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Abstract. The degree of freedom for signal (DFS) is generalized and applied to estimate the potential observability of obser-

vation networks for augmented model state and parameter optimisation problems. Control parameters may include prognostic

state variables, mostly the initial values and insufficiently known model parameters. As for chemistry-transport models, emis-

sion rates are at least as important as initial values for model evolution control. Extending the optimization parameter set must

be met by appropriate observation networks, which only allow for controlling the full optimization task, if the observability5

is satisfied. In this paper,we introduce an approach to quantify the degrees of freedom for signal jointly but individually for

initial trace gas state and emission rates for transport-diffusion models forced by emissions. By applying a Kalman smoother,

the quantitative assessment method on the efficiency of observation configurations to optimize the initial value and emission

rates is developed based on the singular value decomposition. For practical applications, we derive an ensemble based version

of the approach and give several elementary experiments.10

1 Introduction

Air quality and climate change are influenced by the fluxes of green house gases, reactive gas emissions and aerosols. The

temporal evolution of chemistry in the atmosphere is usually modelled by atmospheric chemistry transport models. poorly

known initial values, sources and sinks are a serious problem for the quality of simulation, which can be addressed by data

assimilation and inverse modelling. Parameter mis-specfications in a model can only be identified within data assimilation15

intervals of space-time methods, if the simulation is sufficiently sensitive and the error related observability of the measurement

network is given. This poses the observability problem. Otherwise, the forecast degrades beyond the observation controlled

period.

In practice data assimilation problems are typically solved in circumstances, where the number of observations are markedly

lower than the model degree of freedom (Daley 1991). Consequently, when aiming to improve the quality of analysis by20

observation configurations, several aspects can be considered. These include (i) to optimize the observation network, subject

to given constraints, (ii) to evaluate the value of individual or types of observations for the analyses, and (iii) to quantify the

degree of which the analysis can be influenced by the observations, which is related to the sensitivity.
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The observation network optimization problem (i) has been addressed traditionally by Observation System Simulation Ex-

periments (OSSEs, e.g Daley 1991). The advanced concept of targeted observations has been popularized with the FASTEX

campaign (e.g Szunyogh et al. 1999; Langland et al. 1999). Theoretical studies are presented, for example by Bishop et al.

(1999); Berliner et al. (1998), or recently by Bellsky et al. (2014) for highly nonlinear dynamics, and Wu et al. (2016) for the

optimal locations of observations for time-varying system within a finite-time interval.5

The benefit assessment (ii) of individual observations or types of measurements or remote sensing data within a given

network seeks to identify the value ranking of information sources, accounting for analysis achieved. This problem has been

investigated by Cardinali et al. (2004), Cardinali (2009), and a sequence of related papers , or Liu and Kalnay (2008), the latter

without use of an adjoint model. A related approach was described by Baker and Daley (2000), who exploited sensitivities to

observations to identify their spatial extensions of impact.10

Finally, the need to quantify the information content provided by the observations (iii) can be satisfied by suitable and

calculable measures, such as entropy reduction or DFS. The concept of DFS has been applied to satellite retrieval problems,

typically of lower dimensions as compared to data assimilation (see for example Eyre 1990; Rodgers 2000; Rabier et al. 2002;

Fourrié et al. 2003; Martynenko et al. 2010; Fisher 2003 ). However, these studies focused on the classical data assimilation

problem with initial values or prognostic state variables as the only parameters to be optimized. Yet for chemistry transport15

or greenhouse gas models, which highly depend on the emissions in the troposphere, the optimization of the initial state is

no longer the only issue. Rather, the optimization of emissions play an equally important role as initial values. In order to

get better analysis from combining the model with observations, efforts of joint optimization by adding the emission rates

to concentrations have been made (Elbern et al. 2000, 2007; Bocquet 2012; Bocquet and Sakov 2013; Miyazaki et al. 2012;

Tang et al. 2011, 2013; Winiarek et al. 2014). Yet the lack of ability to observe and estimate surface emission fluxes directly20

is a major roadblock, hampering the progress in predictive skills of climate and atmospheric chemistry models. Therefore,

the capacity to distinguish between the degree of freedom for signal of both emission rates and concentrations is crucial to

assess the value of a measurement network. These assessment results are dependent not only on observation network and its

deployment with respect to emission sources, but also influenced by the assimilation window lengths and the meteorological

transport conditions.25

In this context a meanwhile classical task is greenhouse gas inversion, aiming at the estimation of carbon dioxide, methane,

and nitrous oxide sources, from which a rich set of literature emerged (e.g Peter et al. 2005). The sensitivity of the model

evolution with respect to the model errors and the observation network as its detector is a key quantity to be analysed. Several

methodologies have been proposed to account for model errors in both variational and ensemble data assimilation (e.g. Bellsky

et al. 2014; Gillijns and De Moor 2007; Li et al. 2009; Smith et al. 2013; Tremolet 2007; Daescu 2004; Zupanski 2007). Navon30

(1997) outlined the perceptibility and stability in optimal parameter estimation in meteorology and oceanography. Elbern et al.

(2000, 2007) took the strong constraint by a given diurnal profile shape of emission rates such that their amplitudes in addition

to initial values are the only parameters to be optimized by 4D-variational inversion. A general framework to optimize a set of

parameters controlling the 4D-var data assimilation system was introduced by Cioaca and Sandu (2014) and applied to shallow

model state and other parameters in a related paper (Cioaca and Sandu 2014).35
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Singular value decomposition (SVD) is a well-known tool applied to identifying the priorities of observations by detecting

the fastest growing uncertainties in meteorological models (e.g Lorenz 1965; Buizza and Palmer 1995; Khattatov et al. 1999;

Johnson 2003; Liao et al. 2006; Daescu 2008; Abida and Bocquet 2009; Kang and Xu 2012; Singh et al. 2012, 2013; Sandu

et al. 2013). However, singular vector analysis and other methods for atmospheric chemistry with emissions are different since

emissions play a similarly important role in forecast accuracy with initial values. Goris and Elbern (2013) used the singular5

vector decomposition to determine the sensitivity of the chemical composition to emissions and initial values for a variety of

typical chemical scenarios and integration length. This methodology has been generalized for the 3-dimensional EURAD-IM

(European Air pollution Dispersion-Inverse Model) and applied to a field campaign with airship borne measurements by Goris

and Elbern (2015).

In this paper we introduce the practical implementation of this approach to identify the impacts of the observation networks10

for controlling transport diffusion models with the Kalman smoother as the appropriate data assimilation method. The focus is

placed on presenting an approach to identify the spatially resolved potential and limits of measurement networks to optimize

chemical states and emission rates jointly, by comparing their relative sensitivities. In section 2, we describe an atmospheric

transport model extended with emission rates by establishing the dynamic model for emission rates in a novel way. In section

3, based on the Kalman smoother, we derive the theoretical approach to determine the degree of freedom for signal for both15

initial values and emission rates. In section 4, we develop the ensemble approach to evaluate the degree of freedom for signal

of the model. In section 5, we present the approach to identify the sensitivity of observations by determining the directions

of maximum perturbation growth to the initial perturbation. In section 6, we extend a 3D advection-diffusion equation with

the dynamic model of the emission rate and give several elementary experiments to verify the approaches. In section 7, we

conclude the main contributions of this paper and discuss possible extensions.20

2 Atmospheric inverse modelling extended by emission rates

We usually describe the concentration change rate by the following prognostic atmospheric transport model

dc(t)

dt
=A(c) + e(t), (1)

where A is a nonlinear model operator, c(t) and e(t) are the state vector of chemical constituents and emission rates at time t,

respectively .25

The prior estimate of the state vector of concentrations c(t) is given and denoted by cb(t), termed as the background state.

The prior estimate of emission rates, usually taken from emission inventories, is denoted by eb(t).

Let A be the tangent linear operator of A, δc(t0) = c(t0)− cb(t0) and δe(t) = e(t)− eb(t). The linear evolution of the

perturbation of c(t) follows the tangent linear model as

dδc

dt
= Aδc+ δe(t). (2)30
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By the discretization of the tangent linear model in space, it is straightforward to obtain the linear solution of (2) discretized

in space and continuous in time as

δc(t) =M(t, t0)δc(t0) +

t∫
t0

M(t,s)δe(s)ds, (3)

where M(·, ·) is the resolvent obtained from the spacial discretization of A. Without loss of generality, we assume δc(t) ∈Rn,

δe(t) ∈Rn, where n is the dimension of the partial phase space of concentrations and emission rates. Obviously, M(·, ·) ∈5

Rn×n.

In addition, let y(t) be the observation vector of c(t) and define

δy(t) = y(t)−H(cb)(t), (4)

where δy(t) ∈Rm(t), m(t) is the dimension of the phase space of observation configurations at time t. H(t) is a nonlinear

forward observation operator mapping the model space to the observation space. Then by linearizing the nonlinear operatorH10

as H , we present the observation system as

δy(t) =H(t)δc(t) + ν(t), (5)

where the observation error ν(t) of the Gaussian distribution has zero mean and variance R(t) ∈Rm(t)×m(t).

The Kalman smoother is a recursive estimator to provide the best linear unbiased estimates (BLUE) of the unknown variables

with error estimates, using a sequence of observations (e.g Gelb 1974). In addition to 4D-Var approaches, Kalman smoothers15

not only can provide the best linear unbiased estimate by a series of observations over time for the state vector, but also update

the forecasting error covariances of that estimate. In this paper our problems will be treated by the Kalman smoother from a

theoretical viewpoint.

If the initial state of concentration is the only parameter to be optimized, it is feasible to apply the Kalman filter and smoother

by the tangent linear model (2) with observations (5) within the time interval [t0, tN ]. However, as mentioned before, in most20

cases the exact values of emission rates are poorly known. It has been shown by Elbern et al. (2007) that the diurnal profiles of

emission rates are better known and hence can be considered as constraints, such that the amplitudes of the diurnal emission

cycle can be taken as optimization parameters. Thus, we first reformulate the background evolution of emission rates from time

s to t into a dynamic form

eb(t) =Me(t,s)eb(s), s6 t, (6)25

where eb(·) is a n-dimensional vector, of which the ith element is denoted by eib(·) and Me(t,s) is the scaling diagonal matrix

defined as

Me(t,s) =



e1b(t)

e1b(s)

e2b(t)

e2b(s)

. . .
enb (t)
enb (s)

 . (7)
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In this works we establish the dynamic model of emission rates subject to the constraint

δe(t) =Me(t,s)δe(s), s6 t. (8)

It was stated in several studies (e.g. Catlin 1989; Gelb 1974) that the estimation of the variable x by the fix-interval Kalman

smoother generally equals to the conditional expectation based on the observations within the entire time interval, denoted by

E[x|{y(tobs), tobs ∈ [t0, tN ]}]. With the emission model (8), the estimate of e(t) by Kalman smoother on [t0, tN ] follows the5

linear property of the conditional expectation,

E[e(t)|{y(tobs), tobs ∈ [t0, tN ]}] (9)

= E[Me(t,s)e(s)|{y(tobs), tobs ∈ [t0, tN ]}] =Me(t,s)E[e(s)|{y(tobs), tobs ∈ [t0, tN ]}].

It implies that BLUEs of emission rates with the dynamic model (8) by Kalman smoother preserve the proportioned diurnal

profiles of their backgrounds.10

By rewriting (3) as δc(t) =M(t, t0)δc(t0) +
∫ t
t0
M(t,s)Me(s, t0)δe(t0)ds, we obtain the transport model with the state

vector extended by emission rates δc(t)

δe(t)

 =

 M(t, t0)
∫ t
t0
M(t,s)Me(s, t0)ds

0 Me(t, t0)

 δc(t0)

δe(t0)

 . (10)

Typically, there is no direct observation for emissions, apart from the flux tower observations used for carbon dioxide, which

are not considered here. Therefore, we can reformulate the observation mapping as15

δy(t) = (H(t),0n×n)

 δc(t)

δe(t)

+ ν(t), (11)

where 0n×n is a n×n matrix with zero elements.

It is now clear that both concentrations and emission rates are included in the state vector of the homogeneous model (10),

It allows us to apply the Kalman smoother in a fixed time interval [t0, tN ] in order to optimize both parameters. Besides, in

Appendix A, a more general case of the transport model extended by emission is shown.20

3 The degree of freedom for signal of concentrations and emissions

In this section we will introduce the theoretical approach to determine the DFS of concentrations and emissions, resting on

the extended model in Section 2. This approach gives us access to determine the efficiency of observations to optimize each

variable based on the Kalman smoother within a finite-time interval.

For convenience, we generalize the atmospheric transport model (10) by the following discrete-time linear system on the25

time interval [t0, t1, · · · , tN ]:

x(tk+1) =M(tk+1, tk)x(tk) + ε(tk), (12)

5



y(tk) =H(tk)x(tk) + ν(tk), (13)

where x(·) ∈Rn is the state variable and y(tk) ∈Rm(tk) is the observation vector at time tk. The model error ε(tk) and the

observation error ν(tk), k = 1, · · · ,N of Gaussian distributions have zero means. The model error covariance matrix is denoted

by Q(tk), while the observation error covariance matrix is denoted by R(tk).

We denote the BLUE of x(ti) based on {y(t0), · · · ,y(tk)} by x̂(ti|tk), ti, tk ∈ [t0, · · · , tN ]. Especially, the prior estimation5

of x(t0) is denoted by x̂(t0|t−1). Correspondingly, P (ti|tk) is defined as the error covariance of x̂(ti|tk), ti ∈ [t0, · · · , tN ] and

tk ∈ [t−1, · · · , tN ]. It is known that the inverse of the analysis error covariance matrix at initial time, P−1(t0|tN ) of a fixed-

interval Kalman smoother is the optimal Hessian of the underlying cost function of 4D-Var (Li and Navon, 2001). Thus, we

have

P−1(t0|tN ) = P−1(t0|t−1) +

N∑
i=0

M>(ti, t0)H>(ti)R
−1(ti)H(ti)M(ti, t0). (14)10

It is clear that (14) comprises the information of the initial condition, model evolution, observation configurations and errors

over the entire time interval [t0, · · · , tN ]. At the same time, it is independent of any specific data and state vector, apart from the

reference model evolution M(·, ·) needed for the linearization, as well as the observation operator H(·). Actually, if we define

G =


H(t0)M(t0, t0)

H(t1)M(t1, t0)
...

H(tN )M(tN , t0)

 , R−1 =


R−1(t0)

R−1(t1)

. . .

R−1(tN )

 , (15)

we can rewrite (14) as15

P−1(t0|tN ) = P−1(t0|t−1) +G>R−1G, (16)

where G>R−1G is the observability Gramian with respect to R−1 in control theory (Brockett, 1994). It represents the obser-

vation capacity of the observation networks with respect to the model.

Though (16) meets the demand to represent the estimate covariance by all available information before starting the data

assimilation procedure, it cannot be applied directly to evaluate the potential improvement of the estimate by the Kalman20

smoother, due to the lack of clear statistical significance of the inverse of a covariance matrix. We aspire a matrix, which allows

us for a direct and normalized comparison between sensitivities to initial values and emission rates. To this end, we consider

matrix P̃ with the following form:

P̃ = P−
1
2 (t0|t−1)(P (t0|t−1)−P (t0|tN ))P−

1
2 (t0|t−1) = I −P− 1

2 (t0|t−1)P (t0|tN )P−
1
2 (t0|t−1), (17)

where I is the identity matrix and P
1
2 (t0|t−1) satisfies P

1
2 (t0|t−1)P

1
2 (t0|t−1) = P (t0|t−1).25

The matrix P̃ is a normalized matrix of the difference between the background forecast error covariance matrix P (t0|t−1)

and the analysis error covariance matrix P (t0|tN ), as inferred the Kalman smoother. It shows how much the observation
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networks improve the estimation of model states and is the foundation matrix to study the DFS of models(Fisher 2003; Rodgers

2000; Singh et al. 2013).

Since P (t0|tN ) is unknown prior to the data assimilation procedure, we use (16) to rewrite P̃ as

P̃ = P−
1
2 (t0|t−1)(P (t0|t−1)−P (t0|tN ))P−

1
2 (t0|t−1) (18)

= P−
1
2 (t0|t−1)(P (t0|t−1)− (P−1(t0|t−1) +G>R−1G)−1)P−

1
2 (t0|t−1)5

= I −P− 1
2 (t0|t−1)(P−1(t0|t−1) +G>R−1G)−1P−

1
2 (t0|t−1)

= I − (I +P
1
2 (t0|t−1)G>R−1GP 1

2 (t0|t−1))−1.

It is worth noting that in (18)

I +P
1
2 (t0|t−1)G>R−1GP 1

2 (t0|t−1) (19)

is always invertible even if the observation Gramian G>G is not full-rank. Thus, P̃ is well-defined for all models with invertible10

initial covariance and observation systems with invertible error covariances within assimilation window t0 to tN . Then, we

apply the singular value decomposition to simplify (18)

P
1
2 (t0|t−1)G>R− 1

2 = V SU>, (20)

where V and U are unitary matrices consisting of the left and right singular vectors,respectively, while S is the rectangular

diagonal matrix consisting of the singular values.15

Then, (18) can be simplified as

P̃ = I − (I +P
1
2 (t0|t−1)G>R−1GP 1

2 (t0|t−1))−1

= I − (I +V SS>V >)−1 (21)

= V V >− (V V >+V SS>V >)−1

= V V >− (V (I +SS>)V >)−120

= V (I − (I +SS>)−1)V >

=

r∑
i=1

s2i
1 + s2i

viv
>
i ,

where r is the rank of (18) and vi is the ith left singular vector in V related to the singular value si, which is the ith element

on the diagonal of S.

It is clear that the sum of the diagonal entries of P̃ can be used to evaluate the total improvements of model states. Thus, the25

nuclear norm is appropriately taken as the metric, which is defined as

‖A‖1 = tr(
√
A>A), (22)

where A is any matrix and tr(·) denotes the trace of the matrix.
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From (21), we obtain

‖P̃‖1 = tr(P̃ ) =

r∑
i=1

s2i
1 + s2i

. (23)

This is well-known as the degree of freedom for signal (DFS) of the model (e.g Rodgers 2000).

It is obvious that ‖P̃‖1 < ‖I‖1 = n. Here n can be considered as the total relative improvement if the system is definitely

observed. Thus, if we consider the ratio5

p̃=
‖P̃‖1
‖I‖1

=
‖P̃‖1
n
∈ [0,1), (24)

the percentage of the total improvement of the model is obtained, which is called the relative degree of freedom for signal.

In order to get a deeper insight into the capacity of the observation networks to improve the estimation of all model states,

we consider the corresponding value in the diagonal of P̃ as the contribution of the degree of freedom for signal. Denote the

jth element on the diagonal of P̃ by P̃j , from (21),the contribution of the jth element of x(t0) to the degree of freedom for10

signal can be expressed as

P̃j =

r∑
i=1

s2i
1 + s2i

(vij)
2, (25)

where vij is the jth element of vi.

Besides, we can see that Eqn. (21) enables us to discriminate the DFS contributed to different optimization parameters, that

is emission rates and initial values. Without loss of generality, we divide (21) into the following block matrix according to the15

dimension of c and e

P̃ =

 P̃ c P̃ ce

P̃ ec P̃ e

 =

2n∑
i=1

s2i
1 + s2i

 vci

vei

(vc
>

i ,ve
>

i ) ∈R2n×2n, (26)

where (vc
>

i ,ve
>

i )> = vi.

It is easy to see that

P̃ c =

2n∑
i=1

s2i
1 + s2i

vci v
c>

i , P̃ e =

2n∑
i=1

s2i
1 + s2i

vei v
e>

i . (27)20

Further, the degree of freedom for signal of jth element in c(t0) and e(t0) are given by

P̃ cj =

2n∑
i=1

s2i
1 + s2i

(vcij)
2, P̃ ej =

2n∑
i=1

s2i
1 + s2i

(veij)
2, (28)

where vcij and veij are the jth elements of vci and vei respectively.

Moreover, the degree of freedom for signal of concentration ‖P̃ c‖1 and emission rates ‖P̃ e‖1 are caculated by

‖P̃ c‖1 =

2n∑
i=1

s2i
1 + s2i

tr(vci v
c>

i ), ‖P̃ e‖1 =

2n∑
i=1

s2i
1 + s2i

tr(vei v
e>

i ). (29)25
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It is worth noticing that

P̃ c = (P c(t0|t−1))−
1
2 (P c(t0|t−1)−P c(t0|tN ))(P c(t0|t−1))−

1
2 (30)

P̃ e = (P e(t0|t−1))−
1
2 (P e(t0|t−1)−P e(t0|tN ))(P e(t0|t−1))−

1
2 (31)

if and only if there is no prior correlation between the initial concentration and emission rates. In this case P ce(t0|t−1) = 0n×n,

the corresponding relative degrees of freedom for signal of concentration and emission rates are defined as5

p̃c =
‖P̃ c‖1
n

, p̃e =
‖P̃ e‖1
n

. (32)

From (24), it is obvious that p̃c ∈ [0,1) and p̃e ∈ [0,1) can be considered as the percentages of the relative improvements

of concentration and emission rates, respectively. However, efficient observation networks probably lead to both of them are

close to 1 such that

‖P̃ c‖1
n

+
‖P̃ e‖1
n

> 1. (33)10

It indicates the normalization of P̃ is only with respect to the extended covariance matrix rather than specified to the state c

and emission rates e. The relative degree of freedom for signal cannot serve our objective to distinguish the observability of

concentration and emission rates. However, by observing the block form of P̃ , we have

‖P̃ c‖1 + ‖P̃ e‖1 = ‖P̃‖1. (34)

Thus, in order to compare the improvements of the concentration and emission rates, we define relative ratio of the degree of15

freedom for signal for concentrations or emission rates as

p̃c =
‖P̃ c‖1
‖P̃‖1

, p̃e =
‖P̃ e‖1
‖P̃‖1

, p̃e + p̃c ≡ 1. (35)

If the degree or relative degree of freedom for signal of the observation network and assimilation window is almost zero,

an improvement cannot be expected. In contrast, {P̃ cj }nj=1 and {P̃ ej }nj=1, which show the improvement of each parameter j

of concentrations and emission rates respectively, can help us determining which parameters can be optimized by the existing20

observation configurations. Furthermore, comparing p̃c with p̃e, we can conclude that the estimate of the one with the larger

relative ratio of freedom for signal can be improved more efficiently by the existing observation configurations than the other.

In other words, if p̃c > p̃e, the existing observation configurations are more efficient to the initial values of concentrations.

Conversely, if p̃c < p̃e, the observation configurations can improve the estimate of emission rates more. According to p̃c and

p̃e, the “weights” between the concentrations and emission rates can be identified quantitatively. In a data assimilation context,25

where observations are in a weighted relation to the background, the BLUE favors those parameters with higher observation

efficiency.

The special case that p̃e is very close to zero implies that observation network is nearly “blind” for emission rate optimization.
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4 The ensemble approach to determine the DFS

The ensemble Kalman smoother (EnKS), as a Monte Carlo implementation derived from the Kalman smoother, is suitable for

problems with a large number of control variables and is a frequently applied tool in the field of data assimilation (Evensen,

2009). In this section we will introduce the ensemble-based case of the approach in Section 3.

For the discrete-time system (12), we denote the ensemble samples of x̂(ti|tj) by x̂k(ti|tj), i, j = 1, · · · ,N , k = 1, · · · , q,5

where q is the number of ensemble members.

Correspondingly, the ensemble means of x̂(ti|tj) is given by

x̄(ti|tj) =
1

q
X(ti|tj)1q×1, (36)

whereX(ti|tj) = (x̂1(ti|tj), x̂2(ti|tj), · · · , x̂q(ti|tj)) is the n×q ensemble matrix, 1i×j is a i×j matrix of which each element

is equal to 1.10

We calculate the ensemble forecast and analysis covariances as

P̄ (ti|tj) =
1

q− 1
X̃(ti|tj)X̃>(ti|tj), (37)

where X̃(ti|tj) =X(ti|tj)−
1

q
X(ti|tj)1q×q is the related perturbation matrix. We define the ensemble observation configu-

rations in the entire assimilation window as

yfk = Gx̂k(t0|t−1), k = 1, · · · , q. (38)15

Further, the ensemble mean and the forecasting error covariance matrix of the ensemble observation configurations are given

by

ȳf =
1

q

q∑
k=1

yfk , P̄ fyy =
1

q− 1

q∑
k=1

(ŷfk − ȳ
f )(ŷfk − ȳ

f )> = GP̄ (t0|t−1)G>. (39)

Similarly, we denote the ensemble covariance between the initial states and the forecasting observations by

P̄ fxy =
1

q− 1

q∑
k=1

(x̂k(t0|t−1)− x̄(t0|t−1))(ŷfk − ȳ
f )> = P̄ (t0|t−1)G>. (40)20

Furthermore, defining the ensemble observations as

ŷk(ti) = y(ti) + νk(ti), k = 1, · · · , q, i= 1, · · · ,N, (41)

we assume ν̄(ti) = 1
q

∑q
k=1 νk(ti) = 0, R̄(ti) = 1

q−1
∑q
k=1 νk(ti)ν

>
k (ti) and R̄−1 is the block diagonal matrix with the diag-

onal (R̄−1(t0), · · · , R̄−1(tN )).

It is shown by Evensen (2009) that the ensemble forecast and analysis covariances have the same form with the covariances25

in the standard Kalman filter. However, the ensemble size q is significantly less than the dimension of the model n in practical

applications. It causes that the initial ensemble covariance P̄ (t0|t−1) is not invertible. In this case, the pseudo inverse is a
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widely used alternative of the inverse of a matrix, due to its best fitness and uniqueness. We denote the pseudo inverse of a

matrix A by A†. Then for the initial ensemble covariance

P̄ (t0|t−1) =
1

q− 1
X̃(t0|t−1)X̃>(t0|t−1), (42)

we apply the singular value decomposition to

1√
q− 1

X̃(t0|t−1) = V0S0U
>
0 , (43)5

where V0 ∈Rn×n and U0 ∈Rq×q consist of the left and right singular vectors respectively, and S0 ∈Rn×q is a rectangular

diagonal matrix with singular values {s0i|s0i > 0}qi=1 on its diagonal. Thus,

P̄ (t0|t−1) = V0S0U
>
0 U0S

>
0 V
>
0 = V0S0S

>
0 V
>
0 = V0Ŝ

2
0V
>
0 , (44)

where Ŝ2
0 = S0S

>
0 ∈Rn×n is a block diagonal matrix with the diagonal (s201, · · · ,s20r0 ,01×(n−r0)), r0 is the rank of S0. Hence,

we find a pseudo inverse10

P̄ †
1
2 (t0|t−1) = V0Ŝ

†
0V
>
0 , (45)

where Ŝ†0 is the pseudo inverse of Ŝ0 with the diagonal (1/s01, · · · ,1/s0r0 ,01×(n−r0)). Analog to (17), we define P̄ as

P̄ = P̄ †
1
2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ †

1
2 (t0|t−1). (46)

Likewise, corresponding to (13), we present the observation system in the entire time interval as

y = Gx(t0) + ν, (47)15

where y = (y>(t0), · · · ,y>(tN ))>, ν = (ν>(t0), · · · ,ν>(tN ))> and G as the observation configuration for x(t0). Then, for the

analysis error covariance matrix, we obtain

P̄ (t0|tN ) (48)

= P̄ (t0|t−1)− P̄ (t0|t−1)G>(GP̄ (t0|t−1)G>+R)−1GP̄ (t0|t−1)

= P̄ (t0|t−1)− P̄ (t0|t−1)G>R− 1
2 (I +R− 1

2GP̄ (t0|t−1)G>R− 1
2 )−1R− 1

2GP̄ (t0|t−1)20

= P̄ (t0|t−1)− P̄ fxyR−
1
2 (I +R− 1

2 P̄ fyyR−
1
2 )−1R− 1

2 (P̄ fxy)>.

Further, analog to (21), we obtain

P̄ = P̄ †
1
2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ †

1
2 (t0|t−1) (49)

= P̄ †
1
2 (t0|t−1)P̄ fxyR−

1
2 (I +R− 1

2 P̄ fyyR−
1
2 )−1R− 1

2 (P̄ fxy)>P̄ †
1
2 (t0|t−1).

Let
∑N
i=1m(ti) =m be the number of observations available within the assimilation window. To proceed with (49), we25

apply again the singular value decomposition into the following matrix

P̄ †
1
2 (t0|t−1)P̄ fxyR−

1
2 = V̄ S̄Ū> ∈Rn×m, (50)
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where Ū ∈Rm×m and V̄ ∈Rn×n consists of the eigenvectors ofR− 1
2GP̄ (t0|t−1)G>R− 1

2 and P̄
1
2 (t0|t−1)G>R−1GP̄ 1

2 (t0|t−1),

respectively. S ∈Rn×m consists of the singular values on its diagonal.

We denote the rank of (50) by r. Then, we rewrite P̄ as

P̄ = P̄ †
1
2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ †

1
2 (t0|t−1) (51)

= V̄ S̄>Ū>(Ū Ū>+ Ū(S̄S̄>)Ū>)−1Ū S̄V̄ >5

= V̄ S̄>(I + S̄>S̄)−1S̄V̄ >

=

r∑
i=1

s̄2i
1 + s̄2i

v̄iv̄
>
i .

where r is the rank of P̄ and v̄i is the ith left singular vector in V related to the singular value s̄i, which is the ith element on

the diagonal of S.

We observe that (51) and (21) have a similar form. By virtue of10

P̄ †
1
2 (t0|t−1)P̄ fxyR̄

− 1
2 = P̄

1
2 (t0|t−1)G>R̄−

1
2 , (52)

the final results of (21) and (51) are equivalent. However, compared with P
1
2 (t0|t−1)G>R− 1

2 , the ensemble expression

P̄ †
1
2 (t0|t−1)P̄ fxyR̄

− 1
2 processes the absolute advantage that in the calculation of P̄ fxy since we do not need the explicit form of

G. It allows us to code it line by line such that our approach is computationally more efficient.

Analog to the standard case, we can similarly define the ensemble degree of freedom for signal (EnDFS) as ‖P̄‖1 and15

consider each element on the diagonal of P̄ as the contribution to EnDFS of the corresponding model state.

Since P̄ (t0|t−1) is typically not full rank,

P̄ †
1
2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ †

1
2 (t0|t−1) (53)

= P̄ †
1
2 (t0|t−1)P̄ (t0|t−1)P̄ †

1
2 (t0|t−1)− P̄ † 12 (t0|t−1)P̄ (t0|tN )P̄ †

1
2 (t0|t−1)

= V0Ŝ
†
0V
>
0 (V0Ŝ

2
0V
>
0 )V0Ŝ

†
0V
>
0 − P̄ †

1
2 (t0|t−1)P̄ (t0|tN )P̄ †

1
2 (t0|t−1)20

= V0Ir0V
>
0 − P̄ †

1
2 (t0|t−1)P̄ (t0|tN )P̄ †

1
2 (t0|t−1),

where Ir0 is the diagonal matrix with the diagonal (11×r0 ,01×(n−r0)). It is clear from (48) that P̄ †
1
2 (t0|t−1)P̄ (t0|tN )P̄ †

1
2 (t0|t−1)

is still a nonnegative definite matrix.

Thus, the ensemble relative degree of freedom for signal(EnRDFS) is defined by

p̄=
‖P̄‖1
‖Ir0‖1

=
‖P̄‖1
r0
∈ [0,1). (54)25

In order to distinguish the improvements for concentrations and emission rates, the ensemble relative ratios of DFS remain

p̄c =
‖P̄ c‖1
‖P̄‖1

, p̄e =
‖P̄ e‖1
‖P̄‖1

. (55)

If we further consider the nonlinear dynamic model, we can renew the definition of the forecasting observation configurations

as

yfk = G(x̂k(t0|t−1)), k = 1, · · · , q, (56)30

12



such that it can follow the nonlinear model, where G is again a combined model-observation nonlinear operator.

Correspondingly, the ensemble mean of ȳfk and P̄ fxy can be calculated based on (56) with the nonlinear G. Thus, the above

ensemble-based approach is available for nonlinear models.

5 Sensitivity of observation networks

The above discussion about DFS aims to evaluate a predefined measurement network on its potential to analyze initial values5

and emission rates simultaneously. In Appendix B, independent of any concrete data assimilation method, we use the singular

vector approach to identify the sensitive directions of observation networks to initial values and emission rates and show the

association between the efficiency and sensitivity of observation networks.

From Appendix B, we can see that the singular value sk shows the amplification of the impact of the initial state to the

observation configurations during the entire time interval. The associated singular vector in the state space vk is the direction of10

kth growth of the perturbation of observations evolved from the initial perturbation. With the special choiceW0 = P−1(t0|t−1)

andW =R−1 we compare the sensitivity analysis with the analysis in Section 3. Since s2k
1+s2k

are decreasing with the decrease

of sk, k = 1, · · · ,n, it is clear that vk is also the kth direction which maximizes the relative improvement of estimates based

on Kalman smoother. It indicates that the states contributing to DFS more are the same with the states more sensitive to the

observation networks. Besides, the leading singular value s1 is related to the operator norm of P̃ as15

‖P̃‖= max
‖x‖=1

‖P̃ x‖=
s21

1 + s21
, (57)

which implies the upper boundedness of P̃ . It gives us an access to approximate and target the sensitive parameters or areas

with the metric of the leading singular vectors weighted by the corresponding singular values.

Moreover, due to the homogeneity of the atmospheric transport model state vector extended with emissions, the above

sensitivity analysis can be easily applied by dividing singular vectors into the block form according to the dimensions of the20

initial state and emissions. The corresponding block parts of different singular vectors indicate the different sensitive directions

of the initial state and emissions and allow for this relative quantification. Correspondingly, we can approximate and target the

parameters sensitive to the existing observation networks for both initial values and emission rates.

6 Example

We consider a linear advection-diffusion model with Dirichlet horizontal boundary condition and Neumann boundary condition25

in the vertical direction on the domain [0,14]× [0,14]× [0,4],

∂δc

∂t
=−vx

∂δc

∂x
− vy

∂δc

∂y
+

∂

∂z
(K(z)

∂δc

∂z
) + δe, (58)

where δc, δe are the perturbations of the concentration, the emission rate of a species respectively. For vertical diffusion, K(z)

is a differentiable function of height z.
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For velocity vx = vy = 0.5 and the time step 4t= 0.5, the numerical solution is based on the symmetric operator splitting

technique (Yanenko, 1971) with the following operator sequence

δc(t+4t) = TxTyDzADzTyTxδc(t), (59)

where Tx and Ty are transport operators in horizontal directions x and y, Dz is the diffusion operator in vertical direction z.

The parameters of emission and deposition rates are included in A. The Lax-Wendroff algorithm is chosen as the discretization5

method for horizontal advection with 4x=4y = 1. The vertical diffusion is discretized with 4z = 1 by Crank-Nicolson

scheme with the Thomas algorithm (Higham, 2002) as solver. The number of the grid points is Ng = 1125.

With the same temporal and spacial discretization of the concentration, the background knowledge of the emission rate is

given by eb(tn, i, j, l), where n= 1, · · · ,N . We establish the discrete dynamic model of the emission rate according to (8)

δe(tn+1) =Me(tn+1, tn)δe(tn), n= 1, · · · ,N, (60)10

where Me(tn+1, tn) = eb(tn+1)/eb(tn).

For expository reasons we assume δd is a constant over time and the only one fixed observation configuration is time-

invariant. It indicates that the observation operator mapping the state space to the observation space is a 1×2Ng time-invariant

matrix.

In our simulations, we produce q = 500 (the ensemble number) samples for the initial concentration and emission rate15

respectively by pseudo independent random numbers and make the states correlated by the moving average technique. It has

been tested that the computation cost of our approach is linearly increasing with the number of ensembles. In the following,

we present three different tests, aiming to demonstrate the roles of variable winds, emissions, and vertical diffusion.

Advection test: The following part demonstrates the application of the DFS analysis tool by basic examples, designed to

show the expected elementary outcomes of the following situations, which exhibit the effects of assimilation window length in20

relation to emission location: these include (i) an assimilation window is too short to capture emission impacts at the observation

site, (ii) an extended assimilation window with balanced signal of impacts of concentrations and emissions at the observation

site, and (iii) a further increased assimilation window features a declining impact of initial values and growing emission impact.

The first elementary advection test (Fig. 1 to Fig. 7) identifies the sensitivities of parameters subject to different wind direction

and data assimilation window (DAW) through the DFS. Focusing on the advection effects, we apply the model with a weak25

diffusion process (K(z) = 0.5e−z
2

).

In Fig. 1 to 3 we assume southwesterly winds and the assigned data assimilation windows are 104t, 354t and 484t respec-

tively. The computation times are approximately 8.1s, 28.5s and 39.4s in our tests with the above three different assimilation

windows, from which we can verify that the computation cost is nearly linearly increasing with the length of data assimilation

window. The contributions to EnDFS of the initial states are shown in the left panels of Fig. 1 to 3. We can find that the30

horizontal fields at lowest layer (z = 0) where the estimates of the concentration are probably improved is enlarged with the

extension of data assimilation windows. It is because that more and more grid points of the concentration are correlated with

longer data assimilation windows.
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The right panels of Fig. 1 to 3 show the EnDFS of the emission rate at each grid point with z = 0. From Fig. 1, we can

observe that the EnDFS of the emission rate are smaller than the case of initial value in the influenced area. It indicates that the

observations cannot detect the emission rate within 104t data assimilation window. Thus, in this case initial values alone can

be optimized. It is shown in the right panels of Fig. 2 and Fig. 3 that the emission rate plays a more and more important role on

the impact of observations. In this two cases, we consider both the concentration and emission rate as optimized parameters.5

The quantitative balance between the concentration and emission rate is provided in Table 1.

Fig. 4 exhibits in its upper row panels the singular values underlying the results shown in Fig. 1 to 3. We approximate the

sensitivities of the initial concentrations by the first five leading singular vectors weighted by the associated singular values in

the nuclear norm and show the results in the three panels of Fig. 4, lower row. It is clearly visible that the sensitive area can

be well targeted by only few singular vectors, although the sensitivity analysis cannot provide the quantitative solutions with10

a clear statistical significance as the the degree of freedom for signal of the model. The areas of influence to the measurement

site in depencence of wind direction and assimilation window lengths is clearly visualized, corresponding to expectations.

As counter example, Fig. 5 to 7 also show the EnDFS of the concentration and emission rate under the same assumptions as

Fig. 1 to 3 respectively, except that northeasterly wind is assumed. Clearly, with the northeasterly wind, whatever the duration

of the assimilation window is, the emission is not detectable and improvable by that particular observation configuration. This15

hypothesis is demonstrated by our method. The quantitative balances are exposed in Table 1 for the related figures, where the

insensitivity to emission rate optimisation remains equally low and induced by numerical noise. .

Emission signal test: The purpose of emission signal test (Fig. 8 and Fig. 9) is to assess the impact of observation configu-

rations to the emission rates evolved with different diurnal profiles. We have the same assumptions as Fig. 3 except the wind

speed in Fig. 8 and Fig. 9 is accelerated such that the profiles of the emission rate is better detectable as to the observation. The20

only distinction between the situations in Fig. 8 and Fig. 9 is the pronounced diurnal cycle background profile of the emission

rate during the assimilation window 484t, schematically simulating a rush hour induced source. Since the profiles of emission

rates are correlated with the emitted amount of that species during the data assimilation window, it is clearly shown in Table

1 that the distinct variation of the emission rate during the data assimilation window acts to level p̄c and p̄e, and thus helps to

improve the estimates of source.25

Diffusion test: The diffusion test (Fig. 10 to Fig. 12) aims to test the approach via comparing the EnDFS of the concentration

and the emission rate at the layer z = 0 with a weak diffusion process and a strong diffusion process. We assume the observation

configuration at each time step is located at (12,10,4) in the diffusion test , with K(z) = 0.5e−z
2

in Fig. 10 and K(z) =

0.5e−z
2

+ 1 in Fig. 11. Besides, Fig. 10 and Fig. 12 preserve the same assumptions with Fig. 3.

It is obviously seen from Fig. 3 and Fig. 10 that the different observation locations strongly influence on the distribution of30

the concentration. Table 2 shows that with the same diffusion coefficient the degree ensemble degree of freedom for signal of

the concentration in the lowest layer in Fig. 3 is definitely larger than the one for Fig. 10. Moreover, it can be seen from Table

1 that the observation configuration at the top layer is not efficient to the emission rate with such weak diffusion within 484t
data assimilation window .
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Figure 1. Advection test with 104t DAW and southwesterly wind. Isopleths of ensemble relative improvements of the concentration and

emission rate are shown in the left and right figure panels respectively. The point located at (12,10,0) named as‘Obs-cfg of conc’ shows the

invariant observation configuration. The point located at (2,2,0) named as ‘Emss-source’ is the source of the emission rate.
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Figure 2. Advection test with 354t DAW and southwesterly wind. Plotting conventions are as in Fig. 1.

Comparing Fig. 10 with Fig. 11, we can find that the EnDFS of concentration and emission rate increase with the stronger

diffusion process. The increasing impact of the observation configuration with the stronger diffusion is also verified by the

EnDFS and ensemble relative ratios of DFS of the concentration and emission rate for Fig. 10 and 11 in Table 2. The balances

between the concentration and emission rate for Fig. 10 and 11 are shown in Table 1. The significant difference of the ‘weight’

of emission rate in Table 1 implies that the observation configuration cannot detect the emission at the lowest layer with such5

a weak diffusion in Fig. 10 and with the stronger in Fig. 11 both the concentration and emission rate should be considered as

optimized parameters with the corresponding ‘weights’.

Finally, similar to Fig. 4, the singular values of Fig. 10, Fig. 11 and the approximating targeting results of sensitive parameters

are shown in Fig. 12.
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Figure 3. Advection test with 484t DAW and southwesterly wind. Plotting conventions are as in Fig. 1.
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Figure 4. Singular values of Fig. 1 ∼ 3 and sensitivities of initial states approximated by 5 leading singular values.
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Figure 5. Advection test with 104t DAW and northeasterly wind. Plotting conventions are as in Fig. 1.
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Figure 6. Advection test with 354t DAW and northeasterly wind. Plotting conventions are as in Fig. 1.
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Figure 7. Advection test with 484t DAW and northeasterly wind. Plotting conventions are as in Fig. 1.
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Figure 8. Emission signal test (weak) with 354t DAW and southwesterly wind (vx = 1 and vy = 1). Plotting conventions are as in Fig. 1.
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Figure 9. Emission signal test (strong) with 484t DAW and southwest wind (vx = 1 and vy = 1). Plotting conventions are as in Fig. 1.
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Table 1. Ensemble relative ratios of the initial value and emission rate at the lowest layer.

Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

p̄c 0.9920 0.4548 0.2848 0.9937 0.9939 0.9939 0.2248 0.1808 0.9928 0.1905

p̄e 0.0080 0.5452 0.7152 0.0063 0.0061 0.0061 0.7752 0.8192 0.0072 0.8095

Table 2. The ensemble degrees of freedom for signal of the initial value and emission rate at the lowest layer.

P̄ c
low P̄ e

low

Fig. 3 0.2767 0.8851

Fig. 10 0.0102 0.0030

Fig. 11 0.0500 0.7892

7 Conclusions and Outlooks

This study demonstrates the quantification of the sensitivity of a given measurement network to impact initial trace gas state

and emission rates for transport-diffusion models forced by emission. The indicators adopt the degrees of freedom for signal

concept. Resting on a Kalman smoother, the contribution to the degree of freedom for signal is derived as the criterion to

evaluate the potential improvement of the extended state vector as calculated by singular value decomposition. With a statistical5

interpretation, we can apply it to determine in advance, which parameters can be optimized by the data assimilation procedure.

The degree of freedom for signal and a number of metrics provide us with the quantitative solutions to measure to what extend

the parameters can be optimized. Due to its normalization, it is uniformly available for any prior initial values of invertible

background covariances. Further, the proposal of the ensemble based relative improvement covariance, based on EnKS, gives

us a computationally feasible access to assess the degree of freedom for signal.10

The sensitivity of observational networks was formulated by seeking the fastest directions of the perturbation ratio between

initial states and observation configurations during the entire time interval. An elementary advection-diffusion example illus-

trated the significance of relative improvements covariances and their various metrics in different situations and compared them

with the results of the sensitivity analysis.

In the future, it is planed to apply the efficiency analysis into the real atmospheric transport model to solve practical problems,15

also for nonlinear reactive chemistry-transport-diffusion models, as far as the validity of the tangent linear assumption holds,

exactly as in atmospheric chemistry data assimilation problems. It is expected that we will get deeper insight to the sensitivity

analysis for wider applications. For example, in order to evaluate the impact of observations in some certain locations, the

local projection operator introduced by Buizza and Montani (1999) can be applied into approaches presented in Section 4 and

Section 5.20
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8 Code availability

The codes are available via "https://www.geosci-model-dev-discuss.net/gmd-2017-220/gmd-2017-220-supplement.zip" , or

from the corresponding author on request.

Appendix A

In this appendix, we show a more general case to extend the control vector by emissions. As we know, the initial state and5

emission rates do not have the same dimension in some practical cases, as there can be more than one different kinds of

emissions for one species. Compared with (2), the general situation leads us to consider the following model

dδc

dt
= Aδc+B(t)δe(t), (61)

where B(t) is an operator transforming the emission state vector into the concentration-state space. Combining with (8), we

obtain the extended model10  δc(t)

δe(t)

 =

 M(t, t0)
∫ t
t0
M(t,s)B(s)Me(s, t0)ds

0 Me(t, t0)

 δc(t0)

δe(t0)

 . (62)

Appendix B

In this appendix, we will introduce the singular vector approach to identify the sensitive directions of initial values and emission

rates to the observation netvorks and show the association between the efficiency and sensitivity of observation networks.

We define the magnitude of the perturbation of the initial state by the norm in the state space with respect to a positive15

definite matrix W0, typically the forecast error covariance matrix.

‖δx(t0)‖2W0
= 〈δx(t0),W0δx(t0)〉. (63)

Likewise, we define the magnitude of the related observations perturbation in the time interval [t0, · · · , tN ] by the norm with

respect to a sequence of positive definite matrices {W (tk)}Nk=1

‖δyc‖2{W (tk)} =

N∑
k=0

〈δyc(tk),W (tk)δyc(tk)〉, (64)20

where δyc = (δy>c (t0), · · · , δy>c (tN ))>.

In order to find the direction of observation configuration which minimizes the perturbation of the initial states, the ratio

‖δx(t0)‖2W0

‖δyc‖2{W (tk)}
, δy 6= 0m×1. (65)

must be minimized. It is equivalent to maximize the ratio of the magnitude of observation perturbation and the initial perturba-

tion25

‖δyc‖2{W (tk)}

‖δx(t0)‖2W0

, δx(t0) 6= 0n×1. (66)
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Thus, we define the measure the perturbation growth as

g2 =
‖δyc‖2{W (tk)}

‖δx(t0)‖2W0

(67)

=

N∑
k=0

〈δyc(tk),W (tk)δyc(tk)〉
〈δx(t0),W0δx(t0)〉

=

N∑
k=0

〈H(tk)δx(tk),W (tk)H(tk)δx(tk)〉
〈δx(t0),W0δx(t0)〉

=

N∑
k=0

〈δx(tk),H(tk)>W (tk)H(tk)δx(tk)〉
〈δx(t0),W0δx(t0)〉

5

=

N∑
k=0

〈δx(t0),M(tk, t0)>H(tk)W (tk)H(tk)M(tk, t0)δx(t0)〉
〈δx(t0),W0δx(t0)〉

=
〈δx(t0),

∑N
k=0M(tk, t0)>H(tk)>W (tk)H(tk)M(tk, t0)δx(t0)〉

〈δx(t0),W0δx(t0)〉

=
〈δx(t0),G>WGδx(t0)〉
〈δx(t0),W0δx(t0)〉

, δx(t0) 6= 0, (68)

where G has the same definition as given in Section 3, and

W =


W (t0)

. . .

W (tN )

 . (69)10

We arrive at the eigenvalue problems (Liao et al., 2006)

W
− 1

2
0 G>WGW−

1
2

0 vk = s2kvk, W
1
2GW−10 G>W

1
2uk = s2kuk, (70)

where s1 > s2 > · · ·> sn > 0 are singular values, {vk}nk=1 and {uk}nk=1 are the corresponding orthogonal singular vectors.

Then, maxδx(t0) 6=0 g
2 = s21.

Especially, if the perturbation norms are provided by the choice W0 = P−1(t0|t−1) andW =R−1,15

g2 =
〈δx(t0),G>R−1Gδx(t0)〉
〈δx(t0),P−1(t0|t−1)δx(t0)〉

, δx(t0) 6= 0. (71)

Correspondingly, we consider the singular value decomposition of the following matrices

P
1
2 (t0|t−1)G>R−1GP 1

2 (t0|t−1)vk = s2kvk; (72)

R− 1
2GP (t0|t−1)G>R− 1

2uk = s2kuk, k = 1, · · · ,n, (73)

where sk, vk and uk, k = 1, . . . ,n denotes the singular values and corresponding singular vectors to simplify the notation. At20

the same time, it can be seen that the above singular value decomposition problem coincides with (20) in Section 3.
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