
The authors would like to sincerely thank both referees as well as the topical
editor for their careful review and constructive comments that have helped
to improve the revised manuscript.

Topical Editor

1. However, please note that in your response you are also supposed to
provide ”... (3) author’s changes in manuscript. Regarding author’s
changes, a marked-up manuscript version (track changes in Word, la-
texdi↵ in LaTeX) converted into a *.pdf including the author’s re-
sponse must be provided.” so to help the editor’s work.

This was a mistake on our side. We did not submit the correct PDF
to the online submission system. The correct version including the
replies and a marked-up version of the manuscript was available but
not correctly submitted. We apologize sincerely for this error on our
side.

2. Please point me to the discussion on why your results also apply to
global weather and climate models (RC2 comment #1)

The discussion has been added in the conclusions.

3. Please point me to the sentence where you specify that you don’t
optimise data-movement in general, also considering internode com-
munication (RC1 comment b).

The sentence has been added in Appendix A1 just before the sentence
”To the best of our knowledge...”.

4. Minor comments

(a) p.4, L22: how can you write that 1500 km -a distance- corre-
sponds to 1.4% of the earth surface? If I calculate 1500x1500
km2 (i.e. 1500 km in each direction) I get 0.4% of the earth
surface.
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We consider that sound can propagate in all directions and thus
compute the surface area of a spherical cap. The surface area
of a spherical cap can be computed by A = 2⇡r2 (1� cos✓) =
7.03⇥106 km2, where r is the Earth’s radius and ✓ is the opening
angle defining the cap ✓ = 1500 km/(2⇡r)⇥ 360� = 13.48�. This
corresponds to 1.4% of the Earth’s surface of 510.1⇥ 106 km2

(b) p.4, L 28: remove ”but”

Corrected in revised manuscript.

(c) p.5, L17: change ”MeteoFrance” for ”Mto France”

Corrected in revised manuscript.

(d) p.8 in formula (1), please specify what is ”N/4”

Corrected in revised manuscript.

(e) p. 13, caption Figure 6; I think ”Strong scalability on Piz Daint:
on Tesla P100 GPUs (filled symbols), and on Haswell CPUs using
12 MPI ranks per node (empty symbols)” would be clearer

Corrected in revised manuscript.

(f) p.14, L7; remove one ”on CPUS” in ”...execution on CPUs yields
to a shorter time to solution on CPUs than on GPUs.”

Corrected in revised manuscript.

(g) Please just change ”isosahedral” for ”icosahedral” in the new
paragraph.

Corrected in revised manuscript.

RC1: Anonymous Referee

1. ”Figure 2 provides no information whatsoever: ...”

The e�ciency metric presented in Section 4 requires a graph-representation
of the data consumers and producers (nodes) and data dependencies
amongst them (edges). Figure 2 was our attempt to illustrate the com-
plexity of this graph (albeit in a simplified form) and we do think it is
important. But the reviewer is right in his assessment that currently
the figure is not explained very well. We have decided to retain the
figure, but have revised and extended the figure caption and added a
better description in the text.

2. ”there are a number of issues with English, spelling etc...”

Thank you very much for the detailed comments in the supplement,
which we address in the revised manuscript.
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RC2: R. W. Ford

1. ” . It would be good (at least for me) if you could outline how these
approaches relate and therefore give a feel of what global models can
learn from this work. ”

We believe that our results apply directly to global weather and climate
models employing structured grids and explicit, split-explicit or HEVI
time discretizations (e.g. FV3, NICAM). Global models employing
implicit or spectral solvers may have a di↵erent scaling behavior. We
have added a discussion in the revised manuscript in the conclusions.

2. ” . I think it would be worth toning down the claims for the metric
in this paper and limit it to saying that it was useful for this analysis
and that it will be further analysed in future work.”

We have focused the claims of the usefulness of the metric to the ana-
lyzed application. We agree that the journal is not the best venue to
argue for the metric in general and thus focus the discussion solely on
the use-case studied, which is also of biggest interest for the commu-
nity.

(a) ” . Could you please modify this section slightly, perhaps just to
say that ”algorithmic optimization is having to increasingly focus
[on data movement].”

We do not perform or propose any algorithmic optimizations. We
simply change the schedule (i.e., the order) of computations in
the application to improve locality.

(b) ”It is not immediately clear whether internode comms is opti-
mised here. ”

While the method can be used to optimize data-movement in
general (also considering internode communication), this has not
been done. We mention this is the text in the revised manuscript.

(c) ”Can MUE be used on memory bound codes that do not use
STELLA and therefore do not have a CDAG?”

The MUE metric is a general concept and not related to the pro-
gramming model. The fact that the dynamical core of COSMO
was written using a DSL allowed us to generate the CDAG auto-
matically.

(d) ”Is the metric [MUE] expeted to be useful for CPU’s as well,
given their complex memory hierarchies?”
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Yes, the metric can be used in a straightforward manner. Espe-
cially due to the complex memory hierarchies it is of paramount
importance to optimize data movement and the MUE metric can
be used to assess how well a code is doing this. We will add a
sentence in the conclusions mentioning the applicability of the
MUE metric to other hardware architectures.

(e) ” . However, a program might have di↵erent phases with dif-
ferent access patterns potentially leading to di↵erent achievable
bandwidths e.g. ECMWF’s IFS.”

In this case each part would require its own micro-benchmarks.
Due to the homogeneity of the COSMO dynamical we decided to
use an average bandwidth for simplicity.

(f) ”How does MUE relate to roofline (and other metrics)?”

MUE is really including the schedule of operations, not simply
the e�cient use of the memory subsystem. It is thus a stronger
but also more complex metric than the roofline model. We have
added this comment in the revised manuscript.

(g) ”Is MUE really two metrics (ratios) rather than one?”

The MUE metric is the product of two metrics that can be of
interest in their own right, namely the I/O e�ciency and the
memory bandwidth e�ciency. The I/O e�ciency measures how
close an application is to making only the minimal amount of
necessary memory accesses. The memory bandwidth e�ciency is
a measure of how close an application is from using maximum
achievable memory bandwidth. This is explained in Section 4
and results of the individual metrics for COSMO are presented
in Section 5.5.

3. ”I also have a number of minor suggestions for changes mostly to do
with improving the readability of the paper, which are given below”

Thank you very much for your comments! We will address them in
the revised manuscript.

(a) ”P13 L6: is there any benefit in using OpenMP, either to reduce
comms, or for hyper- threading?”

The GPU-enabled version does no longer contain OpenMP di-
rectives in the Fortran part of the code, we can thus not answer
this question directly. Previous experiments with an OpenMP

4



threaded version did not show any improvement in strong scal-
ability with respect to a flat MPI version. No modifications to
revised manuscript.

(b) ”P15 L4-9: Please explain this argument in more detail. It is
unclear to me what the logic is to get to 5 times more power
e�cient.”

A lower-bound estimate (assuming their reported SYPD) and
taking HPL power draws would give a factor 7. While it might
be that the power draw when running their application is less
than 51% of the HPL value, this is unlikely. To be on the safe
side, we assumed no less than 35% of the HPL value. Footnote
added in revised manuscript.

(c) ”P16 L8: This conclusion is less obvious to me as you have made
the assumption that the unoptimised version achieves peak band-
width and that may not be the case.”

The bandwidth measurements of the non-optimized version con-
firm that we are very close to peak bandwidth. Comment added
in revised manuscript.
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Abstract. The best hope for reducing long-standing global climate model biases , is through increasing the
:
is
:::
by

:::::::::
increasing

resolution to the kilometer scale. Here we present results from an ultra-high resolution non-hydrostatic climate model for

a near-global setup running on the full Piz Daint supercomputer on 4888
::::
4,888

:
GPUs. The dynamical core of the model

has been completely rewritten using a domain-specific language (DSL) for performance portability across different hardware

architectures. Physical parameterizations and diagnostics have been ported using compiler directives. To our knowledge this5

represents the first complete atmospheric model being run entirely on accelerators at this scale. At a grid spacing of 930 m

(1.9 km), we achieve a simulation throughput of 0.043 (0.23) simulated years per day and an energy consumption of 596 MWh

per simulated year. Furthermore, we propose the
:
a
:
new memory usage efficiency

::::::
(MUE)

:
metric that considers how efficiently

the memory bandwidth – the dominant bottleneck of climate codes – is being used.

1 Introduction10

Should global warming occur at the upper end of the range of current projections, the local impacts of unmitigated climate

change would be dramatic. Particular concerns relate to the projected sea-level rise, increases in the incidence of extreme events

such as heat waves and floods, and changes in availability of water resources and the occurrence of droughts (Pachauri and

Meyer, 2014).

Currently available
::::::
Current climate projections are mostly based on global climate models (GCMs). These models represent15

the coupled atmosphere-ocean-land system, and integrate the governing equationsfor
:
,
:::
for

::::::::
instance,

:::
for a set of prescribed

emissions scenarios. Despite significant progress during the last decades, the uncertainties are still large. For example, current

estimates of the equilibrium global mean surface warming for doubled greenhouse gas concentrations range between 1.5 and

4.5 °C (Pachauri and Meyer, 2014). On regional scales and in terms of the hydrological cycle, the uncertainties are even larger.
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Reducing the uncertainties of climate change projections, in order to make optimal mitigation and adaptation decisions, is thus

urgent and has a tremendous economic value (Hope, 2015).

How can the uncertainties of climate projections be reduced? There is overwhelming evidence from the literature that the

leading cause of uncertainty is the representation of clouds, largely due to their influence upon the reflection of incoming

solar radiation (Boucher et al., 2013; Bony et al., 2015; Schneider et al., 2017). Horizontal resolutions of current global5

climate models are typically in the range 50-200 km. At this resolution, clouds must thus be parametrized, based on theoretical

and semi-empirical considerations. Refining the resolution to kilometer-scale resolution would allow to explicitly represent

::
the

:::::::::
kilometer

::::
scale

::::::
would

:::::
allow

:::
the

:::::::
explicit

::::::::::::
representation

::
of deep convective clouds (thunderstorms and rain showers, e.g.,

Figure 1). Studies using regional climate models demonstrate that around
:
at

:
this resolution the representation of precipitation

is dramatically improved (Kendon et al., 2014; Ban et al., 2015). The representation of shallow cumulus cloud layers, which10

are common over significant fractions of the tropical oceans, requires even higher resolution. The US
::::::
United

:::::
States

:
National

academy of sciences has thus recommended (Bretherton, 2012) ”to develop high-end global models that execute efficiently [...],

enabling cloud-resolving atmospheric resolutions (2-4 km) and eddy-resolving ocean resolutions (5 km)” in the near future.

While the scientific prospects of such an undertaking are highly promising, the computational implications are appalling.

Indeed, increasing
:::::::::
significant.

:::::::::
Increasing

:
the horizontal resolution from 50 to 2 km increases the computational effort by at15

least a factor 253 = 15000.
::::::
15,000. Such simulations will only be possible on future extreme-scale high performance com-

puters. Furthermore, power constraints have been driving the widespread adoption of many-core accelerators in leading edge

Figure 1. Visualization of the
:
a
:
baroclinic wave at day 10 of the a

:
simulation with 930 m grid spacing. (White shading) Volume render of

cloud ice, cloud water, and graupel � 10�3 g/kg. (Blue shading) Isosurface of rain and snow hydrometeros
::::::::::
hydrometeors

:
� 4 · 10�2 g/kg.

The white contours denote surface pressure.
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supercomputers and the weather and climate community is struggling to migrate the large legacy simulation
:::::::
existing codes to

these architectures and use them efficiently.

But what does efficient mean? While concerns of total cost of ownership of an HPC
::::
High

::::::::::
Performance

::::::::::
Computing

::::::
(HPC)

system have shifted the focus from a concern over peak floating point performance towards a concern over improving power

efficiency, it is not clear what the right efficiency metric is for a full-fledged climate model. Today, floating point operations5

are around 100⇥ cheaper than data movement in terms of time and 1000
::::
1,000⇥ in terms of energy, depending on where the

data comes from (Borkar and Chien, 2011; Shalf et al., 2011). Thus, while focusing on floating point operations was very

relevant 25 years ago, it has lost most of this relevance today. Instead, domain-specific metrics may be much more applicable

to evaluate and compare application performance. An often used metric for climate models is the time-compression
:::::::::
throughput

achieved by the simulation measured in simulated years per wall-clock day (SYPD, see Balaji et al. (2017) for a detailed10

discussion on metrics). For global atmospheric models, a suitable near-term target is to conduct decade-long simulations and

to participate in the AMIP1 effort. Such simulations require a 36 year long simulation for the period 1979-2014,
:

driven by

observed atmospheric greenhouse gas concentrations and sea-surface temperatures. Within the framework
::::::
context

:
of current

climate modeling centers, such simulation would be feasible for a SYPD larger than about
::::::
greater

::
or

:::::
equal

::
to
:

0.2–0.3, with

which
:
.
:::
At

::::
such

:
a
::::
rate

:
the simulation would take up to several months. However, domain-specific metrics such as SYPD are15

very dependent on the specific problem and approximations in the code under consideration and are often hard to compare.

Ideally comparisons would be performed for production quality global atmospheric models that have been extensively vali-

dated for climate simulations and cover the full (non-hydrostatic and compressible) dynamics and the entire suite of model

parametrizations
:::::::::::::::
parameterizations.

With the SYPD metric alone, it is hard to assess how efficiently a particular computing platform is used. Efficiency of20

use is particularly important because, at the typical scale of climate simulations, computing resources are very costly and

energy intensive. Thus, running high-resolution climate simulations also faces a significant computer science problem when

it comes to computational efficiency. As mentioned before, floating point efficiency is often not relevant for state-of-the-art

climate codes. Not only is counting
::::::
floating

:::::
point

:::::::::
operations

:::
per

::::::
second

::
(flop/s

:
) not reflecting the actual (energy) costs well,

but the typical climate code has very low arithmetic intensity (the ratio of floating point operations to consumed memory25

bandwidth). Attempts to increase the arithmetic intensity may increase the floating point rate but it is not clear if it improves

any of the significant metrics (e.g., SYPD). However, solely focusing on memory bandwidth can also be misleading. Thus, we

propose memory usage efficiency (MUE), a new metric that considers the efficiency of the code’s implementation with respect

to input/output (I/O) complexity bounds as well as the achieved system memory bandwidth.

In summary, the next grand challenge of climate modeling is refining the grid spacing of the production model codes to30

the kilometer-scale
::::::::
kilometer

::::
scale, as it will allow addressing long-standing open questions and uncertainties on the impact of

anthropogenic effects for the future of our planet. Here, we address this grand challenge and demonstrate the first simulation

of a production-level atmospheric model, delivering 0.23 (0.043) SYPD at a grid-spacing of 1.9 km (930 m), sufficient for
1
::::::::
atmospheric

::::
model

:::::::::::
inter-comparison

::::::
(AMIP),

:::::
which

:
is
:::
part

::
of

::
the

::::::::::
climate-model

:::::::::::
inter-comparison

:::::
project

::::::
(CMIP6,

::
see

::::::::::::::
Eyring et al. (2016))
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AMIP2-type simluations
:::::::::
AMIP-type

:::::::::
simulations. Further, we evaluate the efficiency of these simulations using a new memory

usage efficiency metric.

2 Current State of the Art

Performing global kilometer-scale climate simulations is an ambitious goal (Palmer, 2014), but a few kilometer-scale landmark

simulations have already been performed. While arguably not the most relevant metric, many of the studies have reported sus-5

tained floating point performance. In 2007, Miura et al. (2007) performed a week-long simulation with a horizontal grid spacing

of 3.5 km with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) on the Earth Simulator, and in 2013 Miyamoto

et al. (2013) performed a 12-hour-long simulation at a grid spacing of 870 m on the K-computer achieving 230 Tflop/s2 double

precision performance. In 2014, Skamarock et al. (2014) performed a 20-day-long simulation with a horizontal grid spacing

of 3 km with the Model for Prediction Across Scales (MPAS) and later, in 2015, participated in the Next Generation Global10

Prediction System (NGGPS) model inter-comparison project (Michalakes et al., 2015) at the same resolution and achieved

0.16 SYPD on the full NERSC Edison system. In 2015, Bretherton and Khairoutdinov (2015) simulated several months of

an extended aquaplanet channel at a grid spacing of 4 km using the System for Atmospheric Modeling (SAM). Yashiro et al.

(2016) were the first to deploy a weather code on the GPU-accelerated TSUBAME system
::::::::::
TSUBAME

::::::
system

::::::::::
accelerated

::::
using

::::::::
graphics

:::::::::
processing

::::
units

:::::::
(GPUs). The fully rewritten NICAM model sustained a double-precision performance of 6015

Tflop/s on 2560 GPUs of the TSUBAME 2.5 supercomputer. In 2016, Yang et al. (2016) implemented a fully implicit dynam-

ical core at 488 m grid spacing in a �-plane channel achieving 7.95 Pflop/s3 on the TaihuLight supercomputer.

The optimal numerical approach for high-resolution climate models may depend on the details of the target hardware archi-

tecture. For a more thorough analysis, the physical propagation of information in the atmosphere has to be considered. While

many limited-area atmospheric models use a filtered set of the governing equations that suppresses sound propagation, these20

approaches are not precise enough for global applications (Davies et al., 2003). Thus, the largest physical group velocity to

face in global atmospheric models is the speed of sound. The speed of sound in the atmosphere amounts to between 280 and

360 m/s. Thus in a time span of an hour, the minimum distance across which information needs to be exchanged amounts

to about 1500
:::::
1,500 km, corresponding to a tiny fraction of 1.4% of the earth’s surface. However, many numerical schemes

exchange information at much larger rates. For instance, the popular pseudo-spectral methodology (e.g., ECMWF (2016))25

requires Legendre and Fourier transforms between the physical grid and the spherical harmonics, and thus couples globally

at each time step. Similarly, semi-Lagrangian semi-implicit time-integration methods require the solution of a Helmholtz-type

elliptical equation (Davies et al., 2005), which implies global communication at each time step. These methods
:::
Both

::::::::
methods

:::
use

::::
long

::::
time

::::
steps

::::::
which

::::
may

:::::::
partially

:::::::
mitigate

:::
the

:::::::::
additional

:::::::::::::
communication

::::::::
overhead.

::::::
While

::::
these

::::::::
methods have enabled

fast and accurate solutions at intermediate resolution in the past, but they are likely not suited for ultra-high resolution models,30

as the rate of communication typically increases proportional to the horizontal mesh size. Other approaches use time integra-
2atmospheric model inter-comparison (AMIP), which is part of the climate-model inter-comparison project (CMIP6, see Eyring et al. (2016))
2
:
1
:::::
Tflop/s

:
=
::::
1012

::::
flop/s

3
:
1
:::::
Pflop/s

:
=
:::
1015

::::
flop/s
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tion methods with only locally implicit solves
:::::
solvers

:
(e.g., Giraldo et al. (2013)), where they try to retain the advantages of

fully implicit methods but only require nearest neighbor communication.

The main advantage of implicit and semi-implicit approaches is that they allow large acoustic Courant numbers ↵c =

c�t/�x where c denotes the speed of sound and �t and �x the time step and the grid spacing
:
,
::::::::::
respectively. For instance,

Yang et al. (2016) use an acoustic Courant number up to 177, i.e., their time step is 177 times larger than in a standard explicit5

integration (this estimate is based on the �x= 488 m simulation with �t= 240 s). Such
::
In

::::
their

:::::
case,

::::
such a large time step

may be chosen, as the sound propagation is not relevant for weather phenomena.

However, although implicit methods are unconditionally stable (stable irrespectively of the time step used), there are other

limits to choosing the time step. In order to appropriately represent advective processes with typical velocities up to 100 m/s

and associated phase changes (e.g., condensation and fallout of precipitation), numerical principles dictate an upper limit to10

the advective Courant number ↵u = |u|�t/�x, where |u| denotes the largest advective wind speed, e.g., (Ewing and Wang,

2001). The specific limit for ↵u depends on the numerical implementation and time-stepping procedures. For instance, semi-

Lagrangian schemes may produce accurate results for values of ↵u up to 4 or even larger. For most standard implementations,

however, there are much more stringent limits, often requiring that ↵u  1. For the recent study of Yang et al. (2016), who used

a fully implicit scheme with a time step of 240 s, the advective Courant number reaches values up to ↵u = 4.2 and 17.2 for the15

�x=2 km and 488 m simulation, respectively. Depending upon the numerical approximation, such a large Courant number

will imply significant phase errors (Durran, 2010) or even a reduction in effective model resolution (Ricard et al., 2013). In

order to produce accurate results, the scheme would require a significantly smaller time step and
:::::
would

::::::
require

:
reducing the

time step with decreasing grid spacing. For the NGGPS inter-comparison the hydrostatic IFS
::::::::
Integrated

::::::::::
Forecasting

:::::::
System

::::
(IFS)

:
model used a time step of 120 s at 3.125 km (Michalakes et al., 2015), the regional semi-implicit, semi-Lagrangian20

model fully non-hydrostatic model MC2 used a timestep of 30 s at 3.0 km (Benoit et al., 2002), and MeteoFrance
:::::
Météo

:::::
France

:
in their semi-implicit AROME model use a time step of 45 s and 60 s for their 1.3 km and 2.5 km implementations,

respectively. In summary
::::
Since

:::
the

::::
IFS

:::::
model

::
is
:::
not

::
a
:::::::::::::
non-hydrostatic

:::::
model, we conclude that even for fully-implicit, global,

convection-resolving climate simulations at ⇠1–2 km grid spacing, a timestep larger than 40–60 s cannot be considered a

viable option.25

In the current study we use the split-explicit time stepping scheme with an underlying Runge-Kutta time step (Wicker

and Skamarock, 2002) of the COSMO model (see Section 3.1). This scheme uses sub-time-stepping for the fast (acoustic)

modes with a small time step �⌧ , and explicit time stepping for all other modes with a large time step �t= n�⌧ . Most of the

computations are required on the large time step, with ↵u  2, depending on the combination of time-integration and advection

scheme. Unlike with
:
In

:::::::
contrast

::
to

:
semi-implicit, semi-Lagrangian and implicit schemes, the approach does not require solving30

a global equation, and all computations are local (i.e., vertical columns exchange information merely with their neighbors).

The main advantage of this approach is that it exhibits – at least in theory – perfect weak scaling4. This also applies for
::
to the

communication load per sub-domain, when applying horizontal domain decomposition.
4
:::
Weak

:::::
scaling

::
is
:::::
defined

::
as

:::
how

::
the

::::::
solution

:::
time

::::
varies

:::
with

:::
the

:::::
number

::
of

:::::::
processing

::::::
elements

::
for

::
a
:::
fixed

::::::
problem

:::
size

::
per

::::::::
processing

::::::
elements.

:::
This

::
is

:
in
::::::
contrast

:
to
:::::
strong

:::::
scaling,

::::
where

:::
the

:::
total

::::::
problem

:::
size

:
is
:::
kept

::::
fixed.
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3 Methods

3.1 Model description

Figure 2.
::::::::
Illustration

::
of

:::
the

:::::::::::
computational

::::::::
complexity

:::
of

:::
the

:::::::
COSMO

::::::::
dynamical

::::
core,

:::::
using

:
a
:
Computational Directed Acyclic Graph

(CDAG)of the COSMO dynamical core. The CDAG shows complex stencil operations
:::::
nodes

:
of
:::

the
:::::
graph

:::::::
represent

::::::::::
computational

::::::
kernels (a

kernel) that produce multiple fields (blue ellipses) as well as MPI
::
that

:::
can

::::
have

:::::::
multiple

::::
input

:::
and

:::::
output

:::::::
variables,

:
halo exchanges

::::::
updates

(green rectangles) and boundary condition operations (orange rectangles).
:::
The

::::
edges

::
of
:::

the
:::::
graph

:::::::
represent

::::::::::::::
data-dependencies.

:::::
Since

:::
the

:::::::
dynamical

::::
core

::
of

:::::::
COSMO

:::
has

::::
been

::::::
written

::::
using

:
a
::::::::::::
domain-specific

:::::::
language

::::::
(DSL),

:::
the

:::::
CDAG

:::
can

::
be

::::::::
produced

::::::::::
automatically

::::
using

:::
an

::::::
analysis

::::::
backend

::
of
:::
the

::::
DSL

:::::::
compiler.

::::
The

::::::
lengthy

::::
serial

::::::
section

::
in

::
the

::::::
middle

::
of

:::
the

::::
figure

::::::::::
corresponds

:
to
:::

the
:::::
sound

:::::
waves

::::::::::
sub-stepping

:
in
:::

the
:::::::::

fast-waves
:::::
solver.

::::
The

::::::
parallel

::::::
section

::
on

:::
the

::::::::
upper-left

:::::::::
corresponds

::
to
:::

the
::::::::
advection

::
of

:::
the

:::::
seven

:::::
tracer

:::::::
variables.

:::::::
CDAGs

:::
can

::::::::::
automatically

::
be

:::::::
produced

::::
from

::::
C++

::::
code.

For the simulations presented in this paper, we use a refactored version 5.0 of the regional weather and climate code de-

veloped by the Consortium for Small-Scale Modeling (COSMO) (COSMO, 2017; Doms and Schättler, 1999; Steppeler et al.,

2002) and – for the climate mode – the CLM-Community (CLM-Community, 2017). At kilometer-scale resolution, COSMO is5
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used for numerical weather prediction (Richard et al., 2007; Baldauf et al., 2011) and has been thoroughly evaluated for climate

simulations in Europe (Ban et al., 2015; Leutwyler et al., 2017). The COSMO model is based on the thermo-hydrodynamical

equations describing non-hydrostatic, fully compressible flow in a moist atmosphere. It solves the fully compressible Euler

equations using finite difference discretization in space (Doms and Schättler, 1999; Steppeler et al., 2002). For time-stepping,

it uses a split-explicit three-stage second-order Runge-Kutta discretization to integrate the prognostic variables forward in time5

(Wicker and Skamarock, 2002). For horizontal advection, a fifth-order upwind scheme is used for the dynamic variables and a

Bott scheme (Bott, 1989) is used for the moisture variables. The model includes a full set of physical parametrizations required

for real-case simulations. For this study, we use a single-moment bulk cloud-microphysics scheme that uses five species (cloud

water, cloud ice, rain, snow and graupel) described in Reinhardt and Seifert (2006). For the full physics simulations, addition-

ally a radiation scheme (Ritter and Geleyn, 1992), a soil model (Heise et al., 2006), and a sub-grid scale turbulence scheme10

(Raschendorfer, 2001) is
:::
are switched on.

The COSMO model is a regional model and physical space is discretized in a rotated latitude / longitude / height coordi-

nate system and projected onto a regular, structured, three-dimensional grid (IJK). In the vertical
:
, a terrain-following coordi-

nate allows prescribing
:::::::
supports

:::
an arbitrary topography. The spatial discretization applied to solve the governing equations

generate
::::::::
generates

:
so called stencil computations (operations that require data from neighbor

:::::::::
neighboring

:
grid points). Due15

to the strong anisotropy of the atmosphere, implicit methods are employed in the vertical direction, as opposed to the explicit

methods applied to the horizontal operators. The numerical discretization yields a large number of mixed compact horizon-

tal stencils and vertical implicit solvers, strongly connected via the data dependencies on the prognostic variables. Figure 2

shows the data dependency graph of the computational kernels of the dynamical core of COSMO used in this setup, where

each kernel encompasses
:::::::::::
computational

::::::
kernel

::::::::::
corresponds

::
to

:
a complex set of fused stencil operations in order to maximize20

the data locality of the algorithms.
::::::::
algorithm.

:::::
Each

::::::::::::
computational

::::::
kernel

:::::::
typically

::::
has

:::::::
multiple

:::::
input

:::
and

::::::
output

:::::
fields

::::
and

:::
thus

::::::::::::::::
data-dependencies

::
as

::::::::
indicated

::::
with

:::
the

:::::
edges

::
of

:::
the

::::::::::::
Computational

::::::::
Directed

::::::
Acyclic

::::::
Graph

:::::::
(CDAG)

::::::
shown

::
in

::::::
Figure

::
2.

Maximizing the data locality of these stencil computations is crucial to optimize the time-to-solution of the application.

To enable
:::
the

:::::::
running

::
of

:
COSMO on hybrid high performance computing systems with GPU-accelerated compute nodes,

we rewrote the dynamical core of the model, that
:::::
which implements the solution to the non-hydrostatic Euler equations, from25

Fortran to C++ (Fuhrer et al., 2014). This enabled us to introduce a new C++ template library-based domain specific language

(DSL) we call STELLA (Gysi et al., 2015a), to provide a performance-portable implementation for the stencil algorithmic

motifs by abstracting hardware dependent optimization. Specialized backends of the library produce efficient code for the

target computing architecture. Additionally
:
, the DSL supports an analysis backend that records the access patterns and data

dependencies of the kernels shown in Figure 2. This information is then used to determine the amount of memory accesses and30

assess the memory utilization efficiency. For GPUs, the STELLA backend is written in CUDA, and other parts of the refactored

COSMO implementation use OpenACC directives (Lapillonne and Fuhrer, 2014).

Thanks to this refactored implementation of the model and the STELLA DSL, COSMO is the first fully capable weather and

climate model to go operational on GPU accelerated supercomputers (Lapillonne et al., 2016). In the simulations we analyze
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here, the model was scaled to nearly 5000
::::
5,000

:
GPU-accelerated nodes of the Piz Daint supercomputer5 at the Swiss National

Supercomputing Centre. To our knowledge, COSMO is still the only production-level weather and climate model available

capable of running on GPU-accelerated hardware architectures.

3.2 Hardware description

The experiments were performed on the hybrid partition of the Piz Daint supercomputer, located at the Swiss National Super-5

computing Centre (CSCS) in Lugano6. At the time of writing
:::::
when

:::
our

:::::::::
simulation

:::
was

:::::::::
performed,

:
this supercomputer consisted

of a multi-core partitionof 1431 Cray XC40 nodes with two Intel Xeon E5-2695 v4 (code name Broadwell) processors, which

were ,
::::::
which

::::
was not used in this study, as well as the

:
a
:

hybrid partition of 5320
::::
4’936

:
Cray XC50 nodes. These hybrid

nodes are equipped with an Intel E5-2690 v3 CPU (code name Haswell) and a PCIe version of the NVIDIA Tesla P100 GPU

(code name Pascal) with 16 GB
::::::
GBytes6 second generation high bandwidth memory (HBM2). The nodes of both partitions10

are interconnected in one fabric (based on Aries technology)
:
in a Dragonfly topology (Alverson et al., 2012).

3.3 Energy Measurements

We measure energy to solution of our production level runs on Piz Daint using the methodology established and described

in detail by Fourestey et al. (2014). The resource utilization report provided on Cray systems for a job provides the total

energy (En) consumed by each application run on the
::
N

:
compute nodes. The total energy

::::::
(which

:::::::
includes

:::
the

:::::::::::
interconnect) is15

then computed using

Etot =
En +N/4⇥ 100W⇥ ⌧

0.95
, (1)

where ⌧ is the wall time for the application, the N/4⇥100W⇥⌧ term accounts for the 100 W per blade contribution from the

Aries interconnect and the 0.95 on the denominator adjusts for AC/DC conversion.

3.4 Simulation setup and verification20

When pushing ahead the development of global high-resolution climate models, there are two complementary pathways. First,

one can refine the resolution of existing global climate models (Miura et al., 2007). Second, one may alternatively try to expand

the computational domain of high-resolution limited-area models towards the global scale (Bretherton and Khairoutdinov,

2015). Here we choose the latter and develop a near-global model from the limited-area high-resolution model COSMO.

We perform near-global simulations for a computational domain that extends to a latitude band from 80�S to 80�N, which25

covers 98.4% of the surface area of planet Earth. The simulation is inspired by the testcase used by then
::
the

:
winner of the 2016

Gordon Bell Prize (Yang et al., 2016).
5See http://www.cscs.ch/computers/piz_daint/index.html for more information.
6See for more information.
6
:
1
::::
GByte

::
=

::
109

:::::
Bytes
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Figure 3. Evolution of the
:
a baroclinic wave in a dry simulation with 47 km grid spacing on day 8 and 10: (Left) Surface Pressure and (right)

temperature on the 850 hPa pressure level (roughly 1.5 km above sea level).

The simulations are based on an idealized baroclinic wave test (Jablonowski and Williamson, 2006), which can be considered

a standard benchmark for dynamical cores of atmospheric models. The test describes the growth of initial disturbances in a

dynamically unstable westerly jet stream into finite-amplitude low and high-pressure systems. The development includes a

rapid transition into a nonlinear regime,
:
accompanied by the formation of sharp meteorological fronts, which in turn trigger

the formation of complex cloud and precipitation systems.5

The setup uses a two-dimensional (latitude-height) analytical description of a hydrostatically balanced atmospheric base

state with westerly jet streams below the tropopause, in both hemispheres. On this balanced initial state, a
:
A

:
large-scale local

Gaussian perturbation is applied,
:::
then

::::::
applied

::
to
::::
this

:::::::
balanced

:::::
initial

:::::
state which triggers the formation of a growing baroclinic

wave in the northern hemisphere, evolving over the course of several days (Figure 3). To allow moist processes, the dry

initial state is extended with a moisture profile (Park et al., 2013) and the parametrization of cloud-microphysical processes is10

activated.

The numerical problem is discretized on a latitude-longitude grid with up to 36000
::::::
36,000 ⇥ 16001

:::::
16,001

:
horizontal grid

points for the 930 m simulation. In
:::
the zonal direction the domain is periodic and at 80� North/South confined by boundary

conditions, relaxing the evolving solution against the initial conditions in a 500 km wide zone. The vertical direction is dis-

cretized using 60 stretched model levels, spanning from the surface to the model top at 40 km. The respective layer thickness15

widens from 20 m at the surface to 1.5 km near the domain top.

For the verification against previous dry simulations, a simulation at 47 km grid spacing is used. The evolution of the

baroclinic wave (Figure 3) very closely follows the solution originally found by Jablonowski and Williamson (2006, see their

Figure 5). At day 8 of the simulation, three low pressure systems with frontal systems have formed, and at day 10 wave breaking

is evident. At this time, the surface temperature field shows cut-off warm-core cyclonic vortices.20
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Figure 4. Output of the baroclinic wave (day 10): (Top) dry simulation with 1.9 km grid spacing, (bottom) moist simulation with 0.93 km

grid spacing. (Left) surface pressure, (middle) temperature on the 850 hPa pressure level and (right) precipitation.

The evolution in the moist and the dry simulation at very high resolution is shown in Figure 4. The high-resolution simula-

tions reveal the onset of a secondary (likely barotropic) instability along the front, and the formation of small-scale warm-core

vortices with a spacing of up to 200-300 km. The basic structure of these vortices is already present in the dry simulation, but

they exhibit considerable intensification and precipitation in the moist case. Formation of a large series of secondary vortices is

sometimes observed in maritime cases of cyclogenesis (Fu et al., 2004; Ralph, 1996), but appears to be a rather rare phenom-5

ena. However, it appears that cases with one or a few secondary vortices are not uncommon and they may even be associated

with severe weather (Ludwig et al., 2015).

The resulting cloud pattern is dominated by the comma-shaped precipitating cloud that forms along the cold and occluded

fronts of the parent system (Figure 1). The precipitation pattern is associated with stratiform precipitation in the head of the

cloud and small patches with precipitation rates exceeding 5 mm/h in their tail, stemming from small embedded convective10

cells. Looking closely at the precipitation field (Figure 4 right-hand panel), it can be seen that the secondary vortices are

co-located with small patches of enhanced precipitation.

4 Efficiency metric

In the past, the prevalent metric to measure performance of an application was the number of floating point operations executed

per second (flop/s). It used to pay off to minimize the number of required floating point operations in an algorithm and to15

implement the computing system in such a way that a code would execute many such operations per second. Thus, it made

sense to assess application performance with the flop/s metric. In the meantime
::::::::
However, the world of supercomputing has

changedentirely. Floating point operations are
:::
now

::::::::
relatively

:
cheap. They cost about a factor 1000

:::::
1,000

:
less if measured in

terms of energy needed to move operands between memory and registers, and they execute several 100 times faster compared to

the latency of memory operations. Thus, algorithmic optimization today has to focus on minimizing data movements
::::::::
movement,20
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and it may even pay off to re-compute certain quantities if this avoids data movements. In fact, a significant part of the

improvements in time to solution in the refactored COSMO code are due to re-computation of variables that were previously

stored in memory—the original code was written for vector supercomputers in the 1990s. On today’s architectures, it may

even pay off to replace a floating point minimal sparse algorithm with a block-sparse algorithm, into which many trivial zero-

operations have been introduced (Hutter et al., 2014). Using the flop/s metric to characterize application performance would5

::::
could

:
be very misleading in these cases.

Assessing performance of
:
A
:::::::
popular

::::::
method

::
to

::::
find

::::::::::
performance

::::::::::
bottlenecks

::
of

::::
both

::::::::
compute-

:::
and

:::::::::::::
memory-bound

::::::::::
applications

:
is
:::
the

:::::::
roofline

::::::
model

:::::::::::::::::::
(Williams et al., 2009).

::::::::
However,

::::::::
assessing

:::::::::::
performance

::
of

:
an application simply in terms of sustained

memory bandwidth, which is measured in bytes per second, would be equally deceiving. For example, by storing many vari-

ables in memory, the original implementation of COSMO introduces an abundance of memory movements that boost the10

sustained memory bandwidth but are inefficient on modern processor architectures, since these movements cost much more

than the re-computation of these variables.

Furthermore, full bandwidth utilization on modern accelerator architectures, such as the GPUs used here, requires very

specific conditions. Optimizing for bandwidth utilization can lead the application developer down the wrong path because

unaligned, strided, or random accesses can be intrinsic to an underlying algorithm and severely impact the bandwidth (Lee15

et al., 2010). Optimizations to improve alignment or reduce randomness of memory accesses may introduce unnecessary

memory operations that could be detrimental to time-to-solution or energy efficiency.

Thus, in order to properly assess the performance of an application running on today’s supercomputers
::::::
quality

::
of

::::
our

:::::::::::
optimizations, one needs to directly consider data transfers

:::::::::
movement. Here we propose a

:::::::
method

:
how this can be done in

practice
::
for

:::
the

::::::::
COSMO

:::::::::
dynamical

:::
core, and present the resulting memory usage efficiency (MUE) metric.20

Our proposal is motivated by the full-scale COSMO runs we perform here, where 74% of the total time is spent in local

stencil computations. The dependencies between stencils of these computations in complex stencil programs can be optimized

with various inlining and unrolling techniques (Gysi et al., 2015a). Thus, to be efficient, one needs to achieve maximum spatial

and temporal data reuse to minimize the number of data movement operations to perform only necessary transactions at
:::
and

::::::
perform

:::::
them

::
at

:::
the highest bandwidth.25

In order to assess the efficiency in memory usage of an implementation on a particular machine, one needs to compare the

actual number of data transfers7 executed, which we denote with D, with the necessary data transfers Q of the algorithm. Q

is the theoretical lower bound (Hong and Kung, 1981) of number of memory accesses required to implement the numerical

algorithm.
7
:::
Here,

:::
we

::::
define

:::
data

::::::
transfers

::
as

:::::::
load/stores

::::
from

::::
system

::::::
memory.
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The MUE can be intuitively interpreted as how well the code is optimized both for data locality and bandwidth utilization,

i.e., if MUE = 1, the implementation reaches the memory movement lower bound of the algorithm and performs all memory

transfers with maximum bandwidth. Formally:

MUE = I/O efficiency ·BW efficiency =
Q

D
· B
B̂

(2)

Where B and B̂ represents
:::::::
represent

:
the bandwidth achieved by an implementation and maximum achievable bandwidth,5

respectively.

In order to compute the MUE for COSMO, we developed a performance model that combines the theoretical model from

Hong and Kung (1981), hypergraph properties and graph partitioning techniques to estimates
:::::::
estimate

:
the necessary data

transfer, Q, from the CDAG information of COSMO. By partitioning the CDAG into subcomputations that satisfies certain

conditions imposed by the architecture, this model asses
:::::::::
determines the theoretical minimum amount of memory transfers by10

maximizing the data locality inside the partitions. To approximate the number of actual transfers D, we use the same technique

to evaluate the quality of current COSMO partitioning. The values B and B̂ were measured empirically - the former one by

profiling our application ,
:::
and the latter by a set of microbencharks

:::::::::::::::
microbenchmarks.

The details of how to determine the MUE for COSMO are given in Appendix A. The MUE metric cannot be used to compare

different algorithms, but is a measure of the efficiency of an implementation of a particular algorithm on a particular machine,15

i.e. how much data locality is preserved and what ist he
::
is

:::
the achieved bandwidth. It thus complements other metrics such

as SYPD and may replace
::::::::::
complement popular metrics such as flop/s or memory bandwidth.

:::
As

:::::::::
compared

::
to

:::
the

:::::::::
frequently

::::::
applied

:::::::
roofline

::::::
model,

:::
the

:::::
MUE

:::::
metric

::::
also

::::::::
includes

:::
the

:::::::
schedule

::
of

::::::::::
operations,

:::
not

::::::
simply

:::
the

:::::::
efficient

:::
use

::
of
:::

the
::::::::

memory

:::::::::
subsystem.

::
It

:
is
::::
thus

::
a

:::::::
stronger

:::
but

:::
also

:::::
more

:::::::
complex

::::::
metric.

5 Performance Results20

To establish a performance baseline for global kilometer-scale simulations we here present a summary of the key performance

metrics for the simulations at 930 m, 1.9 km, and 47 km grid spacing, as well as a study of weak and strong scalability.

5.1 Weak Scalability

The
::::
Until

::::
this

:::::
study

:::
the GPU version of COSMO was so far only

:::
had

::::
only

:::::
been scaled up to 1000

:::::
1,000 nodes of the Piz

Daint supercomputer (Fuhrer et al., 2014), while the full machine – at the time of the experiment – provides 4932
::::
4,932 nodes.25

The scaling experiments (weak and strong) were performed with the dry simulation setup. Including a cloud microphysics

parametrization, as used in the moist simulation (Figure 4), increases time to solution by about 10%.
::::
Since

::::::::::::
microphysics

::::
does

:::
not

::::::
contain

::::
any

::::::::
inter-node

:::::::::::::
communication

::::
and

::
is

:::::
purely

:::::
local

::
to

::
a

:::::
single

:::::::
column

::
of

:::::::::
gridpoints,

:::
we

:::
do

:::
not

::::::
expect

::
an

:::::::
adverse

:::::
impact

:::
on

:::::
either

:::::
weak

::
or

:::::
strong

:::::::::
scalability.

:
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Figure 5. Weak scalability on the hybrid P100 Piz Daint nodes, per COSMO time step of the dry simulation.

Figure 5 shows weak scaling for three per-node domain sizes ranging from 128⇥ 128 to 256⇥ 256 grid points in the

horizontal, while keeping the size in the vertical direction fixed at 60 grid points. In comparison, on 4888
:::::
4,888 nodes, the high-

resolution simulations at 930 m and 1.9 km horizontal grid spacing correspond to a domain size per node of about 346⇥ 340

and 173⇥ 170.8 The models
:::::
model

:
shows excellent weak scalability properties up to the full machine, which can at least

partially be explained by the next-neighbor
::::::::::::::
nearest-neighbor halo-exchange pattern. This property reduces the complexity of5

COSMO’s scalability on Piz Daint to the strong scaling behavior of the code. Essentially, the number of grid points per node

determines the achievable time to solution of a given problem.

5.2 Strong Scalability

From earlier scaling experiments of the STELLA library (Gysi et al., 2015b) and the GPU version of COSMO (Fuhrer et al.,

2014; Leutwyler et al., 2016) it is known that, for experiments in double precision on Tesla K20x, linear scaling is achieved as10

long as the number of grid points per node exceeds about 64⇥ 64 to 128⇥ 128 grid points per horizontal plane. In comparison,

mixed precision
:::::
single

::::::::
precision9 measurements on Tesla P100 already start to saturate at a horizontal domain size of about

200⇥200 grid points per node (Figure 6), corresponding to about 32 nodes for a 19 km setup and about 1000
::::
1,000 nodes for a

3.7 km setup. Since with the 930 m and 1.9 km setup we are already in (930 m) or close to (1.9 km) the linear scaling regime on

the full machine, we here chose a coarser horizontal grid spacing of 3.7 km and 19 km. The lower limit on the number of nodes15

is given by the GPU memory of 16 GB. In addition to the GPU benchmarks (filled symbols), we measured the performance
8The exact domain size of these simulations is slightly different on each node due to the domain decomposition.
9
::::::
COSMO

:::::
supports

:::
two

:::::
floating

::::
point

:::::
formats

::
to
::::
store

::::::
numbers,

:::::
double

::
and

:::::
single

::::::
precision,

:::::
which

::
can

::
be

:::::
chosen

::
at

:::::
compile

::::
time.
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:::::
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:::::::
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h�xi #nodes �t [s] SYPD MWh/SY gridpoints

930 m
4888

::::
4,888

:

6 0.043 596 3.46⇥1010

1.9 km
4888

::::
4,888

:

12 0.23 97.8 8.64⇥ 109

47 km 18 300 9.6 0.099 1.39⇥ 107

Table 1. Time compression (SYPD) and energy cost (MWh/SY) for three moist simulations. At 930 m grid spacing obtained with a full 10d

simulation, at 1.9 km from 1000
::::
1,000 steps, and at 47 km from 100 steps

with the CPU version of COSMO (empty symbols), using 12 MPI ranks per CPU, i.e., one MPI rank per Haswell core10.

Exceeding 1000
:::::
1,000 nodes (38⇥ 38 grid points per node) execution on CPUs yields a shorter time to solution on CPUs than

on GPUs.
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5.3 Time to Solution

On 4888
:::::
4,888 nodes, a 10-day-long moist simulation at 930 m grid spacing required a wall time of 15.3 h at a rate of

0.043 SYPD (Table 1), including a disk-I/O11 load of 5 3D-fields and 7 2D-fields, written periodically every 12h
:::
12h

:
of the

simulation. Short benchmark simulations at 1.9 km and 47 km, integrated for 1000
:::::
1,000 and 100 time steps respectively, yield

0.23 SYPD and 9.6 SYPD.
::
As

:::::::::
mentioned

::::::
earlier,

:::
the

:::::::::
minimum

::::
value

::::::::
required

:::
for

:::::::::
AMIP-type

::::::::::
simulations

::
is
::::::
0.2-0.3

:::::::
SYPD.5

While for the 47 km setup scalability already starts to saturate, even with the 18 nodes reported (Table 1), the high resolution

simulations, with an approximate per-node domain size of 346⇥340⇥60 and 173⇥170⇥60 respectively, are still in a regime

of good scalability. We have also conducted a 1.9 km simulation with a full set of physical parametrizations switched on and

this increases the time-to-solution by 27% relative to the moist simulations presented here.

In conclusion, the results show that AMIP-type simulations at horitzontal grid spacings of 1.9 km using a full-fledged10

atmospheric model are already feasible on Europe’s highest ranking supercomputer. In order to reach resolutions of 1 km a

further reduction of time-to-solution of at least a factor 5 is required.

In the following
::::::::
remainder

::
of

:::
this

::::::
section, we attempt a comparison of our results at 1.9 km against the performance achieved

by Yang et al. (2016) in their 2 km simulation (as their information for some of the other simulations is incomplete). They argue

that for an implicit solver the timestep can be kept at 240 s independent of the grid spacing and report (cf.
:::
see their Figures15

7 and 9) values of 0.57 SYPD for a grid spacing of 2 km, on the full TaihuLight system. As argued
::::::::
explained in Section 2,

such large timesteps are not admissible
::::::
feasible

:
for global climate simulations resolving convective clouds (even when using

implicit solvers), and a maximum timestep of 40-80 s would very likely be needed; this will
::::
would

:
decrease their SYPD by a

factor
::
of 3 to 6. Furthermore, their simulation covers only 32% of the Earth’s surface (18�N to 72�), but uses twice as many

levels; this would further reduce their SYPD by a factor
:
of

:
1.5. Thus we estimate that the simulation of Yang et al. (2016) at20

2 km would yield 0.124 to 0.064 SYPD when accounting for these differences. In comparison, our simulation at 1.9 km yields

0.23 SYPD, i.e. is faster by at least a factor
::
of 2.5. Note that this estimate does not account for additional simplifications in

their study (neglection of microphysical processes, spherical shape of the planet , and topography). In summary, while a direct

comparison with their results is difficult, we argue that our results can be used to set a realistic baseline for production-level

GCM performance results and represent an improvement of a factor
::
by

::
at
:::::
least

:
a
:::::
factor

::
of

:
2 or more with respect to previous25

results.

5.4 Energy to Solution

Based on the power measurement (cf.
:::
see Section 3.3) we

::::
now provide the energy cost of full scale simulations (Table 1) using

the energy cost unit MWh per simulation year (MWh/SY). The 10-day-long simulation at 930 m grid spacing running on 4888

:::::
4,888 nodes requires 596 MWh/SY

:
, while the cost of the simulation at 1.9 km on 4888

::::
4,888

:
nodes is 97.8 MWh/SY. For30

comparison
:
, the coarse resolution at 47 km simulation on a reduced number of nodes (18) requires only 0.01 MWh/SY.

10The CPU measurements were performed on the hybrid partition of Piz Daint as well, since the multi-core partition is much smaller.
11The standard I/O routines of COSMO require global fields on a single node, which typically do not provide enough storage to hold a global field. To

circumvent this limitation, a binary I/O mode, allowing each node to write its output to the file-system, was implemented.
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level METIS Q COSMO D no-opt D̂

registers 1.51 · 109 1.72 · 109 2.6 · 109

shared memory 64800 107600 229120

L2 cache 1023 1160 2341
Table 2. Data transfer cost estimations of the dynamical core for a theoretical lower bound (METIS), dynamical core implementation using

the STELLA library (COSMO) and non-optimized dynamical core implementation (no-merging).

metric optimized not optimized ratio

time per step 0.16s 0.25s 0.64

estimated MUE 0.67 0.44 0.65
Table 3. Performance model verification results. Measured dynamical core time step execution time for the STELLA implementation opti-

mized for data locality and the non-optimized implementation compared against the corresponding MUE metric.

A 30 year AMIP-type simulation (with full physics) at a horizontal grid spacing of 1 km on the Piz Daint system would take

900 days to complete, imply
:::::::
resulting

::
in an energy cost of approximately 22 GWh - which approximately corresponds to the

consumption of 6500
:::::
6,500

:
households during one year.

Again, we attempt a comparison with the simulations performed by Yang et al. (2016). The Piz Daint system reports a

peak power draw of 2052
::::
2,052 kW when running the HPL benchmark. The sustained power draw when running the 930 m5

simulation amounted to 1059.7
::::::
1,059.7 kW, thus 52% of the HPL value. The TaihuLight system reports a sustained power draw

for the HPL benchmark of 15371
::::::
15,371 kW (top, 2017). While Yang et al. (2016) do not report power consumption of their

simulations, we expect the simulations on Piz Daint to be at least 5 times more power efficient12, even when assuming similar

achieved SYPD (see above).

5.5 Simulation efficiency10

In view of the energy consumption, it is paramount to consider the efficiency of the simulations executed. We do this here by

considering the Memory Transfer
:::::
Usage

:
Efficiency metric introduced in Section 4.

To estimate a solution for the optimization problem described in Appendix
::
A, Eqn. (A1), we use the METIS library (Karypis

and Kumar, 2009). The results are presented in Table 2. The METIS Q column is the approximation of the lower bound Q

obtained from the performance model using the METIS library. The COSMO D column is the evaluation of current COSMO15

partitioning in our model. The no-opt D̂ column shows the amount of data transfers of COSMO if no data locality optimization

techniques are applied, like in the original Fortran version of the code. Since the original CDAG is too large for the minimization

problem of the performance model, three different simplified versions of the CDAG, that focus on the accesses to three different

layers of the memory hierarchy of the GPU are studied: registers, shared memory, and L2 cache.
12

::
We

::::::::::
conservatively

:::::
assume

::
an

:::::::
application

::::
power

::::
draw

::
of

:
at
::::
least

:::
35%

::
on

:::::::
TaihuLight
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The model shows how efficient COSMO is, in terms of data transfers – it generates only 14%, 66%, and 13% more data

transfers than the lower bound in the register, shared memory and L2 cache layers, respectively. The sophisticated data locality

optimization techniques of the STELLA implementation of the dynamical core of COSMO result in close to optimal
:::
very

:::::
good

data reuse. Because on
::
On

:
the P100, all memory accesses to/from DRAM go through the L2 unit, .

:::::::::
Therefore we focus on the

efficiency of this unit such that

MUE =
QL2

DL2
· B
B̂

= 0.88 · 0.76 = 0.67,

where DL2 and QL2 stand for estimated number of main memory operations and its lower bound, respectively.

The model also can estimate the efficiency of our optimizations. Assuming that we can reach the peak achievable bandwidth

B̂ if we perform no data locality optimizations (D̂), then:

MUEno_opt =
QL2

D̂L2

· B̂
B̂

= 0.44

It can be seen, that

MUE

MUEno_opt
=

0.67

0.44
= 1.52

This
::::
result

:
shows the importance of data locality optimizations - the optimized implementation is more than 50% faster than5

a potential version that achieves peak bandwidth while using no data locality techniques.

To validate the model results, we have conducted single-node runs with and without data locality optimizations.
:::::::::
Bandwidth

:::::::::::
measurements

:::
of

:::
the

::::::::::::
non-optimized

::::::
version

:::
are

:::::
very

::::
close

::
to
:::::::::
maximum

:::::::::
achievable

:::::::::
bandwidth

::::
(not

:::::::
shown). The fact that the

two ratios in the third column of Table 3 agree is testimony to the high precision of the performance model.

6 Conclusions10

With the
:::
The

:
work presented here , we are setting

:::
sets

:
a new baseline for full-fledged

::::::::::
fully-fledged

:
km-scale climate simulations

at global scale. Our implementation of the COSMO model that is used for production-level numerical weather predictions at

MeteoSwiss has been scaled to the full system on 4888
::::
4,888

:
nodes of Piz Daint, a GPU accelerated Cray XC50 supercomputer

at the Swiss National Supercomputing Centre (CSCS). The dynamical core has been fully rewritten in C++ using a DSL that

abstracts the hardware architecture for the stencil algorithmic motifs and enables sophisticated tuning of data-movements.15

Optimized backends are available for multi-core processors with OpenMP, GPU accelerators with CUDA, and for performance

analysis.

The code shows excellent strong scaling up to the full machine size when running at a grid spacing of 4 km and below, on

both the P100 GPU accelerators and the Haswell CPU. For smaller problems, e.g., at coarser grid spacing of 47 km, the GPUs

run out of parallelism and strong scalability is limited to about 100 nodes, while the same problem continues to scale on multi-20

core processors to 1000
::::
1,000

:
nodes. Weak scalability is near optimal to the full size of the machine.

::::::
Overall,

:::::::::::
performance

::
is

::::::::::
significantly

:::::
better

::
on

::::::
GPUs

::
as

::::::::
compared

::
to

:::::
CPUs

:::
for

:::
the

::::
high

:::::::::
resolution

::::::::::
simulations.

:
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The simulations performed here are based on the idealized baroclinic wave test (Jablonowski and Williamson, 2006), which

is part of the standard procedure to test global atmospheric models. Our results validate against the original solution published

by Jablonowski and Williamson (2006)
::
in

:::
this

:::::
paper.

We measured time to solution in terms of simulated years per wall clock day (SYPD) for a near global simulation on a

latitude band from 80�S to 80�N that covers 98.4% of planet Earth’s surface. At extreme scale running on 4888
:::::::
Running

:::
on5

:::::
4,888 P100 GPUs of Piz Daint,

:::::::
currently

::::::::
Europe’s

:::::
largest

:::::::::::::
supercomputer,

:
we measured 0.23 SYPD at 1.9 km grid spacing. This

performance is adequate for numerical weather predictions and 10-year scale climate studies. Simulations at this resolution had

an energy cost of 97.8 MWh/SY.

In a moist simulation with 930 m horizontal grid spacing, we observed the formation of frontal precipitating systems,

containing embedded explicitly-resolved convective motions, and additional cut-off warm-core cyclonic vortices. The explicit10

representation of embedded moist convection and the representation of the resolved instabilities exhibits physically different

behavior from coarser-resolution simulations. This is testimony to the usefulness of the high-resolution approach, as a much

expanded range of scales and processes is simulated. Indeed it appears that for the current test case, the small vortices have not

previously been noted, as the test case appears to converge for resolutions down to 25 km (Ullrich et al., 2015), but they clearly

emerge at kilometer-scale resolution.15

These results serve as a baseline benchmark for global climate model applications. For the 930 m experiment we achieved

0.043 SYPD on 4888
:::::
4,888 GPU accelerated nodes, which is approximately one seventh of the 0.2–0.3 SYPD required to

conduct AMIP-type simulations. Energy
:::
The

::::::
energy cost for simulations at this horizontal grid spacing was 596 MWh/SY.

:::::::
Scalable

::::::
global

::::::
models

:::
do

::::
not

:::
use

::
a
::::::
regular

:::::::::
structured

::::
grid

:::::
such

::
as

:::::::::
COSMO,

::::
due

::
to

:::
the

::::::
”pole

::::::::
problem”.

::::::::::
Therefore,

::::::
scalable

::::::
global

::::::
models

::::
tend

::
to
::::

use
::::::::::::
quasi-uniform

::::
grids

::::
such

:::
as

:::::::::::
cubed-sphere

::
or

::::::::::
icosahedral

:::::
grids.

:::
We

::::::
believe

::::
that

:::
our

::::::
results20

::::
apply

:::::::
directly

:::
to

::::::
global

:::::::
weather

:::
and

:::::::
climate

:::::::
models

:::::::::
employing

:::::::::
structured

:::::
grids

:::
and

:::::::
explicit,

:::::::::::
split-explicit

:::
or

:::::
HEVI

:::::
time

::::::::::::
discretizations

::::
(e.g.

::::
FV3,

::::::::
NICAM).

::::::
Global

::::::
models

:::::::::
employing

:::::::
implicit

::
or

::::::
spectral

::::::
solvers

::::
may

::::
have

::
a

:::::::
different

::::::
scaling

::::::::
behavior.

Our work was inspired by the dynamical core solver that won the 2016 Gordon Bell award at the Supercomputing conference

(Yang et al., 2016). The goal of this award is to reward high performance achieved in the context of a realistic computation.25

A direct comparison with the results reported there is difficult, since Yang et al. (2016) were running a research version of

a dynamical core solver and COSMO is a full-fledged
::::::::::
fully-fledged

:
regional weather and climate model. Nevertheless, our

analysis indicates that our benchmarks represent an improvement both in terms of time to solution and energy to solution. As

far as we know, our results represent the fastest (in terms of application throughput measured in SYPD at 1 km grid spacing)

simulation of a production-ready, non-hydrostatic climate model on a near-global computational domain.30

In order to reach
:::
the

:
3-5 SYPD performance necessary for long climate runs, simulations would be needed that run 100

times faster than the baseline we set here. Given
:::
that

:
Piz Daint with NVIDIA P100 GPUs was

:
is
:
a multi-petaflops system, the

1 km-scale climate runs at 3-5 SYPD performance represent a formidable challenge for exascale systems. As such simulations

are of interest to scientists around the globe, we propose that this challenge be defined as
:
a
:
goal post to be reached by the

exascale systems that will be deployed
::
in

:::
the next decade.35
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Finally, we propose a new approach to measure the efficiency of application codes
::::::
memory

::::::
bound

:::::::::
application

::::::
codes,

::::
like

::::
many

:::::::
weather

::::
and

:::::::
climate

:::::::
models,

::::::
running

:
on modern supercomputing systems. It is based on the observation that typical

weather and climate applications, including COSMO, are predominantly memory bound. Since data movement is the expensive

commodity on modern processors, we advocate that the code’s performance on a given machine be characterized in terms of

data movement efficiency. We use the
:::
note

::::
that

::::
both

:::::::
detailed

:::::::::::
mathematical

:::::::
analysis

:::
and

:::
the

:::::::
general

::::::::::
applicability

:::
of

:::
our

:::::
MUE5

:::::
metric

::
is

::::::
beyond

:::
the

:::::
scope

::
of

:::
this

:::::
paper

::::
and

::::::
requires

:::::::::
additional

::::::::::
publication.

::
In

:::
this

:::::
work

::
we

:::::
show

:
a
:::::::
use-case

::
of
:::
the

:::::
MUE

::::::
metric

:::
and

::::::::::
demonstrate

::
its

::::::::
precision

:::
and

:::::::::
usefulness

::
in

::::::::
assessing

:::::::
memory

:::::::::
subsystem

::::::::
utilization

:::
of

:
a
::::::::
machine,

::::
using

:::
the

:
I/O complexity

lower bound as the necessary data transfers, Q, of the algorithm. With the time to solution and the maximum system bandwidth

B̂, it is possible to determine the memory usage efficiency which
:::
that captures how well the code is optimized both for data

locality and bandwidth utilization. We propose that data movement efficiency be considered
:
It

:::
will

:::
be

:::::::::
interesting

::
to

:::::::::
investigate10

::
the

:::::
MUE

::::::
metric in future performance evaluations for weather and climate codes on high performance computing systems.

Code and data availability. The particular version of the COSMO model used in this study is based on the official version 5.0 with many

additions to enable GPU-capability and available under license13. These developments are currently in the process of being re-integrated

into the mainline COSMO version. COSMO may be used for operational and for research applications by the members of the COSMO

consortium. Moreover, within a license agreement, the COSMO model may be used for operational and research applications by other15

national (hydro-)meteorological services, universities and research institutes. The model output data will be archived for a limited amount of

time and is available on request.

13consult http://www.cosmo-model.org/content/consortium/licencing.htm for more information
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Appendix A: Computing the efficiency metric

Here, we discuss how to determine the memory usage efficiency (MUE) given in Equation 2 for an application code, such as

the COSMO model. We need to determine the necessary data transfers Q, the maximum system bandwidth B̂ and measure the

execution time T .

A1 Necessary Transfers Q.5

A natural representation of data flow and dependencies of algorithms is a Computational Directed Acyclic Graph (CDAG).

This abstraction is widely used for register allocation optimization, scheduling problems and communication minimization. A

CDAG models computations as vertices (V) and communications as edges (E) between them. A CDAG can be used to develop

theoretical models that reason about data-movements of an application. However, not all the edges of the CDAG account for

data transfers, since the data required by a computation might be stored in fast memory (cached), depending on the execution10

schedule. Finding an execution schedule that minimizes the transaction metric is NP-hard for general CDAGs, and therefore

an intractable problem (Kwok and Ahmad, 1999).

Minimizing data movement has been the subject of many studies. Two main approaches have been established: (1) finding

analytical lower bounds for chosen algorithms for a given machine model (Hong and Kung, 1981; Vetter, 2001; Goodrich

et al., 2010) and (2) finding optimal graph partitions (Gadde, 2013). The former one is designed for particular, highly regular15

small algorithms, like sorting (Vetter, 2001) or matrix multiplication (Hong and Kung, 1981) and
:
is
:
not suitable for large-

scale applications like COSMO. The latter one
:::::::
approach

:
is mostly used for minimizing network communication (Liu et al.,

2014) and has not been applied to large applications either. In our performance model, we combine the two into a novel graph

cutting technique. We build on Hong & Kung’s 2S-partitioning (Hong and Kung, 1981) and construct a hypergraph partitioning

technique to estimate a memory movement lower bound.
::
We

:::
do

:::
not

:::::::
consider

::::::::
internode

:::::::::::::
communication

::::
here.

:
To the best of our20

knowledge, we are first to apply those
::::
these techniques to a real-world parallel application.

The key concept behind estimating Q is to partition the whole CDAG G= (V,E) into subcomputations (2S-partitions)

Pi :
S
Pi = V , such that each Pi requires at most S data transfer operations. Then, if H(2S) is the minimal number of 2S-

partitions for a given CDAG, Hong and Kung (1981) showed that the minimal number Q of memory movement operations for

any valid execution of the CDAG is bounded by

Q� S⇥ (H(2S)� 1)

Here we outline key steps of our modeling approach:

1. We reduce Hong and Kung’s 2S-Partitioning (Hong and Kung, 1981) definition to hypergraph cut by relaxing the con-

straints on the dominator and minimum set sizes. Each hyperedge contains a vertex from the original CDAG and all its

successors.25

2. We approximate the minimal hypergraph cut by minimizing the total communication volume.
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memory level vertex def. |V| |E| S

registers one IJK value 157803 984101 32

shared memory one IJ plane 2649 12137 8

L2 cache whole array 1912 9863 29

Table A1. COSMO CDAGs at various GPU memory hierarchy levels.

3. We then express the memory movement lower bound as:

min
P

Pi

P
v2Pi

w(v) · (Nbr(v)� 1) (A1)

subject to

S
Pi = V (A2)

8i 6=jPi \Pj = ; (A3)5

8Pi

P
v2Pi

w(v) · (Nbr(v)� 1) 2S (A4)

where Nbr(v) is the number of partitions that vertex v is adjacent to, w(v) is the memory size of vertex v and S is the size

of memory at a level for which the optimization is performed. Eqn. (A1) now minimizes the sum of the communication

volume across all partitions (assuming we load partition
:::::::
partitions

:
one after the other), while constraint (A4) bounds the

boundary weight for each partition to 2S such that it fits in fast memory.10

A2 COSMO CDAG

:::::
Figure

::
2

:::::
shows

:::
the

::::
data

::::::::::
dependency

::::::
CDAG

::
of

:::
the

::::::::::::
computational

::::::
kernels

::
of

:::
the

:::::::::
dynamical

::::
core

::
of

::::::::
COSMO,

:::::
where

::::
each

::::::
kernel

::::::::::
corresponds

::
to

::
a

:::::::
complex

:::
set

::
of

:::::
fused

::::::
stencil

:::::::::
operations

:::
in

:::::
order

::
to

:::::::::
maximize

:::
the

::::
data

:::::::
locality

::
of

:::
the

:::::::::
algorithm.

:
A single

timestep in COSMO accesses 781 variables, each of which is represented by a 346 x 340 x 60 array for our 930 m simulation.

Some variables are updated multiple times during a timestep which results in a total number of variable accesses (CDAG15

vertices) of more than 1010. The resulting large and complex graph makes estimating Q impractical. In order to reduce the

complexity one can coarsen the CDAG by grouping multiple accesses into a single vertex. As an example, Figure 2 shows the

coarsest representation of the CDAG where each vertex models a full kernel. Each kernel may read and write various output

variables, compute multiple stencil operations and boundary conditions, or perform halo exchanges. Thus, in this coarsened

version, valuable data dependency information is lost and one cannot argue about the optimality and possible rearrangement of20

the operations fused within a kernel.

We now describe how we determine coarsening strategies of the COSMO CDAG for three levels of the memory hierarchy

of our target system, registers, shared memory, and L2 cache:
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Figure A1. Bandwidth of the representative stencil benchmarks and GPU-STREAM on Tesla P100. All kernels (except of
::
for

:
GPU

STREAM) operate on a 3D domain.

1. Register
::::::::
Registers

:
(65536

::::::
65’536): The COSMO GPU implementation assigns all computations accessing variables

with the same IJ coordinate to the same GPU thread and use registers to reuse values in the K direction. To model this

memory hierarchy, it is only necessary to keep the stencil accesses in the K direction. Thus, all accesses in the IJ plane

are represented as a single vertex in the CDAG, which is then simplified to 781 variables and their dependencies among

all 60 levels in K.5

2. Shared memory (64 kB): The shared memory of the GPU is used to communicate values between the different compute

threads. In order to model this layer, all different accesses in the K direction of a variable are represented as a single vertex

in the CDAG, while all accesses in the IJ plane are kept.

3. L2 cache (4 MB):. This last cache level before DRAM is used to store whole arrays (fields). In this layer all accesses to

a variable in any direction are represented as a vertex in the CDAG. It keeps only the data dependencies among variables,10

irrespective of the offset and direction of the access.

Table A1 lists details about the CDAGs at each of our three levels. Memory capacity of the GPU for each of the three layers is

then used as a constraint to derive the parameter S (see values in Table A1). Values of the estimation of Q, obtained from the

performance model for the three memory levels are shown in Table 2.

To generate the whole CDAG, we used the STELLA analysis back end (Gysi et al., 2015b) to trace all local memory accesses15

to all fields. Based on the information from the access offsets and order of operations, we reconstruct the read-write, write-read,

and write-write dependencies.
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A3 Maximum Achievable Bandwidth B̂

We now describe how we measure the memory usage efficiency in practice. We start by describing how to determine the

maximum achievable bandwidth for COSMO stencils. Even though the Tesla P100 has a theoretical peak memory bandwidth

of 720 GB/s (NVIDIA, 2016), we argue that this may not be achievable for real applications. A well-established method to

measure the maximum achievable bandwidth of GPUs is the GPU STREAM benchmark (Deakin et al., 2016). Our tests show5

that the maximum achievable bandwidth for COPY is 557 GB/s if at least 30 MB double precision numbers are copied (Figure

A1). However, stencil codes on multi-dimensional domains like COSMO require more complex memory access patterns that,

even when highly tuned, cannot achieve the same bandwidth as STREAM due to architectural limitations.

We identified the most common patterns and designed and tuned a set of microbenchmarks that only mimic the memory

access patterns without the computation to investigate the machine capability of handling memory accesses for stencils. They10

include aligned, unaligned and strided patterns in all dimensions. All benchmarks operate on a 3D domain of parametric size,

on either single or double precision numbers. The results of a representative set of four chosen microbenchmarks are shown

in Figure A1, together with the GPU-STREAM, which operates on 1D domain. The fastest stencil kernel (double precision

aligned COPY) reaches 510 GB/s. The slowdown compared to GPU-STREAM is due to the more complex access pattern

in the 3D domain. Furthermore, using single precision numbers further deteriorates the bandwidth on P100 (COPY (float)15

reaches 475 GB/s). Our COSMO 930 m run uses pre-dominantly
::::::::::::
predominantly single precision numbers on a 346 x 340 x 60

domain, which results in 28.2 MB of data per field. Our measurements show that the maximum achievable bandwidth for this

setup is 362 GB/s (in the best case of the simple COPY benchmark). We will use this upper-bound number as the maximum

system bandwidth. The average measured memory bandwidth across all COSMO real-world stencils is 276 GB/s which gives
B
B̂
= 0.76.20
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