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Abstract 23 

The flux of CO2 from the soil to the atmosphere (soil respiration, Rsoil) is a major component of 24 

the global carbon cycle.  Methods to measure and model Rsoil, or partition it into different 25 

components, often rely on the assumption that soil CO2 concentrations and fluxes are in steady 26 

state, implying that Rsoil is equal to the rate at which CO2 is produced by soil microbial and root 27 

respiration.  Recent research, however, questions the validity of this assumption.  Thus, the aim 28 

of this work was two-fold: (1) to describe a non-steady state (NSS) soil CO2 transport and 29 

production model, DETECT, and (2) to use this model to evaluate the environmental conditions 30 

under which Rsoil and CO2 production are likely in NSS. The backbone of DETECT is a non-31 

homogeneous, partial differential equation (PDE) that describes production and transport of soil 32 

CO2, which we solve numerically at fine spatial and temporal resolution (e.g., 0.01 m increments 33 

down to 1 m, every 6 hours). Production of soil CO2 is simulated for every depth and time 34 

increment as the sum of root respiration and microbial decomposition of soil organic matter, both 35 

of which can be driven by current and antecedent soil water content and temperature, which can 36 

also vary by time and depth. We also analytically solved the ordinary differential equation 37 

(ODE) corresponding to the steady-state (SS) solution to the PDE model. We applied the 38 

DETECT NSS and SS models to the 6-month growing season period representative of a native 39 

grassland in Wyoming. Simulation experiments were conducted with both model versions to 40 

evaluate factors that could affect departure from SS: (1) varying soil texture; (2) shifting the 41 

timing or frequency of precipitation; and (3) with and without the environmental antecedent 42 

drivers.  For a coarse-textured soil, Rsoil from the SS model closely matched that of the NSS 43 

model.  However, in a fine-textured (clay) soil, growing season Rsoil was ~3% higher under the 44 

assumption of NSS (versus SS).  These differences were exaggerated in clay soil at daily time-45 
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scales whereby Rsoil under the SS assumption deviated from NSS by up to ~20% in the 10 days 46 

following a major precipitation event.  Incorporation of antecedent drivers increased the 47 

magnitude of Rsoil by 15% to 37% for coarse- and fine-textured soils, respectively.  However, the 48 

responses of Rsoil to the timing of precipitation and antecedent drivers did not differ between SS 49 

and NSS assumptions.  In summary, the assumption of SS conditions can be violated depending 50 

on soil type and soil moisture status, as affected by precipitation inputs.  The DETECT model 51 

provides a framework for accommodating NSS conditions to better predict Rsoil and associated 52 

soil carbon cycling processes.   53 

Keywords: antecedent soil water content, DETECT, diffusion model, modelling soil CO2, non-54 

steady-state, precipitation frequency, soil respiration, soil texture, steady-state. 55 

  56 



4 

1. Introduction  1 

The flux of CO2 to the atmosphere from the soil (i.e., soil respiration, Rsoil) is one of the largest 2 

fluxes in the global C cycle, and when aggregated globally over an entire year it is approximately 3 

ten times the annual amount of CO2 emitted by fossil fuel burning (Friedlingstein et al., 2014; 4 

Hashimoto et al., 2015).  Moreover, global change experiments and predictions from models 5 

agree that Rsoil is expected to increase in a future climate of elevated CO2 and warming (Cox, 6 

2001; Davidson and Janssens, 2006; Piao et al., 2009; Pendall et al., 2013; Ryan et al., 2015). 7 

Therefore, monitoring Rsoil is important for quantifying and modeling the global C cycle.  8 

Commonly, Rsoil is monitored by directly measuring surface soil CO2 fluxes using various 9 

chamber methods (Luo and Zhou, 2010; Risk et al., 2011) or by estimating Rsoil from soil CO2 10 

concentrations measured at multiple depths using probe methods (Pendall et al., 2003; Tang et 11 

al., 2003; Vargas et al., 2010).  The probe methods employ diffusion equations that often rely on 12 

the assumption that Rsoil at the surface is in steady state (SS) with subsurface CO2 production by 13 

roots and micro-organisms (Tang et al., 2003; Lee et al., 2004; Baldocchi et al., 2006; Luo and 14 

Zhou, 2010; Vargas et al., 2010; Šimůnek et al., 2012).  That is, the SS assumption essentially 15 

assumes that CO2 produced by roots and microbes within the soil profile is instantaneously 16 

respired from the soil surface, effectively neglecting delays due to CO2 transport times.  17 

Partitioning Rsoil (surface flux) into its different components (e.g., sub-surface heterotrophic 18 

[microbes] versus autotrophic [root or rhizosphere] respiration) using isotope methods (Hui and 19 

Luo, 2004; Ogle and Pendall, 2015), trenching methods (Šimůnek and Suarez, 1993), or soil CO2 20 

models (Vargas et al., 2010) also relies on the SS assumption. Even simulations of the vertical 21 

movement of soil CO2 through snow have employed a SS diffusion model (Monson et al. 2006). 22 
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Recent work, however, calls into question whether this SS assumption is valid most of the time 1 

or in most systems (Maggi and Riley, 2009; Nickerson and Risk, 2009).   2 

Given the use of the SS assumption in a diverse range of settings, the aim of this study 3 

was to determine the meteorological and site specific conditions under which the SS assumption 4 

is valid, and the circumstances under which a non-steady state (NSS) model substantially 5 

improves our understanding of subsurface processes that lead to observed Rsoil.  We focused on 6 

soil texture because it is a critical factor underlying soil porosity and tortuosity, which, in turn, 7 

control soil CO2 diffusion rates (Bouma and Bryla, 2000). For example, coarse-grained (e.g., 8 

high sand content) soils generally facilitate fast CO2 diffusion rates, especially under low soil 9 

moisture conditions associated with high air-filled porosity (Bouma and Bryla, 2000); the 10 

opposite is expected for finer-grained (e.g., silt or clay) soils. Thus, we expect coarse-grained 11 

soils to generally induce SS conditions for soil CO2, whereas fine-grained soils would likely 12 

produce frequent and longer duration NSS conditions, especially following rain pulses that 13 

decrease air-filled pore space, thereby reducing CO2 diffusivity. 14 

We also focused on the impacts of precipitation variability given that the timing and 15 

magnitude of precipitation pulses can have large effects on Rsoil (Huxman et al., 2004; 16 

Schwinning et al., 2004; Sponseller, 2007; Cable et al., 2008; Borken and Matzner, 2009; Ogle et 17 

al., 2015).  Precipitation indirectly impacts Rsoil via its influence on soil moisture dynamics, and 18 

soil moisture and soil texture affect both diffusivity (physical process) and CO2 production 19 

(primarily biological process governed by roots and microbes).  For example, as precipitation 20 

pulses infiltrate the soil, the CO2 in the pore spaces gets displaced with water, which may be seen 21 

as a transient spike in Rsoil (e.g., Lee et al., 2004). Such transient spikes, however, may also be 22 

attributable to changes in decomposition, microbial growth, and/or C substrate availability in 23 
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response to wetting (Birch, 1958; Borken et al., 2003; Jarvis et al., 2007; Xiang et al., 2008; 1 

Meisner et al., 2013). This transient response may be followed by a depression in Rsoil since 2 

water-filled pores will ultimately slow CO2 diffusion and transport (Bouma and Bryla, 2000).  3 

These linked effects imply that precipitation pulses and their effects on soil moisture are likely to 4 

impose NSS soil CO2 conditions, but the manner in which such pulses impact these processes is 5 

temporally dynamic and spatially complex, and therefore difficult to measure directly. 6 

We evaluated the importance of soil texture and precipitation variability on SS versus 7 

NSS soil CO2 behavior via a simulation-based approach. To allow for the possibility of both SS 8 

and NSS behavior, we implemented a depth- and time-varying CO2 transport and production 9 

model that builds on the groundbreaking work of Fang and Moncrieff (1999), Hui and Luo 10 

(2004), Nickerson and Risk (2009), Moyes et al. (2010) and Risk et al. (2012).  These processes 11 

are captured by a partial differential equation (PDE) model that is grounded in diffusion theory, 12 

and solved numerically. Some current NSS models make simplifying assumptions such as 13 

assuming depth-invariant CO2 production rates (e.g., Fang and Moncrieff, 1999), or assuming 14 

that production only responds to concurrent environmental conditions (e.g., Nickerson and Risk, 15 

2009). Such simplifications may make it difficult to evaluate physical and biological conditions 16 

leading to SS versus NSS behavior.  17 

We addressed the aforementioned shortcomings of existing NSS models with the 18 

DETECT (DEconvolution of Temporally varying Ecosystem Carbon componenTs) model, 19 

version 1.0 (v1.0), which implemented four improvements. First, we simulated soil CO2 at 100 20 

0.01 m depth increments to ensure numerical accuracy of the solutions (Haberman, 1998). 21 

Second, we estimated the soil water content and soil temperature data for all depths and all time 22 

points using a separate model (HYDRUS; Simunek et al., 2005; Šimůnek et al., 2008). Third, we 23 
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simulated the production of CO2 by microbial and root respiration at each depth by linking these 1 

processes to existing respiration models that are typically applied to “bulk” soil (Lloyd and 2 

Taylor, 1994; Cable et al., 2008; Davidson et al., 2012; Todd-Brown et al., 2012).  Fourth, we 3 

included antecedent (past) environmental and meteorological conditions as part of the functions 4 

that predict soil CO2 production, due to their importance for predicting soil and ecosystem CO2 5 

fluxes (Cable et al., 2013; Barron-Gafford et al., 2014; Ryan et al., 2015). For example, soil 6 

respiration following a rain event is generally greater if the rain event follows a dry period versus 7 

a wet period (Xu et al., 2004; Sponseller, 2007; Cable et al., 2008; Thomas et al., 2008; Cable et 8 

al., 2013). Such antecedent effects may underlie the importance of biological versus physical 9 

processes in governing the transition between SS and NSS behavior. 10 

After describing the DETECT model, we subsequently use it to explore the effects of soil 11 

texture, precipitation pulses, and antecedent conditions on the relative importance of NSS soil 12 

CO2 behavior and to identify the factors giving rise to such behavior. We simulated soil CO2 13 

concentrations, CO2 production, and Rsoil under four different soil textures and three different 14 

precipitation regimes. For each scenario, we implemented the DETECT model under the 15 

assumption that soil CO2 production is affected by antecedent moisture and temperature versus 16 

the assumption that only concurrent conditions matter. Data from the Wyoming Prairie Heating 17 

and CO2 Enrichment (PHACE) experiment (e.g., Pendall et al., 2013; Carrillo et al., 2014a; Ryan 18 

et al., 2015; Zelikova et al., 2015; Mueller et al., 2016) were used to parameterize the model and 19 

motivated the selection of the texture and precipitation scenarios.  Under the different scenarios, 20 

we compared Rsoil predicted from the DETECT model to that of a simpler SS model, and 21 

evaluated the relative impact of SS assumptions on inferring subsurface processes (e.g., CO2 22 

production by roots and microbes) and surface CO2 fluxes (i.e., Rsoil).  23 
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2. Methods  1 

2.1 Description of the Non Steady State DETECT Model 2 

The PDE that underlies the DETECT model (v1.0) accounts for time- and depth-varying CO2 3 

diffusivity and CO2 production by root and microbial respiration (Fang & Moncrieff, 1999). We 4 

use a pair of PDEs, one describing the soil CO2 derived from root respiration (subscripted with 5 

R), and the other for CO2 derived from microbial respiration (M) such that for K = R or M: 6 

 ∂c�(z,t)

∂t
=

∂

∂z
�Dgs(z,t)

∂c�(z,t)

∂z
�+��(z,t) (1) 

cK(z,t) is CO2 concentration (mg CO2 m-3), Dgs(z,t) is the effective diffusivity of CO2 through the 7 

soil (m2 s-1), and SK(z,t) is the source (or production) term (mg CO2 m-3) (Fig. 1b), all of which 8 

vary by depth z (meters) and time t (hours). Note that Dgs is assumed to be the same for root- and 9 

microbial-derived CO2 and is thus not indexed by K. In this version of the model, we assumed 10 

that CO2 transport within the soil profile and over time is solely governed by gaseous diffusion, 11 

and we ignored other types of CO2 transport—such as diffusion in the liquid state, convection, 12 

and bulk transport via vertical movement of water—that have been shown to have a negligible 13 

contribution (Fang and Moncrieff, 1999; Kayler et al., 2010).  Total soil CO2 and total CO2 14 

production are given as c(z,t) = cM(z,t)+ cR(z,t) and S(z,t) = SM(z,t) + SR(z,t), respectively. Below 15 

we describe the two main components of the PDE model: (1) CO2 diffusivity, Dgs, and (2) the 16 

production terms, SR(z,t) and SM(z,t).  Finally, we note that equation 1 is the mass balance 17 

equation (see appendix S3 in the supplementary information for more information). 18 

2.1.1 Soil CO2 diffusivity sub-model 19 

The diffusivity of CO2 within the soil (Dgs) depends on soil structure and water content; we  20 
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modeled Dgs using the Moldrup function (Sala et al., 1992; Moldrup et al., 2004). We chose this 1 

formulation because it is more accurate than other common models, such as the Millington and 2 

Quirk (2000) and Penman (1981) models (Moldrup et al., 2004). Based on Moldrup et al. (2004), 3 

Dgs (m2 s-1) is defined as: 4 

 ( )
3

2
( )

3
0 100 100

100

( , )
( , ) ( , ) 2 ( ) 0.04 ( )

( )

b z
g

gs g g g

g

z t
D z t D z t z z

z

+
 φ

= ⋅ φ + φ ⋅  φ 
 , (2) 5 

where 

1.75

0
0

0

( , )
( , )

( )
s

g stp

T z t P
D z t D

T P t

   
= ⋅ ⋅   

  
 and Dstp = 1.39×10-5 m2 s-1 is the diffusion 6 

coefficient for CO2 in air at standard temperature (T0, 273 K) and pressure (P0, 101.325 kPa); 7 

Ts(z,t) is the soil temperature (Kelvin) at depth z and time t, and P(t) is the air pressure (kPa) just 8 

above the soil surface at time t. The remaining terms in Eqn 2 include φg(z,t), the air-filled soil 9 

porosity, which is related to the total soil porosity (φT) and volumetric soil water content (θ) 10 

according to φg(z,t) = φT(z) – θ(z,t), and φT(z) is defined as 1 – BD(z)/PD, where BD and PD are 11 

the bulk density and particle density of the soil, respectively (Davidson et al., 2006); φg100(z) is 12 

the air-filled porosity at a soil water potential (Ψ) of -100 cm H2O (about -10 kPa); b(z) is a 13 

unitless parameter that is related to the pore size distribution of the soil based on the water 14 

retention curve given by Ψ = Ψe(θ/θsat)–b, where Ψe(z) is the air-entry potential – calculated from 15 

measurements (Morgan et al., 2011) – and θsat(z) is the saturated soil water content (v/v).  16 

2.1.2 CO2 source (production) terms 17 

Soil CO2 can be produced in the soil (S term in Eqn. 1) by five different biological processes: (i) 18 

root growth respiration, (ii) root maintenance respiration, (iii) consumption of rhizodeposits by 19 

root-associated microorganisms and associated microbial respiration, (iv) microbial 20 
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decomposition of newly produced plant litter that has been incorporated into the soil matrix, and 1 

(v) microbial decomposition of older soil organic matter (SOM) (Pendall et al., 2004). Due to the 2 

general lack of sufficient data and process understanding to accurately separate all five sources, 3 

the DETECT model treats CO2 production as the sum of two main contributions: CO2 respired 4 

by (1) roots and closely associated microorganisms (the sum of (i)-(iii)), giving SR(z,t), and (2) 5 

free-living soil microorganisms (the sum of (iv)-(v)), giving SM(z,t). Such simplification based on 6 

root and microbial sources is common in models of soil CO2 transport and production (Šimůnek 7 

and Suarez, 1993; Fang and Moncrieff, 1999; Hui and Luo, 2004).  Although DETECT v1.0 8 

assumes that root and microbial respiration are independent of one another, they both depend on 9 

the same environmental data (e.g., θ and Ts). 10 

 CO2 production by root respiration is represented as the product of three terms: (i) the 11 

mass-specific base respiration rate (RRbase) at a reference soil temperature of Ts = Tref and at 12 

average soil water and antecedent temperature conditions, (ii) root mass expressed as the amount 13 

of root carbon, CR (z,t), and (iii) functions that rescale RRbase to account for the effect of soil water 14 

(θ), temperature (Ts), and their antecedent counterparts, which are determined separately for 15 

roots and microbes. For roots, antecedent soil water and temperature are denoted as θR
ant and 16 

Ts
ant, respectively. In general, SR(z,t) is given by: 17 

 ��(�, 
) = ����� ∙ ��(�, 
) ∙ �(�(�, 
), �����(�, 
)) ∙ �(��(�, 
), �����(�, 
))   (3) 

The functional form of CR(z,t) is informed by field data on root biomass C (see Appendix S1 for 18 

complete details).  The functions f and g are given by: 19 

 ( ) ( )1 2 3, exp ( , ) ( , ) ( , ) ( , )ant ant ant
R R Rf z t z t z t z tθ θ α θ α θ α θ θ= + + ⋅   (4a) 20 

 ( ) 1 1
, exp ( , )

( , )
ant

S R o
ref o S o

g T T E z t
T T T z t T

  
 = ⋅ −   − −  

  (4b) 21 
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��(�, 
) = ��∗ + � �����(�, 
)   (4c) 

�����, �1, �2, �3, �4, �%, and Eo
* are parameters that require numerical values (Table 1; Ryan 1 

et al. 2015), θ and Ts are informed by field data, and θR
ant and Ts

ant are computed from the field 2 

data (described below).  The temperature scaling function, g (Eqn 4b) was motivated by Lloyd 3 

and Taylor (1994) has been successfully used to describe soil and ecosystem respiration (Luo 4 

and Zhou, 2010; Cable et al., 2013; Ryan et al., 2015). Eo(z,t) is analogous to an energy of 5 

activation term that governs the apparent temperature sensitivity of SR (Davidson and Janssens, 6 

2006; Cable et al., 2011; Tucker et al., 2013); we assume Eo responds to antecedent temperature, 7 

reflecting a potential thermal acclimation response (Atkin and Tjoelker, 2003; Ryan et al., 2015).  8 

�% is also related to the apparent temperature sensitivity (Cable et al., 2011), and we assume that 9 

it is invariant with depth and time (Lloyd and Taylor, 1994; Cable et al., 2013; Barron-Gafford et 10 

al., 2014; Ryan et al., 2015).  While the functional forms and choice of environmental drivers 11 

used for f and g were motivated by previous analyses (Cable et al., 2013; Barron-Gafford et al., 12 

2014), the exact functions and parameter values were based on Ryan et al. (2015) and Cable et 13 

al. (2013).  Exponential functions are also used for the moisture (f,) and temperature (g) scale 14 

functions to ensure f > 0 and g>0 (Eqn 4a).  The choice of an exponential form of the functions 15 

was based on Ryan et al. (2015), with graphical forms of the total CO2 production based on these 16 

functions given in Fig. S10 (supplementary information).  However, the DETECT model is 17 

flexible enough to accommodate alternative functions for f and g.  For example, we ran DETECT 18 

for the control scenario using a bell-shaped function that described how soil CO2 production 19 

changes with θ  (appendix S4 and Fig. S8, supplementary information) as an alternative to 20 

equation 4a.  For this alternative model run, the modelled Rsoil was very similar to the modelled 21 

Rsoil from the results of this study (Fig S9, supplementary information).   22 
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CO2 production by microbial respiration and SOM decomposition is represented by a 1 

modified version of the Dual Arrhenius and Michaelis-Menten (DAMM) model (Davidson et al., 2 

2012). We exclude the O2 term, rendering the model relevant to systems that are typically 3 

unlimited by O2 availability, such as the semi-arid site that we focus on, but we accounted for a 4 

microbial C pool (CMIC) and a soluble soil-C pool (CSOL) (Todd-Brown et al., 2012) such that: 5 

 
( , )

( , ) ( , ) ( , ) (1 )
( , )

SOL
M max MIC

m SOL

C z t
S z t V z t C z t CUE

K C z t
= ⋅ ⋅ ⋅ −

+
  (5) 6 

Decomposition is assumed to be an enzymatic process that follows Michaelis-Menten kinetics, 7 

where Vmax is the maximum potential decomposition rate, and Km (the half-saturation constant) is 8 

the amount of substrate required for the decomposition rate to reach half of Vmax. Carbon-use 9 

efficiency (CUE) represents the proportion of total C assimilated by microbes that is allocated 10 

for microbial growth (Tucker et al., 2013). We excluded a microbial death rate term (Todd-11 

Brown et al., 2012) because we had insufficient data on death rates, and CMIC is only ~1% of 12 

CSOL at our study site (Carrillo and Pendall, in review). 13 

In contrast to the original DAMM formulation, we allowed SM(z,t) and Vmax(z,t) to vary 14 

by depth and time, whereas existing applications of the DAMM model are generally applied to 15 

“bulk” soil (i.e., do not vary with z). We also modeled Vmax according to the modified energy of 16 

activation function described in Lloyd and Taylor (1994), which essentially parallels Eqns 4b-4c: 17 

 ( ) 1 1
( , ) , exp ( , )

( , )
ant

max Base M o
ref o S o

V z t V f E z t
T T T z t T

θ θ
  
 = ⋅ ⋅ ⋅ −   − −  

  (6) 18 

 VBase is the ‘base’ Vmax at a reference soil temperature of Tref and at mean values of current θ and 19 

antecedent θ and TS (i.e., mean values of θM
ant and Ts

ant). Eo(z,t) and �&θ, θ'()
* follow the same 20 

functional forms and interpretation as described for the root respiration submodel (Eqns 3 and 21 
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4a-c), except that θ'()
 and �'()
 are used instead of θ()
 and �()
, respectively, and different 1 

values are specified for the parameters �1, �2, �3, �4, �%, and Eo
* to reflect microbial respiration 2 

The values are given in table 1, and section 2.4.5 explains how the values were estimated.  3 

Finally, CSOL is modeled as a function of soil organic C content at depth z, CSOM(z), based 4 

on the fraction, p, of CSOM(z) that is soluble and the diffusivity of the substrate in liquid, Dliq 5 

(Davidson et al., 2012).  The equation for CSOL is given by: 6 

 ��+,(�, 
) = ��+-(�) ∙ . ∙ �(�, 
)/ ∙ 0123 (7) 

The values of p and Dliq were taken from laboratory analysis (see § 2.4.5) and Davidson et al. 7 

(2012), respectively.  We assumed that CSOM(z) and CMIC(z) (see Eqn 5) are constant over time 8 

given the relatively short simulation periods we explored here (a single growing season); but the 9 

model could be easily modified to allow for time-varying CSOM and CMIC. Here, CSOM(z) and 10 

CMIC(z) are simple, empirical functions that were informed by data (see Appendix S1 for details). 11 

Moreover, while assumption of time invariant CSOM(z) and CMIC(z) is an implicit SS assumption 12 

about biological factors affecting soil CO2 dynamics, this assumption allows us to isolate the 13 

importance of NSS conditions that are primarily due to physical CO2 transport characteristics. 14 

2.1.3 Soil respiration 15 

The efflux of CO2 from the soil surface (soil respiration, Rsoil) is computed as: 16 

 ( )
( 0.01, )

( ) ( 0.01, ) ( )gs
soil atm

D z t
R t c z t c t

z

=
= = −

∆
  (8) 17 

Dgs(z=0.01, t) is the diffusivity of CO2 in the soil and c(z=0.01, t) is the total CO2 concentration 18 

(microbial- and root-derived), respectively, at z = 0.01 m depth and time t; catm(t) is the CO2 19 

concentration in the atmosphere above the soil surface; and ∆z is the depth increment that the 20 

model solves for soil CO2 concentration (here, ∆z = 0.01 m). 21 
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2.2 Numerical implementation of the DETECT model 1 

The numerical solution to the NSS version of the DETECT model v1.0, as described in Eqns 1-8, 2 

requires an initial condition (IC) and two boundary conditions (BCs), which we specified as: 3 

IC: 

Upper BC: 

Lower BC: 

4(�, 
 = 0) = 46(�) 
4(� = 0, 
) = 4��7(
) 
84(� = 1, 
)

8� = 0 

(9a) 

(9b) 

(9c) 

The function c0(z) is determined and parameterized in two stages: (1) observed soil CO2 4 

concentration data at three depths from the start of the 2007 growing season were used to 5 

parametrize a simple function that described the change in CO2 concentration for all depths; (2) 6 

the DETECT model was run forward for the growing season of 2007, then the modelled CO2 7 

concentrations for all depths on the final day of the 2007 growing season (September 31, 2007) 8 

was used as the initial condition for running the DETECT model for 2008.  See Appendix S2 in 9 

the supplementary information for specific details.  We set catm(t) equivalent to 356 ppm for all t, 10 

which was the average near-surface, ambient atmospheric CO2 concentration measured at the 11 

PHACE site in the 2008 growing season. Following methods of Haberman (1998), we adopted a 12 

zero-flux lower BC (Eqn 9c) due to the lack of data at or near a depth of 1 m.  13 

 We numerically solved the non-linear PDE (Eqn. 1) by employing a forward Euler 14 

discretization with a centered difference method for the depth derivative at a depth increment of 15 

∆z = 0.01 m.  To ensure numerical stability, we calculate model outputs at a numerical time-step 16 

of ∆
 = :�
;:� , where dt is the time step at which the predicted outputs are stored (6 hours), and 17 

Ndt is the number of numerical time-steps.  Ndt is computed based on the fastest (largest) 18 

diffusion coefficient at each time step such that <=
 = 	 :�×@AB	(CDE)
6.G×(∆H)I  , where max(Dgs) is the 19 
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maximum Dgs across all depth increments at time t (Haberman, 1998).  We solved Eqn. 1 1 

separately for both root- and microbial-derived CO2 concentrations, such that for K = R or M: 2 

4�(�, 
 + ∆
) − 4�(�, 
)∆
 = 0K�(�, 
) L4�(� + ∆�, 
) − 24�(�, 
) + 4�(� − ∆�, 
)
(∆
)M N																	 3 

																																																							+ L0K�(� + ∆�, 
) − 0K�(� − ∆�, 
)
2∆� N L4�(� − ∆�, 
) − 4�(� + ∆�, 
)

2∆� N 4 

+��(�, 
)																																																												         (10) 5 

We rearranged Eqn. 10 to solve for cK(z,t+∆t), which was iterated forward for all time-steps and 6 

depth increments; total CO2 concentration at each time step and depth is calculated as c(z,t+∆t) = 7 

cR(z,t+∆t) + cM(z,t+∆t).  For clarity, we emphasize that equation 10 is the discretized version of 8 

equation 1, which we require in order to numerically solve equation 1 (Haberman, 1998).  We 9 

programmed the DETECT model v.10 and the numerical solution method in Matlab 10 

(Mathworks, 2016). 11 

2.3 Steady-state (SS) solution to the DETECT model 12 

A primary goal of this work was to test if soil CO2 and associated Rsoil predicted from the non-13 

steady-state (NSS) model (DETECT) could be distinguished from that of the steady-state (SS) 14 

solution. The SS version of Eqn 1, which we refer to as the SS-DETECT model, can be solved 15 

analytically as an ordinary differential equation (ODE) by setting the ∂c/∂z term to zero 16 

(Amundson et al., 1998).  As with the NSS model, we found the SS solution to Eqn. 1 separately 17 

for root- and microbial-derived CO2 concentrations, cR
*(z,t) and cM

*(z,t), respectively. Using the 18 

upper and lower boundary conditions described for the NSS model (Eqns 9b and 9c), the 19 

analytical SS solutions at time t and depth z are derived by Amundson et al. (1998) and Cerling 20 

(1984).  The solution is given by: 21 



16 

 
* 2

* ( )
( , ) ( )

( , ) 2
K

K atm
gs

S t z
c z t z c t

D z t

 
= − +  

 
  (11a) 1 

 

1m
*

0.01

1
( ) ( , )

100K K

z

S t S z t
=

= ∑   (11b) 2 

where K=R and K=M refers to the soil CO2 from root (R) and microbial (M) sources, 3 

respectively.  SK
*(t) is the depth-averaged source term for microbial or root production 4 

(averaging over 100 0.01-m increments).  The soil CO2 diffusivity term, Dgs(z,t), and upper 5 

boundary condition, catm(t), are the same as previously defined (Eqns 2 and 9b, respectively; 6 

Amundson et al. (1998)). 7 

2.4 Application of the DETECT and SS-DETECT models to the PHACE site 8 

In this subsection, we provide an overview of the study site, including the PHACE experiment, 9 

and relevant data sources from PHACE that we used to drive the DETECT and SS-DETECT 10 

models. We also summarize how we calibrated the models in the context of the PHACE site, and 11 

we highlight data that we used to informally validate the general behavior of the models. We 12 

conclude by describing the simulation experiments that we conducted to test the effects of soil 13 

texture and precipitation variability on the importance of NSS versus SS soil CO2 conditions. 14 

2.4.1 Field site and PHACE experiment 15 

The Prairie Heating and CO2 Enrichment (PHACE) field experiment is located in south-central 16 

Wyoming (latitude 41o 50’N, longitude 104o 42’W, elevation = 1930 m). The site is a mixed-17 

grass prairie with a semi-arid climate characterized by long winters (mean January temperature = 18 

-2.5 °C) and warm summers (mean July temperature = 17.5 °C), with mean annual precipitation 19 

of 384 mm (Morgan et al., 2011).  The vegetation is predominantly composed of two C3 grasses, 20 

western wheatgrass (Pascopyrum smithii (Rydb.) A. Löve) and needle-and-thread grass 21 
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(Hesperostipa comata Trin and Rupr), and a C4 perennial grass, blue grama (Bouteloua gracilis 1 

(H.B.K.) Lag). The soil is a fine-loamy, mixed, mesic Aridic Argiustoll, and biological crusts are 2 

not present (Bachman et al., 2010). 3 

2.4.2 Environmental driving data 4 

We simulated the transport and production of soil CO2 for each 0.01 m depth increment, from the 5 

surface (0 m) to a depth of 1 m, across all 732 time steps (i.e., 4 time steps per day [every 6 6 

hours] for 183 days from April-September).  To do this, we required soil environmental data 7 

consisting of water content (θ) and temperature (TS) and meteorological data including 8 

precipitation, air temperature, and air pressure.  The θ and TS data that were used to drive the 9 

DETECT model were created using the HYDRUS software (see § 2.4.3), calibrated against 10 

actual measurements of θ and TS.  For the meteorological data, actual measurements from the 11 

PHACE site were used.   12 

The PHACE experiment involved an incomplete factorial of CO2, warming, and 13 

irrigation (6 treatment levels total), with five replicate plots per treatment level, resulting in a 14 

total of 30 instrumented plots. One of the five plots from the control treatment—ambient CO2, 15 

temperature (no heating), and precipitation (no supplemental irrigation)—was chosen at random 16 

and had a system installed to measure soil CO2 concentrations continuously for three different 17 

soil depths (3, 10, and 20 cm). This plot, therefore, provided the data for driving the DETECT 18 

and SS-DETECT models. Data that we used were collected during the growing season (March-19 

September) of 2008; θ was measured hourly at three depths (5-15, 15-25, and 35-45 cm; 20 

EnvironSMART probe, Sentek Sensor Technologies, Stepney, Australia) and we used daily 21 

averages to drive the models. TS was measured hourly at two depths (3 and 10 cm) using type-T 22 
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thermocouples.  Hourly precipitation (mm), air temperature (oC), relative humidity (%), and 1 

surface barometric air pressure (kPa) were recorded by an automated weather station at the site.  2 

2.4.3 High resolution environmental data 3 

To accommodate the 0.01 m depth increments specified for the DETECT model, we used the 4 

coarse resolution field data (above) to create finer resolution driving data. For example, temporal 5 

gap-filling of the θ, TS, and micrometeorological datasets was required due to gaps that occurred 6 

during a small number of days (<1%, 6%, and 2.5%, respectively) as a result of instrument 7 

failure.  We used data from other nearby plots to estimate the values of the missing data, but we 8 

also used cubic spline interpolation where gaps remained.  Details of these gap-filing methods 9 

can be found in Ryan et al. (2015). 10 

We used HYDRUS-1D v4.16.0090 to simulate θ and TS in 0.01 m increments from a 11 

depth of 0.01 m to 1 m (Chou et al., 2008; Šimůnek et al., 2008; Piao et al., 2009) based on 12 

precipitation data at the site. HYDRUS simulates the movement of water by solving the 13 

Richards’ equation for water movement (Richards, 1931; Chou et al., 2008; Sitch et al., 2008) 14 

and heat transport via Fickian based advection-dispersion equations.  Soil hydraulic and heat 15 

transport parameters were estimated in HYDRUS using the inverse mode to solve for parameter 16 

values based on the PHACE θ (5-10, 15-25, and 35-45 cm) and TS (3 and 10 cm) data (Simunek 17 

et al., 2005; Šimůnek et al., 2008).  HYDRUS was then run in forward mode based on the tuned 18 

soil hydraulic parameters to estimate θ and TS at all 100 0.01-m depth increments at 6-hourly 19 

time intervals.  For consistency, HYDRUS-derived θ and TS were used as the environmental 20 

input data to the DETECT models, even at the depths for which PHACE data were available. 21 

2.4.4 Antecedent soil water and soil temperature conditions 22 
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We explicitly evaluated the impact of antecedent (past) θ and TS conditions on CO2 production 1 

by roots and microbes, motivated by prior work that estimated the relative importance of 2 

antecedent conditions and their time-scales of influence on soil and ecosystem CO2 efflux (Cable 3 

et al., 2013; Barron-Gafford et al., 2014; Ogle et al., 2015; Ryan et al., 2015).  Antecedent soil 4 

water content and antecedent soil temperature—θK
ant(z,t) and Ts

ant(z,t), respectively, for K = R 5 

(roots) and M (microbes)—were computed as weighted averages of the HYDRUS-produced 6 

θ(z,t) and TS(z,t) data, respectively. These calculations were done external to the DETECT 7 

model, and the antecedent variables were supplied as driving variables to DETECT. For 8 

example, for each 0.01 m increment (z) and time period (t), antecedent soil water associated with 9 

microbial CO2 production was calculated as: 10 

 
1

( , ) ( ) ( , )
J

ant
M

j

z t w j z t jθ θ
=

= ⋅ −∑   (12) 11 

The w’s are the antecedent importance weights, which sum to 1 from j = 1 (previous time period) 12 

to j=J (J previous time periods). The weights were informed by results from an analysis of 13 

ecosystem respiration at the PHACE site (Ryan et al., 2015).  For microbes, J = 4 days and w = 14 

(0.75, 0.25, 0, 0), indicating the strong importance of θ conditions occurring yesterday (j = 1) 15 

(Oikawa et al., 2014).  Similar equations were used to compute θR
ant(z,t) and Ts

ant(z,t), each with 16 

their own set of weights (w’s) and time-scales (J’s). For example, the time step and J for θ  differ 17 

among microbes (2 days) and roots (3 weeks); for roots, θR
ant(z,t) was computed as a weighted 18 

average of past, average weekly values of θ, with j denoting weeks into the past, for J = 4 weeks, 19 

and w = (0.2, 0.6, 0.2, 0), indicating a strong lag response to θ conditions occurring two weeks 20 

ago (Cable et al., 2013; Ryan et al., 2015). For antecedent soil temperature, we assumed that 21 

each of the past four days were equally important by setting the w vectors to (0.25, 0.25, 0.25, 22 
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0.25), for both microbes and roots (Ryan et al., 2015). The specification of J and the w’s are 1 

independent of the DETECT model formulation and can be varied by the user.  For clarity we 2 

summarize these weight parameters in Table 2. 3 

2.4.5 Overview of parameterization approach using PHACE data 4 

In general, our aim was to specify realistic values for the parameters in the DETECT model. We 5 

did not formally “fit” the DETECT model to data, but rather, we simply determined reasonable 6 

values based on simple analyses of relevant PHACE data sets, results published for the PHACE 7 

site, or results from other relevant studies.  The full list of parameters is given in Table 1, and 8 

below we describe the logic behind specifying specific values in Table 1. 9 

The depth-distributions of root biomass C (CR, Eqn 3), soil microbial biomass C (CMIC, 10 

Eqn 5), and soil organic C (CSOM, Eqn 7) are expressed in terms of a total C content in a 1 m 11 

deep soil column (R*, M*, and S*, respectively; mg C cm-2), multiplied by the proportion of that 12 

C that occurs at depth z (fR(z), fM(z), and fS(z), respectively).  See Appendix S1 (supplementary 13 

information) for details.  Regarding the data, soil organic C (Fig. S5, supplementary information) 14 

was determined by combustion of acidified, root-free soil collected from 0-5, 5-15, 15-30, 30-45, 15 

45-75, and 75-100 cm depths, using a Costech Elemental Analyzer. Microbial biomass C was 16 

determined by the chloroform fumigation and extraction in 0.05 M K2SO4 (Carrillo et al., 17 

2014b).  Extracts were analysed for total C on a total organic carbon analyzer (Shimadzu TOC-18 

VCPN; Shimadzu Scientific Instruments, Wood Dale, IL, USA) after treating with 1 M H3PO4 19 

(1 µl per 10 ml of extract) to remove any carbonates. Root biomass C was estimated from ash-20 

free root biomass and elemental analysis (Carrillo et al., 2014a; Mueller et al., 2016).  The 21 

solubility parameter, p, was estimated as the ratio of CSOL to CSOM using measurements of these 22 
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two quantities which were based on unfumigated extracts obtained for microbial biomass 1 

estimations as above (CSOL) and on total C concentration in soil (CSOM).   2 

The values used for the base microbial respiration rates and the half-saturation constant 3 

(VBase [Eqn 6] and Km [Eqn 5]; Table 1) were estimated by fitting the microbial respiration 4 

submodel, but without the CMIC or CUE terms (Eqn 5), to microbial respiration data from the 5 

PHACE control plots (Fig. S7, supplementary information).  The CMIC and CUE terms were not 6 

included in this earlier version of SM submodel – which was used for model calibration purposes 7 

– because we did not have measurements of these two variables at the time.  We estimated VBase 8 

and Km using a Markov Chain Monte Carlo approach, identical to the approach used in Ryan et 9 

al. (2015).  In the absence of root respiration data, we assumed that base root respiration (RRbase 10 

[Eqn 3]; Table 1) was proportional to the microbial base rate term (Hanson et al., 2000).  The 11 

parameters denoting the effects of current soil moisture (e.g., �O; Eqn 4a), antecedent moisture 12 

(�M), and the interaction between current and antecedent moisture (�/) on root and microbial 13 

respiration were derived from Ryan et al. (2015), also based on an analysis of ecosystem 14 

respiration (Reco) data from PHACE.  However, we adjusted the values (Table 1) by trial and 15 

error to reflect the expectation that the effects of current soil moisture should be stronger for 16 

microbial compared to root respiration because microbes tend to respond more rapidly to 17 

precipitation pulses (Risk et al., 2008), whereas root respiration is likely to show a delayed 18 

response that depends more strongly on past moisture conditions (Cable et al., 2008; Cable et al., 19 

2013).  Of the remaining two parameters describing SM (Eqns 5-6; Table 1), the value of CUE 20 

was based on results from a soil incubation study conducted at a nearby site (Tucker et al., 2013), 21 

whilst our value for Dliq was taken from Davidson et al. (2012).  Three parameters (Eo
*, To, and 22 

α4; Eqns 4a-b) were shared between the SR and SM submodels, and their values were also 23 
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obtained from Ryan et al. (2015). Finally, the parameters used for CO2 diffusivity (b, BD, and 1 

φg100; Eqn 2) were based on published, site-specific data (Morgan et al., 2011). 2 

2.4.6 Informal model validation with soil respiration measurements  3 

We evaluated the accuracy of the DETECT model by comparing (1) predicted Rsoil (Eqn 8) 4 

against plot-level measurements of ecosystem respiration (Reco) (see below) and (2) predicted 5 

soil CO2 concentrations, c(z,t), versus observed concentrations; all observed data were from the 6 

PHACE study. Since we did not rigorously parameterize the DETECT model with PHACE data, 7 

we were simply looking for reasonable, qualitative agreement between the modelled variables 8 

and the observations (e.g., similar order of magnitude, comparable temporal trends). Observed 9 

Reco was measured on control plots every 2-4 weeks during the target growing season, using a 10 

canopy gas exchange chamber, and instantaneous fluxes were scaled to daily rates using a linear, 11 

empirical function (Jasoni et al., 2005; Bachman et al., 2010).  We assumed that Rsoil was similar 12 

to Reco given that aboveground biomass was <20% of total plant biomass (Mueller et al., 2016).  13 

Measurements of microbial respiration were obtained by applying glyphosate herbicide to small 14 

subplots in May, 2008, limiting ecosystem CO2 efflux to microbial sources (Pendall et al., 2013), 15 

Non-steady state soil chambers were used to estimate the resulting surface soil fluxes every two 16 

weeks around midday (Oleson et al., 2013; Ogle et al., 2016).  Soil CO2 concentrations were also 17 

measured with non-dispersive infrared sensors (Vaisala GM222, Finland) installed at 3, 10, and 18 

20 cm below the soil surface, averaged on an hourly basis (Risk et al., 2008; Vargas et al., 2011; 19 

Brennan, 2013). Observations of soil [CO2] for control plots were compared against predictions 20 

of c(z,t) at z = 0.03, 0.1, and 0.2 m and at the corresponding times. 21 

2.5 Simulation Experiments 22 
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We evaluated the impact of three potentially important factors that could affect the frequency of 1 

NSS (Eqns 1 and 9a-c) relative to SS (Eqn 10) conditions: (1) soil texture, (2) precipitation 2 

patterns, and (3) importance of antecedent conditions. In the control (Ctrl) scenario, we 3 

calculated the source terms and diffusion terms (SK and Dgs in Eqns 1 and 2) based on soil 4 

environmental (θ and TS), soil texture (sandy clay loam: 60% sand, 20% silt, 20% clay), and 5 

meteorological data (e.g., precipitation) measured at the PHACE site in 2008. We varied soil 6 

texture, relative to that of the site, by varying the relative amounts of sand, silt, and clay, giving 7 

three levels (Table 3): 80% sand, 10% silt, and 10% clay (sandy loam, scenario denoted as ST-8 

Sa); 20% sand, 60% silt, and 20% clay (silt loam, ST-Si); 20% sand, 20% silt, and 60% clay 9 

(clay, ST-Cl).  The control (Ctrl) scenario was also paired with the observed daily precipitation 10 

data for 2008. We explored three additional precipitation scenarios, under the control soil 11 

texture, by shifting the daily precipitation to occur one month earlier, or one month later, or by 12 

using precipitation data from 2009 (scenarios P-E, P-L and P-FM, respectively; Table 3). For P-13 

FM, we chose 2009 because it had approximately the same total precipitation between April and 14 

September as 2008 (340mm and 348mm for 2008 and 2009, respectively), but it fell as more 15 

frequent events of smaller magnitudes. For each texture and precipitation scenario, HYDRUS 16 

was used to compute the corresponding TS and θ at the required depth and time intervals.  17 

Specifically, the different soil texture and precipitation regimes were used as inputs for the 18 

HYDRUS software when generating TS and θ  for all 100 depths and all 732 time points.  Hence, 19 

the differences in soil texture and differences in precipitation regimes were implemented by 20 

using different input files for the HYDRUS-generated θ and TS data.   21 

All above scenarios assumed that antecedent conditions are not important, which was 22 

achieved by setting all antecedent effects parameters (α2, α3, and α4; Table 1) equal to zero. We 23 
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contrasted these scenarios against ones that included antecedent conditions (thus, computed θK
ant 1 

and Ts
ant in Eqs 3 and 6) in the calculation of soil CO2 production by roots (K=R) and microbes 2 

(K=M); all such scenario names were appended with “ant” (Table 3, Fig. 1a).  For each scenario 3 

summarized in Table 3, we evaluated the potential for NSS conditions by comparing the 4 

predicted Rsoil produced by the DETECT model versus the SS-DETECT model. 5 

3. Results 6 

 3.1 Control Scenarios 7 

Soil CO2 was in steady state (SS) during most of the growing season under the control soil 8 

texture (sandy clay loam) and precipitation conditions that assumed no antecedent affects (Ctrl 9 

scenario).  For example, soil respiration (Rsoil) predicted by the DETECT model was 10 

approximately equal to Rsoil predicted by the SS-DETECT model during times of no or little 11 

precipitation (Fig. 2a, days < 218 or > 230). Conversely, Rsoil predicted by the SS-DETECT 12 

model was temporarily greater and more variable than that predicted by the DETECT model 13 

immediately following a large precipitation event (Fig. 2a, days 218-229).  However, the total 14 

cumulative Rsoil between days 92 to 274 – hereafter ‘total growing season Rsoil’ – under SS (497 15 

g C m-2) versus NSS (498 g C m-2) assumptions was approximately equal (a difference of 16 

~0.2%). 17 

The differences between the Rsoil from DETECT and SS-DETECT using the antecedent 18 

parametrization of the source terms of the models (Ctrl-ant scenario; Fig. 2b) were generally 19 

consistent with the results from the Ctrl scenario (Fig. 2a). However, the magnitude of Rsoil 20 

predicted by both the DETECT and SS-DETECT models was up to 9 gC m-2 day-1 greater during 21 

days following the major rain event (i.e., during days 230-243) when antecedent conditions were 22 

considered. Moreover, the incorporation of antecedent effects led to a longer delay between the 23 
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timing of the major rain event and the maximum Rsoil, which occurred ~5 days later than when 1 

only current conditions were considered (Fig. 2a vs. 2b).  As a result, total growing season Rsoil 2 

was ~15% higher under the Ctrl-ant scenario (e.g., 571 gC m-2 under NSS assumptions, Fig. 2b) 3 

compared to the Ctrl scenario (e.g., 498 gC m-2 under NSS, Fig. 2a). This increase in predicted 4 

Rsoil under the Ctrl-ant scenario for days 230-243 was primarily driven by greater root respiration 5 

(Fig. 2a vs 2b). 6 

3.2 Effects of soil texture 7 

Varying soil texture resulted in the greatest difference in daily Rsoil between the DETECT and 8 

SS-DETECT models; however, integrated over the growing season, these differences were very 9 

small (Fig. 3a,b,c).  In particular, total growing season Rsoil predicted by SS-DETECT was ~1.5% 10 

less than predicted by DETECT for soils consisting primarily of sand and silt (ST-Sa and ST-Si 11 

scenarios; Fig. 3a,b), but was ~3.3% less for a clay dominated soil (ST-Cl scenario; Fig. 3c red 12 

versus grey bars). These differences in Rsoil under NSS versus SS assumptions were 13 

approximately the same for the scenarios involving antecedent effects (Figs. 3d,e,f).  Despite the 14 

minor differences at the growing season scale, notable differences emerged at the daily scale.  15 

For example, with the largest precipitation event of the year and the 10 days that followed (days 16 

218-248), daily Rsoil predicted by the DETECT model was on average ~2.5% less than daily Rsoil 17 

from the SS-DETECT model for the ST-Sa and ST-Si scenarios (Fig. S3a).  Rsoil from DETECT 18 

was 4% greater than SS-DETECT Rsoil for the ST-Cl scenario, but when antecedent variables 19 

were included in the models, this difference increased to 10% (Figs. 3 and S3b).   20 

Soil texture also affected the magnitude of predicted Rsoil compared to the control 21 

scenarios, both with and without antecedent effects (Ctrl-ant and Ctrl, respectively).  In 22 

particular, we found that total growing season Rsoil, whether from the DETECT or the SS-23 
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DETECT model, was ~30% and ~60% higher for the ST-Si and ST-Cl scenarios relative to the 1 

Ctrl scenario (Figs. 3b, 3c, 4a). The change in Rsoil was negligible, however, when the sand 2 

content was increased from 60% (Ctrl) to 80% (ST-Sa) for both models (Fig. 3a, Fig. 4a). The 3 

antecedent versions of the fine-textured scenarios (ST-Si-ant and ST-Cl-ant) resulted in ~45% 4 

and ~95% increases in total growing season Rsoil, respectively, compared to the Ctrl-ant scenario 5 

(Figs. 3e, 3f, 4b). As with the Ctrl-ant scenario (§ 3.1), greater root respiration following the end 6 

of the second precipitation period between days 230 and 245, primarily drove the larger 7 

percentage increases for the SL-Si-ant and SL-Cl-ant scenarios compared to the non-antecedent 8 

versions (Fig. 4b vs Fig. 4a; Fig. 4e).  9 

3.3 Effects of precipitation regimes 10 

Although varying the timing, frequency, or magnitude of precipitation led to little difference 11 

between Rsoil as predicted by the DETECT and SS-DETECT models (Fig. S2), these 12 

precipitation regimes did affect the magnitude of Rsoil predicted by both models. For example, 13 

total growing season Rsoil predicted under the alternative precipitation scenarios was lower 14 

relative to the Ctrl scenario. This decrease was relatively small (5-10%) for the non-antecedent 15 

versions of the models (Fig. 4c), but was comparatively larger (15-22%) for the antecedent 16 

versions (Fig. 4d).  This reduction appears to be driven by the amount of time over which daily 17 

Rsoil responded to the second precipitation period, which occurred around day 220, 190, and 250 18 

in the Ctrl, P-E, and P-L scenarios, respectively. Following this precipitation event, daily Rsoil 19 

achieved values around 10 g C m-2 day-1 for about 20 days in the Ctrl scenario (Fig. 2a, days 220-20 

240), but for only about five days in the P-E and P-L scenarios (Fig S2a,b, after days 190 and 21 

250, respectively). Increasing the frequency of precipitation while retaining approximately the 22 

same annual amount (i.e., scenario P-FM) resulted in daily Rsoil being consistently less than that 23 
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of the Ctrl scenario, which led to a reduction in total growing season Rsoil in the P-FM scenario 1 

(Fig. S2c and S2f).  2 

3.4 Effects of antecedent responses 3 

When antecedent soil water content and soil temperature were included in the DETECT model 4 

we found that predicted Rsoil was 15% greater for the control scenario and 29-37% greater for the 5 

fine textured soil scenarios, compared to the corresponding scenarios that did not include 6 

antecedent conditions.  When the sand content was 80% or for any of the different precipitation 7 

regimes, there was a negligible difference between Rsoil predicted by the antecedent versus non-8 

antecedent parametrizations of DETECT.  9 

Daily Rsoil predicted by the DETECT model based on the Ctrl and Ctrl-ant scenarios 10 

agreed well with observed ecosystem respiration (Reco), but Reco was slightly higher than 11 

predicted Rsoil (Fig. 2a,b), which was expected since Reco = Rsoil + aboveground autotrophic 12 

respiration.  For the most part, this data-model agreement was similar whether the antecedent 13 

model terms were included (Fig. 2b) or not (Fig. 2a). Unfortunately, Reco data were not available 14 

during the time period (days 230-250) associated with the greatest disagreement between the Ctrl 15 

and Ctrl-ant scenarios.  During this period, frequent hourly measurements of soil [CO2] were in 16 

better agreement with predicted soil CO2 from the Ctrl-ant scenario compared to the Ctrl 17 

scenario (Figs. 5a,b, S4a,b).  After day ~250, based on the DETECT model, both scenarios (Ctrl 18 

and Ctrl-ant) under-predicted the observed soil [CO2] by ~ 50% (Fig. 5).  19 

4. Discussion 20 

The DETECT and SS-DETECT models provide a framework for evaluating the circumstances 21 

under which steady-state (SS) assumptions of soil CO2 production and surface soil respiration 22 

(Rsoil) are valid, and to identify the major physical (i.e., soil texture, soil moisture) and/or 23 
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biological (i.e., root and microbial respiration responses) factors that lead to non-steady-state 1 

(NSS) conditions. 2 

4.1 Steady-state versus non-steady-state conditions  3 

At the seasonal scale, there was reasonable agreement between total growing season Rsoil 4 

predicted under the assumption of SS versus NSS conditions, but the strength of this agreement 5 

depended on soil texture (see §4.2).  At the daily scale, Rsoil predicted by the DETECT model 6 

deviated from values expected under the assumption of SS conditions for 11 days or 4% of the 7 

days during the April-September growing season (Fig. 2, days 218-228).  These discrepancies, 8 

attributed to NSS conditions, were generally limited to periods following large rain events.  For 9 

applications that assume SS conditions, such as isotopic partitioning studies (Hui and Luo, 2004; 10 

Ogle and Pendall, 2015), the SS assumption seemed reasonable during periods of minimal or no 11 

precipitation, representative of times during which soil water content changes very little or 12 

gradually.  For sites or time periods characterized by pulsed precipitation patterns, our results 13 

suggested that NSS conditions would be more likely over longer periods of time.   14 

4.2 Effect of varying soil texture  15 

Our results indicated that soil texture exerts the strongest control over the prevalence of NSS soil  16 

CO2 conditions. For a predominantly (e.g., 60%) sandy or silty soil, soil CO2 transport and efflux 17 

generally aligned with the SS assumption (Fig. 2, Fig. 3a-b). This was consistent with previous 18 

work that used SS models to predict Rsoil for similar soil types (Baldocchi et al., 2006; Vargas et 19 

al., 2010).   20 

For very fine-texture soil dominated by clay, however, SS assumptions were far less 21 

appropriate.  The larger difference – relative to the Ctrl scenario – in Rsoil predicted under SS 22 

versus NSS conditions for fine-texture (i.e., 60% clay) soil was apparent at both the growing 23 
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season scale and the daily scale following a large precipitation event (Fig. 3, S3a, S3b).  In 1 

general, the DETECT model predicted that Rsoil should be higher in clay compared to sandy soil 2 

after precipitation events, a result supported by field experiments (Cable et al., 2008), but this 3 

texture effect is muted under assumptions of SS.  Moreover, recovery of Rsoil to SS rates after a 4 

large rain event took ~30 days in the clay soil (Fig. 3c, days 218 to 248) compared to ~10 days 5 

for the other coarser soil texture scenarios (Fig. 2, Fig. 3a-b, days 218 to ~230). These effects of 6 

soil texture on the prevalence of NSS conditions can be attributed to soil physical properties and 7 

their effects on air-filled porosity and CO2 diffusivity. Fine textured soils have smaller pores and 8 

tend to retain water for longer (Bouma and Bryla, 2000), which has the effect of decreasing soil 9 

CO2 diffusivity (Fig. 6). Thus, under moist conditions that follow a rain event, it may take about 10 

15 minutes for a CO2 molecule produced at 0.5 m to diffuse to the surface in a clay soil 11 

compared to only 1-2 minutes for a sandy soil.  This means that the increase in CO2 12 

concentration near the soil’s surface will be almost immediate under a coarsely textured soil 13 

(Fig. 6a), but slightly delayed under a finely texture soil.  Finally, fine-textured soils have slower 14 

infiltration rates (Hillel, 1998), delaying the exposure of more deeply distributed roots and 15 

microbes to increased moisture availability. While this effect may not directly impact the SS 16 

assumption, it would lead to greater time lags between precipitation pulses and Rsoil peaks. 17 

These findings have important implications for studies that rely on the SS assumption to 18 

predict subsurface soil CO2 production. The SS assumption may be sufficient for systems 19 

defined by coarse-textured soils, but it may lead to erroneous conclusions if applied to fine-20 

textured soils, especially at the very short-term scale (e.g. diurnal Rsoil) during times of 21 

precipitation.  Our simulation experiments made the simplifying assumption that soil texture is 22 

constant with depth, but in many ecosystems, texture may vary greatly with depth (Ogle et al., 23 
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2004).  An important next step is to extend the simulations to explore the impacts of depth-1 

varying soil texture on SS versus NSS conditions.  The DETECT model can easily accommodate 2 

such modifications; allowing soil texture to vary by depth would have a direct effect on soil 3 

water content, which is simulated outside of DETECT using HYDRUS (Chou et al., 2008; 4 

Šimůnek et al., 2008; Piao et al., 2009), that can accommodate such depth variation. 5 

4.3 Effect of varying the timing or frequency of precipitation 6 

Unlike soil texture, varying the timing, frequency, and magnitude of precipitation resulted in 7 

predicted Rsoil that was almost identical under SS and NSS assumptions, both at the growing 8 

season and daily time-scales (Fig. S2).  We had anticipated that such changes in the precipitation 9 

regime would impact SS conditions via impacts on soil air-filled porosity and potentially by 10 

changing the covariance between soil water and soil temperature, both of which affect soil CO2 11 

diffusivity (e.g., see Eqn 2). We did not explore, however, the effect of decreasing the frequency 12 

while simultaneously increasing the magnitude of individual pulses. We hypothesize that this 13 

latter scenario could produce more exaggerated or extended NSS conditions given that large rain 14 

events would infiltrate deeper, reducing CO2 diffusivity across greater soil depths, thus slowing 15 

the transport of more deeply derived CO2. Increasing the number of small events, as done in the 16 

P-FM scenario, would generally confine water inputs to shallow layers, from which CO2 has 17 

shorter distances to travel to reach the surface, creating less opportunity for Rsoil to exhibit NSS 18 

behavior.  19 

4.4 Effect of antecedent conditions 20 

The inclusion or exclusion of antecedent soil moisture and temperature effects on CO2 21 

production rates had little to no impact on the balance between SS versus NSS behavior of Rsoil. 22 

However, incorporating antecedent effects generally increased the magnitude of Rsoil as 23 
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microbial respiration was stimulated more during the initial onset of the main precipitation 1 

period when antecedent effects were considered (Fig. 2b vs Fig. 2a, day 218, blue line). This is 2 

expected because the instantaneous response of microbes to a rain event is expected to be greater 3 

following a dry period compared to during a wet period (Xu et al., 2004; Sponseller, 2007; Cable 4 

et al., 2008; Thomas et al., 2008; Cable et al., 2013). These dynamics are incorporated in the 5 

antecedent version of the models when the parameter corresponding to the interaction between 6 

current and antecedent soil water content is negative (e.g., α3, Table 1).  Secondly, root 7 

respiration was greatly enhanced following the end of this period of precipitation (Fig. 2b vs Fig. 8 

2a, days ~230-250, green line), despite there being little precipitation after day 230 (Fig. 2b).  9 

This likely occurred because our DETECT model assumed that soil water over relatively longer 10 

time periods (past 1-2 weeks, Eqn. 12) affects current root respiration rates.  This partly reflects 11 

the mechanism that roots are able to take up more soil water that has infiltrated to deeper depths 12 

(Cable et al., 2013).  The microbes, however, are coupled to past conditions over comparatively 13 

short time periods (a couple days).   14 

The importance and benefit of including antecedent terms for modelling soil respiration 15 

or ecosystem respiration has been well documented (Cable et al., 2013; Barron-Gafford et al., 16 

2014; Ryan et al., 2015).  Thus, we encourage future studies to include influences of past 17 

conditions when modelling subsurface and surface CO2 fluxes. Fortunately, our simulation 18 

experiments suggest that the lagged responses of microbial and root respiration to soil moisture 19 

and temperature do not have a notable impact on the SS assumption. 20 

4.5 Comparison of modelled soil CO2 with data 21 

The good agreement between modeled and observed soil CO2 concentrations—particularly when 22 

including antecedent effects—was very encouraging because the DETECT model was not 23 
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rigorously tuned or calibrated to fit data on soil [CO2] or ecosystem CO2 fluxes (Reco) (Figs. 5, 1 

S4a,b). However, there remained discrepancies between the predicted and observed CO2 fluxes, 2 

particularly after rain events. These discrepancies could be an artifact of the input data used to 3 

calculate CO2 production (i.e., the source term).  Some parameter values were drawn from the 4 

literature and others were estimated by fitting a non-linear regression model to data.  For 5 

example, the parameters describing the current and antecedent soil water content effects (�’s) 6 

were obtained by fitting a non-linear model to Reco data (Ryan et al., 2015).  While measured Reco 7 

represents both root respiration and microbial respiration contributions, it also reflects 8 

aboveground respiration, which is not currently treated in the DETECT model.  Moreover, we 9 

made further assumptions about how the Reco parameter estimates translate to component 10 

processes (root and microbial responses), and we relied on literature information about how 11 

microbes and roots respond to precipitation events (e.g., the timing, magnitude, and lags).  Future 12 

studies could rigorously fit the DETECT model to field data, such as observations of Rsoil, soil 13 

CO2 concentrations, and 13C isotope fluxes.  Using a Bayesian methodology to do this would 14 

allow one to incorporate multiple data sets to inform all parameters in DETECT. 15 

4.6 Non-steady state model of soil CO2 transport and production 16 

An important contribution of this this study was the development of a non-steady state (NSS) 17 

model of soil CO2 transport and production (the DETECT model version 1.0), which is 18 

particularly useful for systems that may frequently experience NSS conditions. Other comparable 19 

NSS models exist (e.g., Šimůnek and Suarez, 1993; Fang and Moncrieff, 1999; Hui and Luo, 20 

2004), but they generally treat the production (source) terms—root/rhizosphere respiration and 21 

microbial decomposition of soil organic matter—simplistically, and accompanying model code 22 

is not available. Our DETECT v1.0 model includes more detailed submodels for the production 23 
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terms, inspired by recent studies (E.g. Lloyd and Taylor, 1994; Pendall et al., 2003; Davidson et 1 

al., 2012; Todd-Brown et al., 2012; Carrillo et al., 2014a); in contrast to these studies, which 2 

essentially described models for “bulk” soil, we applied the CO2 production models to every 3 

depth increment. Additionally, we have provided model code, implemented in Matlab (see Code 4 

Availability section), with the goal of making the DETECT model, and ability to accommodate 5 

NSS conditions, more accessible to potential users. 6 

 Future versions of DETECT could include other characteristics of soil CO2 production 7 

and transport not included in v1.0.  These include: (1) a transport process that simulates the 8 

physical displacement of CO2 in the soil following a precipitation event; (2) alternative options 9 

for some of the functions used, for example there are a number of ways of estimating soluble soil 10 

C from soil organic C and soil water content (equation 7); (3) estimation of the parameters and 11 

their associated uncertainties using formal methods (e.g. MCMC) that rely on  measurements of 12 

C stocks and C fluxes; (4) quantification of the uncertainty of the model outputs (soil CO2 13 

concentration, soil respiration) by propagation of uncertainty from the parameters; (5) coupling 14 

DETECT with a dynamic soil C model in order for the CSOM pools to be dynamic rather than 15 

prescribed independently of DETECT.   16 

5. Conclusions 17 

Determining the conditions under which steady-state (SS) assumptions are appropriate for 18 

modeling soil CO2 production, transport, and efflux is crucial for accurately modeling the 19 

contribution of soils to the carbon cycle. We found that soil texture exerted the greatest control 20 

over whether SS assumptions are appropriate. When the soil at a site is coarse (60% or more 21 

sand), SS assumptions appeared to be appropriate, and one could apply a simpler, more 22 

computationally efficient SS model, such as SS-DETECT (see also Amundson et al., 1998). As 23 
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the soil texture becomes increasingly finer, SS assumptions start to break down, especially 1 

following large precipitation events that can greatly impact soil water content and associated soil 2 

air-filled porosity, thus affecting CO2 diffusivity.  Under such conditions, the more complex and 3 

computationally demanding NSS model (DETECT) is preferred. We found that precipitation 4 

regime characteristics and/or the inclusion of antecedent soil moisture and temperature 5 

conditions had little singular effect on whether SS or NSS assumptions were appropriate.  6 

However, while these factors do not directly impact SS versus NSS behavior, they were found to 7 

be important for accurately modeling the soil carbon cycle because they notably impacted the 8 

magnitude of the soil CO2 efflux. 9 

Code availability 10 

All of the Matlab script files for running the DETECT model can be accessed via 11 

http://doi.org/10.5281/zenodo.927501.  These Matlab script files are set up so that the model 12 

runs at the PHACE field site.  The above weblink also provides a user manual which gives 13 

instructions for running DETECT at either the PHACE site or at a user specified field site.  We 14 

also provide Matlab script files for creating a time series of predicted versus observed soil 15 

respiration (figure 2) and a time series of predicted versus observed soil CO2 (figure 5).  These 16 

can be found via http://doi.org/10.5281/zenodo.927313.  Following publication, these Matlab 17 

files and the data files (see next section) will be available to download from the Ogle lab website 18 

via http://jan.ucc.nau.edu/ogle-lab/. 19 

Data availability 20 

Measurement data made at the PHACE field site, which are required as inputs for the DETECT 21 

model, are available via http://doi.org/10.5281/zenodo.926064. 22 
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Figures and Tables 1 

 2 

Figure 1. Graphical representation of: (a) the required inputs to the DETECT model and the 3 

associated scenarios implemented in this study, and (b) the components of the DETECT model at 4 

a particular time t, indicating depth-dependent production, CO2 concentrations, and CO2 fluxes. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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 1 

Figure 2 Time-series of daily surface soil CO2 fluxes (Rsoil) predicted by the non-steady-state (DETECT) and steady-state (SS-2 

DETECT) models over the growing season (1st April – 30th September), based on the control scenarios (a) without (Ctrl) and (b) with 3 

(Ctrl-ant) antecedent effects (see Table 2). Only Rsoil is simulated using the SS-DETECT model, whereas Rsoil and its root and 4 

microbial contributions are simulated using the DETECT model. The predicted fluxes are overlaid with observed ecosystem 5 

respiration (Reco; Rsoil + aboveground plant respiration) and microbial respiration (Rm; based on plots where vegetation was removed).   6 
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 1 

Figure 3 Time-series of daily surface soil respiration (Rsoil) predicted from the non-steady-state (NSS) DETECT model (red solid 2 

lines) and the steady-state (SS-DETECT) model (grey dashed lines), for different soil texture scenarios.  The first three scenarios are 3 

the same as the control (Ctrl), except they assume a different soil texture: (a) more sandy soil, (b) more silty soil, or (c) more clayey 4 

soil.  Panels (d), (e), and (f) show the Rsoil predictions from the same soil texture scenarios as in (a)-(c), but also including antecedent 5 

effects of soil moisture and temperature. See Table 2 for descriptions of each scenario. Rsoil predictions are overlaid with daily 6 

precipitation. 7 
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 1 

 2 

Figure 4 Differences of total growing season (April-September) soil respiration (Rsoil) as predicted by the non-steady-state (DETECT) 3 

and steady-state (SS-DETECT) models, for different pairs of scenarios. Comparisons are grouped such that they quantify the effects of 4 

(a) soil texture without antecedent effects, (b) soil texture with antecedent effects, (c) precipitation without antecedent effects, (d) 5 

precipitation with antecedent effects, and (e) antecedent effects.  See Table 2 for descriptions of each scenario .   6 
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 8 
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 1 

Figure 5 Time-series of predicted versus observed soil CO2 concentrations at 3 cm depth, 10 cm depth, and 20 cm depth, where the 2 

predictions are based on the non-steady-state (NSS) DETECT model. Predicted [CO2] is shown for the daily time-scale for the control 3 

scenarios (a) without (Ctrl) and (b) with (Ctrl-ant) antecedent effects, and for (c) the subdaily (every 6 hours) time scale for the Ctrl-4 

ant scenario.  Units are in parts per million (ppm).  5 
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 1 

 2 

Figure 6 Time series of how the modelled diffusivity of CO2 (Dgs) at three different depths (5, 3 

25, and 50 cm) varies between a predominantly sandy soil (solid line) and a predominantly clay 4 

soil (dashed line). Predictions are from the non-steady state (DETECT) model for the Ctrl (60% 5 

sand) and ST-Cl (60% clay) scenarios; see Table 2 for a description of the scenarios. 6 
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Table 1 Summary of scalar parameters used in the non-steady-state (DETECT) model, arranged 1 

into four groups: parameters unique to the microbial respiration submodel for SM(z,t) (group 1); 2 

parameters unique to the root respiration submodel for SR(z,t) (group 2); parameters that are 3 

shared between the SM(z,t) and SR(z,t) submodels (group 3); parameters used to calculate soil 4 

CO2 diffusivity, Dgs (group 4).  See § 2.4.5 for details about how the parameters were estimated. 5 

Symbol Description Value Units Eqn(s). 

Group 1 – root submodel parameters  

R* Total root biomass C in a 1 m deep by 1 cm2 soil column 111.5 mg C cm-2 3 
RRBase Root mass-base respiration rate at 10 oC and mean 

environmental conditions 
6×10-5 mg C cm-3 hr-1 3 

�O(�) The effect of soil water content (θ) on root respiration 11.65 unitless 3, 4a 

�M(�) The effect of antecedent θ (θR
ant) on root respiration 20.7 unitless 3, 4b 

�/(�) The interactive effect of θ and θR
ant on root respiration -164.2 unitless 3, 4c 

Group 2 – microbial submodel parameters  

S* Total soil organic C in a 1 meter deep by 1 cm2 soil 
column 

711.6 mg C cm-2 5 

M* Total microbial biomass C in a 1 meter deep by 1cm2 
column of soil 

12.3 mg C cm-2 5 

VBase Value of Vmax at 10 oC and mean environmental conditions 0.0015 mg C cm-3 hr-1 5, 6 �O(-) The effect of θ on microbial respiration 14.05 unitless 5, 6 

�M(-) The effect of antecedent θ (θM
ant) on microbial respiration 11.05 unitless 5, 6 

�/(-) The interactive effect of θ and θM
ant on microbial 

respiration 
-87.6 unitless 5, 6 

Km Michaelis-Menton half saturation constant 10-5 mg C cm-3 hr-1 5 
CUE Microbial carbon-use efficiency 0.8 mg C / mg C 5 

p Fraction of soil organic C that is soluble 0.004  7 
Dliq Diffusivity of soil C substrate in liquid 3.17 unitless 7 

Group 3 – shared parameters between root / microbial submodels  

Eo* Temperature sensitivity parameter, somewhat analogous to 
an energy of activation 

324.6 Kelvin 4c 

To Temperature sensitivity-related parameter 227.5 Kelvin 4c �  The effect of antecedent soil temperature (TS
ant) on root 

and microbial respiration 
-4.7 unitless 4c 

Group 4 – soil CO2 diffusivity submodel parameters  

�/(�) Absolute value of the slope of the line relating log(Ψ) 
versus log(θ) 

4.547 unitless 2 

BD Soil bulk density 1.12 g cm-3 2 
φg100 Air-filled porosity at soil water potential of -100 cm H20 

(~10 kPa) 
18.16 % 2 

PD Particle density    
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Table 2 Summary of quantities in the non-steady-state (DETECT) model that vary by depth only 1 

(z), or by depth (z) and time (t).  Those in group 1 represent input variables (derived prior to the 2 

running of the DETECT model), while group 2 contains the modeled quantities (used as part of 3 

the operation of the DETECT model).  Equation S1 can be found in Appendix S1 in the 4 

supplementary information. 5 

Symbol Description Units Eqn(s). 

Group 1 ��(�) A function describing the distribution by depth of root carbon. unitless S1 ��(�, 
) The amount of root carbon. mg C cm-3 hr-1 3, S1 ��(�) A function describing the distribution by depth of carbon 
from soil organic matter (SOM) 

unitless S1 

��+-(�) The amount of carbon from SOM. mg C cm-3 hr-1 7, S1 �-(�) A function describing the distribution by depth of microbial 
carbon 

unitless S1 

�-QR(�) The amount of microbial carbon. mg C cm-3 hr-1 3, S1 
θ(�, 
) Soil water content m3 m-3 3, 6, 7 

θR
ant(�, 
) Antedecent soil water content (used in SR function) calculated 

as a weighted average of soil water content from the previous 
4 days.  The weights are w=(0.75,0.25,0,0). 

m3 m-3 3 

θM
ant(�, 
) Antedecent soil water content (used in SM function) 

calculated as a weighted average of soil water content from 
the previous 4 days.  The weights are w=(0.2,0.6,0.2,0). 

m3 m-3 6 

Ts(�, 
) Soil temperature Kelvin 3, 6 
TS

ant(�, 
) Antecedent soil temperature calculated as a weighted average 
of soil temperature from the previous 4 weeks.  The weights 
are w=(0.25,0.25,0.25,0.25). 

Kelvin 3, 6 

Group 2 c	(�, 
) Total soil CO2. mg CO2 m-3 1 cS(�, 
) Soil CO2 derived from root sources. mg CO2 m-3 1 �S(�, 
) Source term describing the production of soil CO2 from root 
respiration. 

mg CO2 m-3 1 

c7(�, 
) Soil CO2 derived from microbial sources. mg CO2 m-3 1 �7(�, 
) Source term describing the production of soil CO2 from 
microbial respiration. 

mg CO2 m-3 1 

DK�(�, 
) Diffusivity of soil CO2 m2 s-1 1, 2 

φg(�, 
) Air-filled soil porosity. m3 m-3 1, 2 
��+,(�, 
) The amount of soluble carbon from SOM. mg C cm-3 hr-1 5, 7 
Vmax(�, 
) Maximum potential decomposition rate (microbial carbon). mg C cm-3 hr-1 6 
Eo(�, 
) Analogous to energy of activation.   Kelvin 4c 

6 
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Table 3 The scenario code, description, and summary of results associated with each model scenario; the 14 scenarios below were 1 

applied to both the DETECT and SS-DETECT models. The scenarios involved a non-factorial combination of different soil texture, 2 

precipitation regimes, and inclusion/exclusion of antecedent effects on the root and microbial CO2 production rates.  3 

Scenario Description Primary result(s) 

Scenarios that assume no antecedent effects 

Ctrl 

(control) 
 

Uses soil texture (sandy clay loam: 60% sand, 20% clay) and precipitation 
(for 2008) data from the PHACE site; CO2 production only responds to 
concurrent environmental conditions. 

Rsoil was very similar under SS and NSS soil 
CO2 assumptions. 

Soil texture scenarios 

ST-Sa Same as Ctrl, but the soil texture is set to sandy loam (80% sand, 10% clay). For ST-Cl, Rsoil was greater in magnitude and 
more different under SS vs NSS conditions,  
due to NSS conditions producing greater Rsoil 
after a major precipitation event. The results 
are similar, but muted, for the ST-Si scenario. 

ST-Si  Same as Ctrl, but the soil texture is set to silt loam (20% sand, 20% clay). 

ST-Cl  Same as Ctrl, but the soil texture is set to clay (20% sand, 60% clay). 

Precipitation scenarios 

P-E Same as Ctrl, but daily precipitation was shifted to occur one month earlier. 
Varing the timing or magnitude of 
precipitation pulses had little effect on the 
magnitude of Rsoil or on the difference 
between SS and NSS predictions of Rsoil. 

P-L Same as Ctrl, but daily precipitation was shifted to occur one month later. 

P-FM 
Same as Ctrl, but daily precipitation was based on data from 2009, which is 
characterized by more frequent, smaller events. 

Scenarios that incorporate antecedent effects on CO2 production rates 

Ctrl-ant 

ST-Sa-ant  
ST-Si-ant 

ST-Cl-ant 

P-E-ant 

P-L-ant 

P-FM-ant 

All scenarios parallel those described above, except both current and 
antecedent conditions (past soil water and past soil temperature) are used in 
the calculation of the source terms (i.e., root and microbial CO2 production 
rates). 

Rsoil was generally greater in magnitude 
under both SS and NSS conditions, especially 
for ST-Si-ant and ST-Cl-ant (relative to ST-Si 
and ST-Cl). 

 4 


