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Abstract. A fast scheme is described to compute the 3D
interaction of solar radiation with vegetation canopies. The
canopy is split in the horizontal plane into one clear region
and one or more vegetated regions, and the two-stream equa-
tions are used for each, but with additional terms representing5

lateral exchange of radiation between regions that are propor-
tional to the area of the interface between them. The resulting
coupled set of ordinary differential equations is solved us-
ing the matrix-exponential method. The scheme is compared
to solar Monte Carlo calculations for idealized scenes from10

the ‘RAMI4PILPS’ intercomparison project, for open forest
canopies and shrublands both with and without snow on the
ground. Agreement is good in both the visible and infrared:
for the cases compared, the root-mean-squared difference in
reflectance, transmittance and canopy absorptance is 0.020,15

0.038 and 0.033, respectively. The technique has potential
application to weather and climate modelling.

1 Introduction

The treatment of the interaction of vegetation with solar ra-
diation in weather and climate models varies greatly in com-20

plexity. The simplest schemes are concerned only with sur-
face albedo and its impact on near-surface temperature fore-
casts, and indeed Viterbo and Betts (1999) reported a large
improvement in forecasts by the ECMWF model when the
use of a fixed snow albedo was modified to account for the25

much lower albedo that occurs when snow falls in forested
areas. Much more sophisticated treatments are used in the
dynamic vegetation schemes of many climate models, which
need to calculate also the fraction of absorbed photosyn-
thetically active radiation (faPAR). But it was reported by30

Loew et al. (2014) that even state-of-the-art models, when

evaluated in benchmarks for which a full physical description
of the vegetation was available, had worst-case albedo errors
in excess of 0.3. The challenge is to represent the complex 3D
structure of vegetation canopies with a radiative transferal- 35

gorithm that is nonetheless computationally efficient enough
to use in a global model.

Sellers (1985) took the two-stream equations used in at-
mospheric radiative transfer and applied them to a vegetation
canopy. In this approach, the vegetation is treated as a sin-40

gle horizontally homogeneous layer, and a set of three cou-
pled ordinary differential equations are solved for the direct
downwelling irradiance and the downwelling and upwelling
diffuse irradiances. If the leaves can be assumed randomly
oriented then the optical depth of the layer is equal to half the 45

leaf area index (LAI). Meador and Weaver (1980) provided
an analytic solution to these equations that is still used ina
number of state-of-the-art surface energy exchange schemes
(e.g., Best et al., 2011). The first-order error that arises is due
to the fact that vegetation canopies are not homogeneous:50

the heterogeneous distribution of leaves within a tree crown
and crowns within a forest stand is such that leaves are more
likely to be shadowed by other leaves than if they were ho-
mogeneously distributed. Typically this is treated by intro-
ducing a ‘clumping factor’ that scales down the LAI used55

in the two-stream scheme. A very similar approach has pre-
viously been used in atmospheric radiation schemes to treat
the clumpiness of clouds (Tiedtke, 1996). The clumping fac-
tor for vegetation is typically parameterized as an empirical
function of properties of the vegetation and solar zenith an- 60

gle (e.g., Ni-Meister et al., 2010), but this lacks a physical
basis and fails to represent horizontal fluxes into and out of
individual tree crowns.

Pinty et al. (2006) described one of the most sophisticated
yet affordable schemes to date that attempts to overcome65
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these limitations. Their scheme sums three terms: the reflec-
tion from the vegetation assuming a black underlying sur-
face, the reflection from the surface assuming no interaction
with the vegetation, and a term representing interactions be-
tween the surface and the vegetation. Despite much improved5

performance compared to the Sellers (1985) scheme, their
approach still uses an empirical clumping factor, and is un-
derpinned by the Meador and Weaver (1980) solution that as-
sumes horizontally homogeneous vegetation.

In this paper we exploit recent advances in the atmospheric10

literature, and adapt the ‘SPARTACUS’ (SPeedy Algorithm
for Radiative Transfer through CloUd Sides) method of
Hogan et al. (2016) to the vegetation problem. As described
in section 2, this approach employs an explicit description
of the horizontal distribution of vegetation for which we can15

write down a modified version of the two-stream equations
that includes terms for lateral radiation exchange between
tree crowns and the clear regions between them. The equa-
tions are then solved exactly using the matrix-exponential
method. This avoids the need for an empirical clumping fac-20

tor or the Meador and Weaver (1980) solution. In section 3 it
is compared to Monte Carlo calculations in idealized forest
and shrubland conditions.

2 Method

2.1 Overview25

We use a simple geometrical description of the problem, as
shown in Fig. 1. Leafy vegetation is assumed to occupy a
single constant-thickness ‘canopy layer’, with the horizontal
domain (corresponding to a weather- or climate-model grid-
box) divided intom ‘regions’. Within an individual region,30

the optical properties of the atmosphere and any vegetation
are assumed horizontally and vertically homogeneous. Fig-
ure 1 considers three regions: one clear (denoteda) and two
vegetated (denotedb andc). The use of two vegetated regions
adds the flexibility to represent horizontally heterogeneous35

tree crowns and trees of differing leaf density, borrowing the
idea of Shonk and Hogan (2008) for representing cloud het-
erogeneity. In section 3 we compare this to a simpler two-
region approach with only one vegetated region (denotedb).
While the tree crowns are depicted in Fig. 1 as cylinders, this40

is not explicitly assumed; rather, we assume that (1) all az-
imuthal orientations of the interface between the clear and
vegetated regions are equally likely, and (2) the tree crowns
are randomly distributed. To represent forests with a signifi-
cant separation between the ground and the base of the tree45

crowns, an additional ‘sub-canopy layer’ may be added, also
divided intom regions (see Fig. 1). Thus we require as a min-
imum just four numbers to define the geometry of the prob-
lem: the fractional area of the domain covered by vegetation,
cv, the vertical depth of the canopy layer,∆z1, the vertical50

depth of the sub-canopy layer,∆z2 (which may be zero), and

the length of the interface between the clear and vegetated
regions per unit area of the domain,Lab. Note that although
this paper considers only up to two layers and three regions,
which is an appropriate level of complexity for a weather or55

climate model, for other applications additional layers and
regions may be added. This would enable the representation
of different types of vegetation of different heights, or vege-
tation in the understory.

In the SPARTACUS method, the two-stream differential60

equations are used in each region, but with additional terms
representing lateral radiation transport between regions. The
formulation of these equations is given in section 2.2, with
the coefficients to be used in the case of vegetation defined in
section 2.3. Section 2.4 then outlines how theLab term could 65

be parameterized in a model. Section 2.5 describes how the
equations are solved for a single layer using matrix exponen-
tials, and section 2.6 describes the use of the adding method
to compute the direct and diffuse albedos of the entire scene
(vegetation and the surface beneath it). In the context of a70

weather or climate model, this could be done for the same
spectral intervals as the atmospheric radiation scheme, orin
the smaller number of broader spectral intervals for which
optical properties of the vegetation and surface are defined.
These albedos would then be used as boundary conditions for75

the calculation of the radiative flux profile in the atmosphere
above. The downwelling direct and diffuse irradiances out-
put from the atmospheric radiation scheme are then used in
section 2.7 to compute the irradiance profile within the veg-
etation canopy, enabling the absorbed and transmitted radia- 80

tion to be computed. The appendix describes how the scheme
may be made computationally faster by optimizing the treat-
ment of the sub-canopy layer.

2.2 Differential two-stream equations in matrix form

This section summarizes the theoretical background to85

SPARTACUS that was introduced by Hogan et al. (2016).
Solar radiation in a particular spectral interval is described by
three streams: the diffuse upwelling irradiance (u), the dif-
fuse downwelling irradiance (v) and the direct downwelling
irradiance (s), whereu andv are irradiances into a horizon-90

tal plane whiles is into a plane oriented perpendicular to the
sun. At any given height, these are column vectors containing
the irradiances inm regions; in the equations that follow we
usem= 3 to match the schematic shown in Fig. 1, but it is
straightforward to reduce to two regions. Thus for upwelling 95

irradiance we haveu=
(

ua ub uc
)T

, where each irra-
diance component is defined as the radiative power divided
by the area of the entire gridbox, such that the domain-mean
irradiance is obtained by summing the elements of the vector.
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Figure 1. Schematic of the idealized vegetation considered in this paper, illustrating the meanings of Layers 1 and 2 and Regionsa, b andc.
The diagram on the right also illustrates the interpretation of the elements of the reflectance matrixR given in (24).

The two-stream equations form a set of coupled differen-
tial equations that can be written in matrix form as

d

dz





u

v

s



= Γ





u

v

s



 , (1)

wherez is height measureddownward from the top of the
layer, andΓ is a matrix describing the interactions between5

irradiance components and between different regions. It is
convenient to partition it into a set ofm×m component ma-
trices as follows:

Γ=





−Γ1 −Γ2 −Γ3

Γ2 Γ1 Γ4

Γ0



 , (2)

where10

Γ0 =





−σa
0/µ0

−σb
0/µ0

−σc
0/µ0





+





−fab
dir +f ba

dir

+fab
dir −f ba

dir− f bc
dir +f cb

dir

+f bc
dir −f cb

dir



 ; (3)

Γ1 =





−σaγa
1

−σbγb
1

−σcγc
1





+





−fab
diff +f ba

diff

+fab
diff −f ba

diff − f bc
diff +f cb

diff

+f bc
diff −f cb

diff



 ; (4)

15

Γ2 =





σaγa
2

σbγb
2

σcγc
2



 ; (5)

Γ3 =





σaωaγa
3

σbωbγb
3

σcωcγc
3



 , (6)

andΓ4 is the same asΓ3 but using the quantityγ4 in place
of γ3. Missing entries in all these matrices are taken to be
zero. TheΓ0 andΓ1 matrices describe the rate at which20

the direct and diffuse downwelling irradiances, respectively,
change along their path. They are expressed in (3) and (4) as
the sum of two matrices: the first matrix in each case repre-
sents losses due to scattering and absorption, while the sec-
ond represents exchange of radiation between regions. The25

Γ2 matrix describes the rate of scattering of diffuse radiation
from one direction to the other, while theΓ3 andΓ4 matrices
describe the rate at which the direct solar beam is scattered
into the upwelling and downwelling diffuse streams. The mi-
nus signs in front of the matrices on the top row of (2) are30

due to this line corresponding to upwelling radiation, but the
vertical coordinate increasing downward.

The symbols in (3) to (6) have the following meanings.
The extinction coefficient to diffuse radiation of regionj is
denotedσj , andσj

0 is the same but for direct radiation. The35

distinction between the two permits the flexibility to repre-
sent leaves with a preferred orientation. The cosine of the
solar zenith angle is denotedµ0 while the single-scattering
albedo isω. The coefficientsγ1–γ4 govern the exchange of
radiation between the three streams. Finally, the coefficients 40

f jk
dir andf jk

diff represent the rate at which direct and diffuse ra-
diation, respectively, is transferred from regionj to regionk.
All these symbols are defined in terms of physical properties
of the scene in the next section.

2.3 Coefficients in the two-stream equations 45

The matrix form of the two-stream equations in section 2.2
introduced several coefficients that are themselves functions
of more fundamental optical or geometric properties. The
γ1–γ4 coefficients may be written as (Meador and Weaver,
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1980):

γ1 = [1−ω(1− β)]/µ1; (7)

γ2 = ωβ/µ1; (8)

γ3 = β0; (9)

γ4 = 1− β0, (10)5

whereβ andβ0 are the ‘upscatter’ fractions, the fractions of
downwelling radiation (in the diffuse and direct streams re-
spectively) that are scattered upward, andµ1 is the cosine
of the effective zenith angle of diffuse radiation. For the re-
mainder of this paper we assume the diffuse radiation to be10

hemispherically isotropic, soµ1 = 1/2.
In the simplest case where leaves are assumed to be ran-

domly oriented, the optical depth of a region is equal to half
its LAI, and therefore for a layer of thickness∆z, the extinc-
tion coefficients to direct and diffuse radiation are the same15

and are given by

σ = σ0 = LAI/(2∆z). (11)

Assuming the leaves to be bi-Lambertian scatterers with re-
flectancer and transmittancet, the single scattering albedo
is given by20

ω = r+ t, (12)

and the upscatter fractions by

β = 1/2+µ1(r− t)/(3ω); (13)

β0 = 1/2+µ0(r− t)/(3ω). (14)

These last two formulas may be derived by equating (8) and25

(9) with the definitions given in the lowest row of Table 4
of Pinty et al. (2006). Pinty et al. (2006) also provided more
general expressions for leaves with a preferential alignment.

The rates of lateral exchange of radiation between regions
that appear in (3) and (4) may be derived from geometrical30

arguments (Hogan and Shonk, 2013; Schäfer et al., 2016) as

f ij
diff = Lij/(2ci); (15)

f ij
dir = Lij tan(θ0)/(πc

i), (16)

whereθ0 is the solar zenith angle,Lij is the length of the in-
terface between regionsi andj per unit area of the horizontal35

domain, andci is the fractional area of the domain covered
by regioni. In them= 3 case we have two regions to repre-
sent horizontal heterogeneity of zenith optical depth, andfol-
lowing the findings of Shonk and Hogan (2008) we assume
them to be of equal area, i.e.cb = cc = cv/2 andca = 1− cv40

(wherecv is the fractional coverage of vegetation). This leads
to f bc

dir = f cb
dir andf bc

diff = f cb
diff .

Lastly in this section, we consider how to represent the
effect of vertical tree trunks in regionc of the sub-canopy
layer (as illustrated in Fig. 1). If the trunks are of a size and45

number such that a horizontal slice through the sub-canopy
layer intercepts a normalized total trunk perimeter (per unit
area of regionc) of Lt, then by analogy with (15) and (16),
the diffuse and direct extinction coefficients are given by

σ = Lt/(2c
c); (17) 50

σ0 = Lt tan(θ0)/(πc
c). (18)

For simplicity we assume the trunks to be Lambertian reflec-
tors, in which caseω is simply the trunk albedo, and with
no preference for upward or downward scattering we have
β = β0 = 1/2. 55

Now that the problem has been formulated mathemati-
cally, we can explain how the assumption that the tree crowns
are randomly distributed is implicitly encoded in the equa-
tions. At any given height in the canopy layer, the probabil-
ity of direct radiation in the clear region intercepting a tree 60

crown, per unit distance travelled vertically, isfab
dir. This fac-

tor is constant in the canopy layer. Therefore, for direct ra-
diation emerging unscattered from the edge of a tree crown
into the clear region, the fraction of that light remaining in
the clear region rather than having encountered another tree 65

varies in proportion toexp(−fab
dirz), wherez is the verti-

cal distance travelled in the clear region (assuming no ab-
sorption or scattering, and that the light remains within the
canopy layer). To express this in terms of horizontal distance
x, we use (16) and recognize thattan(θ0) = x/z to obtain 70

exp[−xLab/(πca)]. This implies that the chord lengths be-
tween the edges of tree crowns in all possible horizontal di-
rections also follow the same exponential distribution, which
in turn defines the spatial distribution of trees as random.

2.4 Parameterizing the vegetation perimeter length 75

The length of the vegetation–clear boundary,Lab, is the fun-
damental property used by SPARTACUS to characterize the
importance of lateral radiative exchange between clear and
vegetated regions. It is therefore the quantity that would ide-
ally be measured in field experiments. However, in the con-80

text of weather and climate modelling, the physiographic
variable available would most likely be vegetation covercv
(e.g. from the measurements of Hansen et al., 2003), andLab

would need to be parameterized as a function ofcv. This can
be done by introducing an extra parameter representing the85

characteristic size of a tree crown that is independent ofcv.
We now present two possible characteristic sizes that could
be used.

In the first case, we define theeffective tree diameter,D, to
be the diameter of identical, cylindrical andphysically sep- 90

arated tree crowns in an idealized forest with the sameLab

and cv as the real forest. The assumption that tree crowns
do not touch was used by Widlowski et al (2011) in gener-
ating the idealized scenes that we use in section 3 to evalu-
ate SPARTACUS. The phenomenon of the crowns of some95

tree species remaining separate even for large tree cover is
known ascrown shyness (e.g. Putz et al., 1984). In analogy
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to the concept of an effective cloud diameter by Jensen et al.
(2008), this leads to the definition

Lab = 4cv/D. (19)

If region c represents the central core of the tree crowns, as
depicted in Fig. 1, then this impliesLbc = Lab/

√
2.5

In the second case we assume that tree crowns can touch
each other, and will do so increasingly in dense forests. This
behaviour is represented by defining aneffective tree scale,
S, such that

Lab = 4cv(1− cv)/S. (20)10

This form is inspired by the idealized geometrical analy-
sis of Morcrette (2012): if we place idealized trees with a
square footprint measuringS×S randomly on a grid, then
on average the normalized perimeter lengthLab will follow
(20). It leads to the behaviour thatLab increases withcv up15

to cv = 1/2, but for further increases incv, crown touching
dominates which causesLab to reduce again.

In the field we would envisage measuringLab andcv and
then using (19) and (20) to inferD andS. The characteris-
tic size that varies least withcv would then be the one best20

suited for use in a weather or climate model, and potentially
a constant characteristic size could be used to characterize an
entire forest on a regional scale. Within individual gridboxes
of the model, it would be used to computeLab from cv using
either (19) or (20).25

2.5 Solution to equations within one layer

We may write the solution to (1) in terms of a matrix expo-
nential (Waterman, 1981; Hogan et al., 2016): the irradiances
at the base of a layer of thickness∆z are related to the irra-
diances at the top of the layer via30





u

v

s





z=z+∆z

= exp(Γ∆z)





u

v

s





z=z

, (21)

where the matrix exponential may be computed numeri-
cally using the scaling and squaring method (e.g. Higham,
2005). If 3D radiative transfer is neglected thenfdiff =
fdir = 0, which decouples the equations to the extent that35

a computationally cheaper analytical solution is possible
(Meador and Weaver, 1980). Conversely, if scattering and
absorption are ignored but 3D radiative transfer is retained,
a reasonable assumption in the sub-canopy layer, thenσ =
σ0 = 0, which also decouples the equations and leads to the40

computationally cheaper solution given in the appendix.
In order to compute the irradiance profile, we wish to work

with expressions of the following form:

u(z) =Tu(z+∆z)+Rv(z)+S
+
s(z); (22)

v(z+∆z) =Tv(z)+Ru(z+∆z)+S
−
s(z), (23)45

where (22) states that the upwelling irradiance exiting the
top of the layer is equal to transmission of the upwelling
irradiance entering the base of the layer, plus reflection of
the downwelling irradiance entering the top of the layer, plus
scattering of the direct solar irradiance entering the top of the 50

layer; and similarly for (23). Figure 1 illustrates the meaning
of the elements of the diffuse reflectance matrixR for the
canopy layer:

R =





Raa Rba Rca

Rab Rbb Rcb

Rac Rbc Rcc



 , (24)

whereRij is the fraction of diffuse downwelling radiation55

entering the top of regioni that is scattered out of the top
of regionj without exiting the base of the layer. The other
matrices have analogous definitions:T represents the trans-
mission of diffuse radiation across the layer, andS

+ andS−

represent the scattering of radiation from the direct down-60

welling stream at the top of the layer to the diffuse upwelling
stream at the top of the layer and the diffuse downwelling
stream at the base of the layer, respectively.

These matrices may be derived from the matrix exponen-
tial, which we decompose into sevenm×m matrices: 65

exp(Γ∆z) =





Euu Euv Eus

Evu Evv Evs

E0



 . (25)

It was shown by Hogan et al. (2016) that

R=−E
−1
uuEuv; (26)

T=EvuR+Evv; (27)

S
+ =−E

−1
uuEus; (28) 70

S
− =EvuS

+ +Evs. (29)

Moreover, the direct irradiance exiting the base of a layer
is computed from the direct irradiance entering the top of a
layer vias(z+∆z) =E0s(z).

2.6 Extension to multiple layers 75

To compute the irradiance profile we use the adding method
(Lacis and Hansen, 1974) but in a somewhat different form
to Hogan et al. (2016), in order to facilitate integration within
a full atmospheric radiation scheme. This section considers
the first part: stepping up through the vegetation layers com- 80

puting the albedo of the scene below each layer interface.
We define the matrixAi+1/2 as the albedo to diffuse down-
welling radiation of the scene below interfacei+1/2 (in-
cluding the surface contribution), and the matrixDi+1/2 as
the albedo to direct radiation. The off-diagonal terms of these 85

matrices represent the fraction of radiation downwelling in
one region that is reflected back into the other. At the surface
(interfacen+1/2 for ann-layer description of the canopy),
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these matrices are diagonal:

An+1/2 =





αa
diff

αb
diff

αc
diff



 ; (30)

Dn+1/2 = µ0





αa
dir

αb
dir

αc
dir



 , (31)

where for maximum flexibility we allow for separate direct
and diffuse surface albedos, and separate albedos below each5

region to represent lower snow cover beneath trees.
We then use the adding method to computeA andD just

below the interface above, accounting for the possibility of
multiple scattering. In the case of the diffuse albedo matrix
we have10

Ai−1/2 =Ri+Ti

[

I+Ai+1/2Ri +(Ai+1/2Ri)
2 + · · ·

]

×Ai+1/2Ti, (32)

whereI is them×m identity matrix. This equation states
that the albedo at interfacei− 1/2 is equal to the reflection
of layeri, plus the albedo at interfacei+1/2 accounting for15

the two-way transmission through the intervening layer. The
term in square brackets accounts for multiple scattering be-
tween interfacei+1/2 and layeri, and since it is a geometric
series of matrices, the equation reduces to

Ai−1/2 =Ri+Ti

(

I−Ai+1/2Ri

)

−1
Ai+1/2Ti. (33)20

Similarly, the direct albedo matrix at the interface above is
given by

Di−1/2 = S
+
i +Ti

(

I−Ai+1/2Ri

)

−1

×
(

Di+1/2E0i+Ai+1/2S
−

i

)

, (34)

whereDi+1/2E0i represents the direct radiation that passes25

down through layeri without being scattered and is then re-
flected up from interfacei+1/2, whileAi+1/2S

−

i represents
direct radiation that is scattered into the downward diffuse
stream in layeri and then reflected up from interfacei+1/2.
For the two-layer description of the vegetation shown in Fig.30

1, (33) and (34) are applied first at interface 1.5 (between the
canopy and the sub-canopy layers) and then at interface 0.5
(the top of the canopy). It is straightforward to add additional
layers.

At this point we are able to compute the scalar ‘scene35

albedos’ of the surface and the vegetation. Denotingc=
(

ca cb cc
)T

as a column vector containing the area
fractions of each region, the scene albedos to diffuse and di-
rect radiation are

αdiff,scene = c
T
A1/2c; (35)40

αdir,scene = c
T
D1/2c. (36)

When implementing the scheme described in this paper in the
radiation scheme of a weather or climate model, these albe-
dos would be used as the boundary conditions for the com-
putation of the irradiance profile through the atmosphere.45

2.7 Computing irradiances within the canopy

After running the atmospheric part of the radiation scheme,
we proceed down through the vegetation to compute the di-
rect and diffuse irradiances at each interface, ending up atthe
surface. The output from the atmospheric radiation calcula- 50

tion includes the downwelling direct and diffuse irradiances
at the top of the canopy,s1/2 andv1/2. These are partitioned
into component irradiances at the top of each region accord-
ing to the area fraction of each region:

s1/2 = s1/2c; (37) 55

v1/2 = v1/2c. (38)

The direct irradiance is propagated down through the vegeta-
tion simply with

si+1/2 =E0isi−1/2. (39)

The diffuse irradiances at the interface beneath satisfy 60

ui+1/2 =Ai+1/2vi+1/2 +Di+1/2si+1/2; (40)

vi+1/2 =Tivi−1/2 +Riui+1/2 +S
−

i si−1/2. (41)

Eliminatingui+1/2 yields

vi+1/2 =
(

I−RiAi+1/2

)

−1

×
(

Tivi−1/2 +RiDi+1/2si+1/2 +S
−

i si−1/2

)

.
(42)

65

Thus, application of (42) followed by (40) provides the irra-
diances at the interface below.

The horizontally averaged upwelling diffuse, downwelling
diffuse and downwelling direct irradiances at interfacei+
1/2, denotedui+1/2, vi+1/2 and si+1/2, respectively, are70

found by simply summing the elements ofui+1/2, vi+1/2

andsi+1/2. The total downwelling irradiance is then the sum
of the direct and diffuse components:di+1/2 = µ0si+1/2 +
vi+1/2. The solar absorption by each layer is the difference
in net irradiance between the interface above and below it.75

These definitions are used to compute normalized quantities
that will be used to evaluate SPARTACUS in section 3.

3 Results

To test the application of the SPARTACUS methodology to
the vegetation problem, we use two 3D scenarios from the80

RAMI4PILPS1 intercomparison exercise (Widlowski et al,
2011). The first scenario is an idealized representation of an
open forest canopy, and consists of spheres of leafy vegeta-
tion of diameter 10 m, while the second represents shrubland

1RAMI is the Radiation Transfer Model Intercomparison, and
PILPS is the Project for Intercomparison of Land surface Parame-
terization Schemes.
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Table 1. Variables describing the geometry of ‘Open forest’ and ‘Shrubland’ RAMI4PILPS scenarios simulated in this paper (see
Widlowski et al, 2011). The Leaf Area Index of a vegetated region is defined as the total leaf surface area divided by the downward projected
area of the region.

Variable Symbol Open forest Shrubland
Leaf Area Index of vegetated region LAI 5 2.5
Area fraction of vegetated region cv 0.1, 0.3, 0.5 0.1, 0.2, 0.4
Effective tree diameter D 10 m 1 m
Canopy layer depth ∆z1 10 m 1 m
Sub-canopy layer depth ∆z2 4 m 0.01 m

Table 2. Variables describing the optical properties of the leaves
and the surface in the visible and near-infrared in the RAMI4PILPS
cases (see Widlowski et al, 2011).

Variable Symbol Visible Near-infrared
Leaf reflectance r 0.0735 0.3912
Leaf transmittance t 0.0566 0.4146
Snow-free surface albedo αmed 0.1217 0.2142
Snow albedo αsnow 0.9640 0.5568

and consists of spheres of diameter 1 m. Details are provided
in Table 1, including the three different area coverages of
vegetation that are used. Two spectral intervals are simulated,
representing the photosynthetically-active visible region and
the near-infrared, and both snow-free and snow-covered sur-5

faces are considered. Table 2 lists the optical properties of
the leaves and the surfaces in the two spectral intervals.

All combinations have been simulated using the three-
region (m= 3) version of SPARTACUS. The two vegetated
regions (b andc) are of equal projected area and are config-10

ured to approximate the distribution of zenith optical depth
of spheres. So for a sphere of radiusr, regionc represents
the upper half of the optical depth distribution corresponding
to a core of radiusr/

√
2 projected down through the sphere,

which contains1− 2−3/2, or 65%, of its volume. Likewise,15

regionb represents the lower half of the distribution corre-
sponding to the remaining shell, and this contains2−3/2, or
35%, of the volume of the sphere. Therefore, if the mean
optical depth of the sphere isδ, the mean optical depths of
regionsb andc are0.7δ and1.3δ, respectively.20

Figure 2 shows the results for the open forest canopy
in the visible part of the spectrum while Fig. 3 shows the
same but for the near-infrared. The corresponding results for
the shrubland scenario are shown Figs. 4 and 5. Using the
domain-mean irradiances defined in section 2.7, the quanti-25

ties shown are reflectanceR, transmittanceT and absorp-
tanceA:

R= u1/2/d1/2; (43)

T = dn+1/2/d1/2; (44)

A=
(

d1/2 − u1/2− dn+1/2 + un+1/2

)

/d1/2. (45)30

It can be seen that the 3-region version of SPARTACUS
compares well to Monte Carlo, including all four combina-
tions of high- and low-reflectance leaves over a high- or low-
reflectance surface. In total we have 72 points of comparison
with Monte Carlo calculations: two scenarios, two spectral35

intervals, two surface types, three vegetation covers and three
solar zenith angles. Treating the Monte Carlo as ‘truth’, we
compute that the root-mean-squared error inR, T andA is
0.020, 0.038 and 0.033, respectively. Probably the worse per-
formance occurs for low solar zenith angle in Fig. 2f (corre-40

sponding to visible radiation illuminating a scene with a tree
cover of 0.5 over snow):A is overestimated by around 0.05
suggesting that a little too much reflected sunlight from the
snow enters the tree crowns and is absorbed.

We next investigate how the results are degraded when us-45

ing a more approximate description of the scene. Each panel
of Figs. 2–5 includes two further lines. The ‘homogeneous’
calculation uses the same SPARTACUS code but with only
one region, treating the canopy as a single horizontally ho-
mogeneous layer with the same leaf area index. This is essen-50

tially the same as the Sellers (1985) assumption and indeed
with a single region the matrix-exponential method yields
the same result as the Meador and Weaver (1980) solution.
We see immediately that when the leaves are not clumped
into trees but rather distributed uniformly, their exposure to 55

incoming radiation is maximized and their absorptance is
overestimated by up to 0.3. Conversely, both the reflectance
and transmittance of the scene are underestimated, with the
largest error in reflectance for overhead sun and a snow-
covered surface (Fig. 2e). 60

The 2-region SPARTACUS calculation shown in Figs. 2–
5 treats individual trees as horizontally homogeneous cylin-
ders, thereby neglecting the variation in zenith optical depth
of the spherical trees simulated by the Monte Carlo calcu-
lations. The results are much better than those with just a65

single region, and virtually the same as the 3-region calcu-
lation in the near infrared, but absorption still tends to be
overestimated in the visible. An analogous bias occurs in
cloudy radiative transfer calculations in which the internal
variability of clouds is neglected, which led to the proposal 70

of Shonk and Hogan (2008) to use three regions to repre-
sent a partially cloudy scene. The success of the 3-region ap-
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Figure 2. Comparison of normalized irradiances versus solar zenith angle for the RAMI4PILPS ‘Open forest canopy’ scenario with optical
properties appropriate for visible radiation. The two rowsof panels show results for different surface albedos (α) with the top row using
values appropriate for a snow-free surface and the bottom row using values for a snow-covered surface. The columns represent different
areal tree fractions (cv). The three solid lines depict the reflectance, transmittance and absorptance defined in (43), (44) and (45), computed
using the 3-region version of SPARTACUS. The dashed and dot-dashed lines depict the 2-region and 1-region SPARTACUS calculations,
respectively, where the latter involves complete horizontal homogenization of the vegetation properties through thedomain. Also shown are
the corresponding Monte Carlo calculations of Widlowski etal (2011) at solar zenith angles of 27◦, 60◦ and 83◦.

proach suggests that it is also useful for vegetation. Having
said this, the uncertainty in computing radiative transferthe
vegetation canopies of weather and climate models is typi-
cally dominated by uncertainties in leaf area index. There-
fore, for many applications the 2-region calculation would5

be adequate. Since the computational cost of SPARTACUS
is dominated by the matrix exponential calculation, whose
cost is approximately proportional tom3, we would expect a
2-region SPARTACUS calculation to be at least 3 times faster
than a 3-region calculation.10

4 Discussion and conclusions

This paper has demonstrated the potential for the interaction
of solar radiation and complex vegetation canopies to be rep-
resented via an explicit description of the geometry, building

on the SPARTACUS algorithm for representing the 3D radia-15

tive effects of clouds (Hogan et al., 2016). The two-stream
equations are written down for the tree crown and the gaps
between them, but with additional terms for the horizontal
exchange of radiation between regions. The equations are
solved exactly using the matrix exponential method. Multiple 20

layers are possible, although we have simplified the original
SPARTACUS algorithm by assuming maximum overlap be-
tween the regions in each layer, rather than the arbitrary over-
lap considered by Hogan et al. (2016). Comparison against
Monte Carlo calculations from the RAMI4PILPS intercom-25

parison exercise indicates that canopy reflectance, transmit-
tance and absorptance are computed significantly more ac-
curately than a number of state-of-the-art models assessed
by Loew et al. (2014).

An advantage of the SPARTACUS approach is that in ad-30

dition to LAI, only a handful of physiographic variables are
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Figure 3. As Fig. 2 but with optical properties appropriate for near-infrared radiation.

required to describe the geometry of the vegetation, such as
the vegetation height, coverage, and the diameter of typical
tree crowns. Global estimates of the first two are now avail-
able from satellites (e.g., Simard et al., 2011; Hansen et al.,
2003).5

Although the testing scenarios used in this papers were
simple homogeneous spheres with no woody material, the
method described has the capability to represent more com-
plex geometries. Horizontal variations in leaf density or tree
crowns with different properties may be represented via two10

or more vegetated regions with distinct optical properties.
This paper considered a two-layer description of the vegeta-
tion, with a single canopy layer overlying a sub-canopy layer,
but the equations can easily be applied to a multi-layer de-
scription of the canopy, for example to compute the vertical15

profile of absorbed photosynthetically active radiation. The
optical effects of tree trunks may also be incorporated. More-
over, the good performance with solar radiation suggests that
the thermal-infrared version of SPARTACUS (Schäfer et al.,
2016) could also be adapted to the vegetation problem.20

A further possible extension to SPARTACUS would be
to use it for remote sensing; in addition to the possibility

of more accurate LAI retrievals via explicit treatment of 3D
radiative effects, this would provide a consistent framework
for both remote sensing and weather/climate modelling. The25

challenge would be to adapt SPARTACUS to compute solar
radiances rather than irradiances, which adds an extra degree
of geometrical complexity. For example, trees cast shadows
on the ground, but the extent to which shadows are visible
to a satellite depends on the sensor zenith angle and the az-30

imuthal separation of the sensor and the sun.

Code availability

A Matlab implementation of the algorithm is freely available
from http://www.met.reading.ac.uk/clouds/spartacus and
Zenodo (doi:10.5281/zenodo.1100534). It was used to35

produce Figs. 2–5. Work is in progress to implement the
algorithm in the ‘ecRad’ atmospheric radiation scheme
(Hogan and Bozzo, 2016).

http://www.met.reading.ac.uk/clouds/spartacus
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Figure 4. As Fig. 2 but for the RAMI4PILPS ‘Shrubland’ scenario.

Appendix A: Faster treatment of clear layers

The main role of the sub-canopy layer is to represent how
much of the sunlight passing down between the trees is re-
flected back up into the base of a tree crown, i.e. the off-
diagonal elements ofAn−1/2 andDn−1/2. Since the matrix5

exponential accounts for most of the cost of the scheme, if
we can accelerate or approximate the treatment of the sub-
canopy layer in a way that avoids the full matrix-exponential
calculation in this layer then we can almost halve the over-
all computational cost. This is only possible if we assume10

that the sub-canopy layer contains no absorbers or scatterers
(σ = σ0 = 0), i.e. tree trunks and understory vegetation are
neglected.

There are two extreme scenarios that lead toAn−1/2 and
Dn−1/2 having trivial forms. For shrubs with a very shallow15

sub-canopy layer, the lateral transport between the regions of
this layer is zero, leading to albedo matrices at the interface
between the canopy and sub-canopy layer being equal to the
values at the surface given by (35) and (36). For a very deep
sub-canopy layer, the radiation field beneath the canopy is20

randomized horizontally, leading to the diffuse albedo having

the form

An−1/2 ≃





ca ca ca

cb cb cb

cc cc cc



αdiff , (A1)

whereαdiff is the domain-averaged surface albedo to diffuse
radiation. The direct albedoDn−1/2 has a similar form. 25

For sub-canopy layers with a depth between these two ex-
tremes, we seek to optimize the calculation of the matrix ex-
ponential. The lack of scattering means that theΓ2, Γ3 and
Γ4 sub-matrices contain only zeros, andΓ becomes block-
diagonal. This enables the exponential of a3m× 3m matrix 30

to be replaced by threem×m matrix-exponential calcula-
tions, only two of which are needed:E0 = exp(Γ0∆z) and
Evv = exp(Γ1∆z). Since there is no scattering in the sub-
canopy layer, the matricesR, S+ andS− contain only ze-
ros. Therefore, (27) simplifies toT= Evv, and (33) and (34)35

simplify to

An−1/2 =TnAn+1/2Tn; (A2)

Dn−1/2 =TnDn+1/2E0n. (A3)
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Figure 5. As Fig. 4 but with optical properties appropriate for near-infrared radiation.

Moreover, by approximating the extinction coefficients as
zero, we see from (3) and (4) thatΓ0 andΓ1 have simpler
forms whose matrix exponentials can be derived analytically.
In them= 2 case these matrices have the form

Γ
′ =

(

−a b
a −b

)

, (A4)5

for which the matrix exponential is given by Putzer’s algo-
rithm as

exp
(

Γ
′∆z

)

= I+
1− e−(a+b)∆z

a+ b
Γ
′. (A5)

Likewise in them= 3 case these matrices have the form

Γ
′ =





−a b 0
a −b− c c
0 c −c



 , (A6)10

for which the matrix exponential may be computed by the
diagonalization method as

exp
(

Γ
′∆z

)

=V





eλ1∆z

eλ2∆z

1



V
−1, (A7)

where the two non-zero eigenvalues are

λ=−(a+b+2c)/2±(a2+b2+4c2+2ab−4ac)1/2/2, (A8) 15

and the matrix of eigenvectors is

V =





b/(a+λ1) b/(a+λ2) b/a
1 1 1

c/(c+λ1) c/(c+λ2) 1



 . (A9)
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