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We thank both referees for their thorough reading of the manuscript and for useful comments.

We have addressed all comments and tried our best to clarify the manuscript. Our responses to both

referees are described in the follwing sections. Together with this response we submit a revision of

the manuscript which accounts for the changes decsribed below.

1 Response to referee 15

1.1 Tables references

All tables references have been checked and corrected.

1.2 Range of parameters

The range of parameters in Table 1 have been corrected, they correspond to what is used in Bloom

and Williams (2015).10

1.3 Ecological constraints

Our implementation of the EDCs leads to a set of 29 inequalities denoted EDC1 to EDC29, we omit-

ted to take into account the carbon pools growth constraints in the original manuscript.

In the original manuscript we chose to provide only a heuristic description of the inequalities, the

complete description of which can be found in Bloom and Williams (2015). We thought that al-15

though justified for the sake of self consistency, detailing the EDCs did not bring any insight into the

question addressed here and increased significantly unnecessary mathematical notation. Nonetheless

we acknowledge the comment made by referee 1 and we have made substantial changes to section
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2.2 to incorporate a complete description of the EDCs, running from line 123 to line 180 in the

revised manuscript.20

1.4 Other comments

A discussion section has been added to the manuscript to address the remaining comments.

Global scale experiments are discussed in reference to Rayner et al. (2005) and CCDAS. The work

of Kemp et al. (2014), which directly relates to what we discuss in our paper, is also cited. Although

this preliminary work is not reported in our manuscript the three approaches presented in Kemp et al.25

(2014) were evaluated for the preparation of the manuscript, and our conclusion was different: in our

case incorporating the EDCs by adding a penalty term to the cost function was the most successful

approach to constrain unresolved parameters and, most importantly in our case, to allow for a better

uncertainty quantification.

We also refer to Ziehn et al. (2012) for their comparison between MCMC method and 4DVAR in30

CCDAS. A MCMC method is used in Bloom and Williams (2015), and in Safta et al. (2015), added

in reference to the revised manuscript, a detailed analysis of MCMC for DALEC is performed. A

comparison between MCMC and 4DVAR was beyond the scope of this paper, our intention was

rather to establish 4DVAR as a suitable method for DALEC and the EDCs. Nonetheless a compari-

son between 4DVAR and fully non-linear methods is necessary, it is one of the aspects of our current35

work.

Finally we mention our current work on a hydrid ensemble-variational method. This approach pro-

vides an adjoint-free formulation of the variational problem and show promising results in the con-

text discussed in the manuscript. This work is part of a paper in preparation.

2 Response to referee 240

The version of DALEC used for this study, referred to as DALECv2 and described in details in

Bloom and Williams (2015), is a nonlinear dynamical system, it is not a linear autonomous system.

The trajectories of the carbon pools C are computed using the recursion formula

Ct+1 = Ct +f(Ct,p,φ(t))∆t, (1)

where f is a nonlinear vector valued function of the carbon pools, the parameters p and the meteo-45

rological drivers φ(t), ∆t denoting the step time in month in our case. The nonlinear nature of the

model is stressed out in the revised manuscript at lines 77 and 83. Moreover, the definition of h is

clarified at line 197.

The main focus of the paper is on the vector x = log([p,C0])T . In section 2.3 first where we investi-

gate the sensitivity of different outputs with respect to x and its components, and then in subsequent50

sections where x is estimated using inverse methods. The vector x, denoting fixed quantities as ini-

tial conditions and parameters for the dynamical system DALECv2, is seen as the variable from the
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point of view of sensitivity analysis and inverse modelling and therefore its components are referred

to as state variables, input variables or parameters interchangeably throughout the manuscript. This

choice of terminology, stressed out at line 228, have been reinforced in the revised manuscript by55

adding the present paragraph at line 103.
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Constraining DALEC v2 using multiple data streams
and ecological constraints: analysis and application.
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Abstract. We use a variational method to assimilate multiple data streams into the terrestrial ecosys-

tem carbon cycle model DALECv2. Ecological and dynamical constraints have recently been intro-

duced to constrain unresolved components of this otherwise ill-posed problem. Here we recast these

constraints as a multivariate gaussian
::::::::
Gaussian distribution to incorporate them into the variational

framework and we demonstrate their benefit through a linear analysis. Using an adjoint method we5

study a linear approximation of the inverse problem: firstly we perform a sensitivity analysis of the

different outputs under consideration, and secondly we use the concept of resolution matrices to di-

agnose the nature of the ill-posedness and evaluate regularisation strategies. We then study the non

linear problem with an application to real data. Finally, we propose a modification to the model:

introducing a spin-up period provides us with a built-in formulation of some ecological constraints10

which facilitates the variational approach.

1 Introduction

Carbon is a fundamental constituent of life and understanding its global cycle is a key challenge for

the modelling of the Earth system. Through the processes of photosynthesis and respiration, ecosys-

tems play a major role in the carbon cycle and thus in the dynamics of the global climate system. Our15

knowledge of the biogeochemical processes of ecosystems and an ever-growing amount of Earth ob-

servation systems can be combined using inverse modelling strategies to improve model predictions

and uncertainty quantification.

The data assimilation linked ecosystem model (DALEC) is a simple box model for terrestrial ecosys-

tems simulating a large range of processes occurring at different time scales from days to millennia.20

The work of Williams et al. (2005) established the benefit of using DALEC together with net ecosys-

tem exchange of Co2
:::
CO2:

(NEE) measurements in a Bayesian framework to estimate initial carbon

stocks and model parameters, to improve flux predictions for ecosystem models, and to quantify un-
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certainties. Intercomparison
:::::::::::::
Inter-comparison

:
experiments (Fox et al. (2009); Hill et al. (2012)) have

then demonstrated the relative merit of various inverse modelling strategies using NEE and MODIS25

leaf area index observations: most results agreed on the fact that parameters and initial stocks directly

related to fast processes were best estimated with narrow confidence intervals, whereas those related

to slow processes were poorly estimated with very large uncertainties. Other studies have tried to

overcome this difficulty by adding complementary data streams, see Richardson et al. (2010), or

by considering longer observation windows, see Hill et al. (2012). Recently Bloom and Williams30

(2015) defined a set of ecological and dynamical constraints (EDCs) to reject unrealistic parameter

combinations in the absence of additional data. However, to date no
::::
very

:::
few

:
systematic analysis

has been carried out to explain the large differences among results.

As with many inverse problems, assimilating Earth observations into DALEC is an ill-posed prob-

lem: the model-observation operator which relates parameters and initial carbon stocks to the obser-35

vations is rank deficient and not all variables can be estimated, or the model-observation operator is

ill-conditioned and small observational noise may lead to a solution we can have little confidence

in. Solving the problem amounts first to transforming it into a tractable problem in order to ensure

a robust, meaningful and stable solution. This can be achieved by using regularisation techniques;

the most popular one involves combining the observations and prior information, assuming it exists,40

through Bayesian inference. The choice of regularisation method depends on the nature of the prob-

lem and on the inverse modelling approach adopted.

So far, off-the-shelf methods such as ensemble Kalman filter (EnKF) and Monte Carlo Markov Chain

(MCMC) were adopted to perform model-data fusion with DALEC. For its ability to accomodate

:::::::::::
accommodate non-linearity and any kind of probability distributions, the MCMC method, in the limit45

of a large number of samples, may be considered as the gold standard. However, depsite
::::::
despite be-

ing well suited for this type of small scale problem, the computational complexity of MCMC method

makes it untractable
::::::::
intractable

:
for more complex situations. Here we adopt a variational approach

(4DVAR) where a cost function measuring the mismatch between the model and observations is

minimized
::::::::
minimised

:
using a gradient method based on the adjoint of the model. At Ameriflux sites50

(see http://ameriflux.lbl.gov/), we use MODIS monthly mean leaf area index (LAI) observations

over a 13 year time window together with flux tower measurements of NEE and gross primary pro-

duction (GPP). 4DVAR facilitates the diagnosis of the ill-posedness of the inverse problem: using

resolution matrices, successfully adapted from the field of tomography,
:::::
model

::::::::
resolution

::::::::
matrices

we can assess the resolution and stability properties of the observation operators and of the regu-55

larisation terms. We transcribe the EDCs into a novel variational framework and use some of this

additional knowledge to estimate the otherwise undetermined variables. We consider a modification

of the DALEC model by adding a spin-up period where carbon stocks are brought to equilibrium,

this offers an alternative to including all the EDCs and helps reducing the confidence intervals for

the predicted fluxes.60
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The paper is organised as follows. In section 2 we present DALECv2 and the observation streams

used in this study; we briefly review the EDCs introduced in Bloom and Williams (2015), and we

perform a sensitivity analysis of the different outputs of DALECv2 of interest for our experiments.

In section 3 we recall basic principles of inverse theory from a Bayesian perspective, we introduce

the variational formulation and we show how to incorporate the EDCs into this framework. Sec-65

tion 4 is devoted to a résumé of the linearised problem, using the tangent linear model, where the

challenges of ill-posed problems and their regularisation can be explored in detail using simple lin-

ear algebra. Using a singular value decomposition we illustrate the effect of observational noise

on ill-conditionned
::::::::::::
ill-conditioned systems, and we investigate solution strategies from the point of

view of resolution matrices. In section 5 we conduct a series of nonlinear inverse modelling ex-70

periments using multiple data streams and EDCs. In section 6 we modify DALECv2 to include a

spin-up period which offers a built-in formulation of some EDCs, and then we reproduce the non-

linear experiments. Finally in
::
In section 7 we

::::::
discuss

::::::
several

::::::::
extension

::
to

:::
our

::::::::::
manuscript

:::
and

::::::
finally

::
in

::::::
section

:
8
:::
we

:
draw conclusions.

2 Model, constraints and observations75

2.1 DALECv2

DALECv2 depicts a terrestrial ecosystem as a set of six carbon pools (labile Clab, foliar Cf, wood

Cw, root Cr, litterfall Cl and soil organic matter Cs) linked via allocation fluxes. At a monthly time

step the gross primary production (GPP) is calculated using the Aggregated canopy model (Williams

et al. (1997)) as a
::::::::
nonlinear function of meteorological drivers (temperature, radiation , atmospheric80

CO2
::::
CO2 concentration), foliar carbon and foliar nitrogen. Following a mass conservation principle

GPP is then allocated to the different carbon pools or released in the atmosphere via respiration. The

schematic for DALECv2 is represented in Figure 1 and a complete description of the model can be

found in Bloom and Williams (2015). DALECv2 combines the two previous DALEC-evergreen and

DALEC-deciduous into a single model where the non-differentiable phenology process of DALEC-85

deciduous has been replaced with a differentiable process. DALECv2 is a
:::::::
nonlinear

:
dynamical sys-

tem and the carbon pools are dynamical variables parametrized
::::::::::
parametrised

:
by their initial values

C0 and by 17 parameters p whose range and description can be found in Table 1. The magnitudes

and ranges of the parameters and the initial values vary drastically; therefore to avoid the compu-

tational problems caused by these different scales the variational methods will be formulated and90

implemented in terms of the log transformed variables
::::::
variable x= log([p,C0])T . However in or-

der to limit unnecessary notation and definition, in the remainder of this paper p and C0 will stand

for their log transform.

The meteorological drivers are extracted from 0.125◦x0.125◦ERA-interim reanalysis datasets.

For the purpose of our inverse modelling experiments we use four different observation streams:95
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GPP
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Cr

Cw Csom
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Figure 1. DALECv2 links the carbon pools (C) via allocation fluxes (green), litterfall fluxes (red), decompostion

:::::::::::
decomposition (black). Respiration is represented by the blue arrows. The orange arrow represents the feedback

of foliar carbon to gross primary production (GPP).

Table 1. DALECv2 dynamical variables and parameters with their respective range. The units of the non di-

mensionless quantities are given in brackets.

Label Variable description range

C0(1) Clab initial labile C pool (gCm−2) 20 - 2000

C0(2) Cf initial foliar C pool (gCm−2) 20 - 2000

C0(3) Cr initial fine root C pool (gCm−2) 20 - 2000

C0(4) Cw initial above and below ground woody C pool (gCm−2) 100 - 105

C0(5) Cl initial litter C pool (gCm−2) 20 - 2000

C0(6) Cs initial soil organic matter C pool (gCm−2) 100 - 2× 105

p1 θmin Litter mineralisation rate (day−1) 10−5 - 10−2

p2 fa autotrophic respiration fraction 0.3 - 0.7

p3 ff fraction of GPP allocated to Cf 0.01 - 0.5

p4 fr fraction of GPP allocated to Cr 0.01 - 0.5

p5 clf Annual Leaf Loss Fraction (season) 1 - 8

p6 θw Cw turnover rate (day−1) 2.5× 10−5 - 10−3

p7 θr Cr turnover rate (day−1) 10−4 - 10−2

p8 θl Cl turnover rate (day−1) 10−4 - 10−2

p9 θs Cs turnover rate (day−1) 10−7 - 10−3

p10 Θ temperature dependence exponent factor 0.018 - 0.08

p11 ceff Canopy Efficiency Parameter 10 - 100

p12 donset Leaf Onset Day (day) 1 - 365

p13 fl fraction of GPP allocated to Clab 0.01 - 0.5

p14 cronset Clab release period (day) 10 - 100

p15 dfall Leaf Fall Day (day) 1 - 365

p16 crfall Leaffall period (day) 20 - 150

p17 clma Leaf Mass per area (gCm−2) 10 - 400
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LAI, NEE, GPP and RESP. LAI monthly mean observations for Ameriflux sites are extracted from

MOD15A2 LAI 8-day version 005 1km-resolution product. These observations together with the

meteorological drivers are provided by A. Bloom and J. Exbrayat: details about their construction

can be found in Bloom and Williams (2015). At Ameriflux sites we use the level 4 data product

(available at http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/), which provides monthly means for100

NEE and GPP. NEE and GPP are then used to define total respiration (RESP) as RESP=NEE+GPP.

The meteorological drivers span over a period of twelve years from 2001 to 2013. LAI observations

are available during the full period but for NEE and GPP, and thus RESP, shorter reccords
::::::
records

are available depending on the Ameriflux site. In this study we consider the Morgan Monroe state

forest located in Indiana, US (39.3,-86.4). This Ameriflux site is composed in majority of mixed105

hardwood broadleaf deciduous trees and classifies as a humid subtropical climate.

::
In

:::
the

::::::::
remainder

::
of
:::

the
:::::
paper

:::
the

:::::
main

:::::
focus

::
is

::
on

:::
the

::::::
vector

::::::::::::::::
x= log([p,C0])T :

::
in

::::::
section

:::
2.3

::::
first

:::::
where

:::
we

:::::::::
investigate

:::
the

:::::::::
sensitivity

::
of

:::::::
different

:::::::
outputs

::::
with

::::::
respect

:::
to

:
x
::::

and
::
its

:::::::::::
components,

::::
and

:::
then

:::
in

:::::::::
subsequent

:::::::
sections

::::::
where

::
x

::
is
:::::::::
estimated

:::::
using

::::::
inverse

::::::::
methods.

::::
The

:::::
vector

:::
x,

::::::::
denoting

::::
fixed

::::::::
quantities

:::
as

:::::
initial

:::::::::
conditions

::::
and

:::::::::
parameters

:::
for

:::
the

:::::::::
dynamical

:::::::
system

:::::::::
DALECv2,

::
is
:::::

seen110

::
as

:::
the

:::::::
variable

::::
from

::::
the

::::
point

:::
of

::::
view

:::
of

::::::::
sensitivity

::::::::
analysis

:::
and

::::::
inverse

:::::::::
modelling

::::
and

::::::::
therefore

::
its

::::::::::
components

::::
will

::
be

:::::::
referred

::
to
:::

as
::::
state

::::::::
variables,

:::::
input

::::::::
variables

::
or

:::::::::
parameters

::::::::::::::
interchangeably

:::::::::
throughout

:::
the

::::::::::
manuscript.

2.2 Ecological constraints

Over the last decade many inverse modeling
::::::::
modelling

:
studies have used NEE measurements from115

the fluxnet network, together with other types of observations when available, to provide information

about processes controlled by parameters with respect to which NEE is weakly sensitive. Though it

contains an ever-incresing
:::::::::::::
ever-increasing amount of information, the flux tower network only pro-

vides sparse coverage of terrestrial ecosystems. On the other hand, despite a good spatial and tem-

poral coverage, MODIS LAI monthly mean observations only constrain a limited set of DALECv2120

state variables, and additional information is required in order to regularize
::::::::
regularise

:
the ill-posed

problem and obtain a meaningful solution.

Additional information can be obtained by imposing priors on the variables or by adding other obser-

vation streams (biomass, soil organic matter, ...). As an alternative, Bloom and Williams introduced

a set of constraints, referred to as ecological and dynamical constraints (EDCs). These constraints,125

detailed in Bloom and Williams (2015) can be divided into two groups: static and dynamcic
:::::::
dynamic

constraints. The static constraints which directly impose conditions on the parameters are:
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– turnover rates constraints which ensure that turnover rates ratios are consistent with knowledge

of the carbon pools residence times.

EDC1 : p9 < p8,
:::::::::::::::

(1)130

EDC2 : p9 < p1,
:::::::::::::::

(2)

EDC3 : p6 < 1/(p5× 365.25),
::::::::::::::::::::::::::

(3)

EDC4 : p7 > p9 exp p10T̄,
:::::::::::::::::::::::

(4)

EDC5 : p12 + 45< p15,
::::::::::::::::::::

(5)
135

:::::
where

::
T̄

::::::
denotes

:::
the

:::::
mean

::::::::::
temperature

:::::
within

:::
the

::::::
drivers

::::
time

:::::::
window.

:::::
EDC4::

is
:
a
:::::::::::
modification

::
to

::
the

:::::::::
constraint

:::::::
proposed

::
in

::::::::::::::::::::::::
Bloom and Williams (2015),

:
it
::
is

:::::::
currently

::::
used

::
in
:::
the

::::::::::::
CARDAMON

:::::::::
framework

:
(http://www.geos.ed.ac.uk/homes/mwilliam/CARDAMOM.html

:
).

– Root-foliar allocation which allows for a strong correlation between parameters controlling

allocation to foliage and roots.140

EDC6 : froot < 5(ffol + flab),
::::::::::::::::::::::::

(6)

EDC7 : ffol + flab < 5froot,
:::::::::::::::::::::::

(7)

:::::
where

:::
the

::::::::
allocation

::::::::
fractions

:::
ffol,::::

flab :::
and

::::
froot:::

are
::::::
defined

:::
by

fauto = p2,
::::::::

(8)145

ffol = (1− fauto)p3,
:::::::::::::::

(9)

flab = (1− fauto− ffol)p13,
:::::::::::::::::::::

(10)

froot = (1− fauto− ffol− flab)p4.
::::::::::::::::::::::::::

(11)

The dynamic constraints, for which a model run is performed to define attractors, limit the applica-150

tion of the model to ecosystems with no major recent disturbance. They are defined by:

–
:::::::::
Root-foliar

:::::
mean

::::::::
dynamics

EDC8 : C̄r < 5C̄f,
::::::::::::::

(12)

EDC9 : C̄f < 5C̄r,
::::::::::::::

(13)
155

:::::
where

::
C̄f::::

and
::
C̄r::::::

denote
:::
the

:::::
mean

::
of

:::
Cf :::

and
::
Cr::::

over
:::
the

:::::::::
simulation

::::::
period.

:

– Yearly carbon pools growth rate is limited to 10%.

EDC10−15 : C̄n/C̄1 < 1 + ζ(n− 1)/10,
::::::::::::::::::::::::::::::::::

(14)

6
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:::::
where

:::
for

::::
each

::::
pool

:::
C̄i

::::::
denotes

:::
the

:::::
mean

::::::
carbon

::::
pool

::::
size

::::
over

:::
year

::
i
:::
and

:::
the

::::::
growth

:::::
factor

::
ζ160

:
is
:::
set

::
to

::::
0.1.

– Carbon pools are not expected to show rapid exponential decay; therefore parameter sets are

required to satisfy the condition that the half-life period of carbon pools is more than three

years.

EDC16−21 : γ < 3× 365/ log2.
:::::::::::::::::::::::::::

(15)165

:::
The

::::::::
trajectory

::
of

::::
each

::::::
carbon

::::
pool

::
is

:::::::::::
approximated

:::::
using

::
an

::::::::::
exponential

:::::
decay

:::::
curve

:::::::::
a+ bexpγt

:::::
where

::
a,

:
b
::::
and

:
γ
:::
are

:::
the

:::::
fitted

:::::::::
exponential

::::::
decay

:::::::::
parameters

:::
and

:
t
:::
the

::::
time

:::::::
variable,

:::
in

::::
days

::
in

:::
this

::::
case.

:

– Carbon pools are expected to be within an order of magnitude of a steady state attractor.170

Our implementation of the EDCs leads to a set of 23 inequalities, denoted EDC1 to EDC23,

constraining all state variables: 7 for the static EDCs constraining only p1 to p10, p12, p13 and

p15,

EDC22−29 : C0/10<C∞ < 10C0,
::::::::::::::::::::::::::::::

(16)
175

:::::
where

:::
for

::::
each

::
of
::::

the
::::::
carbon

:::::
pools

:::
Cs,:::

Cl,:::
Cw::::

and
:::
Cr,:::

C0 :::::::
denotes

:::
the

:::::
initial

::::
state

::::
and

::::
C∞

::::::
denotes

:::
the

::::::
steady

::::
state

:::::::
attractor

::::::
defined

:::
by

C∞som =
(fwood + (ffol + froot + flab)p1)Ḡ

(p1 + p9)p8 exp T̄ p10
,

:::::::::::::::::::::::::::::::::

(17)

C∞lit =
(ffol + froot + flab)Ḡ

p9 exp T̄ p10
,

:::::::::::::::::::::::

(18)

C∞wood =
fwoodḠ

p6
,

:::::::::::::

(19)180

C∞root =
frootḠ

p7
,

::::::::::::

(20)

:::::
where

::
Ḡ

:::::::
denotes

:::
the

:::::
mean

::::
gross

:::::::
primary

::::::::::
production

:::
and

:::::
fwood,

::::
fsom:

and 16 for the dynamic

EDCs constraining all state variables.
::
flit :::

are
:::::
given

::
by

:

fwood = 1− fauto− ffol− flab− froot,
:::::::::::::::::::::::::::::

(21)185

fsom = fwood + (froot + flab + ffol)p1/(p1 + p8),
::::::::::::::::::::::::::::::::::::::

(22)

flit = (froot + flab + ffol).
::::::::::::::::::::

(23)
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To the original EDCs, we found useful to add the three following constraints:

EDC24 : LAI(summer)< α, α > 0,190

EDC25 : LAI(final day)> 0,

EDC26,27 : −β < E[NEE]< β, β > 0,

EDC30 : LAI(summer)< α, α > 0,
::::::::::::::::::::::::::::::

(24)

EDC31 : LAI(final day)> 0,
::::::::::::::::::::::::

(25)195

EDC32,33 : −β < E[NEE]< β, β > 0,
::::::::::::::::::::::::::::::::

(26)

where α and β are real constants that need to be adjusted, LAI(summer) denotes the modelled LAI

during summer and LAI(final day) denotes the modelled LAI at the end of the model run. These new

constraints guarantee that LAI and the mean NEE remain between realistic bounds.200

Bloom and Williams demonstrated the efficiency of incorporating EDCs using a Monte Carlo method

to improve parameter estimates and NEE predictions. We propose an approach to apply these extra

constraints within a variational framework.

2.3 Sensitivity analysis

Sensitivity analysis studies how the variations of the output h of a model can be attributed to205

varations
::::::::
variations of the input variables xi. Such information is crucial for model design, inverse

modelling and reduction of complex nonlinear models.
:
A
::::::

global
:::::::::
sensitivity

:::::::
analysis

:::
for

::::::::
DALEC

:::
was

:::::::
recently

:::::::::
performed

::
in
::::::::::::::::

Safta et al. (2015),
::::
here

:::
we

:::::::
consider

::
a
::::
local

::::::::
approach

::::::
where

::::
first

:::::
order

:::::::::
derivatives

::
are

::::
used

::
to
:::::
build

::::::::
sensitivity

::::::
indices

::::
that

::::
help

:::::::::::
understanding

:::
the

::::::::
influence

::
of

::::
input

::::::::
variables

::
on

:::
the

::::::
output.210

Following Zhu and Zhuang (2014), we consider the mean normalized sensitivity (MNS) defined by

si = E

 ∂h

∂xi

∣∣∣∣ σiσh
∣∣∣∣/∑

j

∣∣∣∣ ∂h∂xj σjσh
∣∣∣∣
 ,

where h denotes
:::
We

::::::
denote

::
by

:::
ht :::

the
:::::::
function

:::
that

:::::
maps

:::::::::::::
x= log(p,C0)

::
to
:::
the

:::::
value

:::
of

::
an

::::::
output

::
of

:::
the

::::::
model

:::::
(here

::::
LAI,

::::::
NEE,

::::
GPP

::::
and

::::::
RESP)

:::
at

::::
time

::
t
:::
and

:::
we

:::::::
denote

::
by

::::::::::::::::
h= (ht1 , ...,htN )

the time series of the model output(LAI and NEE in the following example) , and
:
.
:::::::::
Following215

::::::::::::::::::::
Zhu and Zhuang (2014),

::
we

::::::::
consider

:::
the

::::
mean

::::::::::
normalised

::::::::
sensitivity

:::::::
(MNS)

::::::
defined

:::
by

si = E

 ∂h

∂xi

∣∣∣∣ σiσh
∣∣∣∣/∑

j

∣∣∣∣ ∂h∂xj σjσh
∣∣∣∣
 ,

::::::::::::::::::::::::::::::

(27)

:::::
where E(·) denotes the average of the time series. The scalars σi and σh denote the parameter vari-

ance, set as 40% of the parameter range, and the variance of the output respectively. The partial
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Figure 2. Mean normalized
::::::::
normalised sensitivities : 100 parameter sets satisfying EDCs are sampled at the

Morgan Monroe State Forest. Parameters are ranked in decreasing order according to their sensitivity, the blue

dots represent the mean of the MNS (dimensionless quantity) and the intervals represent 1-sigma error bars; the

red dots correspond to null sensitivity.

derivatives are computed using the adjoint derived using the method described in Giering and Kamin-220

ski (1998). The MNS si is a dimensionless number that allows us to compare between parameters.

We consider the Morgan Monroe State Forest over a thirteen year period. We sample 100 parameter

sets satisfying the ecological constraints. For each parameter set we compute the MNS for DALEC

simulated mean fluxes LAI, NEE. In Figure 2 parameters are ranked with respect to their mean

MNS. We see that for LAI only 12 out of the 23 variables are sensitive, namely p5, p17, p2, p13,225

p11, p15, p16, Cf, p12, p3, Clab and p14. Therefore using LAI only in an inverse modeling
::::::::
modelling

experiment provides, at best, information about those twelve sensitive variables. For NEE we see

that all variables are sensitive. Sensitivity analysis for GPP shows similar characteristics with LAI

and so does RESP with NEE. For the four outputs under consideration (LAI, NEE, GPP and RESP)

the most sensitive variables are the autotrophic respiration, p2, the annual leaf loss fraction, p5, the230

leaf mass per area, p17, the fraction of GPP alocated
:::::::
allocated

:
to labile pool, p13, the nitrogen use

efficiency, p11, and the leaf fall day p15.

Here our focus is on the mean of the time series of DALEC fluxes (LAI, NEE) over a thirteen year

period. Finer analysis could be carried out by looking at seasonal aspects of the carbon cycle, iden-

tifying what variables are the most sensitive in a growing or in a decaying season for example
::
at235

:::::
certain

::::
time

:::
of

:::
the

::::
year

::
for

::::::::
example

::
as

::::::
studied

::
in

:::::::::::::::
Safta et al. (2015).

3 Data assimilation

In this section we introduce concepts and methods that allow for a close mathematical scrutiny of

inverse problems and we present the variational method that will be used for applications.

9



3.1 Ill posed problem240

A generic inverse problem consists in finding a n-dimensional state vector x such that

h(x) = y, (28)

for a given N -dimensional observation vector y, including random noise, and a given model h. In

the remainder of the paper the terms state vector, state variable, input variable or parameters will

be used interchangeably to denote the vector x to be estimated using inverse methods and defined245

in the previous section as x= log([p,C])T . The problem is well posed in the sense of Hadamard

(1923) if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and

3) the solution depends continuously on the input data. If at least one of these conditions is violated

the problem is said to be ill-posed. The inverse problem (28) is often ill-posed, and a regularization

:::::::::::
regularisation

:
method is required to replace the original problem with a wellposed

:::::
-posed

:
problem.250

Solving (28) amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3)

characterizing
:::::::::::
characterising

:
its uncertainty. Each inverse problem has its own features which need

to be understood in order to characterize
:::::::::
characterise

:
properly the solution and its uncertainty.

3.2 Bayesian inference: 4DVAR255

Inverse problems are generally presented in a probabilistic framework where most methods can be

expressed through a Bayesian formulation. The Bayesian approach provides a full characterisation

of all possible solutions, their relative probabilities and uncertainties.

From Bayes’ theorem the probability density function (pdf) of the model state x given the set of

observations y, p(x|y), is given by260

p(x|y)∝ p(y|x)p(x), (29)

where p(y|x) is the pdf of the observations given x and p(x) is the prior pdf of x. A special case is

given when p(y|x) and p(x) are gaussian
:::::::
Gaussian

:
pdf given by

p(x) = exp

[
−1

2
(x−x0)TB−1(x−x0)

]
, (30)

and265

p(y|x) = exp

[
−1

2
(h(x)−y)TR−1(h(x)−y)

]
, (31)

where B is the covariance matrix of the prior term x0, and R is the covariance matrix of the obser-

vation error. When the operator h is linear then the posterior pdf p(x|y) is gaussian
:::::::
Gaussian

:
and

thus fully characterized
::::::::::
characterised

:
by its mean and covariance matrix. The mean is obtained by

minimizing
:::::::::
minimising

:
the modulus of the log of the joint probability distribution, that is the cost270
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function J given by

J(x) = J0(x) +Jy(x) =
1

2
‖x−x0‖2B +

1

2
‖h(x)−y‖2R. (32)

Many methods can be considered to minimize
:::::::
minimise

:
this cost function. A Monte Carlo method

is employed in Bloom and Williams (2015). Here we use a variational approach which applies a

gradient based method where the gradient is given by275

∇J = B−1(x−x0) + HTR−1(h(x)−y), (33)

with HT denoting the adjoint operator. The covariance matrix of the solution, C, is given by the

inverse of the hessian of the cost function

C = [Hess(J)]
−1

=
[
B−1 + HTR−1H

]−1
. (34)

When the observation operator h is non-linear, the cost function J can have multiple local minima280

and the posterior pdf may no longer be a gaussian
:::::::
Gaussian

:
pdf. However, locally, the pdf N(x̃,C),

where C is given by equation (34) evaluated at a minimum x̃, provides a gaussian
:::::::
Gaussian approx-

imation of the posterior pdf p(x|y).

The first term in the cost function (32) is a regularisation term encoding the gaussian
::::::::
Gaussian

prior p(x). As we will show in the next sections the problem of assimilating EO observations285

(LAI,GPP,NEE,RESP) into DALEC is a highly ill-posed problem and regularisation is required.

The sensitivity analysis of section 2.3 showed that LAI and GPP are not sensitive to all variables.

Moreover all observations streams show very small sensitivities to some variables. Therefore, as will

be illustrated in section 4.1, the solution (if any) is likely to be subject to large uncertainties. Apart

from a couple of extensively studied sites, our prior knowledge about the variables is so far limited290

to their upper and lower bounds given in Table 1. As performed in Zhu and Zhuang (2014), it is

a common practice to use this information to define a gaussian
::::::::
Gaussian prior p(x)∼N(x0,B),

where x0 is given by the center
:::::
centre

:
of the variables ranges and B is the diagonal matrix whose

diagonal elements are the squares of 40% of the variables ranges. While using this kind of regulari-

sation is necessary to ensure any solution at all when no better source of information is available, this295

introduces some biaises
:::::
biases

:
in the solution. The EDCs introduced by Bloom and Williams (2015)

provide new prior information about the variables. One of the purposes of this paper is to incorpo-

rate the EDCs as a regularisation term within 4DVAR. In the next section we propose a strategy to

achieve this goal.

3.3 EDCs and 4DVAR300

Incorporating the EDCs from an optimisation point of view can be easily performed by considering

an inequality constraint optimisation problem where we aim at solving

min
x
Jy(x) subject to l< x< u and g(x)< 0,

11
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Figure 3. distribution and gaussian
::::::
Gaussian

:
fit for EDC4 and EDC6.

where g is the nonlinear operator defining the EDCs described in Section 2.2, and l and u are the

lower and upper bounds defined in Table 1. This approach provides an efficient, robust and quick305

strategy to find an acceptable solution; however, stability properties are not easily determined, see

Roese-Koerner et al. (2012).

We are seeking for a multivariate gaussian
:::::::
Gaussian

:
distribution that would encode the EDCs. At a

forest site, we start by sampling the parameter space to obtain an ensemble of 1000 parameter sets

satisfying the EDCs; each parameter set x is randomly created and required to satisfy g(x)< 0.310

We denote this ensemble by XEDCs. For most parameters, the sampling gives rise to undetermined

pdfs which can certainly not be represented by gaussian
::::::::
Gaussian

:
pdfs. However inspecting the

distribution g(x), for all x in XEDCs, we see that the distribution log(g(x)) can be fairly accurately

approximated by a multivariate gaussian
::::::::
Gaussian pdfs N(c,Σ) where c denotes the mean of the

distribution log(g(x)) and Σ denotes its covariance matrix. As an example Figure 3 shows the315

marginals log(g2(x)) and log(g3(x))
:::::::::
log(g4(x))

:::
and

::::::::::
log(g6(x)), corresponding to the EDCs 4 and

6 respectively, together with a gaussian
:::::::
Gaussian

:
fit.

Using Bayes’ Theorem we can then write

p(x|y,c)∝ p(y|x)p(c|x)p(x). (35)

Finding a gaussian
::::::::
Gaussian approximation for p(x|y,c) amounts then to minimising the cost func-320

tion

J(x) =
1

2
‖h(x)−y‖2R +

1

2
‖ log(g(x))− c‖2Σ +

1

2
‖x−x0‖2B, (36)

The gradient of J is given by

∇J(x) =HTR−1(h(x)−y)

+
1

g(x)
GTΣ−1(log(g(x))− c) + B−1(x−x0),325

and the hessian of the cost function can be approximated by

H= HTR−1H +
1

(g(x))2
GTΣ−1G + B−1, (37)

12



evaluated at the minimiser x̃. The operator GT denotes the adjoint of the tangent linear model G

whose key ingredient is given by the adjoint of DALECv2. The approximation of p(x|y,c) is then330

given by the gaussian
:::::::
Gaussian

:
distribution N(x̃,H−1). In Section 5 we will perform experiments

using real data to validate this approach.

4 Linear analysis

Consirable
:::::::::::
Considerable

:
theoretical insights into the nature of the inverse problem, and the ill-335

posedness, can be obtained by studying a linearisation of the operator h. A first approximation

to the inverse problem consists in finding a perturbation z which best statisfies
::::::
satisfies

:
the linear

equation

Hz = d, (38)

where H is the tangent linear operator for h and d is a perturbation of the observations. The linear340

operator H is commonly referred to as the observability matrix (see Johnson et al. (2005)). The least

squares formulation of this problem is to solve the optimization
::::::::::
optimisation

:
problem

min
z
J(z) = min

z

1

2
‖Hz−d‖2. (39)

The minimisation can be performed using an iterative method such as the conjugate gradient method,

where the gradient is given by345

∇J = HT (Hz−d). (40)

The inverse hessian of the cost function, (HTH)−1, gives the covariance matrix of the least squares

solution. In the next section we consider a direct solution method based on the singular value de-

composition of the operator H, which allows us to investigate the nature of the ill-posedness of the

problem. We illustrate regularisation using a truncated singular value decomposition.350

4.1 Singular value decomposition

We consider a singular value decomposition of H of the form

H = USVT , (41)

where U is a N ×N unitary matrix, V is a n×n unitary matrix and S is the N ×n diagonal matrix

whose diagonal elements are the singular values s1 ≥ ·· · ≥ sn ≥ 0. Using this decomposition, the355

solution zLS to (39) can be written as

zLS = VS†UTy = H†y. (42)
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The matrix H† = VS†UT is the pseudo-inverse of H where S† is the diagonal matrix obtained

by transposing S and replacing the non zero elements by their inverse s−1i . The covariance of the

solution is given by360

Cov(zLS) = H†TH†. (43)

Much can be learned about the stability of the solution (42) by inspecting the singular values of H.

Assuming that H is full rank, it can be shown, (see Golub and Van Loan (1996)), that the relative

error in the solution, defined as the left hand side of the above inequality, is bounded by

‖zLS− z0‖
‖z0‖

≤ κ(H)
‖ε‖
‖d‖

, (44)365

where κ(H) is the condition number of H defined by κ(H) = s1/sn, z0 denotes the truth (possibly

unknown) and ε represents observational noise. When the condition number is large the matrix is

said to be ill-conditioned, the problem is ill-posed and the solution (42) is unstable: small perturba-

tions to the system can lead to very large perturbations in the solution.

370

4.2 Stability for NEE operator

As an example we consider the problem of assimilating NEE observations into DALECv2 to estimate

model parameters and initial conditions at Morgan Monroe State forest. We linearise equation (28)

about a point x∗ satisfying the EDCs, we form the observability matrix H and compute its singular

value decomposition. The singular values, shown in figure 4, reveal a condition number of order 105.375

For a signal-to-noise ratio, namely ‖ε‖/‖d‖, of magnitude 0.1, inequality (44) gives an upper bound

for the relative error in the solution of order 104, which does not give much credit to the least square

solution. How sharp is this bound? Are we overestimating the error? To answer these questions we

create a set of noisy observations with noise variance σ = 0.1 and we compute the solution (42). The

relative error for each component of the solution, ηi, and the variance νi, are given in Table 2. Despite380

a relatively good match between the modelled NEE pertubations
::::::::::
perturbations

:
and the observations,

as shown in figure 5, the results of Table 2 show very large relative errors and variances for most

variables. Moreover these results are in agreement with the results of REFLEX: parameters directly
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Figure 5. Solution of the linearized
:::::::
linearised

:
inverse problem for NEE. The red points represent the observa-

tions, the red curve is the true trajectory, the green curve is the trajectory obtained using the unstable solution

and the blue curve is obtained using the TSVD solution.

linked to foliage and GPP are better estimated than parameters related to allocation to and turnover of

fine root/wood. The results of Table 2 reflect the sensitivity analysis shown on figure 2. The variables385

with respect to which NEE is the most (resp. least) sensitive are the less (resp. more) affected by the

noise.

To reduce the impact of observational noise on the solution, regularisation is required. The truncated

singular value decomposition (TSVD) is a simple and popular method for regularisation. TSVD

consists in truncating the pseudo-inverse in equation (42) in order to remove the smallest singular390

values, the most affected by the noise. The solution z(k) is then given by

z(k) = VkS†kUT
k y = H†ky, (45)

where k is the truncation rank, Sk, Uk and Vk are the rectangular matrices formed by the first k

columns of S, U and V. The covariance of the solution is given by

Cov(z(k)) = Vk(S†k)−2VT
k . (46)395

The truncation rank k can be chosen using the L-curve method. The L-curve is a log-log plot of the

norm of the solution ‖z(k)‖ against the norm of the residual ‖Hz(k)−d‖ parametrized
:::::::::::
parametrised

by the regularisation parameter k. The optimal parameter corresponds to the point of maximum

curvature of the L-curve. Further details on the L-curve method can be found in Hansen and O’Leary

(1993).400

In our example with NEE we use Hansen’s regularization
:::::::::::
regularisation

:
tools, see Hansen (2007),

to perform the TSVD method. The truncation rank obtained using the L-curve method is k = 7. The

last three columns of Table 2, presenting the TSVD solution, the relative error of each components

and the variances, can be compared with the results for the unstable solution. Whereas the relative

errors in the unstable solution range from 5.3×10−2 to 3.8×104 the relative errors in the regularized405

:::::::::
regularised solution range from 5.3×10−2 to 5.1. We see that TSVD has the effect of keeping small

the variables that cannot be estimated correctly. As previously stated the results of the regularisation

can be related to the sensitivity analysis depicted on Figure 2: TSVD prevents the variables with

15



Table 2. Results of the linear inverse problem showing: 1- the solution components for the least square solution

zLS together with their relative error ηi (dimensionless quantity) and variance νi; 2- the solution components

for the TSVD solution z(k) together with their relative error η(k)i and variance ν(k)i .

x∗ z∗ zLS ηi νi z(k) η
(k)
i ν

(k)
i

p1 -6.984 -0.070 3.715 54.190 19182.5715 0.004 1.052 0.0001

p2 -1.114 -0.011 0.342 31.715 23.2871 0.003 1.242 0.0005

p3 -3.480 -0.035 -2.690 76.285 7384.9940 0.001 1.022 0.0000

p4 -2.745 -0.027 3.389 124.470 82380.0339 -0.000 1.000 0.0000

p5 0.086 0.001 0.048 54.082 0.6575 -0.004 5.139 0.0009

p6 -8.776 -0.088 67.445 769.477 1581516.7404 0.000 1.001 0.0000

p7 -5.265 -0.053 -0.999 17.970 57.1478 -0.005 0.900 0.0001

p8 -6.640 -0.066 -0.344 4.176 7981.3944 -0.016 0.757 0.0013

p9 -10.292 -0.103 133.504 1298.187 494620.7529 -0.006 0.946 0.0002

p10 -3.035 -0.030 -0.003 0.889 2.6980 -0.011 0.632 0.0008

p11 3.539 0.035 1.075 29.370 79.5237 -0.003 1.083 0.0003

p12 4.736 0.047 0.045 0.053 0.0256 0.044 0.080 0.0003

p13 -0.772 -0.008 1.042 135.879 8676.9499 -0.028 2.616 0.0033

p14 3.261 0.033 0.072 1.196 4.3971 0.004 0.866 0.0001

p15 5.533 0.055 0.084 0.515 0.0548 0.058 0.053 0.0003

p16 4.082 0.041 0.092 1.265 1.2521 0.004 0.904 0.0001

p17 5.178 0.052 1.631 30.497 8160.2559 0.000 0.997 0.0005

Clab 6.237 0.062 1.002 15.073 8237.5716 0.019 0.697 0.0020

Cf 4.073 0.041 1.348 32.090 8070.9246 0.005 0.888 0.0001

Cr 6.858 0.069 1.788 25.067 8300.6094 -0.012 1.170 0.0008

Cw 8.341 0.083 -318.175 3815.484 7436253.3370 0.000 0.999 0.0000

Cl 5.961 0.060 0.568 8.532 8550.3479 -0.006 1.097 0.0002

Cs 8.956 0.090 -134.334 1500.869 483025.4281 -0.006 1.064 0.0002

respect to which NEE is the least sensitive from growing unboundedly
:::::::::
unbounded.

In the next section we consider the concept of a resolution matrix, which allows for a finer analysis410

of the solution of the linear problem.

4.3 Resolution matrix

As suggested by equations (42) and (45), finding a solution z amounts to constructing a generalized

:::::::::
generalised

:
inverse Hg such that formally

z = Hgd. (47)415

The generalized
:::::::::
generalised

:
inverse is the operator representing any method, direct or iterative, used

to solve the linear inverse problem, including or not any kind of regularisation. In the previous

section we considered two examples of generalised inverse, the pseudo inverse and the truncated

inverse obtained using TSVD. The generalized
:::::::::
generalised inverse can be used to define operators
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which directly address the conditions for well posedness for the linearised problem. Assuming a true420

state z∗ exists, possibly unknown, then using equation (38) and (47) we can define an operator N

called the model resolution matrix which relates the solution z to the true state

z = HgHz∗ = Nz∗. (48)

This matrix gives a pratical
:::::::
practical

:
tool to analyse the resolution power of an inverse method, that

is its ability to retrieve the true state, including or not any regularization
:::::::::::
regularisation method: the425

closer N is to the identity the better the resolution. Moreover the trace of the matrix defines a natural

notion of information content (IC). Similarly a data resolution matrix can be defined to study how

well data can be reconstructed and its diagonal elements naturally define a notion of data importance.

For the two examples of generalized
:::::::::
generalised inverse presented in the previous section we obtain

the following resolution matrices:430

N = H†H, (49)

for the pseudo-inverse and

N = VkVT
k , (50)

for the truncated pseudo inverse. In the first case the IC equals the number of non zero singular

values, in the second case the IC equals the truncation rank k. An in-depth theoretical and pratical435

:::::::
practical

:
analysis of these concepts and those introduced in the remainder of this section can be

found in Menke (1984).

While the model resolution matrix allows us to see how a solution strategy maps the true state

variables to the solution of the inverse problem, and to see how well and how independently the

state variables can be recovered, one also needs to assess the uncertainty of the solution. This can440

be studied using the so called unit covariance matrix, C, defined using the generalized
:::::::::
generalised

inverse as

C = HgTHg. (51)

By characterising the degree of error amplification that occurs in the mapping from the true state

to the solution of the inverse problem, the unit covariance matrix is a crucial object to study the445

stability of the solution with respect to observational noise. The unit covariance matrix defined by

(51) agrees with the covariance matrices given in the previous section by (43) for the pseudo-inverse,

and by (46) when TSVD is applied.

4.4 Resolution for LAI operator

We now study the model resolution matrix for the LAI observation operator at Morgan Monroe State450

Forest. In the first instance we will demonstrate the resolution power of the LAI signal without regu-

larisation using the pseudo-inverse as generalized
:::::::::
generalised

:
inverse first, and then apply TSVD to
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show how using the truncated pseudo-inverse affects resolution. In a second case we will study the

added value of the EDCs in terms of resolution.

As previously, we linearise equation (28) about the point x∗ given in Table 2. The trace of the reso-
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Figure 6. Model resolution matrix for the LAI operator.

455

lution matrix obtained using the pseudo-inverse as generalised inverse is 10, and this means that 10

independent variables can be estimated using LAI. These independant
::::::::::
independent

:
variables are not

the variables in which the system is expressed but a linear transformation can be found to express the

system in terms of the independent variables. Figure 6 shows the model resolution matrix for LAI.

As shown in section 2.3 with the sensitivity analysis, 11 out of the 23 variables are not sensitive to460

LAI, and this can be seen in the resolution matrix by the diagonal terms which are zero, represented

by the blue color
:::::
colour. In contrast the diagonal elements corresponding to sensitive variables have

positive values, represented by colors
::::::
colours

:
ranging from light blue to red. Figure 6 also shows

that whereas p5, p11, p12, p14, p15 and p16 are perfectly resolved (the corresponding elements are

colored
:::::::
coloured in brown or dark red), there exist linear combinations between the remaining sen-465

sitive variables and this explains why only 10 independant
::::::::::
independent variables can be estimated

from the 12 sensitive variables.

For the study of the unit covariance matrix we restrict ourselves to the sensitive variables, this

amounts to removing the columns corresponding to the non sensivite
:::::::
sensitive variables, containing

only null elements, from the observability matrix. The dependency of the solution on observational470

noise can be studied by looking at Figure 7 where the diagonal elements of the unit covariance ma-

trix, corresponding to the variance of each element of the solution obtained using the pseudo-inverse,

are represented in log scale. Except for p5, p12, p15 and p16 all variances are shown to be large.

As previously, we illustrate a simple regularisation strategy, TSVD, and show its effects on both

resolution and stability. Figure 8 shows the resolution matrix for LAI with optimal truncation rank475
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Figure 7. Diagonal elements (log scale) of the unit covariance matrix for the LAI operator using the pseudo

inverse in green, using TSVD in yellow.
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Figure 8. Model resolution matrix for the LAI operator using TSVD with truncation rank k = 5.

k = 6. The IC decreases to 6. We see that whereas p5, p12, p15 and p16 remain almost perfectly

resolved, p13, p17 and Clab are only partially resolved and the remaining variables are not resolved

properly. Figure 7 shows the corresponding diagonal elements of the unit covariance matrix, we see

that the variances have been drastically reduced. This example shows how regularisation ensures

stability at the price of losing resolution.480

We now consider the effect of incorporating the static EDCs into the variational framework in terms

of resolution. The static EDCs are given by the seven first EDCs, the linear problem is then given by

 H

G̃

z =

 d

f

 , (52)

where485

G̃ = g(x∗)−1Σ−1/2G (53)
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Figure 9. Model resolution matrix for LAI and static EDCs as defined by equation 52.

with Σ−1/2 the inverse of the symmetric square root of the covariance matrix Σ, defined in Section

3.3, restricted to the seven first components. The static EDCs depend only on 13 out of the 23

variables, namely p1 to p10, p12, p13 and p15, this can be seen on the matrix G where the columns

corresponding to the remaining variables are null. Together with LAI observations, whose sensitive490

variables are represented in Figure 2, we therefore have 19 sensitive variables. The model resolution

matrix corresponding to the operator on the left hand side of equation (52), obtained using the pseudo

inverse, is depicted in Figure 9. The trace of the model resolution matrix gives an IC of 16, 13

variables are perfectly resolved, 4 variables show linear dependencies (p2, p3, p4 and p13). However,

although p9 and p10 are sensitive variables they do not appear to be resolved at all: inspecting the495

linear operator G shows that the non zero components corresponding to p9 and p10 are several order

of magnitude smaller than the other components.

This example shows clearly the benefit of introducing the static EDCs to help estimating poorly

constrained or otherwise undetermined components.

5 Experiments at Ameriflux sites500

We now consider a real experiment at the Morgan Monroe state forest. At this Ameriflux site, 13

years of MODIS LAI monthly mean observations from 2001 to 2013, NEE, GPP and thus RESP

observations from 2001 to 2005 are available. Our goal is to study two different aspects; the first one

is the impact of using multiple data streams: how does it affect uncertainty of the predicted fluxes?

how well do we predict non-observed fluxes? And the second one is to use the static EDCs and to505

assess their utility in constraining poorly sensitive variables.
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Table 3. Experiment set up summary: in Exp 1 we use LAI and bounds constraints (BDS), in Exp 2 we use

LAI, NEE and BDS and so on.

LAI NEE GPP RESP BDS EDCs

Exp 1 • •

Exp 2 • • •

Exp 3 • • • • •

Exp 4 • • •

Exp 5 • • • •

Exp 6 • • • • • •

When including all terms the cost function, JTOT, becomes

JTOT(x) =
λL

2
‖hL(x)−yL‖2 +

λN

2
‖hN(x)−yN‖2

+
λG

2
‖hG(x)−yG‖2 +

λR

2
‖hR(x)−yR‖2

+
λc
2
‖ log(g(x))− c‖2Σ +

λ0
2
‖x−x0‖2B510

=JL + JN + JG + JR + Jc + J0,

where subscripts L, N, G and R stand for LAI, NEE, GPP and RESP respectively. The vectors yL,

yN, yG and yR represent the observation vectors for LAI, NEE, GPP and RESP respectively. The

scalars λL, λN, λG and λR take the value 0 or 1 depending on whether or not the corresponding data515

stream is included in the experiment. The scalar λc takes the value 0 or 1 depending on whether we

include the EDCs and λ0 takes the value 1.

We perform six experiments summarized
::::::::::
summarised in Table 3. In experiment 1, Exp 1, we use

only LAI observations and bounds constraints so that in the cost function JTOT we set λL = 1 and

λ0 = 1, and the other λs are set to zero. For Exp 2, we use LAI and NEE observations, that is we520

set λL = 1, λN = 1 and λ0 = 1; the other λs are set to zero. We proceed similarly for the remaining

experiments. Here we assimilate all data streams simultaneously; it is not our intention to ques-

tion what method best accomodates
::::::::::::
accommodates

:
multiple data streams, MacBean et al. (2016)

addresses this question using a simple C-cycle model. Moreover we choose to assume the same sta-

tistical error for all data streams and set their error covariance matrix equal to the identity. To avoid525

being trapped at meaningless local minima, the experiments are performed multiple times using dif-

ferent initialisation parameter sets and results for the best candidate only are reported.

The results of the experiments are presented in Table 4 where each element of JTOT is given for

all experiments, and in Table 5 where the solution components and their variance are presented for

all experiments. Results of Table 4 show that JL is the smallest in Exp 1 when LAI only is used.530

In Exp 2, when adding NEE we see that JN decreases from 109.012 in Exp 1 to 15.263, and JG

slightly decreases as compared to Exp 1, but on the contrary JR increases. In Exp 3 we see that all

costs drastically decrease compared to their initial values. Going from Exp 1 to Exp 3 J0 slightly
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increases, adding more data streams constrains more parameters and the parameters shift from their

prior value which may cause J0 to increase. Similar observations can be made for Exp 4 to Exp 6,535

moreover we see that including the EDCs only slightly affects the costs, a reason for this might be

that EDCs help constraining the less sensitive parameters for which the costs are the less sensitive as

suggested by the sensitivity analysis depicted in Figure 2. To see the effect of the EDCs we need to

look at Table 5, which details the solution components together with their relative variance defined

by the ratio of the variance by the parameter range. In Exp 1 we see that that the variables with the540

smallest relative variance are the most sensitive parameters as illustrated in Figure 2; they are p2, p5,

p10, p12, p14, p15, p16 and p17. We recall that the sensitivity analysis of section 2.3 was performed

by averaging sensitivities for an ensemble of initial parameter sets, therefore the ranking shown in

figure 2 may not be reflected in the relative variances. As we include NEE in Exp2 we see that

most relative variances decrease, especially for p8, p9, p10, p13, Clab, Cf and Cl. The only variable545

whose relative variance increases is p14, but as shown in figure 2 p14 has very small sensitivity. In

Exp 3 most relative variances decrease. The values are still large though for p1, p3, p4, p6, p9, Cr

and Cl. Again similar features can be observed for Exp 4 to Exp 6 but a clear improvement can be

seen for most variables except for Cr which is not constrained by the seven first EDCs. Finally, the

last column of Table 4 shows the computation time for each experiments. As expected we see that550

the more observation streams we consider the longer the experiement
:::::::::
experiment takes to run, and

incorporating the EDCs increases the computation time. However we stress that these figures are

several orders of magnitude less than the time required to perform the same experiments using the

current gold standard MCMC approach used in Bloom and Williams (2015).

Figures 10 and 11 show the predicted fluxes for LAI, NEE, GPP and RESP for the result of Exp 6.555

We can see a good agreement between modelled fluxes and observations. The uncertainty of the pre-

dicted fluxes is evaluated by modeling
::::::::
modelling an ensemble of trajectories from a 95% ellipsoid of

the posterior truncated gaussian
:::::::
Gaussian distribution: these trajectories are represented as gray

::::
grey

curves on Figure 10 and 11. Figure 12 shows the posterior parameter distribution marginals for p1,

p7, p16, and Cf for Exp 6, illustrating the four different cases where: as for p16 most of the marginal560

is contained in the parameter range; the marginal is truncated on the left or the right as for p7 or Cf

and truncated on both sides for p1.

6 DALEC-SP

In the previous section we used EDCs within 4DVAR and showed their benefit in reducing dras-

tically the uncertainty of otherwise undetermined variables. However we only included the static565

EDCs which do not require a model run: including more EDCs often leads to convergence issues,

the solution and its uncertainty become subject to caution.

As shown in Chuter et al. (2015) for the previous DALEC evergreen and deciduous models, the
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Table 4. Costs for the results of the inverse modelling experiments. The last column reports the computation

time in seconds for the experiment.

JL JN JG JR J0 Jc time (s)

xinit 179.525 353.229 1265.556 419.696 0.003 7.157 0.000

Exp 1 14.083 109.012 153.475 45.415 0.017 2.498 2.722

Exp 2 19.188 15.263 145.349 131.963 0.018 3.704 7.541

Exp 3 25.089 16.737 36.155 17.842 0.020 4.643 5.886

Exp 4 14.083 107.420 152.908 45.480 0.016 2.498 5.012

Exp 5 19.193 15.262 145.254 131.878 0.018 3.701 9.045

Exp 6 25.059 16.699 36.143 17.826 0.019 4.642 8.215

Table 5. Results of the inverse modelling experiments. The solution components together with their relative

variance, in bracket, are given for each experiment. The vector xinit is the randomly chosen parameter set

satisfying the EDCs that initialises the minimisation routine.

xinit Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

p1 -5.172 -8.059 (1.727) -8.248 (1.471) -8.282 (1.021) -6.323 (0.125) -6.486 (0.095) -6.415 (0.087)

p2 -0.947 -0.885 (0.207) -1.106 (0.120) -1.085 (0.030) -0.770 (0.126) -0.960 (0.093) -0.984 (0.019)

p3 -4.318 -2.673 (0.955) -2.944 (0.849) -3.376 (0.894) -3.001 (0.950) -4.419 (0.965) -3.461 (0.880)

p4 -1.493 -2.649 (0.978) -2.813 (0.961) -2.692 (0.936) -1.308 (0.111) -1.703 (0.142) -1.354 (0.097)

p5 1.123 0.117 (0.003) 0.153 (0.002) 0.085 (0.000) 0.149 (0.002) 0.172 (0.001) 0.091 (0.000)

p6 -7.959 -8.752 (0.922) -8.870 (0.911) -8.707 (0.919) -7.151 (0.170) -7.039 (0.108) -7.681 (0.458)

p7 -7.432 -6.908 (1.151) -6.373 (0.941) -5.064 (0.224) -7.236 (0.221) -5.961 (0.109) -6.144 (0.108)

p8 -5.281 -6.908 (1.151) -6.906 (0.316) -6.522 (0.078) -5.565 (0.113) -5.753 (0.052) -6.160 (0.039)

p9 -16.012 -11.513 (2.303) -10.075 (0.995) -11.411 (1.514) -14.592 (2.303) -8.384 (0.036) -11.266 (0.143)

p10 -3.041 -3.272 (0.373) -3.296 (0.085) -3.036 (0.055) -3.244 (0.373) -3.045 (0.072) -3.079 (0.055)

p11 2.792 3.829 (0.540) 4.026 (0.163) 3.542 (0.003) 3.630 (0.286) 4.198 (0.232) 3.544 (0.003)

p12 3.549 4.626 (0.002) 4.739 (0.000) 4.735 (0.000) 4.627 (0.002) 4.733 (0.000) 4.735 (0.000)

p13 -1.768 -0.693 (0.130) -0.996 (0.067) -0.795 (0.046) -0.779 (0.039) -1.193 (0.037) -0.801 (0.029)

p14 3.343 4.013 (0.034) 3.291 (0.123) 3.292 (0.052) 3.940 (0.029) 3.526 (0.048) 3.247 (0.079)

p15 5.656 5.512 (0.001) 5.528 (0.001) 5.531 (0.000) 5.521 (0.001) 5.540 (0.000) 5.534 (0.000)

p16 4.529 4.115 (0.068) 3.993 (0.025) 4.095 (0.011) 4.003 (0.061) 4.071 (0.019) 4.082 (0.010)

p17 5.351 5.289 (0.213) 5.278 (0.198) 5.138 (0.165) 5.142 (0.135) 5.032 (0.110) 5.098 (0.098)

Clab 3.979 5.950 (0.115) 6.031 (0.059) 6.187 (0.040) 5.884 (0.078) 5.841 (0.039) 6.151 (0.025)

Cf 5.389 4.677 (0.282) 4.868 (0.068) 4.038 (0.066) 4.421 (0.302) 4.342 (0.093) 4.018 (0.051)

Cw 7.045 5.298 (1.151) 5.829 (0.900) 6.520 (0.096) 5.309 (1.022) 6.910 (0.226) 7.061 (0.135)

Cr 9.753 8.406 (1.554) 8.188 (1.533) 8.318 (1.544) 8.687 (1.554) 6.771 (1.030) 8.538 (1.415)

Cl 3.992 5.298 (1.151) 7.307 (0.300) 6.226 (0.161) 5.963 (0.990) 5.670 (0.263) 5.985 (0.088)

Cs 9.721 8.406 (1.900) 9.546 (1.188) 8.603 (1.633) 8.895 (1.900) 7.140 (0.561) 9.003 (0.718)
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Figure 10. DALECv2 monthly estimates for LAI and NEE at Morgan Monroe State forest. The red dots are

the observations, the blue trajectories are obtained using the 4DVAR analysis, the gray
:::
grey

:
trajectories are

ensemble runs obtained from a 95% confidence sample of the posterior pdf.
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Figure 11. DALECv2 monthly estimates for GPP and RESP at Morgan Monroe State forest. The red dots are

the observations, the blue trajectories are obtained using the 4DVAR analysis, the gray
:::
grey

:
trajectories are

ensemble runs obtained from a 95% confidence sample of the posterior pdf.
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Figure 12. Posterior parameter distributions for parameters p1, p7, p16 andCf for Exp 6. For each plot the limits

of the abscissa correspond to the parameter range. The red curve is the gaussian
::::::

Gaussian
:
posterior distribution

and the blue bars respresent
:::::::
represent the sample used to produce the gray

:::
grey

:
trajectories in figures 10 and

11.
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Figure 13. Pseudo periodical seasonal cycle for DALECv2. Using a given set of parameters and initial values

for Cw and Cs, 100 DALECv2 runs are performed using random initial values for Clab, Cf, Cr, Cl. The plot

shows the 100 trajectories for Cf.

evolution of the carbon pools for DALECv2 show a tipping point which depends on the parame-

ters p1 to p17. Given a set of parameters p the fast carbon pools Clab, Cf, Cr and Cl grow or decay570

rapidly to an equilibrium state. This equilibruim
:::::::::
equilibrium is either zero, the forest dies out, or a

pseudo-periodical seasonal cycle as shown on Figure 13 for Cf. Moreover there exists a limit value

below which any initial condition leads to the zero equilibrium and above which the equilibrium is

a strictly positive pseudo-periodical seasonal cycle.

Here we consider ecosystems with no recent major disturbance, where the fast carbon pools are575

expected to be close to their pseudo-periodical cycle. To model these ecosystems, one can either re-

strict the parameter space by using the dynamic EDCs, or we can introduce a spin-up period during

which the carbon pools reach their attractor. Given parameters p1 to p17 and initial values for Cw

and Cs a first run of DALECv2 is performed to obtain a state which is closer to a pseudo-periodical
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Table 6. Results of the inverse modelling experiments with DALEC-SP model showing the log of the initial

carbon pools (gCm−2). The rows labelled (SP) correspond to the solution components for DALEC-SP, the other

rows reproduce the results for DALEC as reported in Table 5. As previously the relative variances are given in

bracket.

xinit Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Clab 3.979 5.950 (0.115) 6.031 (0.059) 6.187 (0.040) 5.884 (0.078) 5.841 (0.039) 6.151 (0.025)

Clab (SP) NA 5.461 (0.106) 5.961 (0.015) 6.064 (0.008) 5.097 (1.572) 5.914 (0.074) 6.048 (0.011)

Cf 5.389 4.677 (0.282) 4.868 (0.068) 4.038 (0.066) 4.421 (0.302) 4.342 (0.093) 4.018 (0.051)

Cf (SP) NA 4.358 (0.112) 4.602 (0.034) 3.966 (0.029) 4.102 (0.633) 4.586 (0.079) 4.024 (0.043)

Cr 7.045 5.298 (1.151) 5.829 (0.900) 6.520 (0.096) 5.309 (1.022) 6.910 (0.226) 7.061 (0.135)

Cr (SP) NA 4.702 (0.765) 5.069 (0.575) 5.072 (0.665) 6.078 (0.260) 5.323 (0.316) 6.398 (0.116)

Cw 9.753 8.406 (1.554) 8.188 (1.533) 8.318 (1.544) 8.687 (1.554) 6.771 (1.030) 8.538 (1.415)

Cw (SP) 7.201 5.298 (0.853) 5.289 (0.852) 5.285 (0.853) 5.298 (0.853) 5.320 (0.852) 5.203 (0.853)

Cl 3.992 5.298 (1.151) 7.307 (0.300) 6.226 (0.161) 5.963 (0.990) 5.670 (0.263) 5.985 (0.088)

Cl (SP) NA 6.361 (0.276) 6.590 (0.215) 6.791 (0.181) 5.412 (0.226) 5.928 (0.074) 6.056 (0.033)

Cs 9.721 8.406 (1.900) 9.546 (1.188) 8.603 (1.633) 8.895 (1.900) 7.140 (0.561) 9.003 (0.718)

Cs (SP) 9.793 8.406 (1.900) 8.550 (0.799) 9.324 (1.359) 8.406 (1.900) 8.940 (0.222) 10.453 (1.090)

cycle for the fast carbon pools. The steady state trajectories are then used to initialise the fast carbon580

pools. For this DALECv2-"spin-up" model, DALEC-SP, the state variable is therefore formed of the

seventeen parameters p1, ...,p17 and the initial conditions for Cw and Cs.

DALEC-SP offers several advantages: some of the EDCs such as those controlling the growth and

the half life period of carbon pools are almost automatically satisfied; this reduces largely the time

required to generate the pdf p(c|x). Moreover as the sensitivity analysis and the resolution matrices585

showed, the fast carbon pools are variables that are not highly sensitive to the signals that we ob-

serve, and therefore reducing the number of variables by removing the fast carbon pools is likely to

improve the overall conditionning
::::::::::
conditioning of the inverse problem. To investigate this assertion

we perform Exp 1 to 6 using DALEC-SP. The solution components and their variance for the carbon

pools are presented in Table 6; the results for the parameters p1 to p17 are not reported as they do590

not significantly differ from what was observed and reported in Table 5 for DALECv2. For the fast

carbon pools, which are not directly estimated during the assimilation process, we start by taking

a sample of the posterior pdf and then we run DALEC-SP for this sample. The values presented in

Table 6 represent the means and variances of the fast carbon pools after the spin up period. Except

for two anomalies in Exp 4, where the uncertainty for Clab and Cf is larger with DALEC-SP as595

compared to DALECv2, almost all uncertainties for all experiments are smaller with DALEC-SP.

Despite some improvement in Exp 2, 4 and 5, the uncertainty for Cs is still large.
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7
:::::::::
Discussion

::
To

:::
our

::::::::::
knowledge,

::::
this

:::::
paper

::::::::
presents

:::
the

::::
first

:::::::::
application

:::
of

:::::::::
variational

::::::::
methods

:::
for

::
an

:::::::
inverse

::::::::
modelling

::::::::::
experiment

:::::
using

::::::::
DALEC.

::::
Over

:::
the

::::
last

::::::
fifteen

:::::
years

:::::
many

::::::
studies

:::::
have

::::::::
validated

:::
the600

:::
use

::
of

:::::::
DALEC

::::::::
together

::::
with

:::::::
various

::::
types

:::
of

::::
data

:::::::
streams

::
to

:::::
infer

::::::::
ecological

::::::::::
parameters

::
at

::::
site

::::
level

:::
but

::::::::
ensemble

:::::::
Kalman

::::
filter

::::
first

::::
and

::::
then

:::::
Monte

:::::
Carlo

::::::::
methods

::::
were

:::::::::
privileged.

:::
At

:::
the

:::::
same

::::
time

:::::::
4DVAR

:::
was

:::::::::::
successfully

::::
used

:::
at

:::::
global

:::::
scale

::
to
:::::::::

constrain
:::::::::
ecosystem

:::::::::
parameters

::
in
:::::::

carbon

::::
cycle

::::
data

:::::::::::
assimilation

::::::
system

:::::::::
(CCDAS).

:::
In

::::::::::::::::::::
Rayner et al. (2005) the

:::::::::
Biosphere

::::::
Energy

::::::::
Transfer

:::::::::
Hydrology

:::::
model

:::::::::
(BETHY)

::
is
:::::::
coupled

::::
with

::::
the

:::::::
transport

::::::
model

:::::
TM2,

::::
and

:::::::
satellite

:::::::::::
observations605

::
of

::::::::::::::::
photo-synthetically

:::::
active

::::::::
radiation

::::
and

::::::::::
atmospheric

:::::
CO2 :::::::::::

concentration
:::::::::::

observations
:::
are

:::::
used

::
to

:::::::
optimise

::::::
model

::::::::::
parameters.

::
In

:::
this

:::::::
context

::::::::::::::::::::::::::
Kemp et al. (2014) investigated

::::
how

::
to

::::::::
constrain

:::
the

::::::
4DVAR

:::::::
problem

::
in
:::::::
CCDAS

:::::::
through

:
a
:::::::
number

::
of

:::::::
different

::::::::
methods:

:::::
using

::::::::::
constrained

:::::::::::
optimisation,

:::::
adding

::
a
::::::
penalty

::::
term

::::
and

:::::::
applying

::::::::
parameter

::::::::::::::
transformations.

::::
They

:::::::::
concluded

:::
that

:::::
using

:::::::::
parameter

:::::::::::::
transformations

::::
give

:::
the

:::
best

:::::::
results.

::
In

:::
our

:::::::
context

:::
the

::::
three

::::::::
methods

::::
were

:::::::::::
investigated:

::::::::
Gaussian610

:::::::::::
anamorphosis

:::::
where

:::::
priors

:::::
based

:::
on

:::
the

:::::::::
distribution

::
of

:::::::::
parameters

::::::::
satisfying

:::
the

:::::
EDCs

:::::
were

:::::::::
considered,

:::::::::
constrained

:::::::::::
optimisation

::
as

:::::
stated

::
in

::::::
section

::::
3.3,

:::
and

::::::
adding

:
a
::::::
penalty

:::::
term

::
to

::::::
account

:::
for

:::
the

::::::
EDCs.

:::
The

:::::
latter

:::::::
solution

:::::
which

::
is

:::
the

::::
main

:::::::
interest

::
of

:::
this

::::::::::
publication

:::
was

:::::
found

::
to

:::
be

:::
the

::::
most

:::::::::
successful

::
in

:::
our

::::
case.

:::
The

:::::::::
complexity

:::
of

:::::
global

::::
scale

::::::::::
experiments

::::
still

::::
limit

:::
the

:::::::::
application

::
of

::::
fully

::::::::
nonlinear

::::::::
methods

::::
such615

::
as

:::::::
MCMC.

::
In

:::::::::::::::::
Ziehn et al. (2012) a

::::::::::
comparison

:::::::
between

:::
the

:::::::
MCMC

:::::::::::::::::
Metropolis-Hastings

::::::::
approach

:::
and

:::::::
4DVAR

::
for

:::
the

::::::::::::
BETHY-TM2

:::::::
CCDAS

:::::::::
framework

:
is
::::::::::
performed.

::::
This

::::
study

::::::
reports

:
a
:::::::::::
computation

::::
time

::
of

:::
less

::::
than

:::
one

::::
hour

:::
for

:::
the

:::::::::
variational

::::::
method

::::
and

:::::
about

:::::
height

::::::
months

:::
for

:::
the

::::::
overall

:::::::
MCMC

::::::::::
computation.

::::
For

:::
our

:::::::
setting,

:::::::::
DALECv2

:::
site

::::::
based

::::::::::
experiment,

:::
the

::::::::::
complexity

::
is

::::::::
relatively

:::::
small

:::
and

:
a
:::::::
MCMC

::::::::
approach

:
is
::::::::::
affordable.

::::
Used

::
in

::::::::::::::::::::::::
Bloom and Williams (2015),

::
the

:::::::
MCMC

::::::::
approach

:::
for620

:::::::
DALEC

::
is

::::::
studied

::
in

:::::
detail

::
in

::::::::::::::::
Safta et al. (2015),

:::
the

:::::::
resulting

:::::::::
parameter

::::::::::
distributions

:::::::
suggest

::::
that

::::::
4DVAR

::::
and

:::
the

:::::::
inherent

::::::::
Gaussian

::::::::::::
approximation

:::::::
provides

:
a
:::::::::
reasonable

::::::::
posterior

::::::::::
distribution.

::
As

:::::
most

:::::::::
variational

:::::::
methods,

:::
the

:::::::
analysis

::::
and

:::::::::
application

::::::::
presented

::
in

:::
this

:::::
paper

::::
rely

::::::
heavily

:::
on

:::
the

::::::::
possibility

:::
to

:::::
derive

:::
the

:::::::
tangent

:::::
linear

:::::
model

::::
and

::
its

:::::::
adjoint.

:::::::::
DALECv2

::::
was

::::::::
designed

::
to

::::
take

::::
into

::::::
account

::::
this

:::::::::::
requirement,

::
in

::::::::
particular

::::::::
replacing

:::
the

::::::::::
phenology

::::::
process

:::
of

:::
the

:::::::
DALEC

:::::::::
deciduous625

:::::
model

::::
was

::::::::
suggested

::
in
:::::

order
::
to
::::::

obtain
:::::::::::
differentiable

:::::::::
processes.

::::
The

::::::
model

::::::::
resolution

::::::
matrix

::::
and

::
the

::::::::
gradient

::
of

:::
the

::::
cost

::::::::
function,

::::::::
including

:::
the

:::::::::
additional

::::
term

::::::::
encoding

:::
the

::::::
EDCs,

:::
are

:::::::::
computed

::::
using

::::::
adjoint

::::::::::
techniques.

::::::
Despite

:::
the

:::::::::
increasing

::::::::
capacities

::::::
offered

:::
by

::::::::
automatic

::::::::::::
differentiation

:::::
tools,

:::::::
deriving

:::
and

::::::::::
maintaining

::
an

::::::
adjoint

::::
code

:::
can

:::
be

:
a
::::::::::
complicated

::::
task,

::::
and,

::::::
besides

::
its

:::::::
limiting

::::::::::
hypothesis,

:::
this

::
is

:::::::
certainly

:::
one

:::
of

::
the

:::::
main

::::::
reason

::
for

::::::::
choosing

::::::::::
alternatives

::
to

:::::::
4DVAR.

::
In

:
a
:::::
paper

::
in

::::::::::
preparation630

::
we

:::
use

::::::::
ensemble

::::::::
methods

::
to

::::::::::
approximate

:::
the

:::::::
gradient

::
of

:::
the

:::
cost

::::::::
function

:::
and

::
to

:::::
derive

:::::::::::
approximate

::::::::
resolution

::::::::
matrices,

::::
and

:::
the

:::::::::::
experiments

::::::::
presented

:::
in

:::
this

:::::
paper

::::
are

::::::::::
reproduced.

::::
The

:::::::::
approach,

:::::
which

:::
no

:::::
longer

::::::::
requires

:::
the

::::::
adjoint,

::::::
shows

::::
very

:::::::::
promising

:::::::
results:

:::::
firstly

::
in

:::::
terms

:::
of

:::::::::
estimating

:::::::::
parameters,

::::
and

:::::::
secondly

::
in
:::::
terms

:::
of

::::::::::
computation

::::
time

:::
by

:::::
using

::::::
graphic

:::::::::
processing

:::::
units

::::::
(GPU)

::
to
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::::::
perform

:::::::
massive

:::::::
parallel

::::::::::::
computations.635

::::::::
Designing

:
a
::::::
global

::::
scale

::::::::::
experiment

::::::::
involving

:
a
:::::::
coupling

:::::::
between

:::::::
DALEC

:::
and

::
a
:::::::
transport

::::::
model

:::
has

::::
been

:::::::::
considered

:::
but

::
is

:::
still

::
at

:::
an

::::
early

:::::
stage.

:::
As

::::::::
presented

::
in

:::::::::::::::::::::::
Bloom and Williams (2015),

:::
the

::::::
EDCs

::::
were

::::::::
originally

:::::::::
introduced

::
to
::::::::
constrain

::::::::::
unresolved

:::::::::
parameters

::
at

:::
site

:::::
level

:::::
where,

:::
in

:::
the

::::::
absence

:::
of

:::
any

::::
other

:::::::::::
information,

::::
only

:::::::
MODIS

:::
LAI

:::::::::::
observations

::::
were

::::::::
available.

::
In

::::::
theory

::::
there

::
is

::
no

:::::::::
restriction

::
to

::::::
readily

:::::
apply

:::
the

::::
same

:::::::::
constraints

::
at
::::::

global
:::::
scale

:::::::
however

::::
their

::::::::
efficiency

::::::
highly

:::::::
depends

:::
on

:::
the640

:::::
nature

::
of

:::
the

::::::::
coupling

:::::::
between

:::
the

::::::::
ecosystem

::::::
model

:::
and

:::
the

::::::::
transport

:::::
model

::::
and

::
on

:::
the

::::::::::
observation

::::::
streams

::::::::::
considered.

:::::::::::
Nonetheless

::
in

::::
this

::::::
context

:::::::
4DVAR

::::::::
remains

:::
the

::::
only

::::::::::
reasonable

::::::
method

:::
to

:::::::
consider

::
in

:::::
terms

::
of

::::::::
computer

:::::::::
resources,

:::
and

:::
our

:::::
study

::::::::::
demonstrate

::::
that

:::
the

::::::
current

:::::::
research

::::::
efforts

::
to

::::::
develop

::::::::::::
regularisation

::::::::
strategies

::
fit

::::
well

::::
into

::
the

:::::::::
variational

::::::::::
framework.

:

8 Conclusions645

We used DALECv2 and combined multiple data streams - MODIS monthly LAI and monthly NEE,

GPP and RESP at an Ameriflux site - together with ecological constraints to estimate model parame-

ters and initial conditions and to provide uncertainty characterisation for predicted fluxes. DALECv2

is a simple model; it represents the basic processes at the heart of more sophisticated models of the

carbon cycle and, besides its large modelling skills, its simplicity allows for close mathematical650

scrutiny. Here we adopted a variational approach where the tangent linear model and its adjoint play

a major role in 1) facilitating a linear analysis which allows to understand the nature of the ill-posed

problem and to evaluate strategies to regularize
::::::::
regularise it; 2) finding a posterior distribution for

the state variables.

We performed a sensitivity analysis using a direct method that consists in studying the first order655

derivatives of the output computed using an adjoint method. The sensitivity analysis is a prerequi-

site to any work with a model, but there is a paucity of literature on this topic in connection with

DALEC. Our analysis reveals generic issues that will be encountered in many inverse modelling

stategies
:::::::
strategies. Studying the first order inverse problem, we discussed how noise affects the sta-

bility of the solution and we illustrated a simple regularisation method. We then introduced the no-660

tion of resolution matrix, which we adapted from the field of seismic tomography,
:::::
model

:::::::::
resolution

:::::
matrix

:
and showed how this can be used to diagnose the ill-posedness of an inverse problem and

evaluate the result of regularisation strategies. While some of our findings may be anticipated in

the framework of a simple model, it is important to describe these tools and their interpretation as

similar analyses can be readily applied to a wide range of more complex models.665

Bloom and Williams (2015) proved the benefit of the EDCs in constraining poorly resolved compo-

nents of the carbon cycle and recommanded
::::::::::::
recommended their use for inverse modeling

::::::::
modelling

problems. We successfully incorporated the EDCs within the context of variational data assimilation.

Our results confirm that the EDCs regularise an otherwise ill-posed problem and efficiently reduce
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the uncertainty of predicted fluxes, and thus confort the recommandation
:::::::
comfort

:::
the

:::::::::::::
recommendation670

of Bloom and Williams (2015). Moreover, our modifcation
::::::::::
modification

:
to DALECv2, DALEC-SP

which includes a spin-up period, offers an alternative to some EDCs that facilitates the variational

approach.

This study did not aim at providing an exhaustive account for the capability of variational tools, nor

at exploring all aspects of the EDCs for the inverse problem for DALEC. The objectives were to use675

4DVAR and show that it offers a suitable framework to solve efficiently, robustly and quickly the

inverse problem for DALEC, and to present some methodology to analyse some issues that affect

most methods based on Bayesian inference.

9 Code availability

The model and inversion code, together with the drivers, observational data and experiment results680

are available at: https://zenodo.org/record/269937.
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