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Abstract.  15 
We have implemented a regional carbon dioxide data assimilation system based on the CarbonTracker Data Assimilation 

Shell (CTDAS) and a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport 

model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). With this system, named as 

CTDAS-Lagrange, we simultaneously optimize terrestrial biosphere fluxes and four parameters that adjust the lateral 

boundary conditions (BCs) against CO2 observations from the NOAA ESRL North America tall tower and aircraft 20 
Programmable Flask Packages (PFPs) sampling program. Least-squares optimization is performed with a time-stepping 

ensemble Kalman smoother, over a time window of 10 days and assimilating sequentially a time series of observations. 

Because the WRF-STILT footprints are pre-computed, it is computationally efficient to run the CTDAS-Lagrange system.  

 

To estimate the uncertainties of the optimized fluxes from the system, we performed sensitivity tests with various a priori 25 
biosphere fluxes (SiBCASA, SiB3, CT2013B) and BCs (optimized mole fraction fields from CT2013B and CTE2014, and 

an empirical data set derived from aircraft observations), as well as with a variety of choices on the ways that fluxes are 

adjusted (additive or multiplicative), covariance length scales, biosphere flux covariances, BC parameter uncertainties, and 

model-data mismatches. In pseudo-data experiments, we show that in our implementation the additive flux adjustment 

method is more flexible in optimizing NEE than the multiplicative flux adjustment method, and our sensitivity tests with real 30 
observations show that the CTDAS-Lagrange system has the ability to correct for the potential biases in the lateral boundary 

conditions and to resolve large biases in the prior biosphere fluxes. 
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Using real observations, we have derived a range of estimates for the optimized carbon fluxes from a series of sensitivity 

tests, which places the North American carbon sink for the year 2010 in a range from -0.92 to -1.26 PgC/yr. This is 

comparable to the TM5-based estimates of CarbonTracker (version CT2016, -0.91 ± 1.10 PgC/yr) and CarbonTracker 

Europe (version CTE2016, -0.91 ± 0.31 PgC/yr). We conclude that CTDAS-Lagrange can offer a versatile and 5 
computationally attractive alternative to these global systems for regional estimates of carbon fluxes, which can take 

advantage of high-resolution Lagrangian footprints that are increasingly easy to obtain. 

1 Introduction 

CO2 exchange between the terrestrial biosphere and the atmosphere has a strong impact on the climate system (Houghton et 

al., 2001), which makes it crucial to quantify the amount of CO2 exchange, and to better understand the interactions between 10 
the global carbon cycle and climate change. Atmospheric measurements of trace gas mole fractions provide constraints for 

the estimates of biosphere surface fluxes from regional to global scales (Schuh et al., 2010; Lauvaux et al., 2012; Peters et 

al., 2007; Peylin et al., 2013; van der Laan-Luijkx et al., 2017), and complement bottom-up biosphere modeling (Sellers et 

al., 1996; Schaefer et al., 2008; van der Velde et al., 2014) that typically targets site to ecosystem scales in the earth system. 

Inferring biospheric and oceanic surface fluxes from a “top-down” perspective, through an atmospheric inversion, plays an 15 
important role in global budgeting efforts (Le Quere et al., 2016), as it takes advantage of the mass-conservation of carbon in 

the atmosphere for global inversions and the high-precision measurements done in the atmosphere over the past decades 

(Conway et al., 1994; observations are now published through ObsPack available at https://www.esrl.noaa.gov/gmd/ 

ccgg/obspack/index.html).   

 20 
In the past decade, much attention has been given to estimating carbon fluxes at global scales (e.g. Rödenbeck et al., 2003; 

Peters et al., 2007; Chevallier et al., 2010; Peylin et al., 2013), while regional inversion studies with high spatial resolution 

for carbon fluxes are only gaining ground more recently (e.g. Göckede et al., 2010; Schuh et al., 2010; Tolk et al., 2011; 

Lauvaux et al., 2012; Gourdji et al., 2012; Broquet et al., 2013; Shiha et al., 2014; Alden et al., 2016; Kountouris et al., 

2018). Such regional inversion studies contribute to a better understanding of the mechanism through which carbon fluxes 25 
react to environmental variations at a fine scale. But to link carbon fluxes and environmental drivers to atmospheric 

measurements, a high-resolution transport model is typically needed. In the framework for global inversions, typically, 

ensemble-based methods (Peters et al., 2007) are based on Eulerian models, and analytical methods (Rödenbeck et al., 2003; 

Chevallier et al., 2010) are with a linearized adjoint model of such Eulerian models. In terms of computational efficiency, 

Lagrangian models are superior to these traditional Eulerian models for high-resolution applications, which makes them 30 
suitable for computation-intensive regional atmospheric inversions. The computation cost of Lagrangian model increases 
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with the increasing number of observations; however, it remains an advantage that offline Lagrangian transport results, i.e. 

footprints, need to be computed only once, and can be stored for future use. 

 

However, both global and regional inversion studies suffer from various uncertainties, including transport and representation 

errors, possible observational biases when data from different laboratories are combined, and uncertainties in a priori fluxes.  5 
For regional inversions, errors in lateral boundary conditions (BCs) become another critical issue (Alden et al., 2016; Gerbig, 

et al., 2003; Schuh et al., 2010; Lauvaux et al., 2013), and can bias flux estimates, particularly for smaller areas (Göckede et 

al., 2010) and for shorter period (Andersson et al., 2015). Several methods to create lateral boundary conditions have been 

employed, including deriving them from mole fraction fields of global inversions (Kountouris et al., 2018) and in situ mole 

fraction observations, e.g. aircraft profiles or satellite observations (Jiang et al. 2015). Embedding a regional inversion inside 10 
a global model domain has been widely applied for CO2, CH4 and N2O flux estimates (Bergamaschi et al., 2010; Corazza et 

al., 2011) for example within the nested TM5 model framework. Gourdji et al. (2012) compared an empirical BC derived 

from aircraft profiles and marine boundary layer data with BC values taken from CarbonTracker CT2009 optimized mole 

fraction fields, and pointed out the former might be more accurate than the latter. Various studies apply aircraft 

measurements to correct model-derived BCs either before (Broquet et al., 2013), or during regional inversions (Lauvaux et 15 
al., 2012; Brioude et al., 2012; Wecht et al., 2014). Adjusting BCs using the inverse modeling framework is desirable as it 

guarantees consistency between all sources of information used. Recently, Jiang et al. (2015) assimilated the MOPITT 

satellite profile data to optimize BCs during the estimation of North American CO emissions, and reported a reduction of the 

mean residual bias in the posteriori simulation (simulations minus observations) from -13.3% to 3.5%. 

 20 
To better understand regional carbon fluxes, we developed a data assimilation system that employs a high-resolution 

Lagrangian atmospheric transport model, the WRF-STILT model. Our assimilation system, the CarbonTracker Data 

Assimilation Shell – Lagrange, (referred to as “CTDAS-Lagrange”), is based on the CarbonTracker Europe system, which is 

a widely-applied global inversion system (Peters et al., 2010; van der Laan-Luijkx et al., 2015; van der Laan-Luijkx et al., 

2017). In our new system, we optimize BCs using independent information from aircraft profiles. We use a priori biosphere 25 
fluxes from the SiBCASA biosphere model (Schaefer et al., 2008), and the other a priori fluxes for the components ocean, 

fossil fuels, and fires are from CT2013B (accessible from the archived release https://www.esrl.noaa.gov/gmd/ccgg/ 

carbontracker/CT2013B/). CO2 observations come from NOAA Programmable Flask Package (PFP) data from tall towers 

and aircraft sites. Aircraft observations are used to optimize BCs while tower observations were used to optimize the 

terrestrial biosphere fluxes at the surface. We investigate the impact of different a priori fluxes and BCs, two alternative 30 
ways of adjusting fluxes (additive and multiplicative), covariance length scales, BC parameter uncertainties, model-data 

mismatch, and uncertainties from transport on the optimized fluxes.  Based on the above investigations, we have constructed 

a range of estimates, and then compared the inversion results with those of contemporary inversion studies.  
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The purpose of this paper is to describe and demonstrate the CTDAS-Lagrange data assimilation system. We have 

performed preliminary inversions using a subset of the available CO2 data for North America for a single year.  A more 

comprehensive analysis is planned that will incorporate additional datasets and cover a longer time period. This paper is 

organized as follows: in Sect. 2 we introduce the modeling framework and observation data used for this study, Sect. 3 

presents results of the system performance and sensitivity runs, followed by discussion and conclusions in Sect.4.   5 

2 Data and model 

2.1 CO2 observations    

Our system assimilates atmospheric CO2 mole fraction measurements made from the NOAA ESRL Global Greenhouse Gas 

Reference Network, specifically, the analysis results of air samples collected by automated flask-sampling systems that are 

known as programmable flask packages (PFPs). The advantage of using PFP flask data is that more than 50 compounds, 10 
including carbon monoxide, are also available together with CO2 measurements. The data collected in North America at 8 

tall tower sites and 12 selected aircraft sites in 2010 are used for this study. The air samples were collected daily or on 

alternate days during mid-afternoon at the tall tower sites (Andrews et al., 2014), and biweekly or monthly at the selected 

aircraft sites (Sweeney et al., 2015). The location of the observations is shown in Fig. 1. The data are provided to the model 

input as an ObsPack (Masarie et al., 2014). 15 

2.1.1 Tall tower observations 

Detailed site and sampling information of the tall tower observations is listed in Table 1. Andrews et al. (2014) used flask 

versus in situ comparisons for quality control and pointed out such comparisons suffer from quasi-continuous in situ data 

(due to e.g. switching of sampling lines among different heights, calibrations), difference in sampling time, and atmospheric 

variability. The mean differences between PFP flask and in situ CO2 measurements over all 8 sites for 2010 range from 0.08 20 
to 0.32 ppm, with the standard deviation of the differences for each site ranging from 0.2 to 0.6 ppm and increasingly 

positive differences over the period 2008-2011. According to Andrews et al. (2014), the mean differences are likely caused 

by potential biases in an increasing number of the PFP flask measurements that may result from contamination caused by 

routine use throughout the network or by use under polluted conditions. A new flask sampling protocol was implemented in 

September such that the flask is pressurized with ambient air prior to sample collection and held at high pressure for several 25 
minutes then vented and resampled. Agreement has improved between flask and in situ measurement systems so the 

difference is reliably better than 0.2 ppm. We did not make any attempt to correct for the potential biases in the 2010 data. 

Masarie et al., 2011 shows that every 1 ppm of bias at LEF in the CarbonTracker inversion causes a linear response rate of 

68 Tg C yr−1 for temperate North American net flux estimates. However, if the bias is across the whole network, the impact 

on the net flux estimates will be much less than that.  30 
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2.1.2 Aircraft profiles 

The NOAA ESRL aircraft CO2 profile data (Table 1) are used to optimize lateral boundary conditions. The Global 

Greenhouse Gas Reference Network’s aircraft program (Sweeney et al., 2015) has been collecting air samples for vertical 

profile measurements over North America since 1992. For each individual flight, 12 flask samples are collected from 500 

meters above ground up to 8000 meters above sea level at most aircraft sites. Of 15 ongoing aircraft sites by 2014, we have 5 
selected 12 sites (8 close to the domain boundary, and 4 in the middle of the domain) for this study. Because the aircraft 

program uses the same PFP flasks as in the tall tower program, the aircraft CO2 measurements may have potential biases as 

well. Indeed, Karion et al. (2013) reported PFP flask minus in situ CO2 measurements of 0.20 ± 0.37 ppm for the aircraft 

measurements over Alaska from 2009 to 2011, a similar magnitude of biases as found in the tall tower PFP flask versus in 

situ comparisons.  10 

2.1.3 Data filtering 

We use daytime data from the tall towers that are collected between 10:00 and 18:00 local time to constrain surface fluxes. 

Aircraft observations made at altitudes higher than 3000 meters above ground at all hours are used to constrain boundary 

conditions. In CTDAS-Lagrange, we use fossil fuel emissions based on inventory estimates and do not attempt to optimize 

them. We remove CO2 observations that are likely strongly influenced by fossil fuels before optimizing biosphere fluxes. 15 
This diminishes the potential biases in optimized biosphere fluxes that are caused by local fossil fuel sources and/or by 

representation errors in the simulated fossil fuel CO2 signals. To achieve this, we use CO measurements as a proxy for fossil 

fuel influences, realizing that especially in summer other sources of CO can contribute to enhanced mole fractions. We first 

calculate CO enhancement as the difference between the CO observation and the background value, i.e. the corresponding 

value from a second order harmonic function that is fitted to the CO data for each tall tower site. We filter out any CO2 20 
observations with CO enhancements larger than 33.6 ppb, which corresponds to 3-ppm fossil fuel CO2 according to the year-

round median apparent ratio of 11.2 ppb/ppm estimated in Miller et al. (2012). About 8.5% of the available CO2 data is 

excluded by the CO filter, with the majority coming from the two sites STR and WGC in California. 

2.2 The CTDAS-Lagrange system 

The CTDAS-Lagrange system aims to improve the estimates of regional carbon fluxes by combining a high spatial 25 
resolution Lagrangian modeling framework with the existing Data Assimilation Shell (van der Laan-Luijkx et al., 2017). 

Transport of atmospheric CO2 in the main application of CTDAS: the CarbonTracker Europe system, is realized by using the 

global, two-way nested transport model TM5 (3°x2° global, and 1°x1° for one or more regional domains of interest), driven 

by 3h meteorological parameters. The CTDAS-Lagrange system replaces the coarse TM5 transport model with a Lagrangian 

transport model with high spatial resolution. Another advantage of the CTDAS-Lagrange system is its significantly 30 
improved time efficiency. Outputs from the Lagrangian transport model can be stored as measurement footprints (influence 

functions) so that the CO2 mole fractions resulting from different surface flux configurations can be simulated offline 
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afterwards, using simple matrix multiplications rather than full transport calculations. In addition, these stored outputs can be 

used for other species directly, reducing significantly the computation time when performing multiple/other species 

inversions, i.e. for the extension of our system to multi-species applications. 

2.2.1 Atmospheric transport model 

The Stochastic Time-Inverted Lagrangian Transport model coupled with the Weather Forecast and Research (WRF-STILT) 5 
is employed in our system (Lin et al., 2003; Nehrkorn et al., 2010). The STILT model is a receptor-oriented framework that 

links surface fluxes of trace gases with atmospheric mole fractions. During a WRF-STILT run, an ensemble of particles is 

released at the observation location (receptor) at a certain time, and particles are transported backward driven by the WRF 

wind fields. The influence function, i.e. footprint, for that particular receptor and time can be computed based on the density 

of the particles in the surface layer defined in STILT as the lower half of the well-mixed boundary layer (Gerbig et al., 10 
2003).  

 

We leverage a footprint library created for the NOAA CarbonTracker Lagrange regional inversion framework 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange/). The WRF-STILT model was run with 500 particles that are 

traced backward for 10 days. The WRF model (version 3.3.1 for the 2010 time period of this study) was configured with a 15 
Lambert conformal map projection to cover continental North America, with a spatial resolution of 10 km for the inner 

domain over the continental U.S. (~ 25 – 55 oN; 135 – 65 oW) and 40 km for the outer domain (~ 10 – 80 oN; 170 – 50 oW), 

and 40 vertical layers, which is similar to the configurations in Nehrkorn et al. (2010) and Hu et al. (2015). The North 

American Regional Reanalysis (Mesinger et al., 2006) provided initial and lateral boundary conditions.  Model runs were 

initialized every 24 hours, with the initial 6 hours of each 30-hour forecast discarded to allow for model spinup Species 20 
independent 10-day surface footprints with 1o x 1o spatial resolution and hourly time resolution are computed with STILT 

and stored for each measurement along with back-trajectories. Snapshots of the 3-dimensional particle distribution are also 

stored to enable assignment of boundary values according to where particles intersect with the domain of the inversion. 

2.2.2 Optimization scheme 

In the CTDAS-Lagrange system, we extended the existing Ensemble Kalman Smoother method as is implemented in 25 
CarbonTracker and CarbonTracker Europe (Peters et al., 2005, 2007, 2010; van der Laan-Luijkx et al., 2017) to 

simultaneously optimize biosphere fluxes and boundary condition parameters. 

 

We use two alternative ways of adjusting the total surface fluxes (additive and multiplicative), while simultaneously 

optimizing the lateral boundary conditions by optimizing four parameters that are implemented as follows: 30 
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where C(Xr,tr) is the simulated CO2 mole fraction [ppm] at the location of the observation (receptor) Xr and time tr, C0(Xr,tr) 

refers to the contribution of advection from the lateral boundary condition [ppm]; βi [ppm] is adjusted to optimize the lateral 

boundary condition for each of the four sides of the regional domain for each 10-day period. The boundary condition mole 

fraction βi is weighted by the pre-calculated coefficient Wi (𝑋$, 𝑡$) [unitless] that is determined as the ratio of the number of 5 
particles exited from one side of the domain to the number of particles exited from all sides of the domain. The domain 

considers 3000 m as the top boundary, which means that the particles that exited the domain below 3000 m or did not leave 

the domain within 10 days were not used to calculate the weight Wi (𝑋$, 𝑡$). In case all particles left the domain below 

3000 m, the weights of BC parameters were zero and the BC was not adjusted. This choice reflects the dominant influence of 

surface fluxes over lateral advection for particles that spent considerable time within the inner domains. 𝑆(𝑋$, 𝑡$|𝑥, 𝑦, 𝑡) is 10 
the footprint (sensitivity of mole fraction variations to surface fluxes, [ppm/(µmol m-2 s-1)) calculated with STILT. Biosphere 

fluxes Fbio(x,y,t) [µmol m-2 s-1] are optimized by either additively or multiplicatively optimizing a set of parameters l [µmol 

m-2 s-1, or unitless] for each 1x1 degree grid in the domain for each 10-day period, represented by the function f[l,Fbio(x,y,t)] 

in the equation. Focn(x,y,t), Fff(x,y,t), and Ffire(x,y,t) denote the CO2 fluxes [µmol m-2 s-1] exchanged with ocean, from fossil 

fuels and fires, and these are fixed.  15 
 
The state variables therefore include the gridded adjusting parameters for the biosphere fluxes (3078 land grids with 1x1 

degree resolution over North America) plus those for the four boundary condition parameters, leading to a total of 3082 

parameters for each 10-day period. The state variables are optimized simultaneously within each period.  Considering that 

aircraft observations above 3000 meters contain mostly information about boundary conditions and have low or even no 20 
sensitivity to surface fluxes, we optimize the biosphere fluxes using tower observations only, and optimize boundary 

conditions with both tower and aircraft observations. This separation is applied through localization of the Kalman Gain 

matrix. 

2.2.3 System setup 

The system aims to optimize (non-fire) net ecosystem exchange (NEE) of CO2 between biosphere and atmosphere, and 25 
requires prior biosphere fluxes, lateral boundary conditions, and other fixed fluxes such as fossil fuel emissions, ocean and 

fire fluxes as model input. This section describes the setup of the base case run. 
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We use biosphere fluxes simulated by the combined Simple Biosphere and Carnegie-Ames-Stanford Approach (SiBCASA) 

model (Schaefer et al., 2008) as a prior and fixed fossil fuel burning, ocean, and fire fluxes from CT2013B (Peters et al. 

2007, with updates documented at http://carbontracker.noaa.gov) with the latter two being negligibly small in the annual 

mean over our domain of interest, but still included since they introduce spatiotemporal variations in CO2 mole fractions. 

More details about these prior and the component fluxes are described in section 2.2.4. The lateral boundary condition is also 5 
taken from the 4-D mole fraction fields simulated by CT2013B. We use the WRF-STILT transport model. Here we give a 

short summary of the configuration of the base case run: we prescribe an additive biosphere fluxes uncertainty of 1.6 µmol 

m-2 s-1; a prior uncertainty of the boundary condition parameters of 2.0 ppm, a model-data-mismatch of 3 ppm for surface 

sites and 1 ppm for aircraft sites, and a covariance length scale of 750 km.  

 10 
We estimate the additive flux adjustments for each grid box in our domain, but a covariance structure is used to reduce the 

number of degrees of freedom in the state vector, and to balance it with the number of available observations. The 

covariance is calculated as an exponential function that decreases with distance between grid boxes, using a decorrelation 

length scale of 750 km. This covariance is only used between grid boxes that have the same dominant plant-functional type, 

as specified though the ecoregion maps that are also used in CT2013B. These in turn are based on TransCom regions, as well 15 
as the Olson ecosystem classification (Olson et al., 2002). Where CT2013B uses single scaling factors for each ecoregion, 

our gridded approach has approximately 122 degrees of freedom within its 3078 additive adjustment parameters as 

compared to an average of 112 independent observations per assimilation time step.  

 

We have adapted the fixed lag Ensemble Kalman Smoother method from Peters et al. (2005) to estimate fluxes and BC per 20 
10-day time step. Because the footprint of each receptor can go back in time up to 10 days, we need a total assimilation 

window of 20 days to account for the backward trajectories that overlap two time steps. Therefore, the total state vector 

contains flux and BC parameters for two 10-day time steps (3082 x 2). The time stepping cycle works as follows (see Fig. 

2): First, we use an ensemble of parameters derived from the total state vector to calculate an ensemble of modeled CO2 

mole fractions for each measurement extracted in the current 10-day time step. These state vector parameters reflect the 25 
influence of fluxes and boundary conditions on the modeled CO2 in the current 10-day time step and the previous 10-day 

time step that has already been optimized once in the previous cycle. In the next step, the set of Ensemble Kalman Smoother 

equations as outlined in Peters et al. (2005) is solved to give a new set of optimized state vector parameters and its ensemble, 

where the state vector of the previous time step is optimized for a second and final time. Modeled CO2 from the previous 

time step is updated using the final state vector. Finally, the next cycle starts 10 days forward in time by introducing a new 30 
set of measurements. In this way, each 10-day state vector is finalized after two cycles of optimization.   

 

A comparison of the setup between the base case and sensitivity runs (described in the section 2.3) is given in Table 2.   
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2.2.4 Prior biosphere and other fluxes 

The prior biosphere fluxes are simulated by the SiBCASA model, a diagnostic biosphere model, which combines 

photosynthesis and biophysical processes from the Simple Biosphere (SiB) model version 3 with carbon biogeochemical 

processes from the Carnegie-Ames-Stanford Approach model (Schaefer et al., 2008). Meteorological driver data is provided 

by the European Centre for Medium-Range Weather Forecasting (ECMWF). SiBCASA calculates the surface energy, water, 5 
and CO2 fluxes at a 10-minute time step on a spatial resolution of 1° x 1°, and predicts the moisture content and temperature 

of the canopy and soil (Sellers et al., 1996). SiBCASA uses one of the 12 dominant biome types at 1x1 degree resolution. 

But it does include the distinction of C3 and C4 photosynthesis using the C4 coverage map from Still et al. (2003), which 

means that the grid cells contain a fraction of both C3 and C4 plant types, and the carbon uptake is computed separately from 

each of the plant types. We use the 3-hourly mean CO2 fluxes as is used in van der Velde et al. (2014) and van der Laan-10 
Luijkx et al. (2017). 

 

CT2013B offers a number of flux estimates (ocean, fossil fuels, etc.) from multiple models, which includes two different 

flux data sets for ocean and fossil fuels, respectively. The fire fluxes are based on the Global Fire Emissions Database 

(GFED) 3.1, which are calculated with the CASA model (Giglio et al., 2006; van der Werf et al., 2006). The fire fluxes are 15 
not optimized in CT2013B. The two different prior ocean fluxes for CT2013B include a long-term mean of ocean fluxes that 

is derived from the ocean interior inversions (Jacobson et al., 2007) and a climatology data set that is created from direct 

observations of seawater around the world and was interpolated onto a regular grid map using a modeled surface current 

field (Takahashi et al., 2009). We use the optimized ocean fluxes of CT2013B that are calculated as the mean of an ensemble 

of run results. The two different fossil fuel fluxes for CT2013B are the “Miller” emissions dataset and the “ODIAC” 20 
emissions datasets (Oda and Maksyutov, 2011). The difference of the two data sets is the processing schemes on the totals, 

spatial distribution, and temporal distribution of fossil fuel emissions. The fossil fuel fluxes are not optimized in CT2013B. 

We use the fixed fossil fuel data of CT2013B, which is an average of “Miller” and “ODIAC”. The final product of these 

fluxes is provided on 1° x 1° degree grid at a 3-hourly temporal resolution. More details can be found at the CarbonTracker 

website CT2013B (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2013B/index.php). 25 

2.3 Sensitivity runs 

2.3.1 Lateral boundary conditions 

The lateral boundary conditions could be constructed either from interpolated measurements or from the output of a global 

tracer model. The base case uses CT2013B optimized mole fraction fields.  

 30 
To study the impact of different lateral boundary conditions on flux optimization, we have tested optimized mole fraction 

fields with the spatial resolution of 1° x 1° from CarbonTracker Europe (CTE2014), as well as empirical background mole 

fraction fields (EMP). Pacific marine boundary layer data from the NOAA Earth System Research Laboratory’s Cooperative 
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Air Sampling Network and vertical profile data from aircraft were used to produce a background mole fraction field varying 

across latitudes, altitudes, and time. This three-dimensional background “curtain” represents mole fractions of CO2 in the 

remote atmosphere between 10° and 80°N and from 0 to 7500 m above sea level. It was derived using the same curve-fitting 

algorithms described in Masarie and Tans (1995). Similar background fields have been used in regional inverse-modeling 

studies of CH4, CO2, and other gases (e.g., Gourdji et al., 2012; Jeong et al., 2013; Miller et al., 2013; Hu et al., 2015). 5 
Similarly, the lateral boundary condition was constructed in Gerbig et al. (2003) based on a series of analytical functions, 

which were used to fit measurements at selected ground stations and from aircraft data from various campaigns.  

 

 

We also assign different prior uncertainties other than 2 ppm for the boundary condition parameters. Experiments are 10 
designed as follows: 

 

        BC1:  using CTE2014 mole fraction fields as lateral boundary conditions; 

        BC2:  using EMP as lateral boundary conditions; 

        Pbc1: set the uncertainty of the boundary condition parameter to 1 ppm; 15 
        Pbc2: set the uncertainty of the boundary condition parameter to 3 ppm. 

 

For all other aspects, the model is configured to be identical to the base case run. 

2.3.2 Prior biosphere fluxes 

Gurney et al. (2004) point out that inversion results can be sensitive to a priori fluxes for regions with sparse observations 20 
while the fluxes can be well constrained by areas with dense observations. To investigate the impact of different a priori 

fluxes on the optimized fluxes, we have designed two sensitivity runs that incorporate two alternative biosphere fluxes as a 

priori fluxes as follows:  

 

        B1: SiB3 biosphere fluxes;  25 
        B2: CT2013B optimized biosphere fluxes. 

 

Except for the difference in the a priori biosphere fluxes, the two sensitivity runs share the same model setup as the base 

case. SiB3 biosphere fluxes are the simulation results of the third version of the Simple Biosphere model (Baker et al., 

2008), with hourly fluxes and a spatial resolution of 1° x 1°. CT2013B optimized biosphere fluxes are the outputs of 30 
CT2013B that optimizes the global surface biosphere fluxes, which uses higher-resolution transport over North America 

than other regions. Although these fluxes are already optimized against global and North America CO2 observations, it is 

still interesting to optimize them in a different assimilation system, especially when the system employs a high spatial 

resolution and different transport model. In addition, CT2013B assimilates a different set of observations compared to 
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CTDAS-Lagrange. In principle, one expects these fluxes to be most consistent with observations, and to lead to a very 

similar posterior mean flux as was prescribed through the prior.  

 

For further analysis of the sensitivity of the CTDAS-Lagrange system to the annual mean and the seasonal magnitude of a 

priori fluxes, we have designed a series of runs with modified SiBCASA fluxes. We scaled the respiration of the SiBCASA 5 
fluxes while maintaining the GPP estimate to obtain a priori North American annual mean fluxes ranging from +0.43 to -

2.06 PgC/yr. The tests with prior fluxes +0.43, -0.06, -0.97, -1.44 and -2.06 PgC/yr are labeled with BX1, BX2, BX3, BX4 

and BX5, respectively. 

2.3.3 Additive or multiplicative flux adjustment 

The multiplicative flux adjustment of NEE relates the uncertainties to the magnitude of the fluxes. As NEE is the difference 10 
between two gross fluxes gross primary production and ecosystem respiration, 10-day mean NEE can be very small or even 

close to zero when GPP and respiration are close to each other, e.g. in the so-called shoulder seasons see Fig. 8, which limits 

the ability of using multiplicative flux adjustment to scale the mean fluxes due to low uncertainties in the inversion system 

(note that the large diurnal cycle of the net flux will still be scaled though). Scaling both GPP and respiration has been shown 

to circumvent this in deriving optimized mean fluxes (Tolk et al., 2011). Here, we have instead implemented both 15 
multiplicative and additive flux adjustment methods. For the multiplicative method, we set the biosphere scaling parameter 

variance as 80%, following Peters et al. (2010); for the additive method, the variance is prescribed as 1.6 µmol m-2 s-1 which 

represents the typical flux uncertainty of the multiplicative method during the summer months. Because this value persists 

yearlong in the additive run, the total annual uncertainty of this method is higher though. Sensitivity tests for the covariance 

are described below. The additive method is used in the base case run, and the multiplicative method was tested as a 20 
sensitivity run.  

 

For a better assessment of the adjusting ability of the two methods, we further perform experimental inversions using pseudo 

data, i.e. Observing System Simulation Experiments (OSSEs). The primary aim of our OSSEs is to investigate the ability of 

our system to retrieve surface fluxes given the observational network. In particular, we test the implementation of the 25 
additive flux parameter vs. multiplicative flux parameter, and the ability to recover large biases in lateral boundary 

conditions and prior fluxes. We run the CTDAS-Lagrange in a forward mode with the SiBCASA fluxes as prior to generate 

simulated mole fractions, and then try to recover the “truth” in an inversion using SiB3 fluxes as a priori.  

2.3.4 Covariance length scales 

The covariance length scale determines the rate at which the correlation between the fluxes of two grids within the same 30 
ecoregions decreases exponentially with increasing distance. The prescribed covariance effectively reduces the number of 

unknowns to be solved for, and improves the ability of the inversion system to retrieve optimized fluxes when data are 
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limited (Rödenbeck et al., 2003; Gourdji et al., 2012). The choice of appropriate correlation length scale depends also on the 

observation density. For example, CarbonTracker Europe, which includes more observations than those used in this work, 

uses a correlation length scale of 300 km for North America. In addition, Alden (2013) found 700 km to be the best length 

scale to recover true fluxes over North America with a pseudo-data inversion experiment. To investigate the impact of 

covariance length scales on optimized fluxes, we performed sensitivity runs with a series of spatial correlation lengths: 300 5 
km, 500 km, 750 km (base case), 1000 km and 1250 km, labeled as CL1 to CL4, respectively.  

2.3.5 Magnitude of covariance and model-data mismatch 

Flux covariance determines the range in which prior biosphere fluxes can be adjusted. It should ideally reflect the 

uncertainty of prior biosphere fluxes, but information about prior flux errors is not readily available for the priors used here 

or for terrestrial ecosystem models more generally. To evaluate the possible influence of prior covariances on the optimized 10 

fluxes, we modified the additive uncertainty by ±50%. The model-data mismatch (MDM) is a parameter that describes the 

capability of our modeling system to match the observations, and is used to deweight observations that are not well 

represented by the model simulations, e.g. in the case of local influence. The observations are even excluded when the 

differences between observed and simulated CO2 are larger than 3 times the MDM. We set the MDM to 3.0 ppm for tower 

sites and 1.0 ppm for aircraft sites. The sensitivity tests that incorporate the covariance and MDM are described below: 15 
 

       Q1: decrease the magnitude of additive uncertainty by 50%, which means the covariance is 25% of the default; 

       Q2: increase the magnitude of additive uncertainty by 50%, which means the covariance is 225% of the default; 

       R1: set the MDM to 2 ppm for tower sites; 

       R2: set the MDM to 4 ppm for tower sites. 20 
 

The rest of the model setup is the same as the base case run. 

2.3.6 Observational data choice 

As a sensitivity test, we exclude observations at two tower sites (STR and WGC), which are characterized with larger prior 

and posterior residuals (simulated minus observed, both mean and standard deviation) than other sites. We have defined one 25 
sensitivity run as follows: 

 

Obs: excluding STR and WGC, and the rest of the model setup is the same as the base case run.  
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3. Results 

This section covers the following topics: CO2 mole fraction simulations and seasonal cycles of biosphere fluxes from the 

base case run, lateral boundary conditions choice and optimization, sensitivity to a priori fluxes, additive or multiplicative 

adjusting parameters, covariance length scales, transport uncertainties, and a summary of ensemble estimates.  

3.1 Observed and simulated CO2 mole fractions 5 

As an example, a time series of simulated and observed CO2 mole fractions at the LEF tower site for the year 2010 is shown 

in Fig. 3. As should be expected from the assimilation, the optimized CO2 records closely follow the CO2 observations over 

time, and the optimized residuals (green) are smaller than those from the model forecast (red). The distribution of both prior 

and posterior residuals shown on the right side of Fig. 3 indicates improvement from the prior +0.85 ± 3.73 ppm to the 

posterior 0.09 ± 1.55 ppm. The larger variability of both observed and simulated CO2 between May and November 10 
(compared to the rest of the year) are likely caused by larger variability in the biosphere fluxes during the growing season, as 

well as larger variation in atmospheric mixing conditions. A few simulated values (blue) are rejected in the assimilation 

procedure because the difference between simulations with prior biosphere fluxes and observations is larger than three times 

the assigned model-data-mismatch of 3 ppm for tower sites. For the LEF tower site, 11 out of the total 409, or 2.9% are 

rejected, which is slightly larger than the expected rejection rate (based on a 3-σ cut-off for a Gaussian PDF of the errors) of 15 
2% (Peters et al., 2010). It is shown in Table 1 that the rejection rates for most tower sites are around 2-3%, except for WBI 

(7.6%) and WGC (18.0%).  

3.2 Seasonal cycles of net ecosystem exchange of CO2 

Fig. 4 shows the seasonal cycle (10-day averages) of net ecosystem exchange of CO2 for the year 2010 for 4 major Olson 

aggregated land-cover types of North America (boreal forests/wooded, boreal tundra/taiga, temperate forests/wooded, and 20 
temperate crops/agriculture). The amplitude of the seasonal cycle of temperate forests/wooded is the largest among the four 

land-cover types, with both large summertime vegetative uptake and large wintertime respiratory emissions. Since the same 

ecoregions may correspond to multiple regions and climates, we have separated the southern and norther regions for 

crops and forests (divided by 40°N). The seasonal cycles are mainly caused by those in the northern regions, especially for 

crops. The uncertainties of the posterior fluxes have been reduced for all four land-cover types and for almost all seasons of 25 
the year, especially for temperate forests/wooded and temperate crops/agriculture.  

 

The seasonal cycle of the posterior fluxes shows a similar magnitude as the prior. In addition, the optimized fluxes generally 

show more fluctuations than prior fluxes over the year, which could be explained by effective constraints from atmospheric 

observations and possibly in some cases as artifacts that are caused by the sparseness of the observations. It should be noted 30 
that it does not mean that the actual errors in these fluxes are really reduced, as this can only be assessed using independent 

observations of these fluxes. With monthly averaging, the fluctuations in the derived posterior fluxes could be significantly 



14 

reduced (see Fig.4). Interestingly, the temperate crops/agriculture show double troughs in the uptake in May and July-August 

or a sudden drop in the uptake in June, which could be attributed to early-summer crops/agriculture harvests, temperature 

anomaly, or drought. 

 

The mean prior and optimized fluxes for the summer months June – August are given in Fig. 5. The optimized fluxes show a 5 
similar spatial pattern as the prior fluxes, but display more spatial details. The optimized results place more carbon uptake in 

the agricultural Midwest and the forests/wooded in the northeast of the United States, as well as in the boreal forests/wooded 

and tundra/taiga of Canada; In contrast, less carbon uptake (or carbon emissions) are placed in the Western US, especially in 

south Utah, north Arizona and Louisiana.  

3.3 Boundary condition choice and optimization 10 

A comparison of the mole fraction contribution from three lateral boundary conditions for the eight tower sites is 

summarized in Table 3.  The annual means of the CTE2014 are consistently ~0.30 ppm higher than those of the CT2013B 

for all sites; however, the summertime means of the CTE2014 and the CT2013B are nearly equal except for the two sites 

AMT and STR. In contrast, the annual means of the EMP and the CT2013B are nearly equal for all sites; however, the 

summertime drawdowns of the EMP are significantly higher (-1.70 to -0.28 ppm) than those of the CT2013B for all sites 15 
except STR (0.66 ppm). This suggests that the two model-derived BC’s provide higher summer background mole fractions 

than the EMP-based background, which corresponds to a known high bias in summertime CO2 across North America in both 

versions of CarbonTracker used to construct the BCs. 

 

The optimized annual mean fluxes and the adjustment of the boundary condition parameters for the model runs with 20 
different prior lateral boundary conditions are shown in Table 4. When both biosphere fluxes and BC parameters are 

optimized, i.e. “Flux+BC” optimization, the optimized annual mean fluxes using three different prior lateral boundary 

conditions range from -1.26 to -1.08 PgC/yr, with an average of -1.14 ± 0.10 PgC/yr, which have a smaller variation 

compared to those from the model runs when only biosphere fluxes are optimized, i.e. “Flux only” optimization, that ranges 

from -1.49 to -1.09 PgC/yr or -1.22 ± 0.23 PgC/yr (discussed in more detail in the following section). The results show that 25 
the additional BC optimization is desired when model-based BCs are used, and that this reduces the annual mean optimized 

biosphere fluxes by up to 0.23 PgC/yr, or 15.4% of the “Flux only” optimized fluxes. The largest adjustment in the 

optimized annual mean biosphere uptake takes place in the run with the CTE2014 as lateral boundary conditions, which 

corresponds to the consistently higher annual means of the boundary condition contributions of the CTE2014 than those of 

the CT2013B. The contribution of the adjustment of boundary condition parameters to simulated CO2 ranges from -0.18 to 30 
0.16 ppm over all seasons of the year 2010, which stresses that this is a subtle, but systematic, signal to account for in a 

regional inversion.  
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The residuals of the model runs with and without BC optimization (not shown), in almost all cases, are significantly reduced 

after optimization. The reduction in the residuals after optimization for aircraft sites is primarily due to the adjustment of the 

boundary condition parameters. We notice that the residuals (means and standard deviations) of the model runs with 

optimized biosphere fluxes and boundary condition parameters for the two sites STR and WGC are larger than those for 

other sites. Possible reasons are that the two sites are still significantly influenced by regional fossil fuel signals after the data 5 
filtering presented in Section 2.1.3, and are less sensitive to biosphere fluxes (due to their proximity to the West Coast of 

North America there is less sensitivity to land flux than for other sites). We will investigate the impact of the two 

observation sites on optimized fluxes in the following section. 

 

The time series of optimized North American averaged biosphere fluxes from the model runs with different prior lateral 10 
boundary conditions are shown in Fig. 6. The differences among the optimized fluxes with additional BC optimization (Fig. 

6b) become smaller than those from the “Flux only” runs (Fig. 6a). This can also be observed when averaged over major 

ecoregions (Fig. 6c&d), especially for the boreal forests and temperate forests. The differences in the optimized biosphere 

fluxes caused by different prior lateral boundary conditions are mostly small, except that the deviation of the EMP optimized 

fluxes from the other two is slightly larger for the period July – September.  15 

3.4 Sensitivity to prior biosphere fluxes 

The optimized annual mean biosphere fluxes and associated BC parameter adjustments from the runs with different prior 

biosphere fluxes are shown in Table 5. The flux adjustments are in general large, resulting in significantly larger annual 

mean uptake over North America than the prior; however, the optimized annual mean fluxes from the runs using three 

different prior biosphere products converge, except for the run using the original CT2013B optimized fluxes. A further check 20 
indicates that the residuals of the run are reasonable, but more observations have been rejected compared with the other runs. 

The rejection takes place in the period from June to August, which is caused by large fluctuations of the a priori fluxes. Note 

that the a priori CT2013B fluxes are optimized using weekly scaling factors in an assimilation window of 5 weeks long and 

incur substantial variability (or noise) that averages out over larger scales in CT2013B. But the forward simulations of the 

CTDAS-Lagrange system are sensitive to the fluxes and their diurnal cycle only in a 10-day window and therefore more 25 
sensitive to this variability (or noise). Therefore, we have made an additional sensitivity test (B2’) with smoothed CT2013B 

fluxes (10-day averaged, identical 3-hourly fluxes across a day in every 10-day period) as a priori, which gives smaller 

optimized annual fluxes (see Table 5). Because the prior CT2013B fluxes contain large fluctuations, we have averaged the 

fluxes within 10-day windows to a single constant value. We are fully aware that this is not realistic, and this should be 

regarded as a sensitivity test to understanding the difficulties of our CTDAS-Lagrange system to high-frequency fluctuations 30 
in the prior fluxes with limited flexibility (prior flux uncertainty). We hereafter refer to CT2013B-avg for further analysis.   
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Fig. 7a shows the time series of the North America averaged biosphere fluxes of the model runs with different prior 

biosphere fluxes. It is noticeable that the difference in the seasonal amplitude between the SiB3 prior biosphere fluxes and 

the other two prior biosphere fluxes is diminished after optimization. Furthermore, the significant difference among the three 

prior products for the period August – October is largely reconciled by the inversion. Annual mean fluxes per ecoregion 

(Fig. 7c) indicate that the largest adjustment in the fluxes takes place for temperate forests and temperate grass, with fluxes 5 
from temperate grass changed from uptake to emissions. Note that the optimized fluxes per ecoregion do not always agree 

on their magnitudes, which is likely caused by insufficient constraints by observations, especially for the boreal region.  

 

 

To further investigate the sensitivity of the CTDAS-Lagrange system to the seasonal magnitude and the annual mean of a 10 
priori fluxes, we scale the respiration of the SiBCASA fluxes to obtain a variety of a priori fluxes with the annual mean NEE 

ranging from +0.43 to -2.06 PgC/yr. We find that the seasonal magnitudes of the optimized fluxes are nearly independent of 

those of the prior fluxes (Fig. 7b), and the range of the annual mean is significantly reduced to -0.9 – -1.45 PgC/yr (Table 6). 

Like the runs with the prior fluxes from SiBCASA, SiB3 and CT2013B-avg, the optimized fluxes show variations at 

multiple times of the year that are a direct result of the corresponding flux adjustment within 10-day windows. The 15 
prior/optimized fluxes per ecoregion (Fig. 7d) show that the optimized fluxes are either independent of (e.g. boreal 

forests/wooded, temperate grass/shrubs) or have a slight dependence on (e.g. boreal tundra/taiga, temperate forests/wooded) 

on the priors.  This demonstrates that the CTDAS-Lagrange system can resolve large biases in the priors, but the magnitude 

of adjustment is also limited by the prescribed flux uncertainty, which is confirmed by the tests with increased flux 

uncertainty (not shown).  Besides this, the limited choice of data constraints also limits the ability of the system to respond to 20 
biased prior fluxes.  

 

Finally, we note that tests of CTDAS-Lagrange in so-called OSSEs (Fig. 9a) confirm that a near-perfect truth can be 

estimated with the system if pseudo-observations are created from known fluxes. In our experiments, transport errors and 

systematic structural differences between truth and prior flux+BC patterns play no role, while in reality they form a well-25 
known limiting factor to our ability to estimate surface exchange. 

3.5 The flux adjustment method: multiplicative vs. additive 

The prior/optimized fluxes using both additive and multiplicative flux adjustment methods are shown in Fig. 8. We found 

that major differences occur in the so-called shoulder seasons, where the flux adjustment is significant for the run with the 

additive method but is negligible for the run with the multiplicative method. The multiplicative method fails to adjust the 30 
fluxes in this case because the NEE is small or even close to zero around the shoulder seasons. Larger variations in the 

optimized fluxes for the additive flux adjustment method are observed compared to those for the multiplicative method, due 
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to the flexibility of the additive flux adjustment method and higher prior flux uncertainties. Note that both methods 

reproduce observed CO2 values equally well and multiplicative scalars do not lead to worse residuals.  

 

Fig. 9 shows the inversion results of model runs with pseudo data, further confirming the advantage of the additive method 

over the multiplicative method in the CTDAS-Lagrange system. The additive method recovers the seasonality better than the 5 
multiplicative method, noticeable mainly for the period June-July. It is also clearly shown that the multiplicative method 

fails to derive the “truth” fluxes around the shoulder season in the fall (no difference between the prior and the truth in the 

spring). Besides this, the estimate of the annual net biosphere fluxes derived from the additive method is also closer to the 

truth than that from the multiplicative method, although the associated uncertainties are rather large.  

 10 

3.6 Sensitivity to the covariance length scale 

The sensitivity of the CTDAS-Lagrange to the covariance length scale is shown in Fig. 10. The optimized fluxes tend to 

reach a robust value when the covariance length scale is larger than 750-1000 km, and we note that the difference between 

750 km and 1000 km is relatively small. We have tested whether including aircraft sites can reduce this length scale 

dependence below 1000 km, and find it can slightly alleviate the dependence but does not fully resolve that. The optimized 15 
fluxes for the temperate North America are relatively insensitive to the covariance length scale, as this region is relatively 

well sampled by the dataset. We have only used some of the available observations, and different results may be found when 

additional data is included, e.g. from Environment Canada tower sites. 

3.7 Ensemble estimates 

From the above-described sensitivity runs, we derive an ensemble of estimates of optimized North American annual net 20 
biosphere fluxes in 2010 (see Fig. 11). The optimized biosphere fluxes of all the runs are larger (i.e. more uptake) than their 

corresponding prior fluxes. Compared to other factors, the prior biosphere fluxes have the largest impact on the optimization 

result. The selection of model-data mismatch with 3 ppm is reasonable, judging from the observed small differences between 

the model runs BASE and R2 (4 ppm). We notice the R1 (2 ppm) run makes a significant difference, as it rejects much more 

observations than the other two cases, especially during summer time when usually larger mismatches between observations 25 
and simulations occurred (not shown).  

 

Comparing BASE, Q1 (decrease the magnitude of additive uncertainty by 50%) and Q2 (increase the magnitude of additive 

uncertainty by 50%), we find the prior uncertainty magnitude ascribed to biosphere fluxes impacts the result only little, with 

small reductions in the optimized flux when the uncertainty gets larger. In addition, we find that our system is sensitive to 30 
the uncertainty of the boundary condition parameter Pbc1 (1 ppm unc.) and Pbc2 (3 ppm unc.), which results in the 

Deleted: covariance 

Deleted: magnitude 

Deleted: 25

Deleted: covariance magnitude 35 
Deleted: 25



18 

difference of flux estimates by slightly more than 0.1 PgC/yr. The choice of 2 ppm is according to the uncertainties we 

assessed from the statistics between these different prior BCs we used. When the two tower sites STR and WGC that are 

located close to the west coast of North America are excluded, we find smaller biosphere fluxes (the difference is 

approximately 0.15 PgC/yr), which indicates that attention should be paid to the choice of the observations.  

 5 
Excluding results from B2 that we consider unrealistic due to the high data rejection rate (replaced by the B2’ run), we 

estimate North America Carbon fluxes for the year 2010 to be between -0.92 and -1.26 PgC/yr. 

4. Conclusions and Discussion  

We have implemented a regional carbon assimilation system based on the CarbonTracker Data Assimilation Shell 

framework and a high-resolution Lagrangian transport model WRF-STILT. The new system, named as CTDAS-Lagrange, 10 
optimizes both biosphere fluxes and four boundary condition parameters and is computationally efficient (one year of 

optimization can be performed serially within 14 hours with 8 threads on a 12-core Intel Xeon Processor E5 v2 Family 

computer with a processor base frequency of 2.7 GHz, once footprints are calculated and stored offline). Furthermore, we 

have demonstrated that the additive flux adjustment method is more flexible in optimizing NEE than the multiplicative flux 

adjustment method, especially in the shoulder seasons of the year.  15 
 

The sensitivity test results with three different lateral boundary conditions (CT2013B, CTE2014, and an empirical curtain) 

indicate that CTDAS-Lagrange has the ability to largely correct for the potential biases in the lateral boundary conditions, 

with the boundary condition optimization absorbing up to 0.23 PgC/yr of flux adjustment that would otherwise have been 

made to the optimized annual net biosphere fluxes. This makes the CTDAS-Lagrange system less dependent on the choice of 20 
lateral boundary conditions than a system without boundary condition optimization or offline correction. The sensitivity tests 

with two alternative biosphere fluxes (SiB3 and CT2013B-avg) and a series of modified SiBCASA fluxes with a large range 

of NEE show that the seasonal magnitude of the optimized fluxes is almost independent of the prior fluxes, and the 

optimized annual net biosphere fluxes converge for SiB3 and CT2013B-avg and much less dependent on the range of the 

priors for the series of modified SiBCASA fluxes. This demonstrates that the CTDAS-Lagrange system is capable of 25 
resolving large biases in the prior biosphere fluxes. On the other hand, the optimized annual net biosphere fluxes with 

different prior fluxes are less convergent at the ecoregion level, presumably due to the limited choice of observational 

constraints. This could also be improved by better prescribing the uncertainties of biosphere fluxes for the additive 

adjustment method, as the assumption of spatially and temporally uniform flux uncertainties may not be reasonable.  

 30 
We derive an ensemble of estimates of the optimized annual net biosphere carbon fluxes based on a series of sensitivity tests, 

which places the North American Carbon sink for the year 2010 at -0.92 to -1.26 PgC/yr, comparable to the TM5 based 

estimates of CarbonTracker (version CT2016, -0.91 ± 1.10 PgC/yr, data obtained from https://www.esrl.noaa.gov/gmd/ccgg/ 
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carbontracker/) and CarbonTracker Europe (version CTE2016, -0.91 ± 0.31 PgC/yr; van der Laan-Luijkx, et al. 2017). Note 

that much less observations have been used in CTDAS-Lagrange than those assimilated in CT2016 and CTE2016. This work 

is to be followed up by a multi-year inversion using more available observations in recent years, and by assimilating an 

additional tracer, carbonyl sulfide, to simultaneously constrain both GPP and NEE.  

 5 
In addition, the estimate of net CO2 uptake for the year 2010 is reasonable compared to an ensemble of atmospheric 

inversions from several studies that place the North American NEE for 2000-2006 at -0.931 ± 0.670 PgC/yr (Hayes et al., 

2012), and a more recent study suggesting the North American net CO2 biosphere fluxes during 2000-2009 to be -0.890 ± 

0.400 PgC/yr from the RECCAP-selected TransCom3 inversions (King et al., 2015). Three atmospheric inversion studies 

placed North American NEE for the year 2004, which had been recognized as a climate-favorable year for uptake, from -10 
0.953 ± 0.106 to -1.230 ± 1.120 PgC/yr (CT2011, Peters et al., 2007; Butler et al., 2010; Gourdji et al., 2012). However, we 

also note that although we have a comparable estimate to the two versions of CarbonTracker at the continental scale, our 

estimates at ecoregion scales are different. Typically the boreal region is not well constrained in our study with eight tower 

sites located in the U.S, while no data from the extensive network of Environment Canada was used. To solve finer scale 

fluxes, the use of data from a denser observational network is desirable and could likely further reduce the chosen covariance 15 
length scale shown in Fig. 10.   

 

Although we have accounted for the impact of possible biases in the prior lateral boundary conditions on optimized fluxes, 

we find that there remains room to further reduce the biases at surface sites (shown in Table 1 as posterior residuals). This 

could be partially because aircraft observations are sparse, and are temporally insufficient for sampling the inflows of the 20 
continent. Also, the limited number of parameters used for boundary condition adjustments could be a bottleneck; an 

alternative scheme with more extensive parameterization to offer more flexibility for boundary condition adjustments could 

help.  

 

Moreover, the optimization results of the CTDAS-Lagrange system depend on the quality of the forward simulations, i.e. 25 
fixed a priori fluxes and transport models. The optimization of biosphere fluxes may be influenced by observations affected 

by local fossil fuel signals, which can be addressed by using high-resolution fossil fuel emissions or filtering out the 

observations. CO has been long studied and used as a tracer for fossil fuel emissions, and its use as a quantitative tracer 

suffers mainly from varying emission ratios of different sources and production by oxidation of hydrocarbons.  We have 

used CO as a fossil fuel tracer to filter out observations that are considerably affected by fossil fuel emissions, which is 30 
expected to serve our purpose reasonably well in winter time, however, may not be appropriate on the occasions when 

production of CO by oxidation of hydrocarbons can be significant in summer time. Thus the CO filtering may have been 

overly conservative, reducing the number of observations by up to ~7% (the average percentage at all sites) in summer time. 

As we use the same filtered dataset for all the model runs, and the CTDAS-Lagrange system rejects observations when the 
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difference between simulated and observed CO2 is larger than three times the assigned model-data-mismatch, the potential 

issue of inappropriate CO filtering in summer time is unlikely to significantly bias our results. Efforts have been made to 

assimilate both CO2 and 14CO2, a tracer for recently added fossil fuel, to optimize both biosphere and fossil fuel fluxes (Basu 

et al., 2016; Fischer et al., 2017). To investigate the influence of transport model, we have performed tests with an 

alternative Lagrangian transport model, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT; Draxler and 5 
Hess 1998; Stein et al., 2015) model driven by the North American Mesoscale Forecast System meteorological fields at 12 

km resolution (NAM12). Our preliminary results show that the HYSPLIT-NAM12 run yields similar biosphere uptake in 

summertime, but higher respiration fluxes in wintertime. Hegarty et al, (2013) showed that the three widely used Lagrange 

particle dispersion models (LPDMs), HYSPLIT, STILT, and Flexible Particle (FLEXPART; Stohl et al., 2005) have 

comparable skills in simulating the plumes from controlled tracer release experiments when driven with identical 10 
meteorological inputs. Thus, the observed difference is mostly likely caused by the difference between WRF and NAM12.  

A second reason could be attributed to the fact that the WRF domain is larger and extends much further to the north than the 

NAM12 files archived by NOAA Air Resources Laboratory (https://ready.arl.noaa.gov/hypub/ hysp_meteoinfo.html). 

Therefore, compared to the NAM12 run, the WRF-STILT run covers a larger area, and is less influenced by the potential 

biases in the northern boundary that is nontrivial to correct for due to the large latitudinal gradients in CO2 mole fractions. A 15 
further detailed investigation into the differences between the two meteorological inputs is required to diagnose the resulting 

difference in the optimized fluxes in wintertime; however, this task is beyond the scope of the development of our CTDAS-

Lagrange system.  

 

We highlight that the use of aircraft data in this study suggests a very important constraint from free tropospheric 20 
measurements to the lateral boundary conditions, which enables simultaneous optimization of boundary conditions and 

biosphere fluxes. Our system is an open framework for regional atmospheric inversions that could be extended to use 

different atmospheric transport models, to study other trace gases, and for alternative geographic regions.  

 

Code availability. The codes can be downloaded from https://doi.org/10.5281/zenodo.1234231. The major part of the system 25 
is programmed with Python, and the module for forward simulation of CO2 mole fractions is programmed with R. 
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Table 1. Summary of assimilated PFP flask data from the NOAA ESRL North American tall tower and aircraft sampling program in 2010. 
We have selected 12 aircraft sites for this study. Observations (after data filtering, see section 2.1.3) are flagged when the difference 
between simulated and observed values is larger than three times the prescribed model-data-mismatch for each site. The bias indicates the 
mean difference between model forecast and observations.    

Code Name Lat, Lon, Elev 
Number of obs. 

(rejected) 

Model-data 

mismatch 

(ppm) 

Inn. c2 
Prior residuals 

(ppm) 

Posterior 

residuals (ppm) 

surface sites 
 

AMT Argyle, Maine, United States 45° 2'N, 68°41'W, 53 masl 347 (9) 3 +0.51 +1.00± 3.48 +0.05± 1.52 

BAO Erie, Colorado, United States 40° 3'N, 105° 0'W, 1584 masl 396 (17) 3 +0.44 -0.77± 3.90 +0.05± 2.33 

LEF Park Falls, Wisconsin, United States 45°57'N, 90°16'W, 472 masl 409 (11) 3 +0.49 +0.88±3.88 -0.09± 1.55 

SCT Beech Island, South Carolina, United 

States 

33°24'N, 81°50'W, 115 masl 437 (15) 3 +0.60 +1.03±3.85 -0.21± 1.82 

STR Sutro Tower, San Francisco, 

California, United States 

37°45'N, 122°27'W, 254 masl 215 (6) 3 +0.91 +2.00±3.86 +0.60± 2.14 

WBI West Branch, Iowa, United States 41°43'N, 91°21'W, 241 masl 472 (36) 3 +0.69 +0.08±4.99 -0.16± 1.63 

WGC Walnut Grove, California, United 

States 

38°16'N, 121°29'W, 0 masl 393 (71) 3 +0.87 +0.52±7.66 -0.08± 3.48 

WKT Moody, Texas, United States 31°19'N, 97°20'W, 251 masl 353 (10) 3 +0.50 +0.68±3.53 +0.11± 1.63 

aircraft sites 
 

CAR Briggsdale, Colorado, United States 40°22'N, 104°18'W, 1740 masl 139 (1) 1 +0.37 +0.06±0.80 -0.02± 0.76 

CMA Cape May, New Jersey, United States 38°50'N, 74°19'W, 0 masl 141 (3) 1 +0.92 +0.13±1.12 +0.11±0.97 

DND Dahlen, North Dakota, United States 47°30'N, 99°14'W, 472 masl 50 (5) 1 +0.78 +0. 35±1.56 -0.00±0.89 

ESP  Estevan Point, British Columbia, 

Canada 

49°23'N, 126°33'W, 7 masl 146 (2) 1 +0.96 -0. 17±1.14 -0. 05±0.97 

ETL East Trout Lake, Saskatchewan, 

Canada 

54°21'N, 104°59'W, 492 masl 126 (23) 1 +1.20 +0.80±2.01 +0.19± 1.02 

LEF Park Falls, Wisconsin, United States 45°57'N, 90°16'W, 472 masl 37 (4) 1 +0.80 +0.53±1.72 +0.15± 0.87 

NHA Worcester, Massachusetts, United 

States 

42°57'N, 70°38'W, 0 masl 150 (17) 1 +1.69 +0.61±2.51 +0.05± 0.98 

PFA Poker Flat, Alaska, United States 65° 4'N, 147°17'W, 210 masl 95 (4) 1 +1.38 +0. 15±1.54 +0.11± 1.07 

SCA Charleston, South Carolina, United 

states 

32°46'N, 79°33'W, 0 masl 130 (0) 1 +0.51 +0. 16±0.72 +0.22± 0.63 

SGP Southern Great Plains, Oklahoma, 

United states 

36°36'N, 97°29'W, 314 masl 88 (1) 1 +0.91 +2. 00±3.86 +0.60±2.14 

TGC Sinton, Texas, United States 27°44'N, 96°52'W, 0 masl 124 (6) 1 +0.66 -0.01±0.82 -0.01± 0.79 

 5 
 

Formatted Table

Deleted: THD ... [1]



28 

 
Table 2. Summary of the base and sensitivity runs using CTDAS-Lagrange. 
 Covariance 

length 

scale (unit: 

km) 

Prior 

biosphere 

fluxes 

Prior 

boundary 

conditions 

Uncertainty 

of 

boundary 

conditions 

Uncertainty 

of 

biosphere 

fluxes 

Model-

data 

mismatch1  

(unit: 

ppm) 

Observations 

used 

Base 750 SiBCASA CT2013B 2.0 - 3 All 
MULT2 750 SiBCASA CT2013B 2.0 - 3 All 

CL1 300 SiBCASA CT2013B 2.0 - 3 All 
CL2 500 SiBCASA CT2013B 2.0 - 3 All 
CL3 1000 SiBCASA CT2013B 2.0 - 3 All 
CL4 1250 SiBCASA CT2013B 2.0 - 3 All 
B1 750 SiB3 CT2013B 2.0 - 3 All 
B2 750 CT2013B CT2013B 2.0 - 3 All 
B2’ 750 CT2013B-avg CT2013B 2.0 - 3 All 
BX1 750 SiBCASA-F1 CT2013B 2.0 - 3 All 
BX2 750 SiBCASA-F2 CT2013B 2.0 - 3 All 

BX3 750 SiBCASA-F3 CT2013B 2.0 - 3 All 

BX4 750 SiBCASA-F4 CT2013B 2.0 - 3 All 

BX5 750 SiBCASA-F5 CT2013B 2.0 - 3 All 

BC1 750 SiBCASA CTE2014 2.0 - 3 All 
BC2 750 SiBCASA EMP 2.0 - 3 All 
Pbc1 750 SiBCASA CT2013B 1.0 - 3 All 
Pbc2 750 SiBCASA CT2013B 3.0 - 3 All 

Q1 750 SiBCASA CT2013B 2.0 
50% of 

default 
3 All 

Q2 750 SiBCASA CT2013B 2.0 
150% of 

default 
3 All 

R1 750 SiBCASA CT2013B 2.0 - 2 All 
R2 750 SiBCASA CT2013B 2.0 - 4 All 

Obs 750 SiBCASA CT2013B 2.0 - 3 
excl. STR & 

WGC 

 
1 Here shows the model-data mismatch for tower observations. A model-data mismatch of 1 ppm of is used for aircraft 

observations in all simulations; 5 
2 It indicates the run uses multiplicative method for flux adjustment. 
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Table 3. Contribution of lateral transport to simulated CO₂ mole fractions at the tall tower network for three sets of lateral boundary 
conditions. The mean differences (in ppm) between CTE2014, EMP, and CT2013B boundary conditions are calculated for 2010 and 
summer (JJA) respectively. The standard deviation (1-sigma) of the differences for each tower site is given in the parenthesis.  5 

Site CTE2014 minus CT2013B EMP minus CT2013B 
annual summer annual summer 

AMT 0.39 (±0.43)  0.49 (±0.56)  0.04 (±1.27) -1.19 (±1.33) 
BAO 0.25 (±0.34) -0.11 (±0.35) -0.24 (±1.26) -1.70 (±1.54) 
LEF 0.36 (±0.38)    0.00 (±0.32)   0.05 (±1.36) -1.07 (±1.76) 
SCT 0.29 (±0.37)   0.01 (±0.40) -0.07 (±1.19) -0.50 (±1.16) 
STR  0.35 (±0.52)  0.30 (±0.19) -0.21 (±1.58)  0.66 (±0.78) 
WBI 0.39 (±0.41) 0.16 (±0.29) -0.03 (±1.21) -0.28 (±1.10) 
WGC 0.35 (±0.39) -0.00 (±0.34) -0.06 (±1.30) -0.93 (±1.80) 
WKT 0.31 (±0.38) 0.16 (±0.61) 0.14 (±1.08) -0.66 (±1.67) 
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Table 4. Comparison of the optimized annual net biosphere fluxes (PgC/yr) and the adjustment of CO2 boundary conditions (ppm) using 
different prior lateral boundary condition products (CT2013B, CTE2014, and EMP) and optimization techniques (“Flux only” or “Flux + 
BC”). The annual net biosphere flux difference is calculated from the “Flux + BC” optimization minus “Flux only” optimization. The 
values in brackets are flux uncertainties. 

Total flux Base (CT2013B) BC1 (CTE2014) BC2 (EMP) 

“Flux only” optimization (PgC/yr) -1.10 (±1.75) -1.49 (±1.75) -1.09 (±1.75) 

“Flux + BC” optimization (PgC/yr) -1.08 (±1.74) -1.26 (±1.74) -1.09 (±1.73) 

Flux difference (PgC/yr) +0.02 +0.23 -0.00 

BC adjustment (ppm, range) -0.17 to 0.14 -0.18 to 0.16 -0.08 to 0.09 
          BC adjustment (ppm, mean±sd)        -0.004 (±0.067)        -0.004 (±0.078)      -0.001 (±0.030) 5 
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Table 5. Optimized annual net biosphere fluxes (PgC/yr) and CO2 boundary condition adjustments (ppm) using four prior biosphere flux 
products (SiBCASA, SiB3, CT2013B, and CT2013B-avg). The values in brackets are flux uncertainties. 

 
Total flux 

Base (SiBCASA) B1 (SiB3) B2 (CT2013B) B2’ (CT2013B-avg) 
Prior (PgC/yr) -0.51 (±4.66) -0.57 (±4.66) -0.43 (±4.66) -0.44 (±4.66) 

Optimized (PgC/yr) -1.08 (±1.74) -1.01(±1.74) -0.65 (±1.75) -1.20 (±1.74) 

Flux adjustment (PgC/yr) -0.57 -0.44 -0.21 -0.76 

BC adjustment (ppm, range) -0.17 to 0.14 -0.17 to 0.14 -0.17 to 0.14 -0.17 to 0.14 
BC adjustment (ppm, mean ± sd)    -0.004 (±0.067)     -0.004 (±0.0067)  -0.004 (±0.0067)       -0.004 (±0.0067) 
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Table 6. Sensitivity runs with a variety of prior biosphere fluxes ranging from +0.43 to -2.06 PgC/yr for North America. The prior 

biosphere fluxes were derived by scaling up or down the SiBCASA respiration estimate while maintaining the same GPP estimate. The 

flux adjustment is calculated from the optimized estimate minus the prior estimate. 

 BX1 BX2 Base BX3 BX4 BX5 

Prior (PgC/yr) +0.43 (±4.66) -0.06 (±4.66) -0.51 (±4.66) -0.97 (±4.66) -1.44 (±4.66) -2.06 (±4.66) 

Optimized (PgC/yr) -0.90 (±1.74) -1.01 (±1.74) -1.08 (±1.74) -1.21(±1.74) -1.32 (±1.74) -1.45 (±1.74) 

Flux adjustment (PgC/yr) -1.33 -0.95 -0.57 -0.24 +0.12 +0.61 
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Figure 1. The model domain is shown together with the CO2 observational sites from NOAA’s Global Greenhouse Gas Reference 
Network and the aggregated Olson ecosystem types. Eight tall tower sites are highlighted by green triangles with black site code labels, 
and twelve selected aircraft sites are highlighted by red dots with gray site code labels.  
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Figure 2. The time stepping flow of the Ensemble Kalman Smoother filter used in CTDAS-Lagrange. The Xp(n) and Xa(n) represent 
the prior and optimized state vector of a 20-day period shown as two colored bars from left to right. Parameter n denotes the 
number of times the state vector has been updated. Each of the colored bars represents a ‘lag' of 10 days. In the transport step we 
calculate the CO2 mole fraction variations (∆CO2) for each measurement (shown as a tower) by convolving the net biosphere 5 
flux NEE + Xp/Xa with footprints f (shown as a dashed line). Cycle 1 starts by introducing new set of observations and fluxes at the 
front of the filter in lag 2. This part of the state vector has not been optimized before (green color, n=0). At the rear end of 
the filter, in lag 1, the state vector has been optimized once in the previous cycle (orange color, n=1). To estimate ∆CO2 for 
each observation requires convolving footprints with 10-day 3-hourly NEE + Xp. Optimization is done on all 20 days (2 lags 
of the filter) to find the optimal values in the entire state vector. The state vector of lag 1 is done and will not change again 10 
(red color, n=2). This new optimized state vector Xa(2) is used to calculate the final ∆CO2 in lag 1 (final transport 
step). Cycle 2 starts by introducing a new set of observations and fluxes at the front of the filter in lag 2. The analyzed state 
vector Xa(1) in lag 2 of Cycle 1 becomes the new prior state vector Xp(1) in lag 1 of Cycle 2. 
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Figure 3. Simulated CO2 (prior in red and optimized in green) and observed CO2 (black) for the Park Falls, Wisconsin tower 
site (LEF) for the year 2010. The blue squares (11 out of 409 samples) are rejected samples because the difference between 
simulated and observed CO2 is larger than three times the assigned model-data-mismatch of 3 ppm for tower sites. The 
distribution of both prior and posterior residuals is presented on the right side. After optimization we observe a strong 5 
reduction of the CO2 mean bias and 1σ standard deviation from +0.85 ± 3.73 ppm to +0.09 ± 1.55 ppm. Note that the prior 
residual distribution is calculated without the rejected observations, which explains the slightly different statistics in 
comparison to the data presented in Table 1. 
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Figure 4. The seasonal cycle (10-day resolution) of the net CO2 biosphere flux (PgC/yr) of four aggregated Olson ecoregions in North 
America for the year 2010.  The prior biosphere flux (SiBCASA) and its uncertainty are displayed in blue, and the optimized biosphere 
flux and uncertainty in black. “Optimized_sm” stands for the smoothed optimized fluxes (shown in red), which helps to remove the 5 
spurious fluctuations. The temperate forests/wooded and crops are separated by 40 °N to North and South, respectively.  
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Figure 5. Mean prior (a) and optimized (b) net biosphere fluxes, and the mean adjustment (optimized minus prior) (c) for summertime 
(June-July-August). Note that the color scale used in (c) is different from the one used in (a) and (b). 
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Figure 6. Mean optimized net biosphere fluxes (PgC/yr) for the runs with different prior boundary conditions:  CT2013B, CTE2014, and 
EMP. The time series of optimized fluxes are presented for the “Flux only” inversion (a) and for the “Flux + BC” inversion (b), 
respectively; the annual net biosphere fluxes over the aggregated Olson ecosystem types are shown for the “Flux only” inversion (c) and 5 
for the “Flux + BC” inversion (d), respectively. Note that in figures (c) and (d) the first letters "B" and "T" of the x-axis labels are short for 
"Boreal" and "Temperate", respectively; the second letters "F","G","C" and "T" are short for ecosystem types "Forests/Wooded", "Grass/ 
Shrubs", "Crops/Agriculture ", and "Tundra /Taiga", respectively. 
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Figure 7. Prior and optimized annual net biosphere fluxes (PgC/yr) for North America for the runs using different prior biosphere model 
products: (a) SiBCASA, SiB3, CT2013B-avg, and (b) a series of modified SiBCASA fluxes derived from scaling up and down respiration 
fluxes. The time series of the optimized fluxes for both cases are presented in (a) and (b), respectively, and the annual net biosphere fluxes 5 
aggregated per ecoregion are accordingly presented in (c) and (d), respectively. The tests with prior fluxes +0.43, -0.06, -0.97, -1.44 and -
2.06 PgC/yr are labeled with BX1, BX2, BX3, BX4 and BX5, respectively. 
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Figure 8. Comparison between two flux optimization methods: the additive method (a) gives significant different optimized fluxes, 
highlighted by the red dashed circles, in contrast to the multiplicative method (b), and (c) is similar to (b) but with 2 times of the flux 
uncertainty, i.e. setting the biosphere scaling parameter variance as 160 %. The additive method seems more flexible to adjust fluxes in 5 
case net carbon exchange is small or even close to zero around the shoulder seasons (spring/autumn). 
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Figure 9. Comparison of the performance of inversions with pseudo data using the two flux optimization methods: (a) the additive method 
and (b) the multiplicative method, (c) is similar to (b), but with 2 times of the flux uncertainty, i.e. setting the biosphere scaling parameter 
variance as 160 %. The “truth” fluxes are generated in a forward simulation using biosphere fluxes from SiBCASA. The same SiB3 fluxes 5 
are used as a priori for all runs. The annual net biosphere fluxes of the truth, prior, and optimized are given in the legend, with the unit of 
PgC/yr.  
 

 

 10 
 

 

 

 

 15 
 

 

Deleted: both



42 

 
Figure 10. Sensitivity of the optimized annual net biosphere fluxes (PgC/yr) as a function of the chosen covariance length scale (km).  The 

optimized fluxes tend to converge to -1.1 PgC/yr when the length scale is larger than 750 km. 
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Figure 11. North American 2010 annual net biosphere fluxes (PgC/yr) estimated from an ensemble of CTDAS-Lagrange runs with 
different prior biosphere fluxes, different CO2 boundary conditions, and model setup choices. The dashed blue lines refer to the range of 
the ensemble estimates -0.92 to -1.26 PgC/yr excluding the B2 run. See Table 2 for an overview of all experiments.  
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