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Abstract. A fast scheme is described to compute the 3D evaluated in benchmarks for which a full physical desaipti
interaction of solar radiation with vegetation canopieseT of the vegetation was available, had worst-case albedoserro
canopy is split in the horizontal plane into one clear regionin excess of 0.3. The challenge is to represent the complex 3D
and one or more vegetated regions, and the two-stream equatructure of vegetation canopies with a radiative tranaferss
s tions are used for each, but with additional terms repré@sgnt gorithm that is nonetheless computationally efficient ejou
lateral exchange of radiation between regions that areqorop to use in a global model.
tional to the area of the interface between them. Theregulti  Sellers (1985) took the two-stream equations used in at-
coupled set of ordinary differential equations is solved us mospheric radiative transfer and applied them to a vegetati
ing the matrix-exponential method. The scheme is comparedanopy. In this approach, the vegetation is treated as a sin-
10 to solar Monte Carlo calculations for idealized scenes fromgle horizontally homogeneous layer, and a set of three cou-
the ‘RAMI4PILPS’ intercomparison project, for open forest pled ordinary differential equations are solved for thedir
canopies and shrublands both with and without snow on thelownwelling irradiance and the downwelling and upwelling
ground. Agreement is good in both the visible and infrared:diffuse irradiances. If the leaves can be assumed randomly
for the cases compared, the root-mean-squared differance ioriented then the optical depth of the layer is equal to na&lf ts
15 reflectance, transmittance and canopy absorptance is,0.02@af area index (LAI). Meador and Weaver (1980) provided
0.038 and 0.033, respectively. The technique has potentisdn analytic solution to these equations that is still used in
application to weather and climate modelling. number of state-of-the-art surface energy exchange scheme
(e.g., Best et al., 2011). The first-order error that ariselsie
to the fact that vegetation canopies are not homogeneaus:
the heterogeneous distribution of leaves within a tree nrow
1 Introduction and crowns within a forest stand is such that leaves are more
likely to be shadowed by other leaves than if they were ho-
The treatment of the interaction of vegetation with solar ra mogeneously distributed. Typically this is treated by datr
2 diation in weather and climate models varies greatly in com-ducing a ‘clumping factor’ that scales down the LAl used
plexity. The simplest schemes are concerned only with surin the two-stream scheme. A very similar approach has pre-
face albedo and its impact on near-surface temperature forejiously been used in atmospheric radiation schemes to treat
casts, and indeed Viterbo and Betts (1999) reported a largéhe clumpiness of clouds (Tiedtke, 1996). The clumping fac-
improvement in forecasts by the ECMWF model when thetor for vegetation is typically parameterized as an emairic
s use of a fixed snow albedo was modified to account for thefunction of properties of the vegetation and solar zenith an
much lower albedo that occurs when snow falls in forestedgle (e.g., Ni-Meister et al., 2010), but this lacks a phyksica
areas. Much more sophisticated treatments are used in thgasis and fails to represent horizontal fluxes into and out of
dynamic vegetation schemes of many climate models, whichndividual tree crowns.
need to calculate also the fraction of absorbed photosyn- Pinty et al. (2006) described one of the most sophisticated
» thetically active radiation (faPAR). But it was reported by yet affordable schemes to date that attempts to overcame
Loew et al. (2014) that even state-of-the-art models, when
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these limitations. Their scheme sums three terms: the refledhe length of the interface between the clear and vegetated

tion from the vegetation assuming a black underlying sur-regions per unit area of the domaiir’*. Note that although

face, the reflection from the surface assuming no intemactio this paper considers only up to two layers and three regions,
with the vegetation, and a term representing interacti@as b which is an appropriate level of complexity for a weather sr
tween the surface and the vegetation. Despite much improvedlimate model, for other applications additional layersl an
performance compared to the Sellers (1985) scheme, theiregions may be added. This would enable the representation
approach still uses an empirical clumping factor, and is un-of different types of vegetation of different heights, ogee
derpinned by the Meador and Weaver (1980) solution that astation in the understory.

sumes horizontally homogeneous vegetation. In the SPARTACUS method, the two-stream differential

0 Inthis paper we exploitrecent advances in the atmospheriequations are used in each region, but with additional terms
literature, and adapt the ‘'SPARTACUS’ (SPeedy Algorithm representing lateral radiation transport between regibims
for Radiative Transfer through CloUd Sides) method of formulation of these equations is given in section 2.2, with
Hogan et al. (2016) to the vegetation problem. As describedhe coefficients to be used in the case of vegetation defined in
in section 2, this approach employs an explicit descriptionsection 2.3. Section 2.4 then outlines how fié term could &

15 Of the horizontal distribution of vegetation for which wenca be parameterized in a model. Section 2.5 describes how the
write down a modified version of the two-stream equationsequations are solved for a single layer using matrix expenen
that includes terms for lateral radiation exchange betweeriials, and section 2.6 describes the use of the adding method
tree crowns and the clear regions between them. The equae compute the direct and diffuse albedos of the entire scene
tions are then solved exactly using the matrix-exponentialvegetation and the surface beneath it). In the context of a

2 method. This avoids the need for an empirical clumping fac-weather or climate model, this could be done for the same
tor or the Meador and Weaver (1980) solution. In section 3 itspectral intervals as the atmospheric radiation schemia, or
is compared to Monte Carlo calculations in idealized forestthe smaller number of broader spectral intervals for which
and shrubland conditions. optical properties of the vegetation and surface are defined

These albedos would then be used as boundary conditions for
the calculation of the radiative flux profile in the atmosgher

5

2 Method above. The downwelling direct and diffuse irradiances out-
put from the atmospheric radiation scheme are then used in
» 2.1 Overview section 2.7 to compute the irradiance profile within the veg-

etation canopy, enabling the absorbed and transmitted-rasli
We use a simple geometrical description of the problem, agion to be computed. The appendix describes how the scheme
shown in Fig. 1. Leafy vegetation is assumed to occupy amay be made computationally faster by optimizing the treat-
single constant-thickness ‘canopy layer’, with the honizd ~ ment of the sub-canopy layer.
domain (corresponding to a weather- or climate-model grid-
20 box) divided intom ‘regions’. Within an individual region,
the optical properties of the atmosphere and any vegetation
are assumed horizontally and vertically homogeneous. Fig- ) ) ] ] .
ure 1 considers three regions: one clear (denajexhd two 2.2 Differential two-stream equations in matrix form
vegetated (denotddandc). The use of two vegetated regions
s adds the flexibility to represent horizontally heterogarseo
tree crowns and trees of differing leaf density, borrowimg t
idea of Shonk and Hogan (2008) for representing cloud het.ThiS section summarizes the theoretical backgroundssto
erogeneity. In section 3 we compare this to a simpler two-SPARTACUS that was introduced by Hogan et al. (2016).
region approach with only one vegetated region (denbted Solar radiation in a particular spectral interval is desediby
» While the tree crowns are depicted in Fig. 1 as cylinders, thi three streams: the diffuse upwelling irradianeg, (the dif-
is not explicitly assumed; rather, we assume that (1) all azfuse downwelling irradiancev) and the direct downwelling
imuthal orientations of the interface between the clear andrradiance §), whereu andv are irradiances into a horizons
Vegetated regions are equa”y ||ke|y, and (2) the tree ceown tal pIane whiles is into a plane oriented perpendicular to the
are randomly distributed. To represent forests with a fiigni Sun. Atany given height, these are column vectors contginin
s cant separation between the ground and the base of the trdBe irradiances im: regions; in the equations that follow we
crowns, an additional ‘sub-canopy layer’ may be added, alsd/sern = 3 to match the schematic shown in Fig. 1, but it is
divided intorn regions (see Fig. 1). Thus we require as a min- straightforward to reduce to two regions. Thus for upwelliss
imum just four numbers to define the geometry of the prob-irradiance we havea = ( u® ub wue )T, where each irra-
lem: the fractional area of the domain covered by vegetationdiance component is defined as the radiative power divided
s ¢y, the vertical depth of the canopy layex;;, the vertical by the area of the entire gridbox, such that the domain-mean
depth of the sub-canopy lay&Xz; (which may be zero), and irradiance is obtained by summing the elements of the vector
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Layer 1:
Canopy

Layer 2:
Sub-canopy

Region a Regionb  Regionc

Figure 1. Schematic of the idealized vegetation considered in thiepalustrating the meanings of Layers 1 and 2 and Regighsandc.
The diagram on the right also illustrates the interpretatibthe elements of the reflectance mafR>given in (24).

The two-stream equations form a set of coupled differen-andT’, is the same a¥'; but using the quantity, in place

tial equations that can be written in matrix form as

d u u
=TI v
s

)

dz

wherez is height measuredownward from the top of the

1)

of v3. Missing entries in all these matrices are taken to be
zero. TheI'y andI'; matrices describe the rate at which
the direct and diffuse downwelling irradiances, respetyiv
change along their path. They are expressed in (3) and (4) as
the sum of two matrices: the first matrix in each case repre-
sents losses due to scattering and absorption, while the sec

s layer, andL" is a matrix describing the interactions between ond represents exchange of radiation between regions. The
irradiance Components and between different regions_ It |§:‘2 matrix describes the rate of Scatte”ng of diffuse radmatio
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convenient to partition it into a set @f x m component ma-

trices as follows:

-y -TI's I3
= FQ Fl F4 )
Iy
where
=06/ 1o ,
Lo= —00/ 1o
—06/ko
ab ba
- dilf +b dir b b
a a C C .
| /i ~Jdin~ Jair + dir |3
C C
+fa5 —fén
ot
= —abq}
-0
ab ba
~Jdig ";fdiff , ,
a a C Ci .
+ | S it~ fdiee +fdibff ;
C Ci
+fdia —Idim
o3
bob
r? - g 72 )
a3
O.awa,ya
I's= o%wby8 ;
chC’yc

(2)

®3)

(4)

(5)

(6)

from one direction to the other, while thg andI', matrices
describe the rate at which the direct solar beam is scattered
into the upwelling and downwelling diffuse streams. The mi-
nus signs in front of the matrices on the top row of (2) ase
due to this line corresponding to upwelling radiation, lnet t
vertical coordinate increasing downward.

The symbols in (3) to (6) have the following meanings.
The extinction coefficient to diffuse radiation of regigris
denoteds’, anday is the same but for direct radiation. The
distinction between the two permits the flexibility to repre
sent leaves with a preferred orientation. The cosine of the
solar zenith angle is denoted while the single-scattering
albedo isw. The coefficientsy;—y4 govern the exchange of
radiation between the three streams. Finally, the coefiisie.

78 and f7%. represent the rate at which direct and diffuse ra-
diation, respectively, is transferred from regipto regionk.
All these symbols are defined in terms of physical properties
of the scene in the next section.

2.3 Coefficients in the two-stream equations a5

The matrix form of the two-stream equations in section 2.2
introduced several coefficients that are themselves fonsti

of more fundamental optical or geometric properties. The
~v1—y4 coefficients may be written as (Meador and Weaver,
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1980): number such that a horizontal slice through the sub-canopy
layer intercepts a normalized total trunk perimeter (pet un
7 =[1-wl-p)]/m; (7)  area of regior) of L,, then by analogy with (15) and (16),
Yo =wpB/p; (8)  the diffuse and direct extinction coefficients are given by
v3 = Bo; 9) o=1L/(2c); A7) =
s 74 =1- P, (10) 5y = Ly tan(6p)/ (xc°). (18)

wheres and g, are the ‘upscatter’ fractions, the fractions of For simplicity we assume the trunks to be Lambertian reflec-
downwelling radiation (in the diffuse and direct streams re tors, in which casev is simply the trunk albedo, and with
spectively) that are scattered upward, andis the cosine  no preference for upward or downward scattering we have

of the effective zenith angle of diffuse radiation. For tee r 3= o =1/2. 55
1 mainder of this paper we assume the diffuse radiation to be Now that the problem has been formulated mathemati-
hemispherically isotropic, s@; = 1/2. cally, we can explain how the assumption that the tree crowns

In the simplest case where leaves are assumed to be raare randomly distributed is implicitly encoded in the equa-
domly oriented, the optical depth of a region is equal to halftions. At any given height in the canopy layer, the probabil-
its LAI, and therefore for a layer of thicknegsz, the extinc- ity of direct radiation in the clear region intercepting aer e

s tion coefficients to direct and diffuse radiation are the sam crown, per unit distance travelled verticallyfig’. This fac-

and are given by tor is constant in the canopy layer. Therefore, for direet ra
diation emerging unscattered from the edge of a tree crown
o =09 =LAI/(2Az). (112) into the clear region, the fraction of that light remainimg i

. . _ . the clear region rather than having encountered another dre
Assuming the leaves to be bi-Lambertian scatterers with reyaries in proportion taexp(—f4¢2), wherez is the verti-
i~/

flectancer and transmittance, the single scattering albedo ca| distance travelled in the clear region (assuming no ab-
is given by sorption or scattering, and that the light remains withia th
canopy layer). To express this in terms of horizontal distan
x, we use (16) and recognize thain(6y) = x/~ to obtain
exp[—xL /(mc®)]. This implies that the chord lengths be-
tween the edges of tree crowns in all possible horizontal di-
B=1/24 m(r—1t)/(3w); (13) rections also follow the same exponential distributionioith

in turn defines the spatial distribution of trees as random.
Bo=1/2+ po(r —t)/(3w). (14)

These last two formulas may be derived by equating (8) and2
(9) with the definitions given in the lowest row of Table 4 The length of the vegetation—clear bounddr/, is the fun-
of Pinty et al. (2006). Pinty et al. (2006) also provided more damental property used by SPARTACUS to characterize the
general expressions for leaves with a preferential alignime importance of lateral radiative exchange between clear and
The rates of lateral exchange of radiation between regiongegetated regions. It is therefore the quantity that wodd i
that appear in (3) and (4) may be derived from geometricalally be measured in field experiments. However, in the cen-
arguments (Hogan and Shonk, 2013; Schafer et al., 2016) agext of weather and climate modelling, the physiographic
variable available would most likely be vegetation cowgr

2

<]

w=r-+t, (12)

and the upscatter fractions by

.4 Parameterizing the vegetation perimeter length 75

2!

a

3

S

i =LY /(2¢); (15) (e.g. from the measurements of Hansen et al., 2003)Lahd
1 = LY tan(bp)/(nc), (16)  would need to be parameterized as a function,ofl his can

be done by introducing an extra parameter representingsthe
whered, is the solar zenith angld,”? is the length of the in-  characteristic size of a tree crown that is independent, of
s terface between regiongnd; per unit area of the horizontal We now present two possible characteristic sizes that could
domain, and is the fractional area of the domain covered be used.
by regioni. In them = 3 case we have two regions to repre-  In the first case, we define tleffective tree diameter, D, to
sent horizontal heterogeneity of zenith optical depth,faihd  be the diameter of identical, cylindrical aptlysically sep- «
lowing the findings of Shonk and Hogan (2008) we assumearated tree crowns in an idealized forest with the safifé
«© them to be of equal area, i€.= c° = ¢, /2 andc® = 1 — ¢, andc, as the real forest. The assumption that tree crowns
(wherec, is the fractional coverage of vegetation). This leadsdo not touch was used by Widlowski et al (2011) in gener-
to f5¢ = f52 and fi = f5%. ating the idealized scenes that we use in section 3 to evalu-
Lastly in this section, we consider how to represent theate SPARTACUS. The phenomenon of the crowns of some
effect of vertical tree trunks in region of the sub-canopy tree species remaining separate even for large tree cover is
s layer (as illustrated in Fig. 1). If the trunks are of a sizelan known ascrown shyness (e.g. Putz et al., 1984). In analogy
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to the concept of an effective cloud diameter by Jensen et alwhere (22) states that the upwelling irradiance exiting the

(2008), this leads to the definition

L% =4c¢,/D. (19)

If region ¢ represents the central core of the tree crowns, a
depicted in Fig. 1, then this impligs’® = L /+/2.

In the second case we assume that tree crowns can tou
each other, and will do so increasingly in dense forestss Thi
behaviour is represented by defining effective tree scale,

S, such that

o

10 Lab:4cv(1—cv)/5. (20)
This form is inspired by the idealized geometrical analy-
sis of Morcrette (2012): if we place idealized trees with a
square footprint measuring x .S randomly on a grid, then
on average the normalized perimeter lengt# will follow
(20). It leads to the behaviour th&f® increases with,, up
to ¢, = 1/2, but for further increases in,, crown touching
dominates which causds' to reduce again.

In the field we would envisage measurifg’ andc, and
then using (19) and (20) to infép andS. The characteris-
tic size that varies least witty, would then be the one best

1

o

2

<]

suited for use in a weather or climate model, and potentially

a constant characteristic size could be used to charaegamniz
entire forest on a regional scale. Within individual grictbe
of the model, it would be used to comptit&’ from ¢, using
either (19) or (20).

2!

o

2.5 Solution to equations within one layer

We may write the solution to (1) in terms of a matrix expo-
nential (Waterman, 1981; Hogan et al., 2016): the irradéanc
at the base of a layer of thickneds: are related to the irra-
diances at the top of the layer via

3

S

u
\4

u
\%
S

=exp(T'Az) , (21

zZ=z

)

z=z+Az

where the matrix exponential may be computed numeri-
cally using the scaling and squaring method (e.g. Higham

2005). If 3D radiative transfer is neglected th¢pg =

3!

a

(Meador and Weaver, 1980). Conversely, if scattering an
absorption are ignored but 3D radiative transfer is rethine
a reasonable assumption in the sub-canopy layer, édhen
40
computationally cheaper solution given in the appendix.
In order to compute the irradiance profile, we wish to work
with expressions of the following form:

u(z) = Tu(z + Az) + Rv(z) + STs(2);
s v(z+Az)=Tv(z) + Ru(z+ Az) + S s(z),

(22)
(23)

fair =0, which decouples the equations to the extent that

a computationally cheaper analytical solution is posmblego Hogan et al. (2016), in order to facilitate integrationhiri

oo = 0, which also decouples the equations and leads to th

top of the layer is equal to transmission of the upwelling
irradiance entering the base of the layer, plus reflection of
the downwelling irradiance entering the top of the layauspl
scattering of the direct solar irradiance entering the fadp® so

Sfayer; and similarly for (23). Figure 1 illustrates the mizan

f the elements of the diffuse reflectance mafRixfor the
nopy layer:

Raa Rba Rca
R=|( R® R" R |, (24)
Rac Rbc Re¢

where R¥ is the fraction of diffuse downwelling radiations
entering the top of region that is scattered out of the top
of regionj without exiting the base of the layer. The other
matrices have analogous definitioA3represents the trans-
mission of diffuse radiation across the layer, &dandS—
represent the scattering of radiation from the direct down-
welling stream at the top of the layer to the diffuse upwellin
stream at the top of the layer and the diffuse downwelling
stream at the base of the layer, respectively.

These matrices may be derived from the matrix exponen-
tial, which we decompose into sevenx m matrices:

65

Euu E’U.’U E’U.S
exp(TAz)=| E,, E,, E. (25)
Eo
It was shown by Hogan et al. (2016) that
R=-E_,Ey; (26)
T=E,,R+E,; (27)
St =-E_ 'E,; (28) o
S™ =E,.S" +E.. (29)

Moreover, the direct irradiance exiting the base of a layer
is computed from the direct irradiance entering the top of a
layer vias(z + Az) = Egs(z).

2.6 Extension to multiple layers

75

To compute the irradiance profile we use the adding method
(Lacis and Hansen, 1974) but in a somewhat different form

a full atmospheric radiation scheme. This section consider
the first part: stepping up through the vegetation layers-cam
uting the albedo of the scene below each layer interface.
e define the matriA; ., /» as the albedo to diffuse down-
welling radiation of the scene below interfate- 1/2 (in-
cluding the surface contribution), and the mafid, , ,, as
the albedo to direct radiation. The off-diagonal terms et
matrices represent the fraction of radiation downwelling i
one region that is reflected back into the other. At the serfac
(interfacen + 1/2 for ann-layer description of the canopy),
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these matrices are diagonal: 2.7 Computing irradiances within the canopy

a
diff b After running the atmospheric part of the radiation scheme,
Anti/z = dift . ’ (30) we proceed down through the vegetation to compute the di-
Cdift rect and diffuse irradiances at each interface, ending theat
iy surface. The output from the atmospheric radiation caicula
D172 = po ok, ; (31)  tion includes the downwelling direct and diffuse irradiaac
g, at the top of the canopy, /> andv, /. These are partitioned
where for maximum flexibility we allow for separate direct INto componentirradiances at the top of each region accord-
and diffuse surface albedos, and separate albedos belbw eald t0 the area fraction of each region:
region to represent lower snow cover beneath trees.

We then use the adding method to compatendD just ~ S1/2 = $1/2C; (37) =
below the interface above, accounting for the possibility o Vi/2 = v1/2€. (38)
multiple scattering. In the case of the diffuse albedo matri ) o .
we have The directirradiance is propagated down through the vegeta

) tion simply with
A1 =Ri+ T [I+A 1R+ (A1 0R:) + -]

X Ai112T5, (32) Sit1/2 = Eoisi—1/2- (39)

wherel is them x m identity matrix. This equation states Thg giffuse irradiances at the interface beneath satisfy <
that the albedo at interfade- 1/2 is equal to the reflection

of layeri, plus the albedo at interfage- 1/2 accounting for
the two-way transmission through the intervening layee Th
term in square brackets accounts for multiple scattering be ¥i+1/2 =
tween interface+1/2 and layer;, and since it is a geometric
series of matrices, the equation reduces to

Wip1/2 = Ai+1/2vi+1/2 + Di+1/2si+1/2§ (40)
Tivi12 +Riwi11/0 +8;8i-1/2- (41)

Eliminatingu; 1, /» yields

—1 —1
Ai*l/Z - Rl + Tl (I - Ai+1/2Ri) Ai+1/2Ti- (33) Vi+1/2 - (I - RiAi+1/2)
Similarly, the direct albedo matrix at the interface abawe i X (Tivi_1/2+ RiDit1/28it1/2+S;si_1/2) - 65
given by (42)
—1
D, 15=S+T;(I-A;12R;) Thus, application of (42) followed by (40) provides the irra
X (Diy1/2E0; + Ai+1/QSi_) 7 (34) diances at the interface below.

) . The horizontally averaged upwelling diffuse, downwelling
whereD; ., /,Eo; represents the direct radiation that passesyitse and downwelling direct irradiances at interface

down through layef without being scattered and is then re- 1/2, denotedu, 1/, vi11/2 and s, 1,2, respectively, are
flected up from interface+1/2, while A, /»S;” represents found by simply summing the elements af 1 /2, vi 1,2
direct radiation that is scattered into the downward défus ands; . The total downwelling irradiance is then the sum
stream in layef and then reflected up from interface 1/2. of the direct and diffuse component:, ; j» = iosi 1,2 +

For the two-layer description of the vegetation shown in Fig vis1/2. The solar absorption by each layer is the difference
1, (33) and (34) are applied first at interface 1.5 (between th j, et jrradiance between the interface above and belowsit.
canopy and the sub-canopy layers) and then at interface 0-ppese definitions are used to compute normalized quantities

l(the top of the canopy). Itis straightforward to add additib 1, ¢ il be used to evaluate SPARTACUS in section 3.
ayers.

At this point we are able to compute the scalar ‘scene
albedos’ of the surface and the vegetation. Denotirg 3 Results

(e ¢ )" as a column vector containing the area o
fractions of each region, the scene albedos to diffuse and diT0 test the application of the SPARTACUS methodology to

rect radiation are the vegetation problem, we use two 3D scenarios from the
- RAMI4PILPS! intercomparison exercise (Widlowski et al,

Qdiff scene = € A /2C; (35) 2011). The first scenario is an idealized representatiomof a

Qdir.scene = €1 Dy /2C. (36) open forest canopy, and consists of spheres of leafy vegeta-

When implementing the scheme described in this paper in thélon of diameter 10 m, while the second represents shrubland

radiation scheme of a weather or climate model, these albe- 1ram is the Radiation Transfer Model Intercomparison, and
dos would be used as the boundary conditions for the compILPS is the Project for Intercomparison of Land surfaceafar
putation of the irradiance profile through the atmosphere. terization Schemes.
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Table 1. Variables describing the geometry of ‘Open forest’ and t®hend’ RAMI4PILPS scenarios simulated in this paper (see
Widlowski et al, 2011). The Leaf Area Index of a vegetatedargs defined as the total leaf surface area divided by thend@sd projected

area of the region.

Variable Symbol Openforest  Shrubland
Leaf Area Index of vegetated region LAI 5 25

Area fraction of vegetated region Co 0.1,0.3,05 0.1,0.2,04
Effective tree diameter D 10m 1m
Canopy layer depth Az 10m 1m
Sub-canopy layer depth Az 4m 0.01lm

Table 2. Variables describing the optical properties of the leavesIt can be seen that the 3-region version of SPARTACUS

and the surface in the visible and near-infrared in the RAMI4PS
cases (see Widlowski et al, 2011).

Variable Symbol Visible Near-infrared
Leaf reflectance r 0.0735 0.3912
Leaf transmittance t 0.0566 0.4146
Snow-free surface albedo auyeq 0.1217 0.2142
Snow albedo Qlsnow 0.9640 0.5568

compares well to Monte Carlo, including all four combina-
tions of high- and low-reflectance leaves over a high- or low-
reflectance surface. In total we have 72 points of comparison
with Monte Carlo calculations: two scenarios, two spectsal
intervals, two surface types, three vegetation coverslaeet
solar zenith angles. Treating the Monte Carlo as ‘truth’, we
compute that the root-mean-squared erroRifl” and A is
0.020, 0.038 and 0.033, respectively. Probably the wonse pe
formance occurs for low solar zenith angle in Fig. 2f (corre-
sponding to visible radiation illuminating a scene withesetr

and consists of spheres of diameter 1 m. Details are providegover of 0.5 over snow)4 is overestimated by around 0.05
in Table 1, including the three different area coverages ofsuggesting that a little too much reflected sunlight from the
vegetation that are used. Two spectral intervals are stedjla Show enters the tree crowns and is absorbed.

representing the photosynthetically-active visible oegind

We next investigate how the results are degraded whenws-

s the near-infrared, and both snow-free and snow-covered suing & more approximate description of the scene. Each panel
faces are considered. Table 2 lists the optical properfies 00f Figs. 2-5 includes two further lines. The ‘homogeneous’

the leaves and the surfaces in the two spectral intervals.

calculation uses the same SPARTACUS code but with only

All combinations have been simulated using the three-One region, treating the canopy as a single horizontally ho-
region (n = 3) version of SPARTACUS. The two vegetated mogeneous layer with the same leaf area index. This is essen-
« regions b andc) are of equal projected area and are config-tially the same as the Sellers (1985) assumption and indeed
ured to approximate the distribution of zenith optical diept With a single region the matrix-exponential method yields

of spheres. So for a sphere of raditygegionc represents
the upper half of the optical depth distribution corresgngd

the same result as the Meador and Weaver (1980) solution.
We see immediately that when the leaves are not clumped

to a core of radiug/\/i projected down through the Sphere, into trees but rather distributed Uniformly, their eXpCBtur 55

15 Which containsl — 2-3/2, or 65%, of its volume. Likewise,

incoming radiation is maximized and their absorptance is

regionb represents the lower half of the distribution corre- overestimated by up to 0.3. Conversely, both the reflectance

sponding to the remaining shell, and this containg/?, or

and transmittance of the scene are underestimated, with the

35%, of the volume of the Sphere_ Therefore, if the meanlargest error in reflectance for overhead sun and a snow-
optical depth of the sphere & the mean optical depths of covered surface (Fig. 2e). %

2 regionsh andc are0.7§ and1.39, respectively.

The 2-region SPARTACUS calculation shown in Figs. 2—

Figure 2 shows the results for the open forest canopyp treats individual trees as horizontally homogeneouseyli
in the visible part of the spectrum while Fig. 3 shows the ders, thereby neglecting the variation in zenith opticgitbde
same but for the near-infrared. The corresponding resuits f Of the spherical trees simulated by the Monte Carlo calcu-
the shrubland scenario are shown Figs. 4 and 5. Using théations. The results are much better than those with just a

» domain-mean irradiances defined in section 2.7, the quantisingle region, and virtually the same as the 3-region calcu-

ties shown are reflectand®, transmittancel” and absorp-
tanceA:

R= U1/2/d1/2; (43)
T= dn+1/2/d1/2; (44)
0 A= (d1/2 — U2 —dpg1/2 + Un+1/2) [di/2- (45)

lation in the near infrared, but absorption still tends to be
overestimated in the visible. An analogous bias occurs in
cloudy radiative transfer calculations in which the intdrn
variability of clouds is neglected, which led to the prodosa
of Shonk and Hogan (2008) to use three regions to repre-
sent a partially cloudy scene. The success of the 3-region ap
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(a) VIS, a=0.1217, c,=0.1 (b) VIS, 0=0.1217, c,=0.3 (c) VIS, a=0.1217, ¢,=0.5
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Figure 2. Comparison of normalized irradiances versus solar zenigtegfor the RAMI4PILPS ‘Open forest canopy’ scenario witftioal
properties appropriate for visible radiation. The two ravfpanels show results for different surface albedeswith the top row using
values appropriate for a snow-free surface and the bottemusing values for a snow-covered surface. The columns septalifferent
areal tree fractionsc(). The three solid lines depict the reflectance, transnuttand absorptance defined in (43), (44) and (45), computed
using the 3-region version of SPARTACUS. The dashed andidsiied lines depict the 2-region and 1-region SPARTACU&uGions,
respectively, where the latter involves complete horiabnbmogenization of the vegetation properties througtdtreain. Also shown are
the corresponding Monte Carlo calculations of Widlowskale2011) at solar zenith angles of 260 and 83.

proach suggests that it is also useful for vegetation. Havin on the SPARTACUS algorithm for representing the 3D radia-
said this, the uncertainty in computing radiative trangifier  tive effects of clouds (Hogan et al., 2016). The two-stream
vegetation canopies of weather and climate models is typiequations are written down for the tree crown and the gaps
cally dominated by uncertainties in leaf area index. There-between them, but with additional terms for the horizontal
s fore, for many applications the 2-region calculation would exchange of radiation between regions. The equations are
be adequate. Since the computational cost of SPARTACUSolved exactly using the matrix exponential method. Migtipo
is dominated by the matrix exponential calculation, whoselayers are possible, although we have simplified the origina
cost is approximately proportional ta3, we would expecta SPARTACUS algorithm by assuming maximum overlap be-
2-region SPARTACUS calculation to be at least 3 times fasteitween the regions in each layer, rather than the arbitragy-ov
10 than a 3-region calculation. lap considered by Hogan et al. (2016). Comparison against
Monte Carlo calculations from the RAMI4PILPS intercons
parison exercise indicates that canopy reflectance, tigdnsm
tance and absorptance are computed significantly more ac-
curately than a number of state-of-the-art models assessed
This paper has demonstrated the potential for the intemacti by Loew et al. (2014).
of solar radiation and complex vegetation canopies to be rep An advantage of the SPARTACUS approach is that in ad-
resented via an explicit description of the geometry, ingd  dition to LAI, only a handful of physiographic variables are

4 Discussion and conclusions
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(a) NIR, 0=0.2142, c,=0.1 (b) NIR, 0=0.2142, ¢,=0.3 (c) NIR, a=0.2142, c,=0.5
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Figure 3. As Fig. 2 but with optical properties appropriate for ne#rared radiation.

required to describe the geometry of the vegetation, such asf more accurate LAl retrievals via explicit treatment of 3D
the vegetation height, coverage, and the diameter of tiypicaradiative effects, this would provide a consistent framewo
tree crowns. Global estimates of the first two are now avail-for both remote sensing and weather/climate modelling. The
able from satellites (e.g., Simard et al., 2011; Hansen et al challenge would be to adapt SPARTACUS to compute solar
s 2003). radiances rather than irradiances, which adds an extraeegr
Although the testing scenarios used in this papers weref geometrical complexity. For example, trees cast shadows
simple homogeneous spheres with no woody material, then the ground, but the extent to which shadows are visible
method described has the capability to represent more conto a satellite depends on the sensor zenith angle and the;az-
plex geometries. Horizontal variations in leaf densityreet  imuthal separation of the sensor and the sun.
10 crowns with different properties may be represented via two
or more vegetated regions with distinct optical properties
This paper considered a two-layer description of the vegeta
tion, with a single canopy layer overlying a sub-canopy taye
but the equations can easily be applied to a multi-layer de-
15 scription of the canopy, for example to compute the verticalCode availability
profile of absorbed photosynthetically active radiationeT
optical effects of tree trunks may also be incorporated.eMor
over, the good performance with solar radiation suggests th
the thermal-infrared version of SPARTACUS (Schéfer et al.
20 2016) could also be adapted to the vegetation problem.
A further possible extension to SPARTACUS would be
to use it for remote sensing; in addition to the possibility

A Matlab implementation of the algorithm is freely availabl
from http://www.met.reading.ac.uk/clouds/spartacusd an
'Zenodo (doi:10.5281/zenodo0.1100534). It was usedsto
produce Figs. 2-5. Work is in progress to implement the
algorithm in the ‘ecRad’ atmospheric radiation scheme
(Hogan and Bozzo, 2016).
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(a) VIS, a=0.1217, c,=0.1 (b) VIS, 0=0.1217, c,=0.2 (c) VIS, a=0.1217, c,=0.4
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Figure 4. As Fig. 2 but for the RAMI4PILPS ‘Shrubland’ scenario.
Appendix A: Faster treatment of clear layers the form
Ca C(L a
The main role of.the sub-panopy layer is to represent.howAnil/2 ~l e o, (A1)
much of the sunlight passing down between the trees is re- &

flected back up into the base of a tree crown, i.e. the off-

- diagonal elements ok, > andD,,_, j». Since the matrix  \pereq—— is the domain-averaged surface albedo to diffuse
exponential accounts for most of the cost of the scheme, 'fradiation. The direct albedD,, _; » has a similar form. ”
we can accelerate or approximate the treatment of the sub- For sub-canopy layers with a depth between these two ex-
canopy layer in a way that avoids the full matrix-expondntia y.o e \ve seek to optimize the calculation of the matrix ex-
calculation in this layer then we can almost halve the OVer'ponentiaI. The lack of scattering means thatFhe T's and

1 all computational cost. This is only possible if we assUmer  guh-matrices contain only zeros, afcbecomes block-
that the sub-canopy layer contains no absorbers or Sda‘tterediagonal. This enables the exponential Gia x 3m matrix s
(0 =00 =0), i.e. tree trunks and understory vegetation aréy, o renjaced by three: x m matrix-exponential calcula-
neglected. _ tions, only two of which are needefy, = exp(I'yAz) and

There are wo .e.xtreme scenarios that I,ea‘AmU? and E,, = exp(T'1Az). Since there is no scattering in the sub-
1s D,,_1 /5 having trivial forms. For shrubs with a very shallow canopy layer, the matricaR, S+ andS~ contain only ze-
sub-canopy layer, the lateral transport between the regibn ros. Therefore, (27) simplifies 6 — E,,, and (33) and (34)s
this layer is zero, leading to albedo matrices at the interfa simplify to
between the canopy and sub-canopy layer being equal to the
values at the surface given by (35) and (36). For a very dee

2 sub-canopy layer, thgradiati{)g fi?ald be(ne;th the canyopy igA"’l/z = TuAni1/2To; (A2)

randomized horizontally, leading to the diffuse albedahgv Dy1/2 = TnDng1/2Eon. (A3)
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(a) NIR, 0=0.2142, c,=0.1 (b) NIR, 0=0.2142, ¢,=0.2 (c) NIR, a=0.2142, c,=0.4
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Figure 5. As Fig. 4 but with optical properties appropriate for ne#rared radiation.

Moreover, by approximating the extinction coefficients as where the two non-zero eigenvalues are

zero, we see from (3) and (4) thRt andT'; have simpler
forms whose matrix exponentials can be derived analygicall A = —(a+b+2¢)/2=£(a’+b%+4c* +2ab—4ac)'/?/2, (A8) 1

In them = 2 case these matrices have the form

o= (). (a)

and the matrix of eigenvectors is

b/(a+ M) b/(a+X2) bla
V= 1 1 1. (A9)

for which the matrix exponential is given by Putzer’s algo-
P given by g /et M) oflc+r) 1

rithm as
/A 1— e—(a+b)Az
exp (I'Az) =1+ ars (A5) Acknowledgements. We thank Jean-Luc Widlowski for providing

Likewise in them — 3 th i h the f the Monte Carlo results. TQ’s contribution was funded by the
IKewiSe In theém = 5 case these matrices have the form National Centre for Earth Observation. RB was supported by a

—a b 0 scholarship from the Brazilian ‘Science without Bordersdgram
oI = a —b—c ¢ |, (A6) (grant number 9549-13-7), financed by_ CAPES, the BraziliadrF_
0 c ¢ eral Agency for Support and Evaluation of Graduate Edunatio
within the Ministry of Education of Brazil.

for which the matrix exponential may be computed by the

diagonalization method as
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