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Abstract. OpenDrift is an open-source Python-based framework for Lagrangian particle modeling

under development at the Norwegian Meteorological Institute with contributions from the wider

scientific community. The framework is highly generic and modular, and is designed to be used for

any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift

framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules5

have already been developed, including an oil drift module, a stochastic search and rescue module,

a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the

ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources,

including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values

for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total10

displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on

Linux, Mac and Windows environments, and can be used with minimal or no Python experience.

It is designed for flexibility, and researchers may easily adapt or write modules for their specific

purpose. OpenDrift is also designed for performance, and simulations with millions of particles may

be performed on a laptop. Further, OpenDrift is designed for robustness, and is in daily operational15

use for emergency preparedness modeling (oil drift, search and rescue and drifting ships) at the

Norwegian Meteorological Institute.

1 Introduction

Lagrangian trajectory models are used to predict the pathways and transformations of various types

of objects and substances drifting in the ocean or in the atmosphere. There are many practical and20

academic applications, including prediction of:

– oil drift and weathering to aid mitigation and cleanup operations (Jones et al., 2016)
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– drifting objects for search and rescue (Breivik and Allen, 2008; Breivik et al., 2011, 2013)

– ichtyoplankton transport (fish eggs and larvae) for stock assessments (Röhrs et al., 2014)

– microplastics suspended in the ocean (van Sebille et al., 2012, 2015)25

Table 1 lists some commonly used trajectory models and their applications. Additionally, many

individual researchers or research groups have been developing trajectory model codes for in-house

use, without publishing (or naming) a software code.

Lagrangian tools fall in two broad categories, either the trajectories are computed along with the

velocity fields as part of the ocean or atmospheric circulation model (e.g. so-called floats in the re-30

gional ocean modelling system (ROMS), Shchepetkin and McWilliams 2005). This is known as on-

line trajectory computations, and has the advantage that no separate model is needed. Alternatively,

the trajectories can be computed offline after completion of the Eulerian model simulation(s). This is

the approach taken for OpenDrift, and is also necessary for a generic framework as the trajectories

depend in many cases on forcing from a range of fields stemming from more than just one Eulerian35

model. This is e.g. the case for oil drift and search and rescue models, which both require wind

as well as currents (and wave forcing in the case of oil drift) to properly account for the advection

and transformation of the particles. For such emergency preparedness purposes, offline models are

the only option fast enough to meet the requirements of operational agencies. Other advantages of

offline models are that modifications (sensitivity tests) of the drift algorithms may be tested quickly40

without needing to rerun the full Eulerian model, and also that simulations backwards in time may

be performed.

Existing trajectory models are in most cases tied to a specific application, and may not be applied

to other drift applications without compromising quality or flexibility. In many cases, trajectory

models are also tied to a specific Eulerian model, or even a particular institutional ocean model setup,45

limiting usability for other institutes or researchers. Often, it is also required that Eulerian forcing

data must be in a specific file format. This raises the time and effort needed to set up a trajectory

model. Further, in an operational setup, the need to convert large files to another format increases

both the complexity and computational costs of the processing chain, compromising robustness.

The OpenDrift framework has been designed to perform all tasks which are common to trajectory50

models, whether oceanic or atmospheric. In short, the main task is to obtain forcing data from vari-

ous sources, and to use this information to move (propagate) the elements in space, while potentially

transforming other element properties, such as evaporation of oil, or growth of larvae. In addition,

common functionality includes mechanisms for configuration of simulations, seeding of elements,

exporting output to file, and tools to visualise and analyse the output. Additionally, several design55

requirements have been imposed on the development of OpenDrift: (1) platform independence and

ease of instalment and use; (2) simple and rapid implementation of any purpose-specific processes,

yet flexibility to support unforeseen needs; (3) forcing data from any type of source shall be sup-
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ported, including Eulerian ocean, atmosphere or wave models (typically NetCDF or GRIB files), in

situ measurements, vector datasets (e.g. GSHHS coastlines), or analytical fields for conceptual stud-60

ies; (4) it must run fast, even with a large number of elements; (5) simulations forward and backward

in time; (6) robustness for operational use.

In Sec 2 we describe the overall design of the code, and the general workflow of performing a

simulation. In Sec 3 we give examples of three specific modules which are included in the OpenDrift

repository: search and rescue, oil drift, and atmospheric transport. The test suite and example scripts65

are described in Sec 4, and graphical user interfaces (Web and desktop) are described in Sec 5. Sec

6 provides discussion and conclusions.

2 Software design

To meet the requirements listed above, a simple and flexible object oriented data model has been de-70

signed, based on two main classes. One class ("Reader") is dedicated to obtaining forcing data from

external sources, as described in Sec 2.1. A generic class for a trajectory model instance ("Base-

Model") is described in Sec 2.2. This class contains functionality which is common to all drift

models, whereas advection (propagation) and transformation of elements is left for purpose-specific

subclasses.75

2.1 Reader class

The class Reader obtains forcing data (e.g. wind, waves and currents) from any possible source, and

provides this to any OpenDrift model through a common interface. To avoid duplication of code, a

parent class "BaseReader" contains functionality which is common to all Readers, whereas specific

subclasses take care of only the tasks which are specific to a particular source of data, e.g. how80

to decode and interpret a particular file format. Two methods must be implemented by any Reader

subclass: 1) a constructor method which initialises a Reader object, and 2) a method to retrieve data

for given variables, position and time. The constructor (__init__ in Python) can take any arguments

as implemented by the specific Reader class, but typical is to provide a filename or URL from which

data shall be obtained by this Reader. The following Python commands initialise a reader of type85

NetCDF_CF_generic to obtain data from a file "ocean_model_output.nc".
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Name Reference / URL Main application

Ariane Blanke et al. (1997) Oceanography

BSHDmod Dick and Soetje (1990) Oil

Connectivity Modeling System Paris et al. (2013) Ocean, generic

CIS iceberg model Kubat et al. (2007) Icebergs

CLaMS McKenna et al. (2002) Atmospheric chemistry

EMEP Simpson et al. (2012) Air pollution

FLEXPART, FLEXSTRA www.flexpart.eu

Stohl et al. (1995)

Nuclear, air pollution

HYSPLIT Stein et al. (2015) Atmospheric transport

Ladim Ådlandsvik and Sundby (1994) Plankton transport

LAGRANTO Wernli and Davies (1997),

Sprenger and Wernli (2015)

Meteorology

LAGRANTO.ocean Schemm et al. (2017) Water mass properties

Leeway Breivik and Allen (2008),

Allen and Plourde (1999)

Search and rescue

LTRANS Schlag and North (2012) Plankton (including larvae)

MEDSLIK, MEDSLIK-II De Dominicis et al. (2013),

Lardner et al. (1998)

Oil

MIKE www.mikepoweredbydhi.com Ocean, generic

MOHID www.mohid.com Oil, sediments, water quality

MOTHY Daniel (1996) Oil, drifting objects

OD3D Wettre et al. (2001) Oil

OILMAP, SIMAP, CHEMMAP,

MUDMAP, SARMAP

www.asascience.com Oil, sediments, chemical, search and

rescue

OILTOX Brovchenko et al. (2003) Oil

OILTRANS Berry et al. (2012) Oil

OSCAR www.sintef.no/en/software/oscar Oil

OSERIT oserit.mumm.ac.be Oil, chemicals

PARCELS github.com/OceanPARCELS/parcels Ocean, generic

POSEIDON-OSM osm.hcmr.gr Oil

PyGNOME/GNOME gnome.orr.noaa.gov Oil, generic

SeaTrackWeb, PADM stw.smhi.se Oil, chemicals

SNAP Bartnicki et al. (2016) Atmospheric nuclear transport

STILT www.stilt-model.org Atmospheric trace gases

THREETOX Margvelashvily et al. (1997) Nuclear ocean transport

TRACMASS Döös et al. (2013) Ocean and atmosphere, generic

VOS en.ferhri.org Oil
Table 1. Some existing trajectory models for various oceanic and atmospheric applications.
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>>> from opendrift.readers import reader_netCDF_CF_generic

>>> r = reader_netCDF_CF_generic.Reader("ocean_model_output.nc")

The initialisation typically includes opening and reading metadata from a given file or URL to check

which variables are available, and the coverage in time and space. The actual reading of the data is,90

however, not performed yet, but is delayed until it is known exactly which subset in space and time

is actually needed ("lazy reading"). The contents can be inspected by printing the object:

>>> print r

Projection:

+proj=stere +lat_0=90 +lon_0=70 +lat_ts=60 +units=m +a=6.371e+06 +e=0 +no_defs95

Coverage: [m]

xmin: -2952800.000000 xmax: -2712800.000000 step: 800 numx: 301

ymin: -1384000.000000 ymax: -1224000.000000 step: 800 numy: 201

Corners (lon, lat):

( 2.52, 59.90) ( 4.28, 61.89)100

( 5.11, 59.32) ( 7.03, 61.26)

Vertical levels [m]:

[0.]

Available time range:

start: 2015-11-16 00:00:00 end: 2015-11-18 18:00:00 step: 1:00:00105

67 times (0 missing)

Variables:

x_sea_water_velocity

y_sea_water_velocity

This above example shows that the created Reader object can provide ocean surface current on a grid110

with 800 m pixel size in polar stereographic coordinates, at hourly time resolution.

To allow for generic coupling of any OpenDrift model with any Reader, a naming convention for

variables is necessary. By convention, the commonly used CF naming convention (cfconventions.org)

should be used whenever possible. Thus if the data source is not already following this convention

(e.g. a GRIB file), the Reader should map the variable names to corresponding CF standard_name.115

The given Reader class must also have implemented a specific instance of the method get_variables

which is called to return data:

>>> data = r.get_variables(["x_wind", "y_wind"], x, y, z, time)

The horizontal coordinates (x,y) correspond to the native projection of the Reader, which is polar

stereographic in the given example. The task of transforming from one coordinate system to another120

(including the rotation of vectors) is performed by common methods from the parent class, based
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on the widely used proj.4 library (proj4.org), through its Python interface pyproj. This allows

OpenDrift to combine input data from any coordinate systems, whilst keeping the implementation

of new Reader classes as minimalistic and clean as possible. Further, this centralisation of code also

facilitates optimisation for both performance and robustness. The vertical coordinate (z) is by con-125

vention always in meters, zero at the air/water surface and positive upwards. Thus Readers providing

data from sources with other vertical coordinate systems (e.g. topography following coordinates or

pressure/density levels) must take care of transforming this to meters before data is returned. This is

e.g. done by an existing reader supporting native output from the ROMS ocean model. The variable

time is consistently handled as Python datetime objects within OpenDrift, with any time intervals130

as timedelta objects. Readers also share some common convenience methods, such as plotting of

geographical coverage.

Readers are, however, normally not called directly by the user or from specific OpenDrift in-

stances (models), but rather implicitly from the parent BaseModel class (see Sec 2.2). An internal

caching mechanism is implemented to minimize the amount of data to be read, which is a key to135

improving performance. Input data from numerical models are normally provided on a 3D spatial

grid (x,y,z) at discrete time steps, which is often larger than the time steps used internally by Open-

Drift models. When data is requested for a given set of element positions at a given time, OpenDrift

requests from the Readers 3D-blocks of data from the time before and after the given time. These

3D-blocks encompass the elements tightly, except for a buffer on each side which is large enough140

so that elements will stay within the coverage during the time step of the Reader. After 3D blocks

of data are provided by the Reader, interpolators are generated, and then reused to interpolate the

same data blocks onto the element positions successively at each internal calculation time step, un-

til the calculation time step reaches the latter Reader (model) time step. At this point, a 3D block

for the subsequent model time step is requested, and a new interpolator is generated. Due to this145

very economical access of remote data, simulations with OpenDrift are almost as fast when ob-

taining data from remote Thredds servers, as when reading the same data from a local file. The

interpolator mechanism is also modularised by a dedicated class in OpenDrift, allowing indepen-

dent development and optimisation. The default interpolation algorithm uses bilinear interpolation

(scipy.ndimage.map_coordinates), and may also extrapolate data towards land, to avoid particles150

stranding in a "no data" gap between ocean pixels from an ocean model and land points as as deter-

mined from an independent land mask.

Functionality exists also for reading and interpolating data from ensemble models. E.g. when

obtaining wind from a netCDF model file containing 10 ensemble members, particles number 1,

11, 21... will use wind from member 1 of the atmospheric ensemble, and particles number 2, 12,155

22... will use wind from member 2 of the atmospheric ensemble, and so on. This allows for a more

realistic spread/diffusion of particles than when using no or constant diffusivity. This functionality
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is particularly useful for ocean model output, which is inherently uncertain on short time scales, due

to limited availability of observations for assimilation.

Whereas obtaining forcing data from 3D Eulerian models is the most common in practice, Readers160

may obtain data from any other possible source. One example is to read a time series from an ASCII

file of observations, e.g. from a buoy or a weather station. Another example is to calculate forcing

data according to some analytical function. One such example is included in the code repository,

providing ocean current vectors according to a “perfect circular eddy” with centre coordinates as

given to its constructor. Such analytical forcing data fields are useful for e.g. testing the accuracy of165

forward propagation schemes, as discussed below.

OpenDrift also contains some internal convenience methods to calculate geophysical variables

from others. E.g. if a drift module requires wave height or Stokes drift, this may be parametrised

internally based on the wind velocity if no reader providing wave parameters are available.

2.2 BaseModel class170

Functionality which is common to any trajectory model is described in a main class, named Base-

Model. This functionality includes the following:

1. A mechanism for configuration of a trajectory model, or a specific simulation. This may in-

clude adjusting the resolution of a coastline, or some model specific parameters concerning

the movement of the elements. The configuration mechanism of OpenDrift is based upon the175

ConfigObj package (https://pypi.python.org/pypi/configobj).

2. A generic method to seed elements for a simulation. See Sec 2.3.3 for details.

3. Managing and referencing a set of Readers (Sec 2.1) which are called as needed to obtain

forcing data during a simulation. See Sec 2.3.2 for details.

4. Keeping track of the positions and properties of all elements during a simulation, and removing180

elements scheduled for deactivation. This is stored in 2D arrays with two dimensions, time and

particle ID. Thus the trajectory (propagation with time) of a single element or the simulation

state (all element positions and properties at a given time) is easily and quickly obtained as

vertical or horizontal slices of the array. The history of data may also be written to file, as

described in Sec 2.3.6.185

5. Finally, the BaseModel class contains the main loop for time-stepping, performing necessary

tasks for a simulation in the correct order as described in Sec 2.3.5.

The only part missing is a description of how the elements (e.g. objects or substance) shall be

propagated and potentially transformed along their trajectories under the influence of environmental

forcing data. Such application specific description is left to subclasses, yielding trajectory model190
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Figure 1. Flowchart of an OpenDrift simulation.

instances as exemplified in Sec 3. These subclasses thus inherit and may reuse any functionality from

the BaseModel. The subclasses may also add further functionality as needed, or overload and modify

existing functionality. Thus all necessary core functionality is available by convenience, but may be

modified for flexibility. In precise terminology, OpenDrift is a framework within which specific

trajectory models may be implemented by class inheritance (subclassing). An instance (object) of195

such a subclass represents a specific trajectory simulation.

2.3 Performing a simulation

In this section, we describe and explain the general workflow of a simulation with an OpenDrift

model, as illustrated in the flowchart in Fig. 1.
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2.3.1 Initialisation200

The first step is to import a specific OpenDrift model (subclass of BaseModel), and to initialise an

instance. The following Python statements import and initialise an instance of the Leeway search

and rescue model (Sec 3.1).

>>> from opendrift.models.leeway import Leeway

>>> l = Leeway()205

2.3.2 Adding readers

If a given model requires e.g. ocean current and atmospheric wind as environmental forcing, we need

to create and add Reader instances which can provide these variables. Say that we have a Thredds

server which can provide ocean currents, and a local GRIB file which contains atmospheric winds,

we can create and add these readers to the simulation instance as follows:210

>>> from opendrift.readers import reader_netCDF_CF_generic

>>> from opendrift.readers import reader_grib

>>> reader_current = reader_netCDF_CF_generic.Reader(

’http://thredds.example.com/current.nc’)

>>> reader_wind = reader_grib.Reader(’winds.grib’)215

>>> l.add_readers([reader_current, reader_wind])

For netCDF files, it is also possible to create a single reader object which merges together many files,

by using wildcards (* or ?) in the filename. This functionality is based on the NetCDF MFDataset

class.

It is also possible to perform a simulation even with no readers added for one or more of the220

required variables. In this case, constant values may be provided, otherwise reasonable default values

will be used, defaulting to zero-values for winds, waves and currents. E.g. in the case of having a

5 day wind forecast, but only a 3 day current forecast, it is still possible to run a 5 day trajectory

forecast, where current will be zero for the last two days.

A key feature of OpenDrift, for both convenience and robustness, is the possibility to provide225

a priority list of reader for a given set of variables. As an example it is possible to specify that a

high resolution ocean model shall be used whenever particles are within coverage in space and time,

and reverting to using another model with larger coverage in space and time whenever particles

are outside the time- or spatial domain of the high resolution model. As an important feature for

operational setups, the backup readers will also be used if the first choice model (file or URL) should230

not be available, or if there should be any other problems, such as e.g. corrupt values or files.
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2.3.3 Seeding of elements

The seeding methods of OpenDrift are very flexible. The simplest case is to seed (initialise) an

element at a given position and time:

>>> l.seed_elements(lon=4.0, lat=60.0, time=datetime(2017, 6, 25, 12))235

Also the number of elements and an uncertainty radius may be provided. Further, both position and

time may be provided as two-element vectors to seed elements continuously in space and time from

position P1 with uncertainty radius R1 at time T1, to position P2 with uncertainty radius R2 at time

T2. This is a common use case in search and rescue modeling (see Breivik and Allen 2008): a ship is

known to have departed from position P1 at time T1 with normally small uncertainty radius R1, and240

disappeared on the way towards the destination (P2), normally with larger uncertainty in position

(R2) and estimated arrival time (T2). Thus, this will track out a ’seeding cone’ in space and time.

Another common use case is that P1 equals P2, with T2 > T1, e.g. simulating a continuous oil spill

from a leaking well.

Another built-in feature is seeding of elements within polygons. This may e.g. be done by provid-245

ing vectors of longitude and latitude:

>>> l.seed_within_polygon(lon=lonvector, lat=latvector,

time=datetime(2017, 6, 25, 12), number=10000)

This example will seed 10000 elements with regular spacing within the polygon encompassed

by vectors lonvector and latvector. Based upon this generic polygon seeding method, more specific250

applications have been developed, see e.g. Sec 3.2. The seeding methods may also be overloaded to

provide customised functionality for a given module.

2.3.4 Configuration

OpenDrift modules share several configuration settings which may be adjusted before a simulation,

as well as some settings which are module-specific. All possible settings of a module may be shown255

with the command l.list_configspec(), of which one example is:

drift:scheme [euler] option(’euler’, ’runge-kutta’, default=’euler’)

This shows that the setting drift:schememay have one or two possible values, ’euler’ or ’runge-

kutta’, where the first is the default, and also the present setting as indicated within brackets. A

second order Runge-Kutta propagation scheme may instead be activated by the command:260

>>> l.set_config(’drift:scheme’, ’runge-kutta’)

Another example of a configuration setting is coastline_action which determines how the

particles shall interact with the coastline. Possible options are: stranding which means that par-

ticles will be deactivated if they hit the coastline (default); previous which means that particles
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shall be moved back to their previous position (i.e. "waiting" at the coast until eventually moved265

offshore later), or none, which means that particles do not interact with land, as for the WindBlow

module as demonstrated in Sect. 3.3.

The configuration mechanism is based on the widely used ConfigObj package, and allows e.g.

exporting to, and importing from, files of the common ’INI’-format.

2.3.5 Starting the model run270

After initialisation, configuration, adding of readers, and seeding of elements, the model simulation

may be started by calling the method run:

>>> l.run(duration=timedelta(hours=48), time_step=timedelta(minutes=15),

outfile=’outleeway.nc’)

This starts the main loop, as shown on the flowchart of Fig. 1. At each time step, forcing data is275

obtained by all the readers and interpolated onto the element positions, and the model specific update

method is called to move and/or otherwise update the other element properties (e.g. evaporation of

oil elements, or growth of fish larvae) based on the environmental conditions.

For the above example, the simulation will cover 48 hours, starting the time of the first seeded

elements. The time step of the calculation is given here as 15 minutes. An output time step might be280

specified differently, with e.g. output every hour to save memory and disk space.

All instances of OpenDrift can be run in reverse, i.e. backwards from a final destination, by revers-

ing the sign of the advective increment. All spatial increments due to model physics pertinent to the

instance in question are calculated as normal, but the sign of the total increment, (∆x,∆y,∆z), is

reversed and the particles are advected “backwards” over a time step ∆t. All diffusive properties are285

kept in the forward sense, meaning that particles will disperse as they propagate backwards in time.

Nonlinear processes such as evaporation of oil or capsizing of vessels, are disabled in backtracking

mode. This simple backtracking scheme is an easy to use alternative to more complicated inverse

methods such as iterative forward trajectory modeling (Breivik et al., 2012b), and is also much less

computationally expensive.290

2.3.6 Exporting model output

In the above example, the output is saved to a CF-compliant NetCDF file (Trajectory Data spec-

ification), which is the default output format of OpenDrift. Both particle positions and any other

properties, as well as configuration settings are stored in the file. If the number of elements and time

steps are too large to keep all data in physical memory, OpenDrift will flush history data to the out-295

put file as needed during the simulation to free internal memory. The simulation may be imported

by OpenDrift, or independent software, for subsequent analysis or plotting. Stored output files may

also be used as input to a subsequent OpenDrift simulation, allowing for an intermediate step where
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the particles are subjected to various considerations such as a Bayesian update of their probabilities

based on posterior information. Saving data to files is not a requirement, as the output of the sim-300

ulations is otherwise held in memory for subsequent plotting or analysis, either interactively from

within Python shell, or by a script. A number of visualization tools based on the Matplotlib graph-

ics library of Python are included within OpenDrift. Some examples of both generic and module

specific plotting methods are illustrated in Sec 3.

3 Examples of model instances305

3.1 Leeway (Search and Rescue)

The OpenDrift Leeway instance (OpenLeeway) is based on the operational search and rescue model

of the Norwegian Meteorological Institute (Breivik and Allen, 2008). The model ingests a list of

object classes, where each drifting object has specific properties such as downwind and crosswind

leeway (the motion due to wind) in a way similar to SAROPS, the operational system used by310

the US Coast Guard (see Kratzke et al. 2010, and the overview of search and rescue models by

Davidson et al. 2009). These properties vary greatly from object to object, and are based on field

work (Breivik et al., 2011, 2012a) where specific objects of relevance in search and rescue have

been studied. All objects are assumed to be small enough that direct wave scattering forces are

insignificant. Furthermore, the Stokes drift (Kenyon, 1969; Breivik et al., 2014, 2016) is inherently315

part of the leeway obtained from observations. As wind-generated waves have a mean direction

closely aligned with the local wind direction it is neither practical nor desirable to disentangle the

Stokes drift from the wind drag for leeway simulations.

Once an object class has been chosen and the pertinent wind and current forcing fields selected,

the particles are seeded based on the available information. If the particles hit the coast they stick by320

default. This can however be relaxed so that particles detach from the coastline if the wind direction

changes.

The OpenLeeway class along with all other subclasses has the option of being run backwards.

This is a convenient feature in cases where for example a debris field is observed and the location

of the accident is sought. Note that this method is fundamentally different from the BAKTRAK325

model described by Breivik et al. (2012b) where a large number of particles were seeded in potential

initial locations at various times, and only those that ended up close to the location of the observed

object were kept. This is an iterative procedure which in principle can deal with nonlinearities in

the flow field as well as nonlinear behaviour of the object itself (such as capsizing and swamping).

Although in principle this allows for a more realistic mapping of initial locations, the difficulties330

associated with this iterative process means that real-time operations are normally better off with a

simple negative-time integration.
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OpenLeeway is used operationally at Norwegian Meteorological Institute, and is also currently

being implemented as the operational search and rescue model for the Joint Rescue Co-ordination

Centres (JRCC) of Norway.335

The following lines of Python code illustrate a complete working example of running an Open-

Leeway simulation:

from opendrift.readers import reader_netCDF_CF_generic

from opendrift.models.leeway import Leeway

l = Leeway() # Creating a simulation object

# Wind field

reader_wind = reader_netCDF_CF_generic.Reader(

’http://thredds.met.no/thredds/dodsC/meps25files/meps_det_pp_2_5km_latest.nc’)

# Ocean model data

reader_ocean = reader_netCDF_CF_generic.Reader(

’http://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate_be’)

l.add_reader([reader_wind, reader_ocean])

# Seed elements at defined position and time

objType = 26 # Life-raft, no ballast

l.seed_elements(lon=4.5, lat=60.0, radius=1000, number=5000,

time=datetime(2017,7,1,12), objectType=objType)

# Running the model 48 hours ahead

l.run(duration=timedelta(hours=48))

# Print and plot results

print l

l.animation(filename=’leeway_example.mp4’)

l.plot(filename=’leeway_example.png’)

The final plotting command yields Fig. 2. The coastline shown is from the GSHHS database

(Wessel and Smith, 1996), which is the default option used to check stranding in OpenDrift. This

coastline is however interfaced to OpenDrift as a regular Reader (Sec 2.1), and can be replaced by340

any other reader providing the CF variable land_binary_mask. This allows performing simulations

in narrow bays or lakes where even the full resolution GSHHS coastline is too coarse.
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Figure 2. Output from the Leeway example of Sec 3.1. Green dots are the initial positions of the elements (life

rafts), gray lines are trajectories, and blue dots are positions at the end of the simulation. Red dots indicate

elements which have hit land (stranded).

3.2 OpenOil (Oil drift)

OpenOil is a full-fledged oil drift model, bundled within the OpenDrift framework. As a model it has

been developed from scratch, but is based on a selection of parameterisations of oil drift as found in345

the open research literature. With regard to horizontal drift, three processes are considered:

– Any element, whether submerged or at the surface, drifts along with the ocean current.

– Elements are subject to Stokes drift corresponding to their actual depth. Surface Stokes drift

is normally obtained from a wave model (or by any Reader), and its decline with depth is

calculated as described in Breivik et al. (2016).350

– Oil elements at the ocean surface are moved with an additional factor of 2% (configurable)

of the wind. Together with the Stokes drift (typically 1.5% of the wind at the surface), this

sums up to the commonly found empirical value of 3.5% of the wind (Schwartzberg, 1971).

The physical mechanism behind this wind drift factor is not obvious, and is discussed in Jones

et al. (2016).355
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The above three drift components may lead to a very strong gradient of drift magnitude and

direction in the upper few meters of the ocean. For this reason, it is also of critical importance to

have a good description of the vertical oil transport processes, which in OpenOil are the sum of the

following factors:

– If the vertical ocean current velocity is available from a reader, the oil elements will follow it.360

This part of the movement is however often negligible compared to the processes below.

– Oil elements at the surface, regarded as being in the state of an oil slick, may be entrained

into the ocean by breaking waves. Presently OpenOil contains two different parameterisations

of this entrainment rate, from which the user can chose as part of configuration (see below):

Tkalich and Chan (2002) and Li et al. (2017). The entrainment depends on both the wind365

and wave (breaking) conditions, but also on the oil properties, such as viscosity, density and

oil-water interfacial tension.

– Buoyancy of droplet is calculated according to empirical relationships and the Stokes law

Tkalich and Chan (2002), dependent on ocean stratification (calculated from temperature and

salinity profile, normally read from an ocean model), oil and water viscosities and densities.370

Also, the buoyancy is strongly dependent on the oil droplet size (diameter), of which two pa-

rameterisations are available: one is a generic power law, with droplets between a minimum

and maximum diameter, and a configurable exponent where -2.3 corresponds to the classi-

cal work of Delvigne and Sweeney (1989). The second option for droplet size spectrum is a

"modern" approach by Johansen et al. (2015), where a lognormal droplet spectrum is calcu-375

lated explicitly based on wave height and oil properties such as viscosity, density, interfacial

tension, and surface film thickness.

– In addition to the wave induced entrainment, the oil elements are also subject to vertical tur-

bulence throughout the water column, as parameterised with a numerical scheme described in

Visser (1997). This scheme is generic within OpenDrift, and is also used by the PelagicEgg380

module for ichtyoplankton (Sec 3.4). Only the properties specific to oil, or plankton, are coded

in the respective classes (modules).

In addition to the vertical and horizontal drift, weathering of the oil also has to be considered.

While parameterisations of weathering might also be implemented directly within the OpenDrift

framework, the OpenOil module instead interfaces with the already existing OilLibrary software385

developed by NOAA (https://github.com/NOAA-ORR-ERD/OilLibrary). The NOAA OilLibrary is

also open source and written in Python, so integration is straightforward. In addition to state-of-the

art parameterisations of processes such as evaporation, emulsification and dispersion, this software

contains a database of measured properties of almost 1000 oil types from around the world. As oils

from different sources/wells have vastly different properties, such a database is of vital importance390
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for accurate results. The same OilLibrary is also used by the NOAA oil drift model PyGNOME

(https://github.com/NOAA-ORR-ERD/PyGnome), where it is replacing the original ADIOS oil li-

brary (Lehr et al., 2002). PyGNOME includes also more processes not (yet) included in OpenOil,

such as dissolution, and adding of dispersants.

To run an OpenOil simulation, one could re-use the exact code as for the Leeway example of395

Sec 3.1, only replacing the name of the imported module (OpenOil instead of Leeway), and replac-

ing the objectType property of Leeway with a corresponding oil name from the NOAA database.

However, whereas key features and functionality is shared among OpenDrift modules, each module

(or group of modules) may add specific functionality. E.g., for OpenOil, it is possible to initialise

the simulations with an oil slick as read from a file containing contours, either a shapefile, or the400

GML-format/specification as used by the European Maritime Safety Agency (EMSA):

>>> o.seed_from_gml("RS2_20151116_002619_SCNB_HH_Oil.gml",

num_elements=2000)

>>> o.plot()

where o is the oil drift simulation object. The last command produces the plot shown in Fig. 3.405

Figure 3. Oil drift simulation initialised by seeding 2000 oil elements within contours of an oil slick as observed

from satellite (Radarsat2). The contour is imported from a GML file produced by Kongsberg Satellite Services

(KSAT).

OpenOil also has module-specific configuration settings. The following commands specifies that

the oil entrainment rate shall be calculated according to Li et al. (2017), and the oil droplet size

spectrum shall be calculated according to Johansen et al. (2015).

>>> o.set_config(’wave_entrainment:entrainment_rate’, ’Li et al. (2017)’)
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>>> o.set_config(’wave_entrainment:droplet_size_distribution’,410

’Johansen et al. (2015)’)

Adjusting configuration this way is convenient for sensitivity studies, where one component is

changed for two otherwise identical simulations.

After the simulation is finished, the generic plot command may be used to produce a map with

trajectories as shown in Fig. 2. However, more specific plotting methods are also available. The415

command o.plot_oil_budget() plots an oil budget as shown in Fig. 4.

Figure 4. Plot of the time evolution of the oil budget of a 24 hour simulation with OpenOil. Of 500 kg oil

initially at the ocean surface, about 20% is seen to evaporate within the 24 hours. The amount of oil submerged

due to wave action and ocean turbulence varies with the wind and wave conditions, with more oil resurfacing

when wind decreases after about 7 hours. After about 18 hours, some of the oil seen to hit the coastline. These

results are for the oiltype "MARTIN LINGE CRUDE", very different results could be obtained if using another

oiltype for the same geophysical conditions.

The vertical distribution of the elements can be plotted with the command o.plot_vertical_distribution(),

generating output as shown in Fig. 5. This method is shared among 3-dimensional modules, and may

also be used for simulations with e.g. the PelagicEgg module (Sec 3.4).

3.3 WindBlow (Atmospheric transport)420

As an example of a minimalistic trajectory model we also include the instance WindBlow, which

simply calculates the propagation of a passive particle subject to a two-dimensional wind field. The

code below is the complete, and fully functional WindDrift module.
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Figure 5. Vertical profile of the amount of (oil) elements. The bottom bar is an interactive slider, which the user

can pull left/right to see the time variation of the vertical distribution.

# WindBlow module code

from opendrift.models.basemodel import OpenDriftSimulation

from opendrift.elements.passivetracer import PassiveTracer

class WindBlow(OpenDriftSimulation):

ElementType = PassiveTracer

required_variables = [’x_wind’, ’y_wind’]

def update(self):

self.update_positions(self.environment.x_wind,

self.environment.y_wind)

Because all common functionality is inherited from the main class, the WindBlow model only

needs to address its own specific needs: It will use elements without any other properties except for425

position (PassiveTracer), and the only forcing needed to move the elements is wind, whose vector

components are named x_wind and y_wind in CF-terminology. The update() method which is called

at each time step simply advects all elements with the wind velocity at their respective locations. The

wind might be provided by any Reader (Sec 2.1). The WindDrift module may be run with an even

more simplified form of the code example found in Sec 3.1: the WindDrift class has to be imported,430

no Reader for ocean current is needed, and there is no object category to specify.
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Clearly, an air parcel in the real atmosphere will also be subjected to updrafts and diffusion, and

will with time rise or fall, but the example serves to demonstrate how little is required to develop

a new subclass of OpenDrift. The model may be made more sophisticated by adding e.g. vertical

wind (upward_air_velocity) and turbulence parameters to the list of required variables, and adding435

corresponding parameterisations of how to use this information for the advection.

3.4 Other modules

In addition to the models described above, some other modules are bundled within the OpenDrift

repository, as illustrated in Fig. 6:

– OceanDrift is a basic module for tracking e.g. water masses or passive tracers. Stokes drift440

is included, if provided by a reader. A wind-drift-factor may also be specified, allowing an

additional wind drag at the surface, e.g. for simulation trajectories of various ocean drifting

buoys (Dagestad and Röhrs, 2017).

– PelagicEgg is a module for transport of pelagic ichtyoplankton. This module contains quite

basic functionality with identical transport mechanisms as in Röhrs et al. (2014), including445

the vertical turbulent scheme (Sec 3.2) which is of key importance for most pelagic plankton

applications. Although a fully working a module, users with specialised needs (e.g. a specific

biological species) can customise the drift and behaviour parameterisations by modifying or

adding parameterisations in the PelagicEgg module, such as larval behaviour. Some users have

interfaced this module with existing Fortran-code for e.g. calculation of sunlight-dependent450

behaviour, see e.g. Kvile et al. (2017) and Sundby et al. (2017). A pure python version of the

sunlight-module is available and will be included in a future version of OpenDrift.

– ShipDrift is a module for predicting the drift of ships larger than 30 meters, where the effect

of waves has to be calculated explicitly, and not implicitly with the wind drift as in the Leeway

module. This module is based on Sørgård and Vada (2011). A previous version programmed455

in the C programming language has been used operationally at MET Norway for 15 years,

but is now replaced by the OpenDrift version, which has been tested and shown to provide

identical output for identical input/forcing.

A module for drift of icebergs (OpenBerg, not yet included in repository) has been developed by

Ron Saper at Carleton University with partial funding from ASL Environmental Sciences of Victo-460

ria, Canada, and with data support from the Canadian Ice Service (personal communication). Two

different iceberg drift forecasting approaches are being tested. One approach uses a drag formulation

to calculate wind and water drag forces. The challenge with this approach is that the trajectories are

very sensitive to underwater draft/shape and suitable drag coefficients, of which information is rarely

available. The second approach predicts and subtracts the wind and tidal components of the drift,465

and then analyses the residual for extrapolation an appropriately short time into the future. Finally,
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wind and tidal components are added back in to produce a trajectory forecast. The first version of

OpenBerg does not include thermodynamic effects (melting) which are important longer timescales

from weeks to months.

Drift of marine plastics, including microplastics, is an important application not covered by mod-470

ules included with the OpenDrift repository version 1.0. However, as most of the needed infrastruc-

ture is already provided, including a vertical mixing scheme, a user with knowledge of the relevant

physics and basic Python programming should be able to implement such a module with moderate

efforts. Though, there is no upper limit to the complexity of any module.

Figure 6. Illustration of how OpenDrift modules for specific applications (white boxes) inherit common func-

tionality from the core module. This includes functionality to interact with Readers for obtaining forcing

data. Sub-classing (inheritance) allows e.g. both the OpenOil and PelagicEgg models to share further 3D-

functionality through subclassing the OpenDrift3D class. The boxes with solid boundaries illustrate existing

modules bundled with the OpenDrift repository, whereas dashed boundaries indicate planned modules. The

green box illustrates that OpenOil (oil drift model) utilises functionality from a third-party library, the NOAA

OilLibrary.

4 Test suite and example scripts475

OpenDrift contains a broad set of automatic tests (Python unittest framework) which can be run by

the user to assure that all calculations are performed correctly on the local machine. The tests cover

both basic calculations, such as interpolation and rotation of vectors from one spatial reference sys-

tem (SRS) to another, but also more extensive integration tests, performing full simulations with the

modules to verify that an expected numerical result is obtained. Also, very importantly, the tests are480

also run automatically on a variety of machine configurations, using the Travis Continuous Integra-
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tion (CI) framework (https://travis-ci.org). This ensures that OpenDrift calculations remain accurate

and correct with both old and new versions of the various required libraries (e.g. NumPy), and that

existing functionality is not broken as new functionality is added. For version 1.0 of OpenDrift, 64%

of the code is covered by the unit tests, as reported by the Coveralls tool (coveralls.io).485

A user manual of OpenDrift is kept alongside of the code repository on the wiki-pages of GitHub

(https://github.com/OpenDrift/opendrift/wiki), facilitating a dynamic description to evolve with the

code, instead of diverting from it. Many example scripts (40 in version 1.0) are also provided in the

repository along with the needed input forcing data, illustrating a variety of real-life use cases. The

examples can easily be modified and adapted, allowing a soft learning curve.490

OpenDrift also comes with a set of handy command line tools, such as readerinfo.py, which may

be used to easily inspect the contents and coverage of potential forcing fields. The following shell

command produces the same output as the example of Sec 2.1, where the switch ’-p’ also displays a

plot of the geographical coverage:

$ readerinfo.py ocean_model_output.nc -p495

5 Graphical user interfaces

Although running OpenDrift modules with Python scripts (see e.g. Sec 3.1) is the most flexible and

powerful, a basic graphical user interface (GUI) is also included in the repository. A screenshot is

shown in Fig. 7. The GUI allows to select a module, and an object type or medium (e.g. oil type) cor-

responding to the module, and then a seeding location and time. The simulation is started by clicking500

the "START"-button, and plots and animation of the output is available after the simulation, and also

saved to a NetCDF-file. The GUI will obtain forcing data through a provided list (configurable) of

Thredds-servers with global coverage, so there is no need for the user to obtain and download large

amounts of model input in advance. Although presently with only basic functionality, the GUI is in

operational use at MET Norway, where it is tested daily by meteorologist on duty as part of the oil505

spill and search and rescue preparedness system.

In addition to the native GUI, a web interface has also been developed for remote access without

need for any local installation. This is based on communication with OpenDrift through a Web Pro-

cessing Service (WPS) developed at MET Norway (not included in the repository). Independently,

a WPS for the Leeway module has also been developed and implemented at the Swedish Met Office510

(SMHI). A generic and configurable WPS to be included in the repository is planned for the future.
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Figure 7. Screenshot of the Graphical User Interface included with OpenDrift.

6 Discussion and conclusions

Several offline trajectory models exist to predict the transport and transformation of various sub-

stances and objects in the ocean or in the atmosphere. OpenDrift is an open source Python framework

aiming at extracting anything which is common to all such trajectory models in a core library, and to515

combine this with a clean and generic interface for describing any processes which are application-

specific. Several examples of such specific modules are bundled with the OpenDrift code repository,

and serve as ready-to-use trajectory models. This includes an oil drift model (OpenOil), a search

and rescue model (Leeway), and a model for predicting the drift and transformation of ichtyoplank-

ton (PelagicEgg). Interfaces ("Readers") towards the most common formats of forcing data (e.g.520

NetCDF and GRIB) are also included, allowing any of the modules to be forced by data from a

combination of files and other sources, including remote Thredds servers. The concept of "Readers"

is also modularised, allowing a scientist or programmer to easily develop an interface towards any

other specific source of forcing data, such as e.g. an ASCII file containing in situ observations from

a buoy or weather station, or ocean currents from HF-radar systems in a specific binary format.525
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A built-in configuration mechanism provides flexibility to the operation of the OpenDrift modules.

However, the fact that the application-specific processes of these modules are separated from the

technical complexities of the OpenDrift core, provides even greater flexibility to the user in that it

is easy to modify existing modules, or even write new modules from scratch. Several users have

already developed or adjusted modules for their specific purpose, and added useful contributions to530

the OpenDrift core (Sundby et al., 2017; Kvile et al., 2017).

Whereas flexibility is important for scientific studies, OpenDrift is also designed for performance

and robustness, and is in daily use for operational emergency response systems at the Norwegian

Meteorological Institute. Being able to use the same tool in both cases, facilitates rapid transition of

the latest research results into operations.535

The efficiency of the code has been optimised to the point that the more time is normally spent on

reading the forcing data from disk (or a URL) than on performing actual calculations. Computational

performance similar to compiled languages (Fortran or c) is obtained by e.g. using primarily NumPy

arrays for calculations (avoiding the slower MaskedArray class), and avoiding for-loops. A typical

emergency simulation with the Leeway model with 5000 elements and 48 hour duration takes on540

the order of 1 minute. A corresponding simulation with OpenOil takes about 3-5 minutes, primarily

because more layers of ocean model data has to be read from disk, in contrast to the Leeway simula-

tion which only needs the surface current. A typical one-year simulation of 20.000 drifting cod eggs

(developing into larvae) takes about 4 hours on a regular desktop computer (Kvile et al., 2017). The

OpenDrift code is presently not parallelised. However, given that most time is spent on reading data545

from disk, some further performance gain could possibly be achieved by e.g. reading in parallel data

from different input files (e.g. ocean model and atmospheric model), or by reading input data for the

following time step in parallel to performing calculations.

Another great benefit of the modularity provided by OpenDrift, is the ability to perform sensitivity

tests by varying one component while keeping everything else constant. Much can be learnt from550

performing two otherwise identical simulations with e.g. input from two different Eulerian models,

or by using two different parameterisations of some process. Further, consistency is also provided

by the possibility of handling e.g. overlap of fish eggs and oil with the same forcing and numerical

scheme. Traditionally, it might be difficult to draw conclusions by comparing the output from differ-

ent trajectory models, as the differences depend on many factors, such as interpolation schemes and555

numerical algorithms.

The modules presently included with OpenDrift will be improved in the future, in particular by

validation against available relevant observations. Among the general problems which require more

attention, are to properly describe and quantify the very strong vertical gradients of horisontal drift

often found in the upper few meters of the ocean, as result of a delicate balance between ocean560

currents and Stokes drift, as well as the direct wind drift affecting objects and substances at the

very ocean surface. This vertical gradient of forcing is highly important for drift of e.g. oil and
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chemicals, plankton, and microplastics. This implies further that having accurate parameterisations

of the vertical transport processes (wave entrainment, buoyancy and ocean turbulence) is also very

important. E.g. a key for successful simulation of the drift of observed oil slicks in Jones et al. (2016)565

was to incorporate a vertical mixing scheme developed for fish eggs (Sundby, 1983; Thygesen and

Ådlandsvik, 2007; Ådlandsvik and Sundby, 1994) into the oil drift model OpenOil.

7 Code availability

OpenDrift is housed on Github: https://github.com/OpenDrift/opendrift. The accompanying wiki

pages contain installation instructions, documentation and examples. Version 1.0 of OpenDrift is570

registered with Zenodo: http://doi.org/10.5281/zenodo.845813. OpenDrift has been tested on both

Linux, Mac and Windows platforms. Version 1.0 requires Python 2.7, and is not adapted for Python

3. The OpenDrift framework is distributed under a GPLv2 license.
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