nodes of Piz Daint, a GPU accelerated Cray XC50 supercomputer at the Swiss National Supercomputing

Centre (CSCS). The dynamical core has been fully rewritten in C++ using a DSL that abstracts the hardware architecture

for the stencil algorithmic motifs and enables sophisticated tuning of data-movements. Optimized backends are available for

multi-core processors with OpenMP, GPU accelerators with CUDA, and for performance analysis.10

The code shows excellent strong scaling up to the full machine size when running at a grid spacing of 4 km and below,

on both the P100 GPU accelerators and the Haswell CPU. For smaller problems, e.g., at coarser grid spacing of 47 km, the

GPUs run out of parallelism and strong scalability is limited to about 100 nodes, while the same problem continues to scale

on multi-core processors to 1,000 nodes. Weak scalability is optimal to the full size of the machine. Overall, performance is

significantly better on GPUs as compared to CPUs for the high resolution simulations.15

The simulations performed here are based on the idealized baroclinic wave test (Jablonowski and Williamson, 2006), which

is part of the standard procedure to test global atmospheric models. Our results validate against the original solution published

in this paper.

We measured time to solution in terms of simulated years per wall clock day (SYPD) for a near global simulation on a

latitude band from 80◦S to 80◦N that covers 98.4% of planet Earth’s surface. Running on 4,888 P100 GPUs of Piz Daint,20

currently Europe’s largest supercomputer, we measured 0.23 SYPD at 1.9 km grid spacing. This performance is adequate for

numerical weather predictions and 10-year scale climate studies. Simulations at this resolution had an energy cost of 97.8

MWh/SY.

In a moist simulation with 930 m horizontal grid spacing, we observed the formation of frontal precipitating systems,

containing embedded explicitly-resolved convective motions, and additional cut-off warm-core cyclonic vortices. The explicit25

representation of embedded moist convection and the representation of the resolved instabilities exhibits physically different

behavior from coarser-resolution simulations. This is testimony to the usefulness of the high-resolution approach, as a much

expanded range of scales and processes is simulated. Indeed it appears that for the current test case, the small vortices have not

previously been noted, as the test case appears to converge for resolutions down to 25 km (Ullrich et al., 2015), but they clearly

emerge at kilometer-scale resolution.30

These results serve as a baseline benchmark for global climate model applications. For the 930 m experiment we achieved

0.043 SYPD on 4,888 GPU accelerated nodes, which is approximately one seventh of the 0.2–0.3 SYPD required to conduct

AMIP-type simulations. The energy cost for simulations at this horizontal grid spacing was 596 MWh/SY.

17

Scalable global models do not use a regular structured grid such as COSMO, due to the ”pole problem”. Therefore, scalable

global models tend to use quasi-uniform grids such as cubed-sphere or isosahedral grids. We believe that our results apply di-

rectly to global weather and climate models employing structured grids and explicit, split-explicit or HEVI time discretizations

(e.g. FV3, NICAM). Global models employing implicit or spectral solvers may have a different scaling behavior.

Our work was inspired by the dynamical core solver that won the 2016 Gordon Bell award at the Supercomputing conference5

(Yang et al., 2016). The goal of this award is to reward high performance achieved in the context of a realistic computation.

A direct comparison with the results reported there is difficult, since Yang et al. (2016) were running a research version of a

dynamical core solver and COSMO is a fully-fledged regional weather and climate model. Nevertheless, our analysis indicates

that our benchmarks represent an improvement both in terms of time to solution and energy to solution. As far as we know,

our results represent the fastest (in terms of application throughput measured in SYPD at 1 km grid spacing) simulation of a10

production-ready, non-hydrostatic climate model on a near-global computational domain.

In order to reach the 3-5 SYPD performance necessary for long climate runs, simulations would be needed that run 100

times faster than the baseline we set here. Given that Piz Daint with NVIDIA P100 GPUs is a multi-petaflops system, the 1

km-scale climate runs at 3-5 SYPD performance represent a formidable challenge for exascale systems. As such simulations

are of interest to scientists around the globe, we propose that this challenge be defined as a goal post to be reached by the15

exascale systems that will be deployed in the next decade.

Finally, we propose a new approach to measure the efficiency of memory bound application codes, like many weather and

climate models, running on modern supercomputing systems. Since data movement is the expensive commodity on modern

processors, we advocate that the code’s performance on a given machine be characterized in terms of data movement efficiency.

We note that both detailed mathematical analysis and the general applicability of our MUE metric is beyond the scope of this20

paper and requires additional publication. In this work we show a use-case of the MUE metric and demonstrate its precision

and usefulness in assessing memory subsystem utilization of a machine, using the I/O complexity lower bound as the necessary

data transfers, Q, of the algorithm. With the time to solution and the maximum system bandwidth B̂, it is possible to determine

the memory usage efficiency that captures how well the code is optimized both for data locality and bandwidth utilization.

It will be interesting to investigate the MUE metric in future performance evaluations for weather and climate codes on high25

performance computing systems.

Code and data availability. The particular version of the COSMO model used in this study is based on the official version 5.0 with many

additions to enable GPU-capability and available under license13. These developments are currently in the process of being re-integrated

into the mainline COSMO version. COSMO may be used for operational and for research applications by the members of the COSMO

consortium. Moreover, within a license agreement, the COSMO model may be used for operational and research applications by other30

national (hydro-)meteorological services, universities and research institutes. The model output data will be archived for a limited amount of

time and is available on request.

13consult http://www.cosmo-model.org/content/consortium/licencing.htm for more information

18

Appendix A: Computing the efficiency metric

Here, we discuss how to determine the memory usage efficiency (MUE) given in Equation 2 for an application code, such as

the COSMO model. We need to determine the necessary data transfers Q, the maximum system bandwidth B̂ and measure the

execution time T .

A1 Necessary Transfers Q.5

A natural representation of data flow and dependencies of algorithms is a Computational Directed Acyclic Graph (CDAG).

This abstraction is widely used for register allocation optimization, scheduling problems and communication minimization. A

CDAG models computations as vertices (V) and communications as edges (E) between them. A CDAG can be used to develop

theoretical models that reason about data-movements of an application. However, not all the edges of the CDAG account for

data transfers, since the data required by a computation might be stored in fast memory (cached), depending on the execution10

schedule. Finding an execution schedule that minimizes the transaction metric is NP-hard for general CDAGs, and therefore

an intractable problem (Kwok and Ahmad, 1999).

Minimizing data movement has been the subject of many studies. Two main approaches have been established: (1) finding

analytical lower bounds for chosen algorithms for a given machine model (Hong and Kung, 1981; Vetter, 2001; Goodrich

et al., 2010) and (2) finding optimal graph partitions (Gadde, 2013). The former is designed for particular, highly regular15

small algorithms, like sorting (Vetter, 2001) or matrix multiplication (Hong and Kung, 1981) and is not suitable for large-

scale applications like COSMO. The latter approach is mostly used for minimizing network communication (Liu et al., 2014)

and has not been applied to large applications either. In our performance model, we combine the two into a novel graph

cutting technique. We build on Hong & Kung’s 2S-partitioning (Hong and Kung, 1981) and construct a hypergraph partitioning

technique to estimate a memory movement lower bound. We do not consider internode communication here. To the best of our20

knowledge, we are first to apply these techniques to a real-world parallel application.

The key concept behind estimating Q is to partition the whole CDAG G= (V,E) into subcomputations (2S-partitions)

Pi :
⋃
Pi = V , such that each Pi requires at most S data transfer operations. Then, if H(2S) is the minimal number of 2S-

partitions for a given CDAG, Hong and Kung (1981) showed that the minimal number Q of memory movement operations for

any valid execution of the CDAG is bounded by

Q≥ S× (H(2S)− 1)

Here we outline key steps of our modeling approach:

1. We reduce Hong and Kung’s 2S-Partitioning (Hong and Kung, 1981) definition to hypergraph cut by relaxing the con-

straints on the dominator and minimum set sizes. Each hyperedge contains a vertex from the original CDAG and all its

successors.25

2. We approximate the minimal hypergraph cut by minimizing the total communication volume.

19

memory level vertex def. |V| |E| S

registers one IJK value 157803 984101 32

shared memory one IJ plane 2649 12137 8

L2 cache whole array 1912 9863 29

Table A1. COSMO CDAGs at various GPU memory hierarchy levels.

3. We then express the memory movement lower bound as:

min
∑

Pi

∑
v∈Pi

w(v) · (Nbr(v)− 1) (A1)

subject to

⋃
Pi = V (A2)

∀i6=jPi ∩Pj = ∅ (A3)5

∀Pi

∑
v∈Pi

w(v) · (Nbr(v)− 1)≤ 2S (A4)

whereNbr(v) is the number of partitions that vertex v is adjacent to, w(v) is the memory size of vertex v and S is the size

of memory at a level for which the optimization is performed. Eqn. (A1) now minimizes the sum of the communication

volume across all partitions (assuming we load partitions one after the other), while constraint (A4) bounds the boundary

weight for each partition to 2S such that it fits in fast memory.10

A2 COSMO CDAG

Figure 2 shows the data dependency CDAG of the computational kernels of the dynamical core of COSMO, where each kernel

corresponds to a complex set of fused stencil operations in order to maximize the data locality of the algorithm. A single

timestep in COSMO accesses 781 variables, each of which is represented by a 346 x 340 x 60 array for our 930 m simulation.

Some variables are updated multiple times during a timestep which results in a total number of variable accesses (CDAG15

vertices) of more than 1010. The resulting large and complex graph makes estimating Q impractical. In order to reduce the

complexity one can coarsen the CDAG by grouping multiple accesses into a single vertex. As an example, Figure 2 shows the

coarsest representation of the CDAG where each vertex models a full kernel. Each kernel may read and write various output

variables, compute multiple stencil operations and boundary conditions, or perform halo exchanges. Thus, in this coarsened

version, valuable data dependency information is lost and one cannot argue about the optimality and possible rearrangement of20

the operations fused within a kernel.

We now describe how we determine coarsening strategies of the COSMO CDAG for three levels of the memory hierarchy

of our target system, registers, shared memory, and L2 cache:

20

0

100

200

300

400

500

600

0.1 1000

M
em

o
ry

 B
W

 (
G

B
/s

)

Data size (MB)

28.2 1,00010010.1

362

10

COPY (double)
a[i] = b[i]

GPU STREAM (double)
a[i] = b[i] (1D)

AVG i-stride (float)
a[i]=b[i-1]+b[i+1]

5-POINT (float)
a[i] = b[i] + b[i+1] + b[i-1] +

b[i+jstride] +b[i-jstride]

COPY (float)
a[i] = b[i]

Figure A1. Bandwidth of the representative stencil benchmarks and GPU-STREAM on Tesla P100. All kernels (except for GPU STREAM)

operate on a 3D domain.

1. Registers (65’536): The COSMO GPU implementation assigns all computations accessing variables with the same IJ

coordinate to the same GPU thread and use registers to reuse values in the K direction. To model this memory hierarchy,

it is only necessary to keep the stencil accesses in the K direction. Thus, all accesses in the IJ plane are represented as a

single vertex in the CDAG, which is then simplified to 781 variables and their dependencies among all 60 levels in K.

2. Shared memory (64 kB): The shared memory of the GPU is used to communicate values between the different compute5

threads. In order to model this layer, all different accesses in the K direction of a variable are represented as a single vertex

in the CDAG, while all accesses in the IJ plane are kept.

3. L2 cache (4 MB):. This last cache level before DRAM is used to store whole arrays (fields). In this layer all accesses to

a variable in any direction are represented as a vertex in the CDAG. It keeps only the data dependencies among variables,

irrespective of the offset and direction of the access.10

Table A1 lists details about the CDAGs at each of our three levels. Memory capacity of the GPU for each of the three layers is

then used as a constraint to derive the parameter S (see values in Table A1). Values of the estimation of Q, obtained from the

performance model for the three memory levels are shown in Table 2.

To generate the whole CDAG, we used the STELLA analysis back end (Gysi et al., 2015b) to trace all local memory accesses

to all fields. Based on the information from the access offsets and order of operations, we reconstruct the read-write, write-read,15

and write-write dependencies.

21

A3 Maximum Achievable Bandwidth B̂

We now describe how we measure the memory usage efficiency in practice. We start by describing how to determine the

maximum achievable bandwidth for COSMO stencils. Even though the Tesla P100 has a theoretical peak memory bandwidth

of 720 GB/s (NVIDIA, 2016), we argue that this may not be achievable for real applications. A well-established method to

measure the maximum achievable bandwidth of GPUs is the GPU STREAM benchmark (Deakin et al., 2016). Our tests show5

that the maximum achievable bandwidth for COPY is 557 GB/s if at least 30 MB double precision numbers are copied (Figure

A1). However, stencil codes on multi-dimensional domains like COSMO require more complex memory access patterns that,

even when highly tuned, cannot achieve the same bandwidth as STREAM due to architectural limitations.

We identified the most common patterns and designed and tuned a set of microbenchmarks that only mimic the memory

access patterns without the computation to investigate the machine capability of handling memory accesses for stencils. They10

include aligned, unaligned and strided patterns in all dimensions. All benchmarks operate on a 3D domain of parametric size,

on either single or double precision numbers. The results of a representative set of four chosen microbenchmarks are shown

in Figure A1, together with the GPU-STREAM, which operates on 1D domain. The fastest stencil kernel (double precision

aligned COPY) reaches 510 GB/s. The slowdown compared to GPU-STREAM is due to the more complex access pattern in

the 3D domain. Furthermore, using single precision numbers further deteriorates the bandwidth on P100 (COPY (float) reaches15

475 GB/s). Our COSMO 930 m run uses predominantly single precision numbers on a 346 x 340 x 60 domain, which results

in 28.2 MB of data per field. Our measurements show that the maximum achievable bandwidth for this setup is 362 GB/s (in

the best case of the simple COPY benchmark). We will use this upper-bound number as the maximum system bandwidth. The

average measured memory bandwidth across all COSMO real-world stencils is 276 GB/s which gives B
B̂

= 0.76.

22

Competing interests. TEXT

Acknowledgements. This work was supported by the Swiss National Science Foundation under Sinergia grant CRSII2_154486/1 and by a

grant from the Swiss National Supercomputing Centre (CSCS). We would like to acknowledge the many contributors to the GPU-capable

version of COSMO used in this study. Among others: Andrea Arteaga, Mauro Bianco, Isabelle Bey, Christophe Charpilloz, Valentin Clement,

Ben Cumming, Tiziano Diamanti, Tobias Gysi, Peter Messmer, Katherine Osterried, Anne Roches, Stefan Rüdisühli, Pascal Spörri. Also, the5

authors would like to acknowledge the Center for Climate Systems Modeling (C2SM) and the Federal Office of Meteorology and Climatology

MeteoSwiss for their support. Furthermore, we would like to thank Nils Wedi and Piotr Smolarkiewicz (ECMWF) for useful comments and

discussions. Finally, we would like to thank an anonymous reviewer, Rupert W. Ford (STFC) and the topical editor of GMD (Sophie Valcke)

for their constructive comments and reviews that significantly improved the clarity and quality of the manuscript.

23

References

TOP500 Supercomputer Site, http://www.top500.org, 2017.

Alverson, B., Froese, E., Kaplan, L., and Roweth, D.: Cray XC Series Network, Tech. rep., accessed: 2017-04-03, 2012.

Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G., Benson, R., Caubel, A., Durachta, J.,

Foujols, M.-A., Lister, G., Mocavero, S., Underwood, S., and Wright, G.: CPMIP: measurements of real computational performance of5

Earth system models in CMIP6, Geoscientific Model Development, 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://www.

geosci-model-dev.net/10/19/2017/, 2017.

Baldauf, M., Seifert, A., Foerstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather

Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011.

Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?,10

Geophysical Research Letters, 42, 1165–1172, 2014GL062588, 2015.

Benoit, R. et al.: The Real-Time Ultrafinescale Forecast Support during the Special Observing Period of the MAP, Bulletin of the American

Meteorological Society, 83, 85–109, 2002.

Bony, S. et al.: Clouds, circulation and climate sensitivity, Nature Geosci, 8, 261–268, 2015.

Borkar, S. and Chien, A. A.: The Future of Microprocessors, Commun. ACM, 54, 67–77, 2011.15

Bott, A.: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes, Monthly Weather Review, 117,

1006–1016, 1989.

Boucher, O., Randall, D., et al.: Climate Change 2013: The Physical Basis, vol. Contribution of Working Group I to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change, chap. Clouds and Aerosols, Cambridge University Press, New York, NY, USA,

2013.20

Bretherton, C. S.: A National Strategy for Advancing Climate Modeling, p. 280, National Academic Press, http://www.nap.edu/, 2012.

Bretherton, C. S. and Khairoutdinov, M. F.: Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aqua-

planet, Journal of Advances in Modeling Earth Systems, 7, 1765–1787, 2015.

CLM-Community: Climate Limited-area Modelling Community, http://www.clm-community.eu/, [Online; accessed 3-April-2017], 2017.

COSMO: Consortium for Small-Scale Modeling, http://www.cosmo-model.org/, [Online; accessed 4-April-2017], 2017.25

Davies, T., Staniforth, A., Wood, N., and Thuburn, J.: Validity of anelastic and other equation sets as inferred from normal-mode analysis,

Quarterly Journal of the Royal Meteorological Society, 129, 2761–2775, 2003.

Davies, T. et al.: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere, Quarterly Journal of the Royal

Meteorological Society, 131, 1759–1782, 2005.

Deakin, T., Price, J., Martineau, M., and McIntosh-Smith, S.: GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of30

Many-Core Processors Across Diverse Parallel Programming Models, pp. 489–507, Springer, Cham, 2016.

Doms, G. and Schättler, U.: The nonhydrostatic limited-area model LM (Lokal-Modell) of the DWD. Part I: Scientific documentation, Tech.

rep., German Weather Service (DWD), Offenbach, Germany, http://www.cosmo-model.org/, 1999.

Durran, D. R.: Numerical Methods for Fluid Dynamics with Applications to Geophysics, vol. 32 of Texts in Applied Mathematics, Springer

New York, 2010.35

ECMWF: IFS Documentation Part III: Dynamics and numerical procedures, European Centre for Medium-Range Weather Forecasts, Shin-

field Park, Reading, RG2 9AX, England, 2016.

24

http://www.top500.org
https://doi.org/10.5194/gmd-10-19-2017
https://www.geosci-model-dev.net/10/19/2017/
https://www.geosci-model-dev.net/10/19/2017/
https://www.geosci-model-dev.net/10/19/2017/
http://www.nap.edu/
http://www.clm-community.eu/
http://www.cosmo-model.org/
http://www.cosmo-model.org/

Ewing, R. E. and Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations, Journal

of Computational and Applied Mathematics, 128, 423 – 445, numerical Analysis 2000. Vol. VII: Partial Differential Equations, 2001.

Eyring, V. et al.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci-

entific Model Development, 9, 1937–1958, 2016.

Fourestey, G. et al.: First Experiences With Validating and Using the Cray Power Management Database Tool, CoRR, abs/1408.2657, 2014.5

Fu, G., Niino, H., Kimura, R., and Kato, T.: Multiple Polar Mesocyclones over the Japan Sea on 11 February 1997, Monthly Weather Review,

132, 793–814, 2004.

Fuhrer, O. et al.: Towards a performance portable, architecture agnostic implementation strategy for weather and climate models, Supercom-

puting frontiers and innovations, 1, http://superfri.org/superfri/article/view/17, 2014.

Gadde, S.: Graph partitioning algorithms for minimizing inter-node communication on a distributed system, Ph.D. thesis, The University of10

Toledo, 2013.

Giraldo, F. X., Kelly, J. F., and Constantinescu, E. M.: Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model

of the Atmosphere (NUMA), SIAM Journal on Scientific Computing, 35, B1162–B1194, https://doi.org/10.1137/120876034, https://doi.

org/10.1137/120876034, 2013.

Goodrich, M. T., Sitchinava, N., and Arge, L.: Parallel external memory graph algorithms, 2010 IEEE International Symposium on Parallel15

and Distributed Processing (IPDPS), 00, 1–11, 2010.

Gysi, T., Grosser, T., and Hoefler, T.: MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous

Architectures, in: Proceedings of the 29th ACM on International Conference on Supercomputing, ICS ’15, pp. 177–186, ACM, New

York, NY, USA, 2015a.

Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., and Schulthess, T. C.: STELLA: A Domain-specific Tool for Structured Grid Methods in20

Weather and Climate Models, in: Proc. of the Intl. Conf. for High Performance Computing, Networking, Storage and Analysis, SC ’15,

pp. 41:1–41:12, ACM, New York, NY, USA, 2015b.

Heise, E., Ritter, B., and Schrodin, R.: Operational implementation of the multilayer soil model, COSMO Tech. Rep., No. 9, Tech. rep.,

COSMO, 2006.

Hong, J.-W. and Kung, H. T.: I/O Complexity: The Red-blue Pebble Game, in: Proceedings of the Thirteenth Annual ACM Symposium on25

Theory of Computing, STOC ’81, pp. 326–333, ACM, New York, NY, USA, 1981.

Hope, C.: The $10 trillion value of better information about the transient climate response, Philosophical Transactions of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences, 373, 2015.

Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: CP2K: atomistic simulations of condensed matter systems, Wiley Interdisci-

plinary Reviews: Computational Molecular Science, 4, 15–25, 2014.30

Jablonowski, C. and Williamson, D. L.: A baroclinic instability test case for atmospheric model dynamical cores, Quarterly Journal of the

Royal Meteorological Society, 132, 2943–2975, 2006.

Karypis, G. and Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, http://www.cs.umn.edu/~metis,

2009.

Kendon, E. J. et al.: Heavier summer downpours with climate change revealed by weather forecast resolution model, Nature Clim. Change,35

4, 570–576, 2014.

Kwok, Y.-K. and Ahmad, I.: Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors, ACM Comput. Surv.,

31, 406–471, 1999.

25

http://superfri.org/superfri/article/view/17
https://doi.org/10.1137/120876034
https://doi.org/10.1137/120876034
https://doi.org/10.1137/120876034
https://doi.org/10.1137/120876034
http://www.cs.umn.edu/~metis

Lapillonne, X. and Fuhrer, O.: Using Compiler Directives to Port Large Scientific Applications to GPUs: An Example from Atmospheric

Science, Parallel Processing Letters, 24, 1450 003, 2014.

Lapillonne, X. et al.: Operational numerical weather prediction on a GPU-accelerated cluster supercomputer, in: EGU General Assembly

Conference Abstracts, vol. 18 of EGU General Assembly Conference Abstracts, p. 13554, 2016.

Lee, V. W. et al.: Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU, SIGARCH Comput.5

Archit. News, 38, 451–460, 2010.

Leutwyler, D., Fuhrer, O., Lapillonne, X., Lüthi, D., and Schär, C.: Towards European-scale convection-resolving climate simulations with

GPUs: a study with COSMO 4.19, Geoscientific Model Development, 9, 3393–3412, 2016.

Leutwyler, D., Lüthi, D., Ban, N., Fuhrer, O., and Schär, C.: Evaluation of the convection-resolving climate modeling approach on continen-

tal scales, Journal of Geophysical Research: Atmospheres, 122, 5237–5258, https://doi.org/10.1002/2016JD026013, http://dx.doi.org/10.10

1002/2016JD026013, 2017.

Liu, L., Zhang, T., and Zhang, J.: DAG Based Multipath Routing Algorithm for Load Balancing in Machine-to-Machine Networks, Interna-

tional Journal of Distributed Sensor Networks, 10, 457 962, 2014.

Ludwig, P., Pinto, J. G., Hoepp, S. A., Fink, A. H., and Gray, S. L.: Secondary Cyclogenesis along an Occluded Front Leading to Damaging

Wind Gusts: Windstorm Kyrill, January 2007, Monthly Weather Review, 143, 1417–1437, 2015.15

Michalakes, J. et al.: AVEC Report: NGGPS Level-1 Benchmarks and Software Evaluation, Tech. rep., NGGPS Dynamical Core Test Group,

2015.

Miura, H., Satoh, M., Nasuno, T., Noda, A. T., and Oouchi, K.: A Madden-Julian Oscillation Event Realistically Simulated by a Global

Cloud-Resolving Model, Science, 318, 1763–1765, 2007.

Miyamoto, Y. et al.: Deep moist atmospheric convection in a subkilometer global simulation, Geophysical Research Letters, 40, 4922–4926,20

2013.

NVIDIA: NVIDIA TESLA P100 Technical Overview, Tech. rep., accessed: 2017-04-03, 2016.

Pachauri, R. K. and Meyer, L. A., eds.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth

Assessment Report of the Intergovtl Panel on Climate Change, p. 151, IPCC, Geneva, Switzerland, 2014.

Palmer, T.: Climate forecasting: Build high-resolution global climate models, Nature, 2014.25

Park, S.-H., Skamarock, W. C., Klemp, J. B., Fowler, L. D., and Duda, M. G.: Evaluation of Global Atmospheric Solvers Using Extensions

of the Jablonowski and Williamson Baroclinic Wave Test Case, Monthly Weather Review, 141, 3116–3129, 2013.

Ralph, F. M.: Observations of 250-km-Wavelength Clear-Air Eddies and 750-km-Wavelength Mesocyclones Associated with a Synoptic-

Scale Midlatitude Cyclone, Monthly Weather Review, 124, 1199–1210, 1996.

Raschendorfer, M.: The new turbulence parameterization of LM, 2001.30

Reinhardt, T. and Seifert, A.: A three-category ice scheme for LMK, 2006.

Ricard, D., Lac, C., Riette, S., Legrand, R., and Mary, A.: Kinetic energy spectra characteristics of two convection-permitting limited-area

models AROME and Meso-NH, Quarterly Journal of the Royal Meteorological Society, 139, 1327–1341, https://doi.org/10.1002/qj.2025,

http://dx.doi.org/10.1002/qj.2025, 2013.

Richard, E., Buzzi, A., and Zängl, G.: Quantitative precipitation forecasting in the Alps: The advances achieved by the Mesoscale Alpine35

Programme, Q. J. Roy. Meteor. Soc., 133, 831–846, https://doi.org/10.1002/qj.65, 2007.

Ritter, B. and Geleyn, J.-F.: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate

simulations, Monthly Weather Review, 120, 303–325, 1992.

26

https://doi.org/10.1002/2016JD026013
http://dx.doi.org/10.1002/2016JD026013
http://dx.doi.org/10.1002/2016JD026013
http://dx.doi.org/10.1002/2016JD026013
https://doi.org/10.1002/qj.2025
http://dx.doi.org/10.1002/qj.2025
https://doi.org/10.1002/qj.65

Schneider, T. et al.: Climate goals and computing the future of clouds, Nature Clim. Change, 7, 3–5, 2017.

Shalf, J., Dosanjh, S., and Morrison, J.: Exascale Computing Technology Challenges, pp. 1–25, Springer Berlin Heidelberg, Berlin, Heidel-

berg, https://doi.org/10.1007/978-3-642-19328-6_1, https://doi.org/10.1007/978-3-642-19328-6_1, 2011.

Skamarock, W. C., Park, S.-H., Klemp, J. B., and Snyder, C.: Atmospheric Kinetic Energy Spectra from Global High-Resolution Nonhydro-

static Simulations, Journal of the Atmospheric Sciences, 71, 4369–4381, 2014.5

Steppeler, J., Doms, G., Schättler, U., Bitzer, H., Gassmann, A., Damrath, U., and Gregoric, G.: Meso gamma scale forecasts using the

nonhydrostatic model LM, Meteor. Atmos. Phys., 82, 2002.

Ullrich, P. A., Reed, K. A., and Jablonowski, C.: Analytical initial conditions and an analysis of baroclinic instability waves in f- and, β-plane

3D channel models, Quarterly Journal of the Royal Meteorological Society, 141, 2972–2988, 2015.

Vetter, J. S.: External Memory Algorithms and Data Structures: Dealing with Massive Data, ACM Comput. Surv., 33, 209–271, 2001.10

Wicker, L. J. and Skamarock, W. C.: Time-Splitting Methods for Elastic Models Using Forward Time Schemes, Monthly Weather Review,

130, 2088–2097, 2002.

Williams, S., Waterman, A., and Patterson, D.: Roofline: An Insightful Visual Performance Model for Multicore Architectures, Commun.

ACM, 52, 65–76, https://doi.org/10.1145/1498765.1498785, http://doi.acm.org/10.1145/1498765.1498785, 2009.

Yang, C. et al.: 10M-core Scalable Fully-implicit Solver for Nonhydrostatic Atmospheric Dynamics, in: Proceedings of the International15

Conference for High Performance Computing, Networking, Storage and Analysis, SC16, pp. 6:1–6:12, IEEE Press, Piscataway, NJ, USA,

2016.

Yashiro, H. et al.: Performance Analysis and Optimization of Nonhydrostatic ICosahedral Atmospheric Model (NICAM) on the K Computer

and TSUBAME2.5, in: Proceedings of the Platform for Advanced Scientific Computing Conference on ZZZ - PASC '16, ACM Press,

2016.20

27

https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

