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Abstract. This paper describes the IMPACT Global Hydrological Model (IGHM), a component of the International 

Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) integrated modeling system. 10 

IMPACT has been developed in the early 1990s to identify and analyze long-term challenges and opportunities for 

food, agriculture, and natural resources at global and regional scales and builds on a series of previous food demand 

and supply projections models developed at the International Food Policy Research Institute since the early 1980s. 

The IGHM has been developed to assess water availability and variability as drivers of water use and irrigated crop 

production in IMPACT. It adopts a saturation runoff generation scheme and uses a linear groundwater reservoir to 15 

simulate base flow in 0.5º latitude by 0.5º longitude grid cells over the global land surface excluding Antarctica. The 

IGHM has four cell-specific calibration parameters, which are determined through maximizing the Kling–Gupta 

efficiency (KGE) with a genetic algorithm at the grid cell level, using gridded natural runoff series generated by the 

WaterGAP Global Hydrological Model (WGHM). During the calibration and validation periods, globally, the 

majority of grid cells attain KGE values greater than 0.50.  As a meta-model of the more computationally expensive 20 

WGHM, IGHM transfers the climate-hydrology dynamics provided by WGHM into the integrated IMPACT model 

at a lower computational cost and enables coupling hydrology and other related processes considered in IMPACT 

which are important for analyzing long-term water and food security under a range of environmental and 

socioeconomic changes.    

1 Introduction 25 

Short-term variation and long-term trends in water availability strongly affect water supply and food production 

(Rosegrant et al. 2009). Analyzing such effects at a global scale requires integrated assessment modeling that brings 

together global hydrological, agronomic, and economic modeling capabilities into a coherent framework. To 

evaluate the food security effects of variations in water availability, alternative irrigation technologies, and water 

management strategies, in the late 1990s a river-basin level, global water resource model was developed and linked 30 

to the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), leading to the 

integrated water and food projections model IMPACT-WATER (Rosegrant et al. 2002). The original IMPACT-

WATER model optimizes water supplies at the river basin or sub-river basin level, considering reservoir regulation 

as well as constraints of water balance, infrastructure capacity and environmental flow requirements (Cai and 
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Rosegrant 2002). It used historical runoff simulated by an early version of the WaterGAP model (Döll et al., 2001; 

Döll et al., 1999). More recently, to assess coupled hydrological, water resource, agronomic, and agroeconomic 

responses to climate change, we developed a distributed, conceptual global hydrological model to integrate water 

availability simulation capability into an updated IMPACT modeling system (Robinson et al. 2015; Zhu et al. 2013; 

Zhu and Ringler 2012); this new module is called the IMPACT Global Hydrological Model (IGHM) and is the focus 5 

of this article. The IGHM simulates natural runoff without considering human activity impacts on terrestrial water 

resources. This model runs at a monthly time step and has a spatial resolution of 0.5º C latitude by 0.5º C longitude, 

which is about 3,100 km2 near the equator and covers the entire global land surface, excluding Antarctica. Previous 

versions of IGHM have been used in a range of policy analyses, such as assessing adaptation options to climate 

change and the contribution of irrigation to regional and global food securtiy (Calzadilla et al. 2013; Liu et al. 2014; 10 

Nelson et al. 2010; You et al. 2011) and have also contributed to the development of other macroscale water 

resources models, such as Strzepek et al. (2013).  The following sections review the main characteristics of existing 

global hydrological models, followed by a brief discussion on the challenges faced by macroscale hydrological 

modeling and the choice of a parsimonious structure for the IGHM model, which operates as a module in the larger 

IMPACT modeling system.  15 

1.1 Review of global hydrological models 

Several global hydrological models have been built since the 1980s. The characteristics and performance of these 

models are discussed in several review papers (Bierkens, 2015; Sood and Smakhtin, 2014) and multimodel 

assessments of global hydrological regimes, water resources, and water scarcity (Haddeland et al., 2011; Schewe et 

al., 2014; Veldkamp et al., 2017). Here, we compare the main characteristics of six existing global hydrological 20 

models that are more relevant to IGHM because of their uses of conceptual rainfall–runoff modeling procedures 

(Table 1). These six models have varying degrees of complexity in model structure and the number of parameters. 

There are also other global hydrological models that are not included in this review because they are either land 

process models, or fully couple water and energy balances.  

Among these six global hydrological models, four use a daily time step. The exceptions are the WBM model 25 

(Vörösmarty et al. 1989, 1998), which uses a semi-monthly time step, and the WASMOD-M model (Widén-Nilsson 

et al. 2007, 2009), which uses a monthly time step. Models that run at a daily time step previously used various 

techniques to downscale monthly average meteorological input data to a daily scale, due to a lack of consistent daily 

global climate databases at that time; some models generated synthetic daily precipitation using the number of wet 

days in a month and a statistical model that produces the distribution of wet days (Arnell 1999; Döll et al. 2003; 30 

Gerten et al. 2004; Wisser et al. 2010), whereas others used daily distributions from climate model reanalysis to 

disaggregate monthly average precipitation to daily values (Van Beek and Bierkens 2008). 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-216
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 16 October 2017
c© Author(s) 2017. CC BY 4.0 License.



3 

 

Table 1. Main characteristics of selected existing global hydrological models. 
Model Time 

step 

Climate 

input (in 

brackets, 

ISIMIP 

climate 

forcing ) 

PET scheme Runoff 

scheme  

Number of 

tunable 

parameters 

Data used in 

calibration (in 

brackets, number 

of gauging 

stations) 

Parameter determination References 

LPJmL Daily P, T, C, and 

WD (P, T, 

SD, LD) 

Priestley–

Taylor 

Saturation 

excess 

n.a. n.a. Biophysical spatial database (Gerten et al., 2004) 

Mac-PDM Daily P, T, V, C, W 

SH, and WD  

Penman/ 

Penman–

Monteith/ 

Priestley–

Taylor 

Saturation 

excess 

n.a.  

n.a. 

Biophysical spatial database (Arnell 1999, 2003; 

Gosling and Arnell, 

2011) 

PCR-

GLOBWB 

Daily P, T, V, C, W Penman–

Monteith 

Saturation 

excess 

n.a.  

n.a. 

Biophysical spatial database (Van Beek and 

Bierkens, 2008; Van 

Beek et al., 2011) 

WASMOD-

M 

Monthly P, T, and V Air 

temperature 

and relative 

humidity-

driven 

function 

Linear 

reservoirs 

for slow 

and fast 

runoff 

5 Long-term average 

discharge (654 

gauging stations) 

Identify “acceptable runoff” from 

simulations of globally fixed 

parameter-value combination sets 

(constant parameter values within a 

basin); and apply regionalized 

parameter sets to ungauged basins 

(Widén-Nilsson et al., 

2007, 2009) 

WBM Semi-

monthly/ 

daily 

P, T, V, SD, 

W, and daily 

temperature 

range 

Priestley–

Taylor 

Saturation 

excess 

n.a. n.a. Biophysical spatial database (Fekete et al., 2002; 

Vörösmarty et al., 1989, 

1998; Wisser et al., 

2010) 

WaterGAP Daily P, T, C, SH, 

and WD (P, 

T, SD, LD) 

Priestley–

Taylor 

Non-linear 

function of 

soil 

moisture 

3 Long-term average 

discharge over 4 to 

30 measurement 

years (1319 gauging 

stations) 

Biophysical spatial database; 

runoff coefficient for tuning basins, 

and applying regionalized 

parameters to ungauged basins 

(Döll and Fiedler, 2008; 

Döll et al., 2003, 2009; 

Hunger and Döll, 2008; 

Müller Schmied et al., 

2014, 2016) 

Notes: P = precipitation; T = temperature; C = cloudiness; SH = average daily sunshine hours; WD = number of wet days in a month; W = wind speed; SD = shortwave downward 

radiation; LD = longwave downward radiation. The ISIMIP climate forcing data can be found at www.isimip.org  
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Before the WATCH Forcing Data (WFD) (Weedon, et al. 2011) was developed under the European FP6- funded 

Water and Global Change (WATCH) project (http: //www.eu-watch.org), the majority of global hydrological 

models used gridded monthly climate forcing of the CRU TS 2.1 database developed by the Climatic Research Unit 

(CRU) at the University of East Anglia (Mitchell and Jones 2005) or other versions of the CRU database (Arnell, 

1999; Van Beek and Bierkens, 2008; Döll et al., 2003; Gerten et al., 2004; Widén-Nilsson et al., 2007; Wisser et al., 5 

2010). The primary consideration is that the CRU data are based on observations covering the global landmass and 

were processed in a consistent manner (Van Beek and Bierkens 2008). Typical meteorological variables used by 

those models include precipitation, temperature, water vapor pressure, cloudiness, hours of sunshine, and number of 

wet days in a month. Among the six models, only LPJmL simulates vegetation dynamics, and couples it with 

hydrological process simulation. Nowadays most models use readily available daily climate forcing such as the 10 

WFD (Weedon, et al. 2011) or the more recent WATCH Forcing Data methodology applied to ERA-Interim 

(WFDEI) data (Weedon et al. 2014). 

All six models in Table 1 use a degree-day approach to simulate snow accumulation and melt, based on air 

temperature. The specific treatment varies across models. For instance, the WBM uses an empirical temperature- 

and precipitation-based formula; the WASMOD-M uses an exponential function of air temperature to determine 15 

snow accumulation and melt; whereas the PCR-GLOBWB adopts the snow scheme in the HBV model, which 

specifies that snow melts before glaciers, and different degree-day factor values are applied to snowpack and 

glaciers.  

The runoff schemes of four global hydrological models in Table 1 (Arnell 1999; Van Beek and Bierkens 2008; 

Gerten et al. 2004; Vörösmarty et al. 1989), are based on the saturation excess concept, although their specific 20 

mathematical formulations of runoff generation vary. In contrast, the WaterGAP Global Hydrological Model 

(WGHM) uses a “beta function”, which is nonlinear in soil moisture, to produce total runoff from land that is 

subsequently partitioned into fast surface runoff, subsurface runoff, and groundwater recharge (Döll et al. 2003). 

Finally, the WASMOD-M model specifies slow and fast runoff as flows from two connected linear reservoirs 

(Widén-Nilsson et al. 2007). Among the four models that adopt a saturation excess runoff scheme, both the Mac-25 

PDM model (Arnell 1999; Gosling and Arnell 2011) and the PCR-GLOBWB model (Van Beek and Bierkens 2008) 

assume that runoff is generated by liquid precipitation falling on fully saturated soil, and the soil moisture storage 

capacity varies statistically within a grid cell. The PCR-GLOBWB model adopts the linear reservoir concept to 

model discharge from groundwater storage, with outflow being a linear function of active groundwater storage. 

Parameters in all these models are related to biophysical properties. Only in the WGHM and WASMOD-M models 30 

some parameters are adjusted in a basin-specific manner by calibrating against observed river discharge. 

Comparisons of simulated runoff with measured discharge are primarily for validation purposes for the other models 

(Van Beek and Bierkens 2008; Gerten et al. 2004; Gosling and Arnell 2011; Vörösmarty et al. 1998). More recently, 

the roles of dam operation and river routing schemes in global hydrological models were investigated by comparing 

simulated river discharge aginst observed values at gauging stations using multimodel comparisons (Masaki et al. 35 
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2017; Zhao et al. 2017). It is worth noting that the shape parameter b in the PCR-GLOBWB model is estimated 

based on the distribution of maximum rooting depths within each cell (Van Beek and Bierkens 2008). 

In the parameterization of the WASMOD-M model, Widén-Nilsson et al. (2007) conduct simulations using 1,680 

globally fixed parameter-value sets (constant parameter values within a basin), generated through combining the 

discrete values of five model parameters, and determine the best-performing set by identifying “acceptable runoff” 5 

from those simulations. In the WGHM model, a single parameter called runoff coefficient in the vertical water 

balance is tuned (and possibly 1-2 correction factors) by comparison to mean annual river discharge at 1319 stations 

worldwide, in order to avoid overparameterization and to make tuning feasible in a large number of river basins 

(Döll et al. 2003; Hunger and Döll 2008). Within each basin, the runoff coefficient is homogeneously adjusted for 

all cells to achieve reasonable fit to observed river discharge. Compared to previous WGHM model versions, 10 

WaterGAP 2.2b allows an uncertainty of 10% of long-term average observed river discharge (following Coxon et al, 

2015) so that calibration runs in four steps: 1) test if runoff coefficient alone is enough to calibrate the uncertainty to 

below 1% of observed value; 2) test if runoff coefficient alone is enough to calibrate when 10% uncertainty of 

observed values are allowed; 3) adapt observed value by 10%, and test if runoff coefficient plus runoff correction 

factor (applied universally to all cells in the basin, to ensure that the simulated long-term average discharge is 15 

sufficiently close to observation,) are sufficient for calibration; and 4) add station correction factor (multiplier to fit 

simulated to the observed value in order to avoid error propagation in the downstream basin) (Müller Schmied et al., 

2014, Müller Schmied 2017). Elsewhere, to derive global long-term average runoff fields using the WBM model, 

Fekete et al. (2002) also apply a runoff correction factor which equals the ratio of measured and simulated long-term 

average discharge, without tuning model parameters. For both WGHM and WASMOD-M, the long-term average of 20 

measured discharge is used in parameter tuning in order to minimize the effects of human regulation, which are 

more pronounced in an intra-annual time scale (Döll et al. 2003; Hunger and Döll 2008).  

Large-scale hydrological modeling is influenced by several factors. Among them, input data including climate 

forcing and parameters appear to be of the highest importance, whereas model structure seems to be least important, 

and the influence of spatial and temporal discretization lies in between (Arnell 1999; Döll et al. 2008). Haddeland et 25 

al. (2011) compared global scale simulation results of five global hydrological models and six land surface models 

driven by a single global meteorological dataset for the period 1985–1999. The WGHM model-simulated runoff 

appears to be closer to the observations than all other model results, because it is the only model among all 

participating models that is calibrated. Döll et al. (2003) state that imperfect runoff simulations can be caused by 

several factors, ranging from input data to modeled processes, and parameter tuning against measured recharge, 30 

which provides additional information, can improve model performance. Müller Schmied et al. (2016a, 2016b) 

applied five state-of-the-art climate input data to WGHM and showed reasonable differences in model outputs, 

especially at the grid cell level, as well as in non-calibrated regions, which shows that the choice of climate input 

data is very important for water resources assessment.  
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1.2 Challenges of macroscale hydrological modeling and considerations for linking to an integrated 

assessment model 

A macroscale hydrological model is a generalization or extrapolation of a catchment-scale model (Arnell 1999). 

Nevertheless, macroscale hydrological modeling faces several challenges which are unique when compared against 

those faced by watershed scale hydrological models. Döll et al. (2016) identified seven challenges in the 5 

development and application of global hydrological models, ranging from data scarcity for quantifying human water 

use and uncertainties in climate forcing input data, to uncertainties in vegetation responses to changing climate and 

atmospheric CO2 concentrations, to discrepancies in simulated hydrological responses to climate change, and to 

groundwater simulation in and water scarcity and human interference assessment with global hydrological models.  

As a parsimonious global scale model that is focused on simulation of natural runoff, the IGHM faces primarily two 10 

challenges: data constraints and, compared with watershed scale hydrology, our more limited understanding of 

macroscale hydrological processes. These two challenges are interlinked. First, global hydrological models are 

constrained by the availability and quality of global data sets (Widén-Nilsson et al., 2009; Müller Schmied et al., 

2016). New data sets and updated versions of existing data sets of climate, soil, and water bodies are being made 

available frequently, enabling improved quantification of hydrological variables; however, the representativeness 15 

and quality of these data sets are fundamentally limited by available in situ observations (Harris et al. 2014; Lehner 

et al. 2011). Second, hydrological models are traditionally developed based on measurements and understanding of 

“micro” scale processes. As such, observed data and hydrological processes are often not compatible or 

representative at larger scales relevant for macroscale processes (Singh and Woolhiser 2002). Therefore, 

sophisticated data-intensive watershed hydrological models may not be suitable for macroscale hydrological 20 

modeling, due to their large data requirements (Chen et al. 2007), the relatively highly detailed specifications of 

hydrological processes with a sophisticated model structure, and the large number of parameters that are tailored for 

a specific watershed at the cost of broader model applicability.  

Moreover, a macroscale hydrological model like IGHM, which operates as a module in a larger integrated 

assessment model, should avoid needless process complexity, while representing all key hydrological processes. 25 

Hydrological processes and model parameters are scale-dependent; however, as scale increases, spatial aggregation 

of data leads to loss of information (Turner 1990). A less detailed conceptual model is found to simulate long-term 

water balance more reliably as a watershed goes up in scale (Merz et al. 2009). For the long-term assessment of the 

impacts of climate change on global water and food trade, a monthly temporal scale is sufficient and may simplify 

the calibration process (Sood and Smakhtin 2014). In order to develop a generic form that is applicable to a broad 30 

spectrum of systems across the globe and capable of characterizing the diverse nature of climate and hydrology over 

space and time, macroscale hydrologic models must be simplified (Dooge 1986; Vörösmarty et al. 1989; Sivakumar 

2004). Macroscale hydrologic models should be simple in structure and parsimonious in parameters, focusing on 

dominant processes that can be constrained by available data. This echoes the finding that parsimonious models are 

preferable for data-scarce regions (Pande et al. 2011). Moreover, a notable advantage of parsimonious models is the 35 

convenience of linking to or coupling with integrated assessment models. 
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Using priori parameters in macroscale hydrological models without calibration result in sub-optimal runoff 

simulation (Beck 2016). To increase the realism of water resources simulated by the parsimonious IGHM, with a 

monthly time step and without lateral routing, its parameters were adjusted, individually for each grid cell, against 

grid cell runoff computed by the more complex and calibrated WGHM that uses a daily time step. It is preferable to 5 

calibrate IGHM in this way for each of approximately 67000 grid cells than to calibrate it against observed river 

discharge available for a necessarily much smaller number of discharge gauging stations as 1) river routing and the 

impact of water use on river discharge is not simulated by IGHM and 2) the more complex WGHM can be assumed 

to be better able to distribute observed mean annual discharge to upstream grid cells than the simpler IGHM. 

 10 

Calibrating a parsimonious model to simulated output of more sophisticated models has been done elsewhere 

previously. The simple carbon cycle–climate model MAGICC6, which is the core model of the integrated 

assessment model IMAGE 3.0 (Stehfest et al., 2014) was calibrated against the higher complexity atmosphere–

ocean general circulation models (AOGCMs) and carbon cycle models (Meinshausen et al., 2011b). After being 

calibrated, MAGICC6 can emulate, with considerable accuracy, globally aggregated characteristics of these more 15 

complex models (Meinshausen et al., 2011a). 

2 IMPACT Global Hydrological Model 

2.1 Data 

Climate data that drive the IGHM model include precipitation, average temperature, and downward shortwave 

radiation, by month. In this article, these data are aggregated from daily to monthly fields for the period 1980–2009, 20 

using the reanalysis-based Watch Forcing Data based on ERA-Interim (Weedon, et al. 2014).  

The calculation of potential evapotranspiration (PET) also requires elevation, for which the 0.5º resolution global 

gridded elevation database from the CRU is used. The gridded albedo values are from the WGHM model database, 

as used in Müller Schmied et al. (2014), which is based on the 2004 MODIS land cover classes (IGBP 

classification). Open water bodies considered in the IGHM model include lakes and wetlands, as used in Müller 25 

Schmied et al. (2014, 2016), which is based on the Global Lake and Wetland Database (GLWD) (Lehner and Döll 

2004) and the Global Reservoir and Dam Database (GRanD) (Lehner et al. 2011) for the areas of natural lakes and 

wetlands, and the areas of manmade reservoirs, respectively.  

WGHM has been parameterized using observed river discharge around the world, preferably during the period 

1971–2000. The calibration of the WGHM model against observed long-term average river discharge significantly 30 

reduces the impact of climate, forcing uncertainty on estimated runoff (Müller Schmied et al. 2014, 2016). In this 

paper, we use gridded monthly natural runoff generated in 0.5° grid cells during 1980–2009 simulated by the 

WGHM in its version 2.2b (Müller Schmied et al. 2016) to determine parameters of the IGHM model for each 0.5° 
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grid cell separately. The “natural runoff” refers to monthly runoff simulated by the WGHM in a setup which does 

not consider human water uses and reservoir operation.  

2.2 Model structure 

The IGHM model is a parsimonious conceptual global hydrological model. It simulates the water balance for each 

grid cell independently, treating each grid cell as an individual catchment. As illustrated in Fig. 1, the model uses a 5 

temperature-index method to simulate snow accumulation and melting, and determines total saturation excess runoff 

with a probabilistic distribution of soil water holding capacity in a grid cell. Total saturation excess runoff is 

partitioned into surface runoff and recharge to groundwater, with groundwater store being modeled as a linear 

reservoir to generate base flow. The open water body area within a cell is modeled separately, and total runoff 

produced from the cell equals area-weighted runoff from land and open water bodies. The snow module does not 10 

distinguish open water area from land area within a grid cell.  

 

Figure 1. Schematic representation of the global hydrological model IGHM, illustrating vertical water balance of 

the land and open water fraction in a grid cell. 

Note: P* = precipitation (mm/m); P = effective precipitation (mm/m); E = evaporation (mm/m); ET = 15 
evapotranspiration (mm/m); T = temperature (°C); Tb = base temperature (°C), used as threshold to determine 

incoming precipitation as rain or snow; S = soil moisture content (mm); R = total runoff (mm/m); RS = surface 

runoff (mm/m); RB = base flow (mm/m); RD = direct runoff from open water body (mm/m). 
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The IGHM model as presented in this paper does not include a horizontal routing model. The remainder of this 

section describes the three modules in the IGHM model, which simulate PET, snow accumulation and melt, and 

runoff generation, respectively.  

2.2.1 Potential evapotranspiration 

Precipitation and evaporative demand are the two dominant climatic drivers of water balance. PET accounts for the 5 

availability of energy, but not moisture availability. In dry regions, actual evapotranspiration (AET) is limited by 

precipitation, whereas in wet regions it is limited by PET. Therefore, the choice of the PET method has a bigger 

influence for wet regions than dry regions in hydrological modeling. Weiß and Menzel (2008) compares four PET 

methods using gridded global climate data and concludes that the Priestley–Taylor equation proved to be mostly 

suitable for a global application. The Priestley–Taylor equation is used in the WGHM model (Döll et al., 2003; 10 

Müller Schmied et al., 2014), which generates gridded runoff used to calibrate IGHM. Therefore, in IGHM we also 

use the Priestley–Taylor equation to calculate monthly PET, as follows.  

PET = 𝛼
∆

∆+𝑦
(𝑅𝑛–𝐺)

         

  (1) 

in which PET is in mm day-1; α is assigned as 1.26 in a humid climate and 1.74 in an arid location with relative 

humidity less than 60 percent in the month when peak evapotranspiration occurs, according to Shuttleworth (1993); 15 

Δ is the slope of the vapor pressure curve in kPa° C-1; γ is the psychrometric constant in kPa° C-1; Rn is net radiation 

at the land surface in mm day-1; and G is soil heat flux density in mm day-1. Among these variables, Δ is a function 

of temperature, and net radiation includes downward shortwave radiation at the land surface and net longwave 

radiation. As explained in Section 2.1, downward shortwave radiation is from the WFDEI climate data. Unlike 

downward shortwave radiation, monthly bias correction was not conducted for downward longwave radiation in 20 

WFDEI (Weedon et al. 2014). Net longwave radiation is calculated using air temperature, and downward shortwave 

radiation based on the method given in Shuttleworth (1993).  

2.2.2 Snow accumulation and melting 

A temperature-index approach is used in the IGHM model to relate snowmelt to air temperature, assuming snowmelt 

only occurs when mean daily air temperature is above a threshold value, called base temperature (Anderson 2006; 25 

Gray and Prowse 1993). The depth of snowmelt water produced in time period t is given by 

𝑀𝑡 = {
0,

MF𝑡 ∙ (𝑇𝑡–𝑇𝑏),
𝑇 ≤ 𝑇𝑏
𝑇 > 𝑇𝑏          (2)

 

where MFt represents the melt factor, Tt denotes the index temperature, and Tb is the base temperature, which is set 

to 0 °C here. Seasonal variation of the melt factor is calculated following the Anderson Snow Model (Anderson 

2006).  30 

MF𝑡 = ND𝑡 ∙ [𝑆𝑣 ∙ (MFmax–MFmin) + MFmin]       (3)
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in which NDt is the number of days in time period t; MFmax is the maximum melt factor assumed to occur on 21 June 

in the northern hemisphere and on 21 December in the southern hemisphere; MFmin is the minimum melt factor 

assumed to occur on 21 December in the northern hemisphere and on 21 June in the southern hemisphere. We 

choose 3.5 mm/°C · day and 6 mm/°C · day for MFmax and MFmin respectively, following (Gray and Prowse 1993). 

The seasonal variation parameter Sv is given by 5 

𝑆𝑣 = 0.5 ∙ sin (2𝜋
𝐽–𝐽0

366
) + 0.5         (4) 

In Eq. (4), J is Julien day number; J0 is the Julien day number of spring equinox, assigned as 81.5 in the northern 

hemisphere, and 264.5 in the southern hemisphere, corresponding to 21 March and 21 September, respectively.  

A mass balance method is used to track snow accumulation and snowmelt. For time period t, the snow water 

equivalent at the end of the time period is given by 10 

SN𝑡 = {
SN𝑡–1 + 𝑃 ∗𝑡 ,

SN𝑡–1–Min(𝑀𝑡 , SN𝑡–1),

𝑇𝑡 ≤ 𝑇𝑏
𝑇𝑡 > 𝑇𝑏

        (5) 

2.2.3 Runoff generation 

Soil water balance is simulated at each grid cell using a single layer water bucket concept. To represent sub-grid 

variability of soil water holding capacity c, we assume it spatially varies within each grid cell, following a parabolic 

distribution function (Arnell 1999; Moore 1985; Wood et al. 1992; Zhao 1992; Zhao et al. 1980). 15 

𝑓(𝑐) = 1– (1–
𝑐

𝐶𝑚
)
𝑏

           (6) 

where f(c) is the fraction of area in a grid cell with soil water holding capacity values below c; Cm is the maximum 

soil water holding capacity value across all locations within the grid cell; and b is the “shape parameter” that defines 

the degree of spatial variability of soil moisture holding capacity c.  

The maximum amount of water that can be held in the grid cell is  20 

𝑆𝑚 = ∫ [1– 𝑓(𝑐)]𝑑𝑐 =
𝐶𝑚

1+𝑏

𝐶𝑚
0

         (7) 

In Fig. 1, Sm equals the area between the parabolic curve and the x-axis, with area fraction values of the x-axis ranging 

from zero to one. 

Assuming that at any time t, each point in the grid cell is either at Cm or at a constant moisture state c, the mean areal 

water storage S associated with soil water holding capacity c at time t is 25 

𝑆𝑡 = 𝑆𝑚 ∙ [1– (1–
𝑐𝑡

𝐶𝑚
)
1+𝑏

]          (8) 
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with precipitation Pt and actual evapotranspiration AETt in time period t, runoff is determined by the following 

equations (Wood et al. 1992; Zhao 1992):  

If 𝑐𝑡 + 𝑃𝑡– AET < 𝐶𝑚, 

𝑅𝑡 = 𝑃𝑡–AET𝑡– ∆𝑆 = 𝑃𝑡– AET𝑡– 𝑆𝑚 ∙ [(1–
𝑐𝑡

𝐶𝑚
)
1+𝑏

– (1–
𝑐𝑡+𝑃𝑡–AET𝑡

𝐶𝑚
)
1+𝑏

]    (9) 

Otherwise, if 𝑐𝑡 + 𝑃𝑡–AET > 𝐶𝑚, 5 

𝑅𝑡 = 𝑃𝑡–AET𝑡– (𝑆𝑚– 𝑆𝑡) = 𝑃𝑡– AET𝑡– 𝑆𝑚 + 𝑆𝑚 ∙ [1– (1–
𝑐𝑡

𝐶𝑚
)
1+𝑏

]     (10) 

The AET is determined jointly by the PET and the relative soil moisture state in a grid cell at time period t. 

AET𝑡 = PET𝑡 ∙
𝑆𝑡

𝑆𝑚
           (11) 

The generated runoff in time period t is divided into a surface runoff component RS and a deep percolation component 

using a partitioning factor 𝜆: 10 

RS𝑡 = 𝜆 ∙ 𝑅𝑡            (12) 

A linear reservoir is assumed to model base flow RB. The storage of the linear reservoir is linearly related to output, 

namely base flow, by a storage constant β (Chow et al. 1988).  

RB𝑡 = 𝛽 ∙ 𝐺𝑡           (13) 

In Eq. (13), Gt is the groundwater storage value in time step t. The change of reservoir storage during time period t is 
15 

defined as 

𝐺𝑡–𝐺𝑡–1 = (1– 𝜆) ∙ 𝑅𝑡–RB𝑡          (14)

 

 

The total runoff in time period t is 

𝑅𝑡 = RS𝑡 + RB𝑡          (15)
 

 

The above equations (6)–(15) simulate runoff generation over the land portion of a grid cell. In many cells, total area 
20 

of open water bodies in a cell accounts for a considerable fraction; for cells within the boundary of a large lake, the 

entire cell areas are covered by water. In these cases, water balance needs to be simulated separately for an open water 

body, as follows.  

𝑅𝑡
𝑂 = 𝑃𝑡– PET𝑡           (16)
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Equation (16) implies that an open water body evaporates at the rate of PET, and runoff is the difference between 

precipitation and PET. Runoff generated in an open water body area
 
is negative when PET exceeds precipitation. For 

a cell that has both land area and open water body area, cell runoff is the area-weighted average of runoff values over 

land and open water body.  

2.3. Determination of model parameters 5 

Based on findings from previous studies, Wagener et al. (2001) concluded that up to six parameters can be 

calibrated from the time-series of external system variables (e.g., rainfall and runoff) using a single-objective 

calibration scheme. The IGHM model has four calibration parameters: the sub-grid variability shape parameter b, 

the total runoff partitioning parameter λ, the storage constant β, and the average soil water holding capacity Smax. 

We use gridded monthly runoff simulated by the WGHM model version 2.2b, driven by a homogenized 10 

WFD/WFDEI combination (homogenization details in Müller Schmied et al., 2016) for the time period 1980-1999 

to calibrate the IGHM parameters on a cell-by-cell basis.  

A genetic algorithm (GA) (Carroll, 2001) is used to automatically search model parameters that lead to the best 

overall model performance, defined by the objective function of the searching problem. Genetic algorithms have 

been applied to the calibration of conceptual hydrological models in a number of studies. For instance, Wang (1991) 15 

applies a GA algorithm to the calibration of five water balance parameters and two routing parameters in a version 

of the Xinanjiang model. Nicklow et al. (2010) reviewed a number of hydrological model parameter identification 

studies that use a GA.  

Here, the objective function in the GA calibration is to maximize the Kling–Gupta efficiency (KGE) (Gupta et al. 

2009), as follows: 20 

KGE = 1–√(1– 𝑟2) + (1– 𝛼)2 + (1– 𝛽)2       (17)

  

 

where r is the linear correlation coefficient between simulated and observed runoff; 𝛼 is the ratio between the 

standard deviation of the simulated and observed runoff; and 𝛽 is the ratio between the mean simulated and mean 

observed runoff. Thus, by maximizing the KGE we optimize model performance from a multi-objective perspective 

by focusing on three separate criteria: correlation, variability error, and bias error (Gupta et al. 2009). KGE has been 25 

widely adopted as a model performance metric for global or basin scale hydrological modeling (Beck et al. 2016; 

Formetta et al. 2011).   

In the GA algorithm, a population size of 50 and maximum generation of 51 are used. The number of years available 

for calibration tends to negatively affect calibration efficiencies, whereas it positively affects verification 

efficiencies (Merz et al. 2009). In this paper, we choose the period 1980–1999 for model calibration and the period 30 

2000–2009 for model validation.  
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3 Results and Discussions 

3.1 Model calibration and validation 

Figure 2 shows gridded mean annual runoff over the global land surface, estimated from the IGHM simulation and 

from the WGHM 2.2b, respectively, for the period 1980–2009. The general consistency between the two mean 

annual runoff maps can be clearly seen, suggesting that the IGHM is able to calculate renewable water resources at 5 

an annual time scale. In the IGHM, which has fixed open water body areas in each grid cell, negative runoff occurs 

in grid cells with open water bodies where evaporation exceeds precipitation. For WGHM, evaporation can be 

higher than precipitation (thus negative values for runoff) in the specific grid cell due to evaporation in surface water 

bodies which receive water from upstream. 

 10 

Figure 2. Comparison of simulated mean annual runoff during 1980–2009 between the IGHM and WGHM models, 

in mm/a.  

 

To evaluate how well the calibrated IGHM model approximates “observations” globally, the KGE values for the 

2000–2009 validation period and the 1980–1999 calibration period are shown in Fig. 3 respectively. The 15 

“observations” are gridded monthly natural runoff aggregated from daily natural runoff series simulated by WGHM 
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at the 0.5-degree resolution. A comparison of the KGE (validation) with the KGE (calibration) plot reveals that there 

is a strong linear correlation between the KGE of the calibration period and the KGE of the validation period; 

however, a high value of calibration KGE does not always result in a high validation KGE value. The cumulative 

distribution plots, also presented in Fig. 3, show that, in general, the IGHM simulations better reproduce WGHM 

runoff in the calibration period than in the validation period. 5 

 

Figure 3. Cumulative distribution of KGE values in the calibration period (1980-1999) and validation period (2000-

2009). The left figure excludes KGE values less than -1.0, and the right figure excludes KGE values less than -0.4 in 

the calibration period and KGE values less than -1.0 in the validation period. 

 10 

The maps in Fig. 4 display global gridded KGE values for the 1980–1999 calibration period, and the 2000–2009 

validation period, respectively. The KGE values are greater than 0.75 for the majority of grid cells, including South 

Asia, Southeast Asia, central and southern China, and southern Europe, where irrigation is intensive. The KGE 

values in Central Asia, the Middle East, and North Africa, where irrigation is also somewhat intensive, are mixed. 

There are also a considerable number of grid cells where the KGE values are below zero. Notably, the KGE values 15 

are negative in a large continuous area in Canada and a large area in Russia, the latter of which largely overlaps with 

the Ob and the Yenisey river basins. Globally, we find that 66% and 58% of the 66,896 grid cells attain KGE values 

greater than 0.50 during the calibration and validation periods, respectively.  

The Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970) are also calculated for the calibration and validation 

period. Performance with NSE shows generally the same pattern as those of KGE shown on Fig. 4. 20 
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Figure 4. Kling-Gupta efficiency values in the calibration period (1980-1999) and the validation period (2000-

2009). Mean annual runoff is estimated as negative in grid cells marked as “excluded” on both maps.   

 

Figure 5 shows the components of KGE as given in Eq. (17), which include the linear correlation coefficient 5 

between simulated and “observed” runoff, mean annual runoff bias, and standard deviation bias, for the calibration 

period 1980–1999. The global map of correlation coefficients between simulated and “observed” runoff shows a 

similar spatial patterns as KGE. The correlation coefficient measures how well the model reproduces “observed” 

hydrographs, in particular the timing of peak runoff and low flow. From a water supply perspective (e.g., for 

irrigation), a low correlation coefficient has a stronger impact for areas without adequate water storage infrastructure 10 

than those which have inadequate water storage infrastructure, due to the former’s larger capacity to redistribute 

water temporarily to meet demand through, e.g., managing water supply or multi-purpose reservoirs. Correlations of 

monthly cell runoff are poor in particular in regions with many lakes and wetlands, like in Canada and the Ob basin 

in Siberia. 
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Figure 5. The model performance indicators in calibration period 1980–1999 including (a) linear correlation 

coefficient, (b) bias of mean annual runoff, and (c) bias of standard deviation.   

 5 

The bias error (i.e., mean annual runoff bias) map shows that for the majority of grid cells, the bias error is within 

the range of 10% below or above the WGHM mean annual runoff. The bias error is larger for those grid cells that 

have a low KGE. The bias error is relatively high in some areas in the northern and southern Africa, and the central 

areas of North America. In the version of IGHM presented here, we do not apply a runoff correction factor. 

The variability error (i.e., monthly runoff standard deviation bias) map also shows that for the majority of grid cells 10 

the variability error is within the range of ±15 % from the WGHM’s standard deviation of monthly runoff series. 

Note that for much of the Asian monsoon areas, where variability is high both seasonally and interannually, the 
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variability error is kept within the ±15 % range. IGHM overestimates monthly runoff variability in lake and wetland 

areas like central Canada and the Ob basin and Yenisey basins in Russia and in Central and Eastern Europe. It is 

discernable that for river networks, notably the Amazon and rivers in Siberia on the variability error map, variability 

is underestimated. Since both the WGHM and the IGHM models use the Priestley–Taylor equation to estimate PET 

and they use the same climate forcing data in PET and runoff calculation, the underestimation of standard deviations 5 

is likely caused by the different handling of surface water storages (lakes, wetlands) within each grid cell in the two 

models. The WGHM model considers storage (and area) variation in surface water bodies which lowers the monthly 

variability of runoff; while in the IGHM model, open water body areas in a grid cell is time-invariant.  

3.2 Spatial patterns of calibrated model parameters 

Since the IGHM model parameters are calibrated grid cell–by–grid cell, we expect to see a discernable spatial 10 

pattern of calibrated parameter values, which may be linked to biophysical attributes of grid cells. Fig. 6 shows the 

gridded values of the runoff generation shape parameter b, surface runoff fraction λ, inverse of groundwater 

residence time β, and effective soil water holding capacity Smax.  

The shape parameter b defines the degree of variability in soil water holding capacity across a grid cell. In Fig. 1, the 

distribution curve of soil water holding capacity is concave when b is less than one, linear when b equals one, and 15 

convex when b is greater than one. Therefore, the higher the value of b, the higher the amount of runoff, assuming 

other parameters are fixed. The map of b values in Fig. 6 shows that low values of b (i.e., < 0.5) are widely 

distributed in dry areas, e.g., the Middle East and North Africa. The b values in the rage of 1.1–1.5 are widely 

distributed in North America, Central America, South America, Europe, Africa south of the Sahara Desert, East 

Asia, and Southeast Asia. 20 

The runoff partitioning factor λ can be influenced by land slope and soil infiltration capacity in a catchment. Its 

value is low in large areas in Canada, Europe, and central Africa. This implies that in these areas, river discharge 

does not respond rapidly to precipitation, and that base flow fed by groundwater makes a major contribution to river 

discharge. High values of λ are found to distribute in dry areas, such as the southwestern United States, Mexico, 

North Africa, Southern Africa, the Middle East, and Central Asia. 25 

A higher groundwater residence time means that groundwater store is large, and base flow can last longer with a 

period of recharge. Therefore, the value of β directly influences low flow simulation. For arid areas, such as in 

western North America, the Middle East and North Africa, Western Asia, and Australia, generally the value of β is 

high. Groundwater residence time is short in these arid regions, resulting in very low or zero flow in dry months. 

 30 
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Figure 6. IGHM model parameters calibrated for the period 1980–1999. 

 

The spatial pattern of soil water holding capacity Smax appears to be related to climatic characteristics as given in the 

world map of Köppen climate classification prepared by Peel (2007). For instance, the low value zones in North 5 
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Africa and the Arabian Peninsula largely overlap with the “arid-desert-hot (BWh)” Köppen climate zone. The BWh 

zones in the southwestern United States, western Mexico, and Australia also have a low value of soil water holding 

capacity. The tropical zones (tropical rainforest zone “Af”, tropical monsoon zone “Am”, and tropical savannah 

zone “Aw”) in Africa, South Asia and Southeast Asia, Central America and South America generally have 

moderately high to high Smax values in Fig. 6. This overlap indicates that the way the parameter Smax functions and 5 

the model structure to a certain extent reflect runoff generation processes in the real world.  

The spatial patterns in Fig. 6 suggest a correlation between Smax and the other three parameters. We conducted a 

spatial correlation analysis for each pair of the four parameters, and found that Smax is negatively correlated with 

each of the other three parameters, as shown in Table 2. The spatial correlation of Smax and b suggests that the 

parameter that describes the degree of variability in soil water holding capacity may depend on the value of soil 10 

water holding capacity. This implies that, with the runoff generation scheme as applied to IGHM in this paper, the 

soil water holding capacity value at the grid cell level might be a useful factor for informing the estimation of the 

shape parameter. Similarly, the negative correlation between Smax and λ and between Smax and β suggests that in 

areas with low soil water holding capacity, the fraction of surface runoff is usually high, and groundwater residence 

time (before becoming base flow) is usually low.  15 

Table 2. Correlation between model parameters.   
λ β Smax 

b 0.124 0.047 –0.164 

λ 
 

0.356 –0.133 

β 
  

–0.143 

Note: Correlation analysis is conducted for each pair of the four calibration parameters on 66896 samples (i.e. grid 

cells). The t-test finds that these correlation coefficients are very highly significantly different from zero (P < 0.001).  

4. Conclusions 

A global hydrological model with a parsimonious structure is developed, calibrated, and validated in this paper. 20 

Using monthly climate forcing and runoff simulated by the WGHM model for the period 1980–1999, the IGHM 

model was calibrated grid cell–by–grid cell for this period, and was validated at the grid cell level for the period 

2000–2009. Grid cell–specific KGE (and NSE) are calculated to measure model performance during both calibration 

and validation periods. We find that 66% and 58% of the 66,896 grid cells attain KGE values greater than 0.50 

during the calibration and validation periods, respectively. For mean annual runoff, the model performs best in Asia, 25 

fairly well in Europe, Central America, the Caribbean, and South America, but less well in Africa, and the central 

longitudinal zone of North America. We noticed that the fixed open water body areas in IGHM may limit its 

capability to reproduce variability level (runoff standard deviation) for grid cells where the areas of open water body 

actively change due to rising and falling water levels, such as the grid cells along river networks. 
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We also find that the calibrated effective soil water holding capacity Smax is influenced by climatic zones, with low 

values for the “arid-desert-hot” and high values in the “tropical” Köppen climate zones. The value of Smax is 

negatively correlated with the other three model parameters, as identified by correlation analysis.  

The primary application of the IGHM model is to compute monthly time series of water availability and to link to 

the existing water use simulation model in the IMPACT modeling system. It can also assess hydrological impacts of 5 

climate change, one of the key drivers in the long-term water and food projections in the IMPACT modeling system. 

The simulation of groundwater recharge in IGHM and its linkage to the water use simulation makes it possible to 

analyze groundwater use, depletion, and food production impacts in a dynamic manner. The parsimonious model 

structure and monthly time step are purposely chosen for the IGHM to meet the requirements of the monthly water 

use simulation and annual economic simulation in the IMPACT modeling system while at the meantime keeping the 10 

model structure relatively simple. As calibration parameters depend on applied climate data, recalibration may 

become necessary if better climate input data become available. 

Code and data availability. The code of the IGHM model (Fortran 90) has been saved in CloudForge and is available upon 

request from the corresponding author. WFDEI (Weedon et al., 2014) is freely available at ftp://ftp.iiasa.ac.at/ (readme: 

ftp://ftp.iiasa.ac.at/README-WFDEI.pdf). WGHM data used for calibrating IGHM is available upon request (contact: P. Döll at 15 

p.doell@em.uni-frankfurt.de or H. Müller Schmied at hannes.mueller.schmied@em.uni-frankfurt.de).  
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