
Response to Referee 1

COMMENT 1. Page 1 line 1: I suggest specifying the (geographic) scale where the model can be applied and also the scale
of the "regions". line 2: Splitting "horizontally" is ambiguous. It can be understood as splitting with horizontal planes. I
suggest using e.g. "split in the horizontal plane". line 7: Isuggest adding some quantitative results, e.g. the number 0.05
mentioned in Conclusions.5

REPLY 1. The first line now says "vegetation canopies" ratherthan "vegetation" to make clear that radiation is treated ata larger
scale than individual trees. The final sentence talks about weather and climate modelling, so the scale is then clearly
the size of a gridbox of such models. The phrase "split in the horizontal plane" is now used, and the root-mean-squared
differences in reflectance, transmittance and canopy absorptance have now been stated.

COMMENT 2. Page 2: The description of clumping is misleading. Clumping is also used to describe vegetation structure10
variation in the vertical direction and at scales smaller than a tree crown. This should be mentioned as the current
description can be misleading with respect to the universality of the proposed approach.

REPLY 2. The text has been changed accordingly.
COMMENT 3. Page 3 line 4: add "constant thickness" after "canopy layer". I see no need for quatition marks.
REPLY 3. "Constant thickness" has been added. The quotationmarks are to clarify that "canopy layer" and "sub-canopy layer"15

are named layers in the formulation of the problem, as shown in Fig. 1.
COMMENT 4. ...line 4: Define what is meant by "domain" line 4: Again, choose an anambigous term instead of "divided

horizontally" (although the meaning can be inferred from context). line 4: The concept of "region" should be defined
here and not on the following page. It is counterintuitive tohave a region consisting of separate parts.

REPLY 4. I’ve expanded to "horizontal domain (corresponding to a weather- or climate-model gridbox)". The definition of20
region has been improved. In no case in this paper does a region consist of separate parts. But a tree can be represented
by separate regions (as shown in Fig. 1).

COMMENT 5. ...line 4: The necessity of up to two vegetated regions is not justified and not followed later in the manuscript.
REPLY 5. The need for two vegetated regions is justified in Fig. 6 of the original manuscript: when only one vegetated region

is used, a worse result is obtained. In the new manuscript, the results for one vegetated region are added to Figs. 2-5.25
Section 2.1 now makes reference to these results in section 3.

COMMENT 6. ...line 7: How would the situation of objects not being cylinders (highly grouped canopies) affect accuracy?In
my opinion, this is explicitly assumed here. Although not mathematically, but the results are only provided for canopies
with clearly separable crowns.

REPLY 6. The new text at the end of section 2.3 explains how theassumptions in SPARTACUS are only that the vegetation is30
randomly separated, not that it is composed of cylindrical crowns. However, it will need to wait until a future paper to test
this since we only have Monte Carlo results from RAMI4PILPS where the nature of the canopy is rather geometrically
simple.

COMMENT 7. ...line 8: Define "vegetation element". E.g., is it a leaf or a tree crown? line 9: Unclear what is meant by "same":
a canopy layer is first and foremost defined by leaf area density. line 10: Why possible omission is only mentioned for35
shrubland?

REPLY 7. These terms have been clarified: "vegetation element" replaced by "tree crown", and the phrase containing "same"
replaced with "also divided into m regions (see Fig. 1)". Themention of shrubland has been removed.

COMMENT 8. Page 4 line 1: Define what a,b,c stand for (different regions). Probably, it needs to be done earlier as line 13 of
previous page already refers to L^ab. In hindsight, it is clear that a and b refer to two regions.40

REPLY 8. Now defined in section 2.1.
COMMENT 9. ...line 1: In optical radiometry, radiant power is the same as radiant flux. Use only one of these terms consis-

tently. FLux per surface area (flux density) is irradiance. "Domain-mean" flux is a contradictory term. Irradiance can be
averaged, but flux being total power can only be added. The correct term would be domain-total flux, the sum all flux
components over the domain. (note: in many other fields, flux is power divided by area)45

REPLY 9. All uses of flux where such an ambiguity can arise havebeen replaced by irradiance.
COMMENT 10. ...line 3: This line contains the definition of a "region". It should be given earlier.
REPLY 10. It is now given in section 2.1.
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COMMENT 11. Page 5 line 25: rewrite as LAI/(2 Delta z)
REPLY 11. Done.
COMMENT 12. line 32: citation needed for the equations.
REPLY 12. Citation provided (Pinty et al. 2006).
COMMENT 13. Page 6 line 8: Give some justifications for this rather arbitrary assumption and also discuss its consequences.5
REPLY 13. The justification is that it was found by Shonk and Hogan (2008) to be the best assumption for representing the

PDF of cloud optical depth, as is stated. Further justification is provided by the good a-posteriori agreement with Monte
Carlo, shown in the results section.

COMMENT 14. line 12: Unclear what is meant by "random" and whyit’s necessary. Different random processes can dreate
very different tree distribution patterns, but very few create non-overlapping crowns. Instead of "random", why cannot10
the trees in the "idealized forest" be situated on a regular grid?

REPLY 14. We have now explaned mathematically at the end of section 2.3 how the SPARTACUS formulation implies a ran-
dom distribution of trees. Specifically, it assumes that thechord lengths between the edges of tree crowns in all possible
horizontal directions follow an exponential distribution. If the trees were on a regular grid, their spacing distribution
would be far from exponential, and the assumption would be violated.15

COMMENT 15. Page 11 line 4: Choose either PAR or "visible region"; alternatively, add "and" between the two.
REPLY 15. We believe that the text reads better if it is kept the same: the spectral interval from 400 to 700 nm is both

photosynthetically active and the range detectable by the human eye. Adding an "and" would make the phrase more
confusing when it is immediately followed by "and the near-infrared".

COMMENT 16. ...line 7: Be moerelaborate on the approximation method.20
REPLY 16. The explanatory text that follows has been expanded - see also the reply to Referee 2’s Comment 3.
COMMENT 17. ...line 7: A sphere (or, a single tree crown) doeshave a LAI value. LAI is only defined for a region which

usually includes betweem-element gaps, e.g., a forest stand. It can indeed be defined for the area of a single crown, but
this contradicts the common practice. line 8: Clarify what is meant by "upper" and "lower". These do not seem to refer
to canopy location (but can be understood to).25

REPLY 17. Where possible, such discussion is rephrased in terms of zenith optical depth. However, Widlowski et al. (2011)
did use LAI in this context in their Table 1, so we do too in our Table 1 but with more explanation. "Upper" and "lower"
refer to parts of the zenith optical depth distribution, notvertical location. We have tried to make this clearer.

COMMENT 18. Page 12 line 2: Again, "domain-main flux" needs clarification. line 11: Again, I suggest avoiding the use
of LAI for a single tree. It is straightforward for ideal cylindrical tree crowns, but can cause much confusion when30
attempted in a natural situation where tree crowns do not have a clearly distinguishable bounding surface.

REPLY 17. Rephrased.
COMMENT 18. Page 14 The section "Conclusions" contains mostly discussion and should be renamed. No new issues should

be brought up in Conclusions and citations are unnecessary.Instead, the statements should be based on what was
presented earlier, mainly Discussion – a section clearly missing from the manuscript. The current Conclusions contains35
many new topics and even a value (0.05 on line 11, which shouldbe mentioned in the results section).

REPLY 18. Root-mean-squared errors are now computed and stated in the results section. The final section has been renamed
"Discussion and conclusions"

Response to Referee 2

COMMENT 1. Page 3, line 7. Please add “ly" after “explicit."40
REPLY 1. Done
COMMENT 2. Page 6, lines 10–21. I am unclear about the fundamental parameter here. The equations require L^ab. Is

this what you would measure in the field, or would you measure Dand infer L^ab? In the former case, D is just an
illustrative diameter, but is more fundamental in the latter case. In the case of dense canopies, if L^ab is measured, what
is the purpose of S, the meaning of which is unclear? Conversely, if you infer L^ab from S, how is S determined in the45
field?
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REPLY 2. The fundamental parameter for 3D radiation is L^ab.However, this depends on both the areal coverage of trees
"c_v", and the properties of an individual representative tree. In the context of a weather or climate simulation, we
would use a global dataset of c_v (e.g. from Hansen et al) but would need to estimate L^ab from it. This can be done
by introducing an additional parameter representing the size of an individual tree, and the manuscript describes two
models for how this could be done (D and S); to be useful, the parameter used would need to be independent of c_v. To5
compute D and S in the field, we would measure L^ab and c_v and apply inverted forms of equations 17 and 18. D is
needed for comparison with the Monte Carlo results in the present manuscript which assumed tree crowns not to touch.
The manuscript has been extended to clarify all these pointsin new section 2.4.

COMMENT 3. Page 11, lines 6–9. I assume that regions b and c still have the same area, as noted on page 6. It would be useful
to remind the reader of this. On line 8, the argument should apply to any sphere, not just one with an LAI of 5. It is10
not clear to me why factors of 0.5 and 1.5 have been chosen. If the distribution of zenith optical depth is split into two
equal parts by projected area, I expect the denser region to correspond to a core of radius r/

√
2 excised from a sphere of

radius r. In this case I think the core will contain about 65% of the volume of the sphere and so the same fraction of the
total leaf area. I would therefore expect the proportions tobe 0.707 and 1.293, not 0.5 and 1.5.

REPLY 3. We have now reminded the reader that b and c have the same area, and removed the implication that the following15
argument works only for an LAI of 5. The reviewer is right thatthe factors have been computed incorrectly (thank
you!). The new factors are now used in the paper, which changes the lines of the figures slightly.

COMMENT 4. Figure 6. Previously, results for both the VIS andNIR regions have been shown. Why is the NIR omitted here?
Unless the differences are trivial I would suggest showing this region too.

REPLY 4: We have now added the 2-region and 1-region lines to Figs. 2-5 so the reader can see the effect in all cases, including20
NIR. This means that Fig. 6 is no longer needed.

COMMENT 5. The authors note (page 13, line 12) that there are large uncertainties in the LAI used in weather and climate
models. The underlying datasets are derived from remote sensing, so it would be interesting if the authors could com-
ment on the possible application of their model in the retrieval of LAI. The use of a consistent modelling framework in
these two areas would be of considerable value.25

REPLY 5. This is now discussed in the final section.
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Fast matrix treatment of 3D radiative transfer in vegetation
canopies: SPARTACUS-Vegetation 1.1
Robin J. Hogan1,2, Tristan Quaife2, and Renato Braghiere2

1European Centre for Medium-range Weather Forecasts, Reading, UK.
2Department of Meteorology, University of Reading, Reading, UK.

Correspondence to: Robin J. Hogan (r.j.hogan@ecmwf.int)

Abstract. A fast scheme is described to compute the 3D interaction of solar radiation with vegetationcanopies. The canopy

is split in the horizontal planeinto one clear region and one or more vegetated regions, and the two-stream equations are

used for each, but with additional terms representing lateral exchange of radiation between regions that are proportional to

the area of the interface between them. The resulting coupled set of ordinary differential equations is solved using thematrix-

exponential method. The scheme is compared to solar Monte Carlo calculations for idealized scenes from the ‘RAMI4PILPS’5

intercomparison project, for open forest canopies and shrublands both with and without snow on the ground. Agreementis

good in both the visible and infrared: for the cases compared, the root-mean-squared difference in reflectance, transmittance

and canopy absorptance is 0.020, 0.038 and 0.033, respectively.The technique has potential application to weather and climate

modelling.

1 Introduction10

The treatment of the interaction of vegetation with solar radiation in weather and climate models varies greatly in complexity.

The simplest schemes are concerned only with surface albedoand its impact on near-surface temperature forecasts, and indeed

Viterbo and Betts (1999) reported a large improvement in forecasts by the ECMWF model when the use of a fixed snow albedo

was modified to account for the much lower albedo that occurs when snow falls in forested areas. Much more sophisticated

treatments are used in the dynamic vegetation schemes of many climate models, which need to calculate also the fraction15

of absorbed photosynthetically active radiation (faPAR).But it was reported by Loew et al. (2014) that even state-of-the-art

models, when evaluated in benchmarks for which a full physical description of the vegetation was available, had worst-case

albedo errors in excess of 0.3. The challenge is to representthe complex 3D structure of vegetation canopies with a radiative

transfer algorithm that is nonetheless computationally efficient enough to use in a global model.

Sellers (1985) took the two-stream equations used in atmospheric radiative transfer and applied them to a vegetation canopy.20

In this approach, the vegetation is treated as a single horizontally homogeneous layer, and a set of three coupled ordinary

differential equations are solved for the direct downwelling irradianceand the downwelling and upwelling diffuseirradiances.

If the leaves can be assumed randomly oriented then the optical depth of the layer is equal to half the leaf area index (LAI).

Meador and Weaver (1980) provided an analytic solution to these equations that is still used in a number of state-of-the-art
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surface energy exchange schemes (e.g., Best et al., 2011). The first-order error that arises is due to the fact that vegetation

canopies are not homogeneous:the heterogeneous distribution of leaves within a tree crown and crowns within a forest stand

is such that leaves are more likely to be shadowed by other leaves than if they were homogeneously distributed.Typically this

is treated by introducing a ‘clumping factor’ that scales down the LAI used in the two-stream scheme. A very similar approach

has previously been used in atmospheric radiation schemes to treat the clumpiness of clouds (Tiedtke, 1996). The clumping5

factor for vegetation is typically parameterized as an empirical function of properties of the vegetation and solar zenith angle

(e.g., Ni-Meister et al., 2010), but this lacks a physical basis and fails to represent horizontal fluxes into and out of individual

tree crowns.

Pinty et al. (2006) described one of the most sophisticated yet affordable schemes to date that attempts to overcome these

limitations. Their scheme sums three terms: the reflection from the vegetation assuming a black underlying surface, thereflec-10

tion from the surface assuming no interaction with the vegetation, and a term representing interactions between the surface and

the vegetation. Despite much improved performance compared to the Sellers (1985) scheme, their approach still uses an empir-

ical clumping factor, and is underpinned by the Meador and Weaver (1980) solution that assumes horizontally homogeneous

vegetation.

In this paper we exploit recent advances in the atmospheric literature, and adapt the ‘SPARTACUS’ (SPeedy Algorithm for15

Radiative Transfer through CloUd Sides) method of Hogan et al. (2016) to the vegetation problem. As described in section

2, this approach employs an explicit description of the horizontal distribution of vegetation for which we can write down

a modified version of the two-stream equations that includesterms for lateral radiation exchange betweentree crownsand

the clear regions between them. The equations are then solved exactly using the matrix-exponential method. This avoidsthe

need foran empirical clumping factoror the Meador and Weaver (1980) solution. In section 3 it is compared to Monte Carlo20

calculations in idealized forest and shrubland conditions.

2 Method

2.1 Overview

We use a simple geometrical description of the problem, as shown in Fig. 1. Leafy vegetation is assumed to occupy a single

constant-thickness‘canopy layer’, with thehorizontal domain (corresponding to a weather- or climate-model gridbox)divided25

intom ‘regions’.Within an individual region, the optical properties of the atmosphere and any vegetation are assumed horizon-

tally and vertically homogeneous. Figure 1 considers threeregions: one clear (denoteda) and two vegetated (denotedb andc).

The use of two vegetated regions adds the flexibility to representhorizontallyheterogeneous tree crownsand trees of differing

leaf density, borrowing the idea of Shonk and Hogan (2008) for representing cloud heterogeneity.In section 3 we compare

this to a simpler two-region approach with only one vegetated region (denotedb). While thetree crownsare depicted in Fig.30

1 as cylinders, this is not explicitly assumed; rather, we assume that (1) all azimuthal orientations of the interface between the

clear and vegetated regions are equally likely, and (2) thetree crownsare randomly distributed. To represent forestswith a

significant separation between the ground and the base of thetree crowns, an additional ‘sub-canopy layer’ may be added,also
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Figure 1. Schematic of the idealized vegetation considered in this paper, illustrating the meanings of Layers 1 and 2 and Regionsa, b andc.

The diagram on the right also illustrates the interpretation of the elements of the reflectance matrixR given in (24).

divided intom regions(see Fig. 1).Thus we require as a minimum just four numbers to define the geometry of the problem:

the fractional area of the domain covered by vegetation,cv, the vertical depth of the canopy layer,∆z1, the vertical depth of the

sub-canopy layer,∆z2 (which may be zero), and the length of the interface between the clear and vegetated regions per unit

area of the domain,Lab. Note that although this paper considers only up to two layers and three regions, which is an appropriate

level of complexity for a weather or climate model, for otherapplications additional layers and regions may be added. This5

would enable the representation of different types of vegetation of different heights, or vegetation in the understory.

In the SPARTACUS method, the two-stream differential equations are used in each region, but with additional terms rep-

resenting lateral radiation transport between regions. The formulation of these equations is given in section 2.2, with the

coefficients to be used in the case of vegetation defined in section 2.3.Section 2.4 then outlines how theLab term could be

parameterized in a model.Section 2.5 describes howthe equationsare solved for a single layer using matrix exponentials, and10

section 2.6 describes the use of the adding method to computethe direct and diffuse albedos of the entire scene (vegetation

and the surface beneath it). In the context of a weather or climate model, this could be done for the same spectral intervals as

the atmospheric radiation scheme, or in the smaller number of broader spectral intervals for which optical properties of the

vegetation and surface are defined. These albedos would thenbe used as boundary conditions for the calculation of the radiative

flux profile in the atmosphere above. The downwelling direct and diffuseirradiancesoutput from the atmospheric radiation15

scheme are then used in section 2.7 to compute theirradianceprofile within the vegetation canopy, enabling the absorbed

and transmitted radiation to be computed. The appendix describes how the scheme may be made computationally faster by

optimizing the treatment of the sub-canopy layer.

2.2 Differential two-stream equations in matrix form

This section summarizes the theoretical background to SPARTACUS that was introduced by Hogan et al. (2016). Solar radia-20

tion in a particular spectral interval is described by threestreams: the diffuse upwellingirradiance(u), the diffuse downwelling
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irradiance(v) and the direct downwellingirradiance(s), whereu andv areirradiancesinto a horizontal plane whiles is into a

plane oriented perpendicular to the sun. At any given height, these are column vectors containing theirradiancesin m regions;

in the equations that follow we usem= 3 to match the schematic shown in Fig. 1, but it is straightforward to reduce to two

regions. Thus for upwellingirradiancewe haveu=
(

ua ub uc
)T

, where eachirradiancecomponent is defined as the

radiative power divided by the area of the entire gridbox, such that the domain-meanirradianceis obtained by summing the5

elements of the vector.

The two-stream equations form a set of coupled differentialequations that can be written in matrix form as

d

dz









u

v

s









= Γ









u

v

s









, (1)

wherez is height measureddownward from the top of the layer, andΓ is a matrix describing the interactions betweenirradiance

components and between different regions. It is convenientto partition it into a set ofm×m component matrices as follows:10

Γ=









−Γ1 −Γ2 −Γ3

Γ2 Γ1 Γ4

Γ0









, (2)

where

Γ0 =









−σa
0/µ0

−σb
0/µ0

−σc
0/µ0









+









−fab
dir +f ba

dir

+fab
dir −f ba

dir− f bc
dir +f cb

dir

+f bc
dir −f cb

dir









; (3)

Γ1 =









−σaγa
1

−σbγb
1

−σcγc
1









15

+









−fab
diff +f ba

diff

+fab
diff −f ba

diff − f bc
diff +f cb

diff

+f bc
diff −f cb

diff









; (4)
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Γ2 =









σaγa
2

σbγb
2

σcγc
2









; (5)

Γ3 =









σaωaγa
3

σbωbγb
3

σcωcγc
3









, (6)

andΓ4 is the same asΓ3 but using the quantityγ4 in place ofγ3. Missing entries in all these matrices are taken to be zero.

TheΓ0 andΓ1 matrices describe the rate at which the direct and diffuse downwelling irradiances, respectively, change along5

their path. They are expressed in (3) and (4) as the sum of two matrices: the first matrix in each case represents losses due to

scattering and absorption, while the second represents exchange of radiation between regions. TheΓ2 matrix describes the rate

of scattering of diffuse radiation from one direction to theother, while theΓ3 andΓ4 matrices describe the rate at which the

direct solar beam is scattered into the upwelling and downwelling diffuse streams. The minus signs in front of the matrices on

the top row of (2) are due to this line corresponding to upwelling radiation, but the vertical coordinate increasing downward.10

The symbols in (3) to (6) have the following meanings. The extinction coefficient to diffuse radiation of regionj is denoted

σj , andσj
0 is the same but for direct radiation. The distinction between the two permits the flexibility to represent leaves with a

preferred orientation. The cosine of the solar zenith angleis denotedµ0 while the single-scattering albedo isω. The coefficients

γ1–γ4 govern the exchange of radiation between the three streams.Finally, the coefficientsf jk
dir andf jk

diff represent the rate at

which direct and diffuse radiation, respectively, is transferred from regionj to regionk. All these symbols are defined in terms15

of physical properties of the scene in the next section.

2.3 Coefficients in the two-stream equations

The matrix form of the two-stream equations in section 2.2 introduced several coefficients that are themselves functions of

more fundamental optical or geometric properties. Theγ1–γ4 coefficients may be written as (Meador and Weaver, 1980):

γ1 = [1−ω(1− β)]/µ1; (7)20

γ2 = ωβ/µ1; (8)

γ3 = β0; (9)

γ4 = 1− β0, (10)

whereβ andβ0 are the ‘upscatter’ fractions, the fractions of downwelling radiation (in the diffuse and direct streams respec-

tively) that are scattered upward, andµ1 is the cosine of the effective zenith angle of diffuse radiation. For the remainder of25

this paper we assume the diffuse radiation to be hemispherically isotropic, soµ1 = 1/2.

In the simplest case where leaves are assumed to be randomly oriented, the optical depth of a region is equal to half its LAI,

and therefore for a layer of thickness∆z, the extinction coefficients to direct and diffuse radiation are the same and are given
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by

σ = σ0 = LAI/(2∆z). (11)

Assuming the leaves to be bi-Lambertian scatterers with reflectancer and transmittancet, the single scattering albedo is given

by

ω = r+ t, (12)5

and the upscatter fractions by

β = 1/2+µ1(r− t)/(3ω); (13)

β0 = 1/2+µ0(r− t)/(3ω). (14)

These last two formulas may be derived by equating (8) and (9)with the definitions given in the lowest row of Table 4 of

Pinty et al. (2006). Pinty et al. (2006) also provided more general expressions for leaves with a preferential alignment.10

The rates of lateral exchange of radiation between regions that appear in (3) and (4) may be derived from geometrical

arguments (Hogan and Shonk, 2013; Schäfer et al., 2016) as

f ij
diff = Lij/(2ci); (15)

f ij
dir = Lij tan(θ0)/(πc

i), (16)

whereθ0 is the solar zenith angle,Lij is the length of the interface between regionsi andj per unit area of the horizontal15

domain, andci is the fractional area of the domain covered by regioni. In them= 3 case we have two regions to represent

horizontal heterogeneity ofzenith optical depth, and followingthe findings ofShonk and Hogan (2008) we assume them to be

of equal area, i.e.cb = cc = cv/2 andca = 1− cv (wherecv is the fractional coverage of vegetation). This leads tof bc
dir = f cb

dir

andf bc
diff = f cb

diff .

Lastly in this section, we consider how to represent the effect of vertical tree trunks in regionc of the sub-canopy layer (as20

illustrated in Fig. 1). If the trunks are of a size and number such that a horizontal slice through the sub-canopy layer intercepts

a normalized total trunk perimeter (per unit area of regionc) of Lt, then by analogy with (15) and (16), the diffuse and direct

extinction coefficients are given by

σ = Lt/(2c
c); (17)

σ0 = Lt tan(θ0)/(πc
c). (18)25

For simplicity we assume the trunks to be Lambertian reflectors, in which caseω is simply the trunk albedo, and with no

preference for upward or downward scattering we haveβ = β0 = 1/2.

Now that the problem has been formulated mathematically, wecan explain how the assumption that the tree crowns are

randomly distributed is implicitly encoded in the equations. At any given height in the canopy layer, the probability ofdirect
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radiation in the clear region intercepting a tree crown, perunit distance travelled vertically, isfab
dir. This factor is constant in

the canopy layer. Therefore, for direct radiation emergingunscattered from the edge of a tree crown into the clear region,

the fraction of that light remaining in the clear region rather than having encountered another tree varies in proportion to

exp(−fab
dirz), wherez is the vertical distance travelled in the clear region (assuming no absorption or scattering, and that

the light remains within the canopy layer). To express this in terms of horizontal distancex, we use (16) and recognize that5

tan(θ0) = x/z to obtainexp[−xLab/(πca)]. This implies that the chord lengths between the edges of tree crowns in all

possible horizontal directions also follow the same exponential distribution, which in turn defines the spatial distribution of

trees as random.

2.4 Parameterizing the vegetation perimeter length

The length of the vegetation–clear boundary,Lab, is the fundamental property used by SPARTACUS to characterize the im-10

portance of lateral radiative exchange between clear and vegetated regions. It is therefore the quantity that would ideally be

measured in field experiments. However, in the context of weather and climate modelling, the physiographic variable available

would most likely be vegetation covercv (e.g. from the measurements of Hansen et al., 2003), andLab would need to be

parameterized as a function ofcv. This can be done by introducing an extra parameter representing the characteristic size of a

tree crown that is independent ofcv. We now present two possible characteristic sizes that could be used.15

In the first case, wedefine theeffective tree diameter,D, to be the diameter of identical, cylindrical andphysically separated

tree crowns in an idealized forest with the sameLab andcv as the real forest.The assumption that tree crowns do not touch

was used by Widlowski et al (2011) in generating the idealized scenes that we use in section 3 to evaluate SPARTACUS. The

phenomenon of the crowns of some tree species remaining separate even for large tree cover is known ascrown shyness (e.g.

Putz et al., 1984).In analogy to the concept of an effective cloud diameter by Jensen et al. (2008), this leads to the definition20

Lab = 4cv/D. (19)

If regionc represents the central core of the tree crowns, as depicted in Fig. 1, then this impliesLbc = Lab/
√
2.

In the second case we assume that tree crowns can touch each other, and will do so increasingly indense forests.This

behaviour is represented by defininganeffective tree scale, S, such that

Lab = 4cv(1− cv)/S. (20)25

This form is inspired by the idealized geometrical analysisof Morcrette (2012): if we place idealized trees with a square

footprint measuringS×S randomly on a grid, then on average the normalized perimeterlengthLab will follow (20). It leads

to the behaviour thatLab increases withcv up tocv = 1/2, but for further increases incv, crown touching dominates which

causesLab to reduce again.

In the field we would envisage measuringLab andcv and then using (19) and (20) to inferD andS. The characteristic size30

that varies least withcv would then be the one best suited for use in a weather or climate model, and potentially a constant

characteristic size could be used to characterize an entireforest on a regional scale. Within individual gridboxes of the model,

it would be used to computeLab from cv using either (19) or (20).
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2.5 Solution to equations within one layer

We may write the solution to (1) in terms of a matrix exponential (Waterman, 1981; Hogan et al., 2016): theirradiancesat the

base of a layer of thickness∆z are related to theirradiancesat the top of the layer via









u

v

s









z=z+∆z

= exp(Γ∆z)









u

v

s









z=z

, (21)

where the matrix exponential may be computed numerically using the scaling and squaring method (e.g. Higham, 2005). If5

3D radiative transfer is neglected thenfdiff = fdir = 0, which decouples the equations to the extent that a computationally

cheaper analytical solution is possible (Meador and Weaver, 1980). Conversely, if scattering and absorption are ignored but

3D radiative transfer is retained, a reasonable assumptionin the sub-canopy layer, thenσ = σ0 = 0, which also decouples the

equations and leads to the computationally cheaper solution given in the appendix.

In order to compute theirradianceprofile, we wish to work with expressions of the following form:10

u(z) =Tu(z+∆z)+Rv(z)+S
+
s(z); (22)

v(z+∆z) =Tv(z)+Ru(z+∆z)+S
−
s(z), (23)

where (22) states that the upwellingirradianceexiting the top of the layer is equal to transmission of the upwelling irradiance

entering the base of the layer, plus reflection of the downwelling irradianceentering the top of the layer, plus scattering of the

direct solarirradianceentering the top of the layer; and similarly for (23). Figure1 illustrates the meaning of the elements of15

the diffuse reflectance matrixR for the canopy layer:

R=









Raa Rba Rca

Rab Rbb Rcb

Rac Rbc Rcc









, (24)

whereRij is the fraction of diffuse downwelling radiation entering the top of regioni that is scattered out of the top of region

j without exiting the base of the layer. The other matrices have analogous definitions:T represents the transmission of diffuse

radiation across the layer, andS+ andS− represent the scattering of radiation from the direct downwelling stream at the top20

of the layer to the diffuse upwelling stream at the top of the layer and the diffuse downwelling stream at the base of the layer,

respectively.

These matrices may be derived from the matrix exponential, which we decompose into sevenm×m matrices:

exp(Γ∆z) =









Euu Euv Eus

Evu Evv Evs

E0









. (25)
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It was shown by Hogan et al. (2016) that

R=−E
−1
uuEuv; (26)

T=EvuR+Evv; (27)

S
+ =−E

−1
uuEus; (28)

S
− =EvuS

+ +Evs. (29)5

Moreover, the directirradianceexiting the base of a layer is computed from the directirradianceentering the top of a layer via

s(z+∆z) =E0s(z).

2.6 Extension to multiple layers

To compute theirradianceprofile we use the adding method (Lacis and Hansen, 1974) but in a somewhat different form to

Hogan et al. (2016), in order to facilitate integration within a full atmospheric radiation scheme. This section considers the10

first part: stepping up through the vegetation layers computing the albedo of the scene below each layer interface. We define

the matrixAi+1/2 as the albedo to diffuse downwelling radiation of the scene below interfacei+1/2 (including the surface

contribution), and the matrixDi+1/2 as the albedo to direct radiation. The off-diagonal terms ofthese matrices represent the

fraction of radiation downwelling in one region that is reflected back into the other. At the surface (interfacen+1/2 for an

n-layer description of the canopy), these matrices are diagonal:15

An+1/2 =









αa
diff

αb
diff

αc
diff









; (30)

Dn+1/2 = µ0









αa
dir

αb
dir

αc
dir









, (31)

where for maximum flexibility we allow for separate direct and diffuse surface albedos, and separate albedos below each region

to represent lower snow cover beneath trees.

We then use the adding method to computeA andD just below the interface above, accounting for the possibility of multiple20

scattering. In the case of the diffuse albedo matrix we have

Ai−1/2 =Ri+Ti

[

I+Ai+1/2Ri +(Ai+1/2Ri)
2 + · · ·

]

×Ai+1/2Ti, (32)

whereI is them×m identity matrix. This equation states that the albedo at interfacei−1/2 is equal to the reflection of layeri,

plus the albedo at interfacei+1/2 accounting for the two-way transmission through the intervening layer. The term in square25

brackets accounts for multiple scattering between interfacei+1/2 and layeri, and since it is a geometric series of matrices,

9



the equation reduces to

Ai−1/2 =Ri+Ti

(

I−Ai+1/2Ri

)

−1
Ai+1/2Ti. (33)

Similarly, the direct albedo matrix at the interface above is given by

Di−1/2 = S
+
i +Ti

(

I−Ai+1/2Ri

)

−1

×
(

Di+1/2E0i+Ai+1/2S
−

i

)

, (34)5

whereDi+1/2E0i represents the direct radiation that passes down through layer i without being scattered and is then reflected

up from interfacei+1/2, while Ai+1/2S
−

i represents direct radiation that is scattered into the downward diffuse stream in

layer i and then reflected up from interfacei+1/2. For the two-layer description of the vegetation shown in Fig. 1, (33) and

(34) are applied first at interface 1.5 (between the canopy and the sub-canopy layers) and then at interface 0.5 (the top ofthe

canopy). It is straightforward to add additional layers.10

At this point we are able to compute the scalar ‘scene albedos’ of the surface and the vegetation. Denotingc=
(

ca cb cc
)T

as a column vector containing the area fractions of each region, the scene albedos to diffuse and direct radiation are

αdiff,scene = c
T
A1/2c; (35)

αdir,scene = c
T
D1/2c. (36)

When implementing the scheme described in this paper in the radiation scheme of a weather or climate model, these albedos15

would be used as the boundary conditions for the computationof theirradianceprofile through the atmosphere.

2.7 Computingirradiances within the canopy

After running the atmospheric part of the radiation scheme,we proceed down through the vegetation to compute the directand

diffuseirradiancesat each interface, ending up at the surface. The output from the atmospheric radiation calculation includes

the downwelling direct and diffuseirradiancesat the top of the canopy,s1/2 andv1/2. These are partitioned into component20

irradiancesat the top of each region according to the area fraction of each region:

s1/2 = s1/2c; (37)

v1/2 = v1/2c. (38)

The directirradianceis propagated down through the vegetation simply with

si+1/2 =E0isi−1/2. (39)25

The diffuseirradiancesat the interface beneath satisfy

ui+1/2 =Ai+1/2vi+1/2 +Di+1/2si+1/2; (40)

vi+1/2 =Tivi−1/2 +Riui+1/2 +S
−

i si−1/2. (41)
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Table 1. Variables describing the geometry of ‘Open forest’ and ‘Shrubland’ RAMI4PILPS scenarios simulated in this paper (see

Widlowski et al, 2011).The Leaf Area Index of a vegetated region is defined as the total leaf surface area divided by the downward projected

area of the region.

Variable Symbol Open forest Shrubland

Leaf Area Index of vegetated region LAI 5 2.5

Area fraction of vegetated region cv 0.1, 0.3, 0.5 0.1, 0.2, 0.4

Effective tree diameter D 10 m 1 m

Canopy layer depth ∆z1 10 m 1 m

Sub-canopy layer depth ∆z2 4 m 0.01 m

Eliminatingui+1/2 yields

vi+1/2 =
(

I−RiAi+1/2

)

−1

×
(

Tivi−1/2 +RiDi+1/2si+1/2 +S
−

i si−1/2

)

. (42)

Thus, application of (42) followed by (40) provides theirradiancesat the interface below.

The horizontally averaged upwelling diffuse, downwellingdiffuse and downwelling directirradiancesat interfacei+1/2,5

denotedui+1/2, vi+1/2 andsi+1/2, respectively, are found by simply summing the elements ofui+1/2, vi+1/2 andsi+1/2.

The total downwellingirradianceis then the sum of the direct and diffuse components:di+1/2 = µ0si+1/2+ vi+1/2. The solar

absorption by each layer is the difference in netirradiancebetween the interface above and below it. These definitions are used

to compute normalized quantities that will be used to evaluate SPARTACUS in section 3.

3 Results10

To test the application of the SPARTACUS methodology to the vegetation problem, we use two 3D scenarios from the

RAMI4PILPS1 intercomparison exercise (Widlowski et al, 2011). The firstscenario is an idealized representation of an open

forest canopy, and consists of spheres of leafy vegetation of diameter 10 m, while the second represents shrubland and consists

of spheres of diameter 1 m. Details are provided in Table 1, including the three different area coverages of vegetation that are

used. Two spectral intervals are simulated, representing the photosynthetically-active visible region and the near-infrared, and15

both snow-free and snow-covered surfaces are considered. Table 2 lists the optical properties of the leaves and the surfaces in

the two spectral intervals.

All combinations have been simulated using the three-region (m= 3) version of SPARTACUS. The two vegetated regions

(b andc) are of equal projected area andare configured to approximate the distribution ofzenith optical depthof spheres.So

for a sphere of radiusr, regionc represents the upper half of the optical depth distributioncorresponding to a core of radius20

1RAMI is the Radiation Transfer Model Intercomparison, and PILPS is the Project for Intercomparison of Land surface Parameterization Schemes.
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Table 2. Variables describing the optical properties of the leaves and the surface in the visible and near-infrared in the RAMI4PILPS cases

(see Widlowski et al, 2011).

Variable Symbol Visible Near-infrared

Leaf reflectance r 0.0735 0.3912

Leaf transmittance t 0.0566 0.4146

Snow-free surface albedo αmed 0.1217 0.2142

Snow albedo αsnow 0.9640 0.5568

r/
√
2 projected down through the sphere, which contains1− 2−3/2, or 65%, of its volume. Likewise, regionb represents the

lower half of the distribution corresponding to the remaining shell, and this contains2−3/2, or 35%, of the volume of the

sphere. Therefore, if the mean optical depth of the sphere isδ, the mean optical depths of regionsb andc are0.7δ and1.3δ,

respectively.

Figure 2 shows the results for the open forest canopy in the visible part of the spectrum while Fig. 3 shows the same but5

for the near-infrared.The corresponding results for the shrubland scenario are shown Figs. 4 and 5.Using the domain-mean

irradiancesdefined in section 2.7, the quantities shown are reflectanceR, transmittanceT and absorptanceA:

R= u1/2/d1/2; (43)

T = dn+1/2/d1/2; (44)

A=
(

d1/2 − u1/2− dn+1/2 + un+1/2

)

/d1/2. (45)10

It can be seen that the 3-region version of SPARTACUScompares well to Monte Carlo, including all four combinations of high-

and low-reflectance leaves over a high- or low-reflectance surface.In total we have 72 points of comparison with Monte Carlo

calculations: two scenarios, two spectral intervals, two surface types, three vegetation covers and three solar zenith angles.

Treating the Monte Carlo as ‘truth’, we compute that the root-mean-squared error inR, T andA is 0.020, 0.038 and 0.033,

respectively. Probably the worse performance occurs for low solar zenith angle in Fig. 2f (corresponding to visible radiation15

illuminating a scene with a tree cover of 0.5 over snow):A is overestimated by around 0.05 suggesting that a little toomuch

reflected sunlight from the snow enters the tree crowns and isabsorbed.

We next investigate how the results are degraded when using amore approximate description of the scene.Each panel of

Figs. 2–5 includes two further lines. The ‘homogeneous’ calculation uses the same SPARTACUS code but with only one region,

treating the canopy as a single horizontally homogeneous layer with the same leaf area index. This is essentially the same as20

the Sellers (1985) assumption and indeed with a single region the matrix-exponential method yields the same result as the

Meador and Weaver (1980) solution. We see immediately that when the leaves are not clumped into trees but rather distributed

uniformly, their exposure to incoming radiation is maximized and their absorptance is overestimated by up to 0.3. Conversely,
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Figure 2. Comparison of normalizedirradiancesversus solar zenith angle for the RAMI4PILPS ‘Open forest canopy’ scenario with optical

properties appropriate for visible radiation. The two rowsof panels show results for different surface albedos (α) with the top row using

values appropriate for a snow-free surface and the bottom row using values for a snow-covered surface. The columns represent different

areal tree fractions (cv). The threesolid lines depict the reflectance, transmittance and absorptance defined in (43), (44) and (45),computed

using the 3-region version of SPARTACUS. The dashed and dot-dashed lines depict the 2-region and 1-region SPARTACUS calculations,

respectively, where the latter involves complete horizontal homogenization of the vegetation properties through thedomain. Also shown are

the corresponding Monte Carlo calculations of Widlowski etal (2011) at solar zenith angles of 27◦, 60◦ and 83◦.

both the reflectance and transmittance of the scene are underestimated, with the largest error in reflectance for overhead sun

and a snow-covered surface(Fig. 2e).

The 2-region SPARTACUS calculation shown in Figs. 2–5 treats individual trees as horizontally homogeneous cylinders,

thereby neglecting the variation in zenith optical depth ofthe spherical trees simulated by the Monte Carlo calculations. The

results are much better than those with just a single region,and virtually the same as the 3-region calculation in the near5

infrared,but absorption still tends to be overestimated in the visible. An analogous bias occurs in cloudy radiative transfer
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Figure 3. As Fig. 2 but with optical properties appropriate for near-infrared radiation.

calculations in which the internal variability of clouds isneglected, which led to the proposal of Shonk and Hogan (2008) to

use three regions to represent a partially cloudy scene. Thesuccess of the 3-region approach suggests that it is also useful for

vegetation. Having said this, the uncertainty in computingradiative transfer the vegetation canopies of weather and climate

models is typically dominated by uncertainties in leaf areaindex. Therefore, for many applications the 2-region calculation

would be adequate. Since the computational cost of SPARTACUS is dominated by the matrix exponential calculation, whose5

cost is approximately proportional tom3, we would expect a 2-region SPARTACUS calculation to be at least 3 times faster

than a 3-region calculation.

4 Discussion and conclusions

This paper has demonstrated the potential for the interaction of solar radiation and complex vegetation canopies to be repre-

sented via an explicit description of the geometry, building on the SPARTACUS algorithm for representing the 3D radiative10
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Figure 4. As Fig. 2 but for the RAMI4PILPS ‘Shrubland’ scenario.

effects of clouds (Hogan et al., 2016). The two-stream equations are written down for thetree crownand the gaps between them,

but with additional terms for the horizontal exchange of radiation between regions. The equations are solved exactly using the

matrix exponential method. Multiple layers are possible, although we have simplified the original SPARTACUS algorithmby

assuming maximum overlap between the regions in each layer,rather than the arbitrary overlap considered by Hogan et al.

(2016). Comparison against Monte Carlo calculations from the RAMI4PILPS intercomparison exercise indicates that canopy5

reflectance, transmittance and absorptance are computed significantlymore accuratelythan a number of state-of-the-art models

assessed by Loew et al. (2014).

An advantage of the SPARTACUS approach is that in addition toLAI, only a handful of physiographic variables are required

to describe the geometry of the vegetation, such as the vegetation height, coverage, and the diameter of typicaltree crowns.

Global estimates of the first two are now available from satellites (e.g., Simard et al., 2011; Hansen et al., 2003).10
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Figure 5. As Fig. 4 but with optical properties appropriate for near-infrared radiation.

Although the testing scenarios used in this papers were simple homogeneous spheres with no woody material, the method

described has the capability to represent more complex geometries. Horizontal variations in leaf density ortree crownswith

different properties may be represented via two or more vegetated regions with distinct optical properties. This paperconsid-

ered a two-layer description of the vegetation, with a single canopy layer overlying a sub-canopy layer, but the equations can

easily be applied to a multi-layer description of the canopy, for example to compute the vertical profile of absorbed photosyn-5

thetically active radiation. The optical effects of tree trunks may also be incorporated. Moreover, the good performance with

solar radiation suggests that the thermal-infrared version of SPARTACUS (Schäfer et al., 2016) could also be adapted tothe

vegetation problem.

A further possible extension to SPARTACUS would be to use it for remote sensing; in addition to the possibility of more

accurate LAI retrievals via explicit treatment of 3D radiative effects, this would provide a consistent framework for both remote10

sensing and weather/climate modelling. The challenge would be to adapt SPARTACUS to compute solar radiances rather than
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irradiances, which adds an extra degree of geometrical complexity. For example, trees cast shadows on the ground, but the

extent to which shadows are visible to a satellite depends onthe sensor zenith angle and the azimuthal separation of the sensor

and the sun.

Code availability

A Matlab implementation of the algorithm is freely available from http://www.met.reading.ac.uk/clouds/spartacus,and was5

used to produce Figs. 2–5. Work is in progress to implement the algorithm in the ‘ecRad’ atmospheric radiation scheme

(Hogan and Bozzo, 2016).

Appendix A: Faster treatment of clear layers

The main role of the sub-canopy layer is to represent how muchof the sunlight passing down between the trees is reflected

back up into the base of atree crown, i.e. the off-diagonal elements ofAn−1/2 andDn−1/2. Since the matrix exponential10

accounts for most of the cost of the scheme, if we can accelerate or approximate the treatment of the sub-canopy layer in a way

that avoids the full matrix-exponential calculation in this layer then we can almost halve the overall computational cost. This

is only possible if we assume that the sub-canopy layer contains no absorbers or scatterers (σ = σ0 = 0), i.e. tree trunks and

understory vegetation are neglected.

There are two extreme scenarios that lead toAn−1/2 andDn−1/2 having trivial forms. For shrubs with a very shallow sub-15

canopy layer, the lateral transport between the regions of this layer is zero, leading to albedo matrices at the interface between

the canopy and sub-canopy layer being equal to the values at the surface given by (35) and (36). For a very deep sub-canopy

layer, the radiation field beneath the canopy is randomized horizontally, leading to the diffuse albedo having the form

An−1/2 ≃









ca ca ca

cb cb cb

cc cc cc









αdiff , (A1)

whereαdiff is the domain-averaged surface albedo to diffuse radiation. The direct albedoDn−1/2 has a similar form.20

For sub-canopy layers with a depth between these two extremes, we seek to optimize the calculation of the matrix expo-

nential. The lack of scattering means that theΓ2, Γ3 andΓ4 sub-matrices contain only zeros, andΓ becomes block-diagonal.

This enables the exponential of a3m× 3m matrix to be replaced by threem×m matrix-exponential calculations, only two of

which are needed:E0 = exp(Γ0∆z) andEvv = exp(Γ1∆z). Since there is no scattering in the sub-canopy layer, the matrices

R, S+ andS− contain only zeros. Therefore, (27) simplifies toT=Evv, and (33) and (34) simplify to25

An−1/2 =TnAn+1/2Tn; (A2)

Dn−1/2 =TnDn+1/2E0n. (A3)
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Moreover, by approximating the extinction coefficients as zero, we see from (3) and (4) thatΓ0 andΓ1 have simpler forms

whose matrix exponentials can be derived analytically. In them= 2 case these matrices have the form

Γ
′ =





−a b

a −b



 , (A4)

for which the matrix exponential is given by Putzer’s algorithm as

exp
(

Γ
′∆z

)

= I+
1− e−(a+b)∆z

a+ b
Γ
′. (A5)5

Likewise in them= 3 case these matrices have the form

Γ
′ =









−a b 0

a −b− c c

0 c −c









, (A6)

for which the matrix exponential may be computed by the diagonalization method as

exp
(

Γ
′∆z

)

=V









eλ1∆z

eλ2∆z

1









V
−1, (A7)

where the two non-zero eigenvalues are10

λ=−(a+ b+2c)/2± (a2+ b2+4c2+2ab− 4ac)1/2/2, (A8)

and the matrix of eigenvectors is

V =









b/(a+λ1) b/(a+λ2) b/a

1 1 1

c/(c+λ1) c/(c+λ2) 1









. (A9)
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