10

15

20

OpenDrift v1.0: a generic framework for trajectory
modeling

Knut-Frode Dagestad !, Johannes Rohrs !, @yvind Breivik !, and Bjgrn
Adlandsvik 2

'Norwegian Meteorological Institute, Bergen, Norway
Institute of Marine Research, Bergen, Norway
3Geophysical Institute, University of Bergen, Norway

Correspondence to: Knut-Frode Dagestad (knutfd @met.no)

Abstract. OpenDirift is an open-source Python-based framework for Lagrangian particle modeling
under development at the Norwegian Meteorological Institute with contributions from the wider
scientific community. The framework is highly generic and modular, and is designed to be used for
any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDirift
framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules
have already been developed, including an oil drift module, a stochastic search and rescue module,
a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the
ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources,
including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values
for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total
displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on
Linux, Mac and Windows environments, and can be used with minimal or no Python experience.
It is designed for flexibility, and researchers may easily adapt or write modules for their specific
purpose. OpenDirift is also designed for performance, and simulations with millions of particles may
be performed on a laptop. Further, OpenDirift is designed for robustness, and is in daily operational
use for emergency preparedness modeling (oil drift, search and rescue and drifting ships) at the

Norwegian Meteorological Institute.

1 Introduction

Lagrangian trajectory models are used to predict the pathways and transformations of various types
of objects and substances drifting in the ocean or in the atmosphere. There are many practical and

academic applications, including prediction of:

— oil drift and weathering to aid mitigation and cleanup operations (Jones et al.| 2016

25

30

35

40

45

50

55

— drifting objects for search and rescue (Breivik and Allen, [2008; |Breivik et al., 2011} 2013)
— ichtyoplankton transport (fish eggs and larvae) for stock assessments (Rohrs et al., 2014)
— microplastics suspended in the ocean (van Sebille et al., 2012} 2015)

Table [T] lists some commonly used trajectory models and their applications. Additionally, many
individual researchers or research groups have been developing trajectory model codes for in-house
use, without publishing (or naming) a software code.

Lagrangian tools fall in two broad categories, either the trajectories are computed along with the
velocity fields as part of the ocean or atmospheric circulation model (e.g. so-called floats in the re-
gional ocean modelling system (ROMS), Shchepetkin and McWilliams|2005). This is known as on-
line trajectory computations, and has the advantage that no separate model is needed. Alternatively,
the trajectories can be computed offline after completion of the Eulerian model simulation(s). This is
the approach taken for OpenDrift, and is also necessary for a generic framework as the trajectories
depend in many cases on forcing from a range of fields stemming from more than just one Eulerian
model. This is e.g. the case for oil drift and search and rescue models, which both require wind
as well as currents (and wave forcing in the case of oil drift) to properly account for the advection
and transformation of the particles. For such emergency preparedness purposes, offline models are
the only option fast enough to meet the requirements of operational agencies. Other advantages of
offline models are that modifications (sensitivity tests) of the drift algorithms may be tested quickly
without needing to rerun the full Eulerian model, and also that simulations backwards in time may
be performed.

Existing trajectory models are in most cases tied to a specific application, and may not be applied
to other drift applications without compromising quality or flexibility. In many cases, trajectory
models are also tied to a specific Eulerian model, or even a particular institutional ocean model setup,
limiting usability for other institutes or researchers. Often, it is also required that Eulerian forcing
data must be in a specific file format. This raises the time and effort needed to set up a trajectory
model. Further, in an operational setup, the need to convert large files to another format increases
both the complexity and computational costs of the processing chain, compromising robustness.

The OpenDrift framework has been designed to perform all tasks which are common to trajectory
models, whether oceanic or atmospheric. In short, the main task is to obtain forcing data from vari-
ous sources, and to use this information to move (propagate) the elements in space, while potentially
transforming other element properties, such as evaporation of oil, or growth of larvae. In addition,
common functionality includes mechanisms for configuration of simulations, seeding of elements,
exporting output to file, and tools to visualise and analyse the output. Additionally, several design
requirements have been imposed on the development of OpenDirift: (1) platform independence and
ease of instalment and use; (2) simple and rapid implementation of any purpose-specific processes,

yet flexibility to support unforeseen needs; (3) forcing data from any type of source shall be sup-

60

65

70

75

80

85

ported, including Eulerian ocean, atmosphere or wave models (typically NetCDF or GRIB files), in
situ measurements, vector datasets (e.g. GSHHS coastlines), or analytical fields for conceptual stud-
ies; (4) it must run fast, even with a large number of elements; (5) simulations forward and backward
in time; (6) robustness for operational use.

In Sec 2 we describe the overall design of the code, and the general workflow of performing a
simulation. In Sec 3 we give examples of three specific modules which are included in the OpenDirift
repository: search and rescue, oil drift, and atmospheric transport. The test suite and example scripts
are described in Sec 4, and graphical user interfaces (Web and desktop) are described in Sec 5. Sec

6 provides discussion and conclusions.

2 Software design

To meet the requirements listed above, a simple and flexible object oriented data model has been de-
signed, based on two main classes. One class ("Reader") is dedicated to obtaining forcing data from
external sources, as described in Sec 2.1} A generic class for a trajectory model instance ("Base-
Model") is described in Sec This class contains functionality which is common to all drift
models, whereas advection (propagation) and transformation of elements is left for purpose-specific

subclasses.
2.1 Reader class

The class Reader obtains forcing data (e.g. wind, waves and currents) from any possible source, and
provides this to any OpenDrift model through a common interface. To avoid duplication of code, a
parent class "BaseReader" contains functionality which is common to all Readers, whereas specific
subclasses take care of only the tasks which are specific to a particular source of data, e.g. how
to decode and interpret a particular file format. Two methods must be implemented by any Reader
subclass: 1) a constructor method which initialises a Reader object, and 2) a method to retrieve data
for given variables, position and time. The constructor (__init__ in Python) can take any arguments
as implemented by the specific Reader class, but typical is to provide a filename or URL from which
data shall be obtained by this Reader. The following Python commands initialise a reader of type

NetCDF_CF_generic to obtain data from a file "ocean_model_output.nc".

Name

Ariane

BSHDmod

Connectivity Modeling System

CIS iceberg model

CLaMS

EMEP

Reference / URL

Main application

Blanke et al.|(1997)

Oceanography

Dick and Soetje{(1990)

Oil

Paris et al.|(2013)

Ocean, generic

Kubat et al.[(2007)

Icebergs

McKenna et al.|(2002)

Atmospheric chemistry

Simpson et al.| (2012)

Air pollution

FLEXPART, FLEXSTRA

HYSPLIT

Ladim

LAGRANTO

LAGRANTO.ocean

Leeway

LTRANS

MEDSLIK, MEDSLIK-II

www.flexpart.eu

Stohl et al.| (1995)

Nuclear, air pollution

Stein et al.| (2015)

Atmospheric transport

Adlandsvik and Sundby] (1994)

Plankton transport

‘Wernli and Davies|(1997),
Sprenger and Wernli| (2015))

Meteorology

Schemm et al. (2017)

Water mass properties

Breivik and Allen|(2008)),
Allen and Plourde| (1999)

Search and rescue

Schlag and North| (2012)

Plankton (including larvae)

De Dominicis et al.|(2013),
Lardner et al.|(1998)

Oil

MIKE www.mikepoweredbydhi.com Ocean, generic

MOHID www.mohid.com Oil, sediments, water quality
MOTHY Daniel; 1996)) Oil, drifting objects

OD3D Wettre et al. (2001) oil

OILMAP, SIMAP, CHEMMAP,

wWwWw.asascience.com

Oil, sediments, chemical, search and

MUDMAP, SARMAP rescue

OILTOX Brovchenko et al.| (2003) Oil

OILTRANS Berry et al. (2012; Oil

OSCAR www.sintefjnolen/softwareloscar Oil

OSERIT oserit.mumm.ac.be Oil, chemicals

PARCELS github.com/OceanPARCELS/parcels Ocean, generic
POSEIDON-OSM osm.hcmr.gr Oil

PyGNOME/GNOME gnome.orr.noaa.gov Oil, generic

SeaTrackWeb, PADM stw.smhi.se Oil, chemicals

SNAP Bartnicki et a1.7(2016) Atmospheric nuclear transport
STILT www.stilt-modgl.org Atmospheric trace gases
THREETOX Margvelashvily et al.7(1997) Nuclear ocean transport
TRACMASS Doos et al.|(2013))) Ocean and atmosphere, generic
VOS en.ferhri.org oil

Table 1. Some existing trajectory models for various oceanic and atmospheric applications.

>>> from opendrift.readers import reader_netCDF_CF_generic

>>> r = reader_netCDF_CF_generic.Reader ("ocean_model_output.nc")

The initialisation typically includes opening and reading metadata from a given file or URL to check
90 which variables are available, and the coverage in time and space. The actual reading of the data is,
however, not performed yet, but is delayed until it is known exactly which subset in space and time

is actually needed ("lazy reading"). The contents can be inspected by printing the object:

>>> print r
Projection:
95 +proj=stere +lat_0=90 +lon_0=70 +lat_ts=60 +units=m +a=6.371e+06 +e=0 +no_defs
Coverage: [m]
xmin: -2952800.000000 xmax: —2712800.000000 step: 800 numx: 301
ymin: -1384000.000000 ymax: —-1224000.000000 step: 800 numy: 201
Corners (lon, 1lat):
100 (2.52, 59.90) (4.28, 61.89)
(5.11, 59.32) (7.03, 61.206)
Vertical levels [m]:
[0.]
Available time range:
105 start: 2015-11-16 00:00:00 end: 2015-11-18 18:00:00 step: 1:00:00
67 times (0 missing)
Variables:
X_sea_water_velocity

y_sea_water_velocity

110 This above example shows that the created Reader object can provide ocean surface current on a grid
with 800 m pixel size in polar stereographic coordinates, at hourly time resolution.

To allow for generic coupling of any OpenDrift model with any Reader, a naming convention for
variables is necessary. By convention, the commonly used CF naming convention (cfconventions.orq)
should be used whenever possible. Thus if the data source is not already following this convention

115 (e.g. a GRIB file), the Reader should map the variable names to corresponding CF standard_name.

The given Reader class must also have implemented a specific instance of the method ger_variables

which is called to return data:
>>> data = r.get_variables(["x_wind", "y_wind"], x, vy, z, time)

The horizontal coordinates (x, y) correspond to the native projection of the Reader, which is polar
120 stereographic in the given example. The task of transforming from one coordinate system to another

(including the rotation of vectors) is performed by common methods from the parent class, based

125

130

135

140

145

150

155

on the widely used proj.4 library (proj4.org), through its Python interface pyproj. This allows
OpenDirift to combine input data from any coordinate systems, whilst keeping the implementation
of new Reader classes as minimalistic and clean as possible. Further, this centralisation of code also
facilitates optimisation for both performance and robustness. The vertical coordinate (z) is by con-
vention always in meters, zero at the air/water surface and positive upwards. Thus Readers providing
data from sources with other vertical coordinate systems (e.g. topography following coordinates or
pressure/density levels) must take care of transforming this to meters before data is returned. This is
e.g. done by an existing reader supporting native output from the ROMS ocean model. The variable
time is consistently handled as Python datetime objects within OpenDrift, with any time intervals
as timedelta objects. Readers also share some common convenience methods, such as plotting of
geographical coverage.

Readers are, however, normally not called directly by the user or from specific OpenDrift in-
stances (models), but rather implicitly from the parent BaseModel class (see Sec [2.2). An internal
caching mechanism is implemented to minimize the amount of data to be read, which is a key to
improving performance. Input data from numerical models are normally provided on a 3D spatial
grid (z,y, z) at discrete time steps, which is often larger than the time steps used internally by Open-
Drift models. When data is requested for a given set of element positions at a given time, OpenDrift
requests from the Readers 3D-blocks of data from the time before and after the given time. These
3D-blocks encompass the elements tightly, except for a buffer on each side which is large enough
so that elements will stay within the coverage during the time step of the Reader. After 3D blocks
of data are provided by the Reader, interpolators are generated, and then reused to interpolate the
same data blocks onto the element positions successively at each internal calculation time step, un-
til the calculation time step reaches the latter Reader (model) time step. At this point, a 3D block
for the subsequent model time step is requested, and a new interpolator is generated. Due to this
very economical access of remote data, simulations with OpenDrift are almost as fast when ob-
taining data from remote Thredds servers, as when reading the same data from a local file. The
interpolator mechanism is also modularised by a dedicated class in OpenDirift, allowing indepen-
dent development and optimisation. The default interpolation algorithm uses bilinear interpolation
(scipy.ndimage.map_coordinates), and may also extrapolate data towards land, to avoid particles
stranding in a "no data" gap between ocean pixels from an ocean model and land points as as deter-
mined from an independent land mask.

Functionality exists also for reading and interpolating data from ensemble models. E.g. when
obtaining wind from a netCDF model file containing 10 ensemble members, particles number 1,
11, 21... will use wind from member 1 of the atmospheric ensemble, and particles number 2, 12,
22... will use wind from member 2 of the atmospheric ensemble, and so on. This allows for a more

realistic spread/diffusion of particles than when using no or constant diffusivity. This functionality

160

165

170

175

180

185

190

is particularly useful for ocean model output, which is inherently uncertain on short time scales, due
to limited availability of observations for assimilation.

Whereas obtaining forcing data from 3D Eulerian models is the most common in practice, Readers
may obtain data from any other possible source. One example is to read a time series from an ASCII
file of observations, e.g. from a buoy or a weather station. Another example is to calculate forcing
data according to some analytical function. One such example is included in the code repository,
providing ocean current vectors according to a “perfect circular eddy” with centre coordinates as
given to its constructor. Such analytical forcing data fields are useful for e.g. testing the accuracy of
forward propagation schemes, as discussed below.

OpenDirift also contains some internal convenience methods to calculate geophysical variables
from others. E.g. if a drift module requires wave height or Stokes drift, this may be parametrised

internally based on the wind velocity if no reader providing wave parameters are available.
2.2 BaseModel class

Functionality which is common to any trajectory model is described in a main class, named Base-

Model. This functionality includes the following:

1. A mechanism for configuration of a trajectory model, or a specific simulation. This may in-
clude adjusting the resolution of a coastline, or some model specific parameters concerning
the movement of the elements. The configuration mechanism of OpenDrift is based upon the

ConfigObj package (https://pypi.python.org/pypi/configobyj).
2. A generic method to seed elements for a simulation. See Sec[2.3.3]for details.

3. Managing and referencing a set of Readers (Sec [2.I)) which are called as needed to obtain

forcing data during a simulation. See Sec [2.3.2]for details.

4. Keeping track of the positions and properties of all elements during a simulation, and removing
elements scheduled for deactivation. This is stored in 2D arrays with two dimensions, time and
particle ID. Thus the trajectory (propagation with time) of a single element or the simulation
state (all element positions and properties at a given time) is easily and quickly obtained as
vertical or horizontal slices of the array. The history of data may also be written to file, as
described in Sec

5. Finally, the BaseModel class contains the main loop for time-stepping, performing necessary

tasks for a simulation in the correct order as described in Sec

The only part missing is a description of how the elements (e.g. objects or substance) shall be
propagated and potentially transformed along their trajectories under the influence of environmental

forcing data. Such application specific description is left to subclasses, yielding trajectory model

!

Gmpnrt and initialise a specific OpenDrift model/subclass

v

(Import, initialise and add Readers

Model run configuraticn

(Seed elements)

Main loop

Advance one timestep

(Release elements scheduled within current timestep)

!

Call Readers in order to obtain envirenment variables)

No w

(Call model specific "update()" methed to modify element positions and propen:ies)

v

(Remove elements scheduled for dea ctivat\orD

simulation finished? W

Store element properties and envirenmental variables for current tim: estep)

Figure 1. Flowchart of an OpenDrift simulation.

instances as exemplified in Sec[3] These subclasses thus inherit and may reuse any functionality from
the BaseModel. The subclasses may also add further functionality as needed, or overload and modify
existing functionality. Thus all necessary core functionality is available by convenience, but may be
modified for flexibility. In precise terminology, OpenDrift is a framework within which specific
195 trajectory models may be implemented by class inheritance (subclassing). An instance (object) of

such a subclass represents a specific trajectory simulation.
2.3 Performing a simulation

In this section, we describe and explain the general workflow of a simulation with an OpenDrift

model, as illustrated in the flowchart in Fig.

200

205

210

215

220

225

230

2.3.1 Initialisation

The first step is to import a specific OpenDrift model (subclass of BaseModel), and to initialise an
instance. The following Python statements import and initialise an instance of the Leeway search

and rescue model (Sec[3.1).

>>> from opendrift.models.leeway import Leeway

>>> 1 = Leeway ()
2.3.2 Adding readers

If a given model requires e.g. ocean current and atmospheric wind as environmental forcing, we need
to create and add Reader instances which can provide these variables. Say that we have a Thredds
server which can provide ocean currents, and a local GRIB file which contains atmospheric winds,

we can create and add these readers to the simulation instance as follows:

>>> from opendrift.readers import reader_netCDF_CF_generic

>>> from opendrift.readers import reader_grib

>>> reader_current = reader_netCDF_CF_generic.Reader (
"http://thredds.example.com/current.nc’)

>>> reader_wind = reader_grib.Reader ('winds.grib’)

>>> 1.add_readers ([reader_current, reader_wind])

For netCDF files, it is also possible to create a single reader object which merges together many files,
by using wildcards (* or ?) in the filename. This functionality is based on the NetCDF MFDataset
class.

It is also possible to perform a simulation even with no readers added for one or more of the
required variables. In this case, constant values may be provided, otherwise reasonable default values
will be used, defaulting to zero-values for winds, waves and currents. E.g. in the case of having a
5 day wind forecast, but only a 3 day current forecast, it is still possible to run a 5 day trajectory
forecast, where current will be zero for the last two days.

A key feature of OpenDirift, for both convenience and robustness, is the possibility to provide
a priority list of reader for a given set of variables. As an example it is possible to specify that a
high resolution ocean model shall be used whenever particles are within coverage in space and time,
and reverting to using another model with larger coverage in space and time whenever particles
are outside the time- or spatial domain of the high resolution model. As an important feature for
operational setups, the backup readers will also be used if the first choice model (file or URL) should

not be available, or if there should be any other problems, such as e.g. corrupt values or files.

2.3.3 Seeding of elements

The seeding methods of OpenDrift are very flexible. The simplest case is to seed (initialise) an

element at a given position and time:
235 >>> 1l.seed_elements(lon=4.0, lat=60.0, time=datetime (2017, 6, 25, 12))

Also the number of elements and an uncertainty radius may be provided. Further, both position and
time may be provided as two-element vectors to seed elements continuously in space and time from
position P1 with uncertainty radius R1 at time T1, to position P2 with uncertainty radius R2 at time
T2. This is a common use case in search and rescue modeling (see Breivik and Allen|2008): a ship is

240 known to have departed from position P1 at time T1 with normally small uncertainty radius R1, and
disappeared on the way towards the destination (P2), normally with larger uncertainty in position
(R2) and estimated arrival time (T2). Thus, this will track out a ’seeding cone’ in space and time.
Another common use case is that P1 equals P2, with T2 > T1, e.g. simulating a continuous oil spill
from a leaking well.

245 Another built-in feature is seeding of elements within polygons. This may e.g. be done by provid-

ing vectors of longitude and latitude:

>>> 1l.seed_within_polygon (lon=lonvector, lat=latvector,

time=datetime (2017, 6, 25, 12), number=10000)

This example will seed 10000 elements with regular spacing within the polygon encompassed
250 by vectors lonvector and latvector. Based upon this generic polygon seeding method, more specific
applications have been developed, see e.g. Sec[3.2] The seeding methods may also be overloaded to

provide customised functionality for a given module.
2.3.4 Configuration

OpenDrift modules share several configuration settings which may be adjusted before a simulation,
255 as well as some settings which are module-specific. All possible settings of a module may be shown

with the command 1.1list_configspec (), of which one example is:
drift:scheme [euler] option(’euler’, ’'runge-kutta’, default=’'euler’)

This shows that the setting dri ft : scheme may have one or two possible values, "euler’ or "runge-
kutta’, where the first is the default, and also the present setting as indicated within brackets. A

260 second order Runge-Kutta propagation scheme may instead be activated by the command:
>>> 1l.set_config(’drift:scheme’, ’'runge-kutta’)

Another example of a configuration setting is coastline_action which determines how the
particles shall interact with the coastline. Possible options are: st randing which means that par-

ticles will be deactivated if they hit the coastline (default); previous which means that particles

10

265 shall be moved back to their previous position (i.e. "waiting" at the coast until eventually moved
offshore later), or none, which means that particles do not interact with land, as for the WindBlow
module as demonstrated in Sect. 3.3

The configuration mechanism is based on the widely used ConfigObj package, and allows e.g.

exporting to, and importing from, files of the common "INI’-format.
270 2.3.5 Starting the model run

After initialisation, configuration, adding of readers, and seeding of elements, the model simulation

may be started by calling the method run:

>>> 1l.run(duration=timedelta (hours=48), time_step=timedelta (minutes=15),

outfile=’'outleeway.nc’)

275 This starts the main loop, as shown on the flowchart of Fig. [T} At each time step, forcing data is
obtained by all the readers and interpolated onto the element positions, and the model specific update
method is called to move and/or otherwise update the other element properties (e.g. evaporation of
oil elements, or growth of fish larvae) based on the environmental conditions.

For the above example, the simulation will cover 48 hours, starting the time of the first seeded

280 elements. The time step of the calculation is given here as 15 minutes. An output time step might be
specified differently, with e.g. output every hour to save memory and disk space.

All instances of OpenDirift can be run in reverse, i.e. backwards from a final destination, by revers-
ing the sign of the advective increment. All spatial increments due to model physics pertinent to the
instance in question are calculated as normal, but the sign of the total increment, (Az, Ay, Az), is

285 reversed and the particles are advected “backwards” over a time step At. All diffusive properties are
kept in the forward sense, meaning that particles will disperse as they propagate backwards in time.
Nonlinear processes such as evaporation of oil or capsizing of vessels, are disabled in backtracking
mode. This simple backtracking scheme is an easy to use alternative to more complicated inverse
methods such as iterative forward trajectory modeling (Breivik et al., 2012b)), and is also much less

290 computationally expensive.
2.3.6 Exporting model output

In the above example, the output is saved to a CF-compliant NetCDF file (Trajectory Data spec-
ification), which is the default output format of OpenDrift. Both particle positions and any other
properties, as well as configuration settings are stored in the file. If the number of elements and time
295 steps are too large to keep all data in physical memory, OpenDrift will flush history data to the out-
put file as needed during the simulation to free internal memory. The simulation may be imported
by OpenDirift, or independent software, for subsequent analysis or plotting. Stored output files may

also be used as input to a subsequent OpenDrift simulation, allowing for an intermediate step where

11

300

305

310

315

320

325

330

the particles are subjected to various considerations such as a Bayesian update of their probabilities
based on posterior information. Saving data to files is not a requirement, as the output of the sim-
ulations is otherwise held in memory for subsequent plotting or analysis, either interactively from
within Python shell, or by a script. A number of visualization tools based on the Matplotlib graph-
ics library of Python are included within OpenDrift. Some examples of both generic and module

specific plotting methods are illustrated in Sec[3]

3 Examples of model instances
3.1 Leeway (Search and Rescue)

The OpenDrift Leeway instance (OpenLeeway) is based on the operational search and rescue model
of the Norwegian Meteorological Institute (Breivik and Allen, 2008). The model ingests a list of
object classes, where each drifting object has specific properties such as downwind and crosswind
leeway (the motion due to wind) in a way similar to SAROPS, the operational system used by
the US Coast Guard (see [Kratzke et al,|2010, and the overview of search and rescue models by
Davidson et al.|2009). These properties vary greatly from object to object, and are based on field
work (Breivik et al., 2011}, 2012a) where specific objects of relevance in search and rescue have
been studied. All objects are assumed to be small enough that direct wave scattering forces are
insignificant. Furthermore, the Stokes drift (Kenyonl [1969; Breivik et al.| 2014} 2016)) is inherently
part of the leeway obtained from observations. As wind-generated waves have a mean direction
closely aligned with the local wind direction it is neither practical nor desirable to disentangle the
Stokes drift from the wind drag for leeway simulations.

Once an object class has been chosen and the pertinent wind and current forcing fields selected,
the particles are seeded based on the available information. If the particles hit the coast they stick by
default. This can however be relaxed so that particles detach from the coastline if the wind direction
changes.

The OpenLeeway class along with all other subclasses has the option of being run backwards.
This is a convenient feature in cases where for example a debris field is observed and the location
of the accident is sought. Note that this method is fundamentally different from the BAKTRAK
model described by Breivik et al.|(2012b)) where a large number of particles were seeded in potential
initial locations at various times, and only those that ended up close to the location of the observed
object were kept. This is an iterative procedure which in principle can deal with nonlinearities in
the flow field as well as nonlinear behaviour of the object itself (such as capsizing and swamping).
Although in principle this allows for a more realistic mapping of initial locations, the difficulties
associated with this iterative process means that real-time operations are normally better off with a

simple negative-time integration.

12

OpenLeeway is used operationally at Norwegian Meteorological Institute, and is also currently
being implemented as the operational search and rescue model for the Joint Rescue Co-ordination

335 Centres (JRCC) of Norway.
The following lines of Python code illustrate a complete working example of running an Open-

Leeway simulation:

from opendrift.readers import reader_netCDF_CF_generic

from opendrift.models.leeway import Leeway

1 = Leeway () # Creating a simulation object

Wind field

reader_wind = reader_netCDF_CF_generic.Reader (
"http://thredds.met.no/thredds/dodsC/meps25files/meps_det_pp_2_5km_latest.nc’)

Ocean model data

reader_ocean = reader_netCDF_CF_generic.Reader (
"http://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate_be’)

1l.add_reader ([reader_wind, reader_ocean])

Seed elements at defined position and time

objType = 26 # Life-raft, no ballast

l.seed_elements (lon=4.5, lat=60.0, radius=1000, number=5000,

time=datetime (2017,7,1,12), objectType=objType)

Running the model 48 hours ahead

l.run (duration=timedelta (hours=48))

Print and plot results

print 1

l.animation (filename=’'leeway_example.mp4’)

l.plot (filename=’leeway_example.png’)

The final plotting command yields Fig. 2] The coastline shown is from the GSHHS database
(Wessel and Smithl |1996), which is the default option used to check stranding in OpenDrift. This

340 coastline is however interfaced to OpenDirift as a regular Reader (Sec 2.I), and can be replaced by
any other reader providing the CF variable land_binary_mask. This allows performing simulations

in narrow bays or lakes where even the full resolution GSHHS coastline is too coarse.

13

Leeway 2017-07-01 12:00 to 2017-07-03 12:00 (49 steps)

<=+ initial (5000) (% V
++e active (4955) \ h\
R} B

-| «*« stranded (45) 60.5°N

60.4°N

60.3°N

60.2°N

60.1°N

59.9°N

59.8°N

59.7°N

4°E

Figure 2. Output from the Leeway example of Sec[3.1} Green dots are the initial positions of the elements (life
rafts), gray lines are trajectories, and blue dots are positions at the end of the simulation. Red dots indicate

elements which have hit land (stranded).

3.2 OpenOil (Oil drift)

OpenOil is a full-fledged oil drift model, bundled within the OpenDrift framework. As a model it has
345 been developed from scratch, but is based on a selection of parameterisations of oil drift as found in

the open research literature. With regard to horizontal drift, three processes are considered:
— Any element, whether submerged or at the surface, drifts along with the ocean current.

— Elements are subject to Stokes drift corresponding to their actual depth. Surface Stokes drift
is normally obtained from a wave model (or by any Reader), and its decline with depth is
350 calculated as described in Breivik et al.| (2016).

— Oil elements at the ocean surface are moved with an additional factor of 2% (configurable)
of the wind. Together with the Stokes drift (typically 1.5% of the wind at the surface), this
sums up to the commonly found empirical value of 3.5% of the wind (Schwartzberg), [197T).

' The physical mechanism behind this wind drift factor is not obvious, and is discussed in Jones|

355 (2016).

14

360

365

370

375

380

385

390

The above three drift components may lead to a very strong gradient of drift magnitude and
direction in the upper few meters of the ocean. For this reason, it is also of critical importance to
have a good description of the vertical oil transport processes, which in OpenOil are the sum of the

following factors:

— If the vertical ocean current velocity is available from a reader, the oil elements will follow it.

This part of the movement is however often negligible compared to the processes below.

— Oil elements at the surface, regarded as being in the state of an oil slick, may be entrained
into the ocean by breaking waves. Presently OpenOil contains two different parameterisations
of this entrainment rate, from which the user can chose as part of configuration (see below):
Tkalich and Chanl (2002) and [L1 et al.| (2017). The entrainment depends on both the wind
and wave (breaking) conditions, but also on the oil properties, such as viscosity, density and

oil-water interfacial tension.

— Buoyancy of droplet is calculated according to empirical relationships and the Stokes law
Tkalich and Chan|(2002), dependent on ocean stratification (calculated from temperature and
salinity profile, normally read from an ocean model), oil and water viscosities and densities.
Also, the buoyancy is strongly dependent on the oil droplet size (diameter), of which two pa-
rameterisations are available: one is a generic power law, with droplets between a minimum
and maximum diameter, and a configurable exponent where -2.3 corresponds to the classi-
cal work of |Delvigne and Sweeney| (1989). The second option for droplet size spectrum is a
"modern" approach by Johansen et al.|(2015), where a lognormal droplet spectrum is calcu-
lated explicitly based on wave height and oil properties such as viscosity, density, interfacial

tension, and surface film thickness.

— In addition to the wave induced entrainment, the oil elements are also subject to vertical tur-
bulence throughout the water column, as parameterised with a numerical scheme described in
Visser| (1997). This scheme is generic within OpenDirift, and is also used by the PelagicEgg
module for ichtyoplankton (Sec[3.4). Only the properties specific to oil, or plankton, are coded

in the respective classes (modules).

In addition to the vertical and horizontal drift, weathering of the oil also has to be considered.
While parameterisations of weathering might also be implemented directly within the OpenDrift
framework, the OpenOil module instead interfaces with the already existing OilLibrary software
developed by NOAA (https://github.com/NOAA-ORR-ERD/QilLibrary). The NOAA OilLibrary is
also open source and written in Python, so integration is straightforward. In addition to state-of-the
art parameterisations of processes such as evaporation, emulsification and dispersion, this software
contains a database of measured properties of almost 1000 oil types from around the world. As oils

from different sources/wells have vastly different properties, such a database is of vital importance

15

for accurate results. The same OilLibrary is also used by the NOAA oil drift model PyGNOME
(https://github.com/NOAA-ORR-ERD/PyGnome), where it is replacing the original ADIOS oil li-
brary [2002). PyGNOME includes also more processes not (yet) included in OpenOil,
such as dissolution, and adding of dispersants.

395 To run an OpenOil simulation, one could re-use the exact code as for the Leeway example of
Sec[B.1] only replacing the name of the imported module (OpenOil instead of Leeway), and replac-
ing the objectType property of Leeway with a corresponding oil name from the NOAA database.
However, whereas key features and functionality is shared among OpenDrift modules, each module
(or group of modules) may add specific functionality. E.g., for OpenOil, it is possible to initialise

400 the simulations with an oil slick as read from a file containing contours, either a shapefile, or the

GML-format/specification as used by the European Maritime Safety Agency (EMSA):

>>> o.seed_from_gml ("RS2_20151116_002619_SCNB_HH_Oil.gml",
num_elements=2000)

>>> o.plot ()

405 where o is the oil drift simulation object. The last command produces the plot shown in Fig.[3]

60.54°N

60.53°N

60.52°N

60.51°N

60.5°N

60.49°N

60.48°N

60.47°N

4.04°E 4.06°E 4.08°E 4.1°E 4.12°E 4.14°E 4.16°E

Figure 3. Oil drift simulation initialised by seeding 2000 oil elements within contours of an oil slick as observed
from satellite (Radarsat2). The contour is imported from a GML file produced by Kongsberg Satellite Services
(KSAT).

OpenOil also has module-specific configuration settings. The following commands specifies that
the oil entrainment rate shall be calculated according to (2017), and the oil droplet size
spectrum shall be calculated according to Johansen et al.| (2015).

>>> o.set_config(’wave_entrainment:entrainment_rate’, 'Li et al. (2017)")

16

410 >>> o.set_config(’wave_entrainment:droplet_size_distribution’,

" Johansen et al. (2015)7")

Adjusting configuration this way is convenient for sensitivity studies, where one component is
changed for two otherwise identical simulations.
After the simulation is finished, the generic plot command may be used to produce a map with
415 trajectories as shown in Fig. 2l However, more specific plotting methods are also available. The
command o.plot_oil_budget () plots an oil budget as shown in Fig. El

500 MARTIN LINGE CRUDE - 2015-11-16 00:00 to 2015-11-17 00:00

100

Mass oil [kg]
Percent

0 5 10 15 20
Time [hours]

‘- submerged m surface I stranded e'vaporated‘

Figure 4. Plot of the time evolution of the oil budget of a 24 hour simulation with OpenQil. Of 500 kg oil
initially at the ocean surface, about 20% is seen to evaporate within the 24 hours. The amount of oil submerged
due to wave action and ocean turbulence varies with the wind and wave conditions, with more oil resurfacing
when wind decreases after about 7 hours. After about 18 hours, some of the oil seen to hit the coastline. These
results are for the oiltype "MARTIN LINGE CRUDE", very difterent results could be obtained if using another

oiltype for the same geophysical conditions.

The vertical distribution of the elements can be plotted with the command o.plot_vertical_distribution(),
generating output as shown in Fig.[5] This method is shared among 3-dimensional modules, and may

also be used for simulations with e.g. the PelagicEgg module (Sec[3.4).

420 3.3 WindBlow (Atmospheric transport)

As an example of a minimalistic trajectory model we also include the instance WindBlow, which
simply calculates the propagation of a passive particle subject to a two-dimensional wind field. The

code below is the complete, and fully functional WindDrift module.

17

425

430

2015-11-16 11:26:18.770000 Mean windspeed: 20.0 m/s

-20

—40 OO O SO SOUOURRUUS SOURPURURRS SOSSRRRSRN SUSSURIRRS SRR

depth [m]

-60

-80

,100 | L I I I I I L
0 50 100 150 200 250 300 350 400 450
number of particles

Figure 5. Vertical profile of the amount of (oil) elements. The bottom bar is an interactive slider, which the user

can pull left/right to see the time variation of the vertical distribution.

WindBlow module code
from opendrift.models.basemodel import OpenDriftSimulation

from opendrift.elements.passivetracer import PassiveTracer

class WindBlow (OpenDriftSimulation) :
ElementType = PassiveTracer

required_variables = ['x_wind’, ’y_wind’]

def update(self):
self.update_positions(self.environment.x_wind,

self.environment.y_wind)

Because all common functionality is inherited from the main class, the WindBlow model only
needs to address its own specific needs: It will use elements without any other properties except for
position (PassiveTracer), and the only forcing needed to move the elements is wind, whose vector
components are named x_wind and y_wind in CF-terminology. The update() method which is called
at each time step simply advects all elements with the wind velocity at their respective locations. The
wind might be provided by any Reader (Sec[2.I). The WindDrift module may be run with an even
more simplified form of the code example found in Sec 3.1} the WindDrift class has to be imported,

no Reader for ocean current is needed, and there is no object category to specify.

18

435

440

445

450

455

460

465

Clearly, an air parcel in the real atmosphere will also be subjected to updrafts and diffusion, and
will with time rise or fall, but the example serves to demonstrate how little is required to develop
a new subclass of OpenDrift. The model may be made more sophisticated by adding e.g. vertical
wind (upward_air_velocity) and turbulence parameters to the list of required variables, and adding

corresponding parameterisations of how to use this information for the advection.
3.4 Other modules

In addition to the models described above, some other modules are bundled within the OpenDrift

repository, as illustrated in Fig. [6}

— OceanDrift is a basic module for tracking e.g. water masses or passive tracers. Stokes drift
is included, if provided by a reader. A wind-drift-factor may also be specified, allowing an
additional wind drag at the surface, e.g. for simulation trajectories of various ocean drifting
buoys (Dagestad and Rohrs, |2017).

— PelagicEgg is a module for transport of pelagic ichtyoplankton. This module contains quite
basic functionality with identical transport mechanisms as in [Rohrs et al.| (2014), including
the vertical turbulent scheme (Sec [3.2) which is of key importance for most pelagic plankton
applications. Although a fully working a module, users with specialised needs (e.g. a specific
biological species) can customise the drift and behaviour parameterisations by modifying or
adding parameterisations in the PelagicEgg module, such as larval behaviour. Some users have
interfaced this module with existing Fortran-code for e.g. calculation of sunlight-dependent
behaviour, see e.g. Kvile et al.| (2017)) and Sundby et al.| (2017). A pure python version of the

sunlight-module is available and will be included in a future version of OpenDirift.

— ShipDrift is a module for predicting the drift of ships larger than 30 meters, where the effect
of waves has to be calculated explicitly, and not implicitly with the wind drift as in the Leeway
module. This module is based on Sgrgard and Vada (2011). A previous version programmed
in the C programming language has been used operationally at MET Norway for 15 years,
but is now replaced by the OpenDrift version, which has been tested and shown to provide

identical output for identical input/forcing.

A module for drift of icebergs (OpenBerg, not yet included in repository) has been developed by
Ron Saper at Carleton University with partial funding from ASL Environmental Sciences of Victo-
ria, Canada, and with data support from the Canadian Ice Service (personal communication). Two
different iceberg drift forecasting approaches are being tested. One approach uses a drag formulation
to calculate wind and water drag forces. The challenge with this approach is that the trajectories are
very sensitive to underwater draft/shape and suitable drag coefficients, of which information is rarely
available. The second approach predicts and subtracts the wind and tidal components of the drift,

and then analyses the residual for extrapolation an appropriately short time into the future. Finally,

19

470

475

480

wind and tidal components are added back in to produce a trajectory forecast. The first version of
OpenBerg does not include thermodynamic effects (melting) which are important longer timescales
from weeks to months.

Drift of marine plastics, including microplastics, is an important application not covered by mod-
ules included with the OpenDirift repository version 1.0. However, as most of the needed infrastruc-
ture is already provided, including a vertical mixing scheme, a user with knowledge of the relevant
physics and basic Python programming should be able to implement such a module with moderate

efforts. Though, there is no upper limit to the complexity of any module.

OpenDirift

core functionality

Readers

Y

~~ loeBergDrift

OceanDrift [

passive tracer

-
NOAA OpenOil || OpenDrift3D || Leeway || ShipDrift
OilLibrary —™| oil drift and vertical object ship
weathering turbulent mixing drift properties | | drift properties
.‘f‘ /_./"T"\.\‘\
/ - T
/ — .
/ - o S ~
| ¢ S e L
OpenOil3D | | PelagicEgg | 'MicroPlastics'
vertical fish egg and larvae | | microplastic :
oil entrainment behaviour | bhehaviour

Figure 6. Illustration of how OpenDrift modules for specific applications (white boxes) inherit common func-
tionality from the core module. This includes functionality to interact with Readers for obtaining forcing
data. Sub-classing (inheritance) allows e.g. both the OpenOil and PelagicEgg models to share further 3D-
functionality through subclassing the OpenDrift3D class. The boxes with solid boundaries illustrate existing
modules bundled with the OpenDrift repository, whereas dashed boundaries indicate planned modules. The
green box illustrates that OpenOil (oil drift model) utilises functionality from a third-party library, the NOAA
OilLibrary.

4 Test suite and example scripts

OpenDirift contains a broad set of automatic tests (Python unittest framework) which can be run by
the user to assure that all calculations are performed correctly on the local machine. The tests cover
both basic calculations, such as interpolation and rotation of vectors from one spatial reference sys-
tem (SRS) to another, but also more extensive integration tests, performing full simulations with the
modules to verify that an expected numerical result is obtained. Also, very importantly, the tests are

also run automatically on a variety of machine configurations, using the Travis Continuous Integra-

20

485

490

495

500

505

510

tion (CI) framework (https://travis-ci.org). This ensures that OpenDrift calculations remain accurate
and correct with both old and new versions of the various required libraries (e.g. NumPy), and that
existing functionality is not broken as new functionality is added. For version 1.0 of OpenDrift, 64%
of the code is covered by the unit tests, as reported by the Coveralls tool (coveralls.io).

A user manual of OpenDrift is kept alongside of the code repository on the wiki-pages of GitHub
(https://github.com/OpenDrift/opendrift/wiki), facilitating a dynamic description to evolve with the
code, instead of diverting from it. Many example scripts (40 in version 1.0) are also provided in the
repository along with the needed input forcing data, illustrating a variety of real-life use cases. The
examples can easily be modified and adapted, allowing a soft learning curve.

OpenDirift also comes with a set of handy command line tools, such as readerinfo.py, which may
be used to easily inspect the contents and coverage of potential forcing fields. The following shell
command produces the same output as the example of Sec where the switch *-p’ also displays a

plot of the geographical coverage:

$ readerinfo.py ocean_model_output.nc -p

5 Graphical user interfaces

Although running OpenDrift modules with Python scripts (see e.g. Sec[3.1)) is the most flexible and
powerful, a basic graphical user interface (GUI) is also included in the repository. A screenshot is
shown in Fig.[7] The GUI allows to select a module, and an object type or medium (e.g. oil type) cor-
responding to the module, and then a seeding location and time. The simulation is started by clicking
the "START"-button, and plots and animation of the output is available after the simulation, and also
saved to a NetCDF-file. The GUI will obtain forcing data through a provided list (configurable) of
Thredds-servers with global coverage, so there is no need for the user to obtain and download large
amounts of model input in advance. Although presently with only basic functionality, the GUI is in
operational use at MET Norway, where it is tested daily by meteorologist on duty as part of the oil
spill and search and rescue preparedness system.

In addition to the native GUI, a web interface has also been developed for remote access without
need for any local installation. This is based on communication with OpenDrift through a Web Pro-
cessing Service (WPS) developed at MET Norway (not included in the repository). Independently,
a WPS for the Leeway module has also been developed and implemented at the Swedish Met Office
(SMHI). A generic and configurable WPS to be included in the repository is planned for the future.

21

515

520

525

OpenDrift

Simulation type Leeway — | Help |
OpenDrift
Object type |Person-in-water (PIW), unknown state (mean values) -
Latitude Longitude Radius [m]
| 600 | 45 | 1000
Start release Day Month Year Hour Minutes [UTC]

7 — |y —] 2007 —[1a —| 57

Check seeding

Coastline resolution high —
Run simulation | 12 hours forwards _-l in time

DEBUG: Fetched env-before Al
DEBUG: No time interpolation needed - right on time.
DEBUG: Obtained data for all elements.

DEBUG:
DEBUG:
DEBUG:

DEBUG: x wind: -2.81271 (min) -1.98235 (max)

DEBUG: y wind: -6.74511 (min) -6.83176 (max)

DEBUG: %_sea_water_velocity: -0.0818 (min) 0.16625 (max)
DEBUG: y_sea water_velocity: -0.09285 (min) 0.0916 (max)
DEBUG: land_binary mask: @ (min) @ (max)

DEBUG: ----------mmmmmmmoeme oo

DEBUG: 5800 active elements

DEBUG: 59.9636959714 <- latitude -> 60.1196524477
DEBUG: 4,47759105934 <- longitude -> 4.7402B8038363
DEBUG: z=0.0

DEBUG: -----------mmmmemme e eeee
DEBUG: No elements to deactivate

- Animation

Rl

Figure 7. Screenshot of the Graphical User Interface included with OpenDirift.

6 Discussion and conclusions

Several offline trajectory models exist to predict the transport and transformation of various sub-
stances and objects in the ocean or in the atmosphere. OpenDirift is an open source Python framework
aiming at extracting anything which is common to all such trajectory models in a core library, and to
combine this with a clean and generic interface for describing any processes which are application-
specific. Several examples of such specific modules are bundled with the OpenDrift code repository,
and serve as ready-to-use trajectory models. This includes an oil drift model (OpenQil), a search
and rescue model (Leeway), and a model for predicting the drift and transformation of ichtyoplank-
ton (PelagicEgg). Interfaces ("Readers") towards the most common formats of forcing data (e.g.
NetCDF and GRIB) are also included, allowing any of the modules to be forced by data from a
combination of files and other sources, including remote Thredds servers. The concept of "Readers"
is also modularised, allowing a scientist or programmer to easily develop an interface towards any
other specific source of forcing data, such as e.g. an ASCII file containing in situ observations from

a buoy or weather station, or ocean currents from HF-radar systems in a specific binary format.

22

530

535

540

545

550

555

560

A built-in configuration mechanism provides flexibility to the operation of the OpenDrift modules.
However, the fact that the application-specific processes of these modules are separated from the
technical complexities of the OpenDrift core, provides even greater flexibility to the user in that it
is easy to modify existing modules, or even write new modules from scratch. Several users have
already developed or adjusted modules for their specific purpose, and added useful contributions to
the OpenDirift core (Sundby et al.,[2017; Kvile et al., 2017).

Whereas flexibility is important for scientific studies, OpenDrift is also designed for performance
and robustness, and is in daily use for operational emergency response systems at the Norwegian
Meteorological Institute. Being able to use the same tool in both cases, facilitates rapid transition of
the latest research results into operations.

The efficiency of the code has been optimised to the point that the more time is normally spent on
reading the forcing data from disk (or a URL) than on performing actual calculations. Computational
performance similar to compiled languages (Fortran or c) is obtained by e.g. using primarily NumPy
arrays for calculations (avoiding the slower MaskedArray class), and avoiding for-loops. A typical
emergency simulation with the Leeway model with 5000 elements and 48 hour duration takes on
the order of 1 minute. A corresponding simulation with OpenOil takes about 3-5 minutes, primarily
because more layers of ocean model data has to be read from disk, in contrast to the Leeway simula-
tion which only needs the surface current. A typical one-year simulation of 20.000 drifting cod eggs
(developing into larvae) takes about 4 hours on a regular desktop computer (Kvile et al.,|2017). The
OpenDirift code is presently not parallelised. However, given that most time is spent on reading data
from disk, some further performance gain could possibly be achieved by e.g. reading in parallel data
from different input files (e.g. ocean model and atmospheric model), or by reading input data for the
following time step in parallel to performing calculations.

Another great benefit of the modularity provided by OpenDirift, is the ability to perform sensitivity
tests by varying one component while keeping everything else constant. Much can be learnt from
performing two otherwise identical simulations with e.g. input from two different Eulerian models,
or by using two different parameterisations of some process. Further, consistency is also provided
by the possibility of handling e.g. overlap of fish eggs and oil with the same forcing and numerical
scheme. Traditionally, it might be difficult to draw conclusions by comparing the output from differ-
ent trajectory models, as the differences depend on many factors, such as interpolation schemes and
numerical algorithms.

The modules presently included with OpenDrift will be improved in the future, in particular by
validation against available relevant observations. Among the general problems which require more
attention, are to properly describe and quantify the very strong vertical gradients of horisontal drift
often found in the upper few meters of the ocean, as result of a delicate balance between ocean
currents and Stokes drift, as well as the direct wind drift affecting objects and substances at the

very ocean surface. This vertical gradient of forcing is highly important for drift of e.g. oil and

23

565

570

575

chemicals, plankton, and microplastics. This implies further that having accurate parameterisations
of the vertical transport processes (wave entrainment, buoyancy and ocean turbulence) is also very
important. E.g. a key for successful simulation of the drift of observed oil slicks in|Jones et al.[(2016)
was to incorporate a vertical mixing scheme developed for fish eggs (Sundby, [1983; Thygesen and
Adlandsvik, 2007; Adlandsvik and Sundby, [1994)) into the oil drift model OpenOil.

7 Code availability

OpenDirift is housed on Github: https://github.com/OpenDrift/opendrift. The accompanying wiki
pages contain installation instructions, documentation and examples. Version 1.0 of OpenDirift is
registered with Zenodo: http://doi.org/10.5281/zenodo.845813. OpenDrift has been tested on both
Linux, Mac and Windows platforms. Version 1.0 requires Python 2.7, and is not adapted for Python
3. The OpenDirift framework is distributed under a GPLv2 license.

Acknowledgements. K-FD, JR and @B gratefully acknowledge support from the Joint Rescue Co-ordination
Centres through the project OpenLeeway and the Research Council of Norway through the CIRFA (grant no
237906) and RETROSPECT (grant no 244262) projects. The Norwegian Clean Seas Association (NOFO) and
the Norwegian Coastal Administration have been instrumental in their support and testing of the software during

the development phase.

24

580

585

590

595

600

605

610

615

References

Adlandsvik, B. and Sundby, S.: Modelling the transport of cod larvae from the Lofoten area.,
in: ICES J. Mar. Sci. Symp., pp. 379-392, |https://www.scienceopen.com/document?vid=
53b16ebf-bddc-4332-8719-1bb180e1cdaa, 1994.

Allen, A. and Plourde, J. V.: Review of Leeway: Field Experiments and Implementation, Tech. Rep. CG-D-
08-99, US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, USA,
available through http://www.ntis.gov, 1999.

Bartnicki, J., Amundsen, 1., Brown, J., Hosseini, A., Hov, O., Haakenstad, H., Klein, H., Lind, O. C., Salbu,
B., Szacinski Wendel, C. C., and Ytre-Eide, M. A.: Atmospheric transport of radioactive debris to Norway
in case of a hypothetical accident related to the recovery of the Russian submarine K-27, Journal of Envi-
ronmental Radioactivity, 151, 404416, doii10.1016/j.jenvrad.2015.02.025, http://linkinghub.elsevier.com/
retrieve/pii/S0265931X15000612, 2016.

Berry, A., Dabrowski, T., and Lyons, K.: The oil spill model OILTRANS and its application to the Celtic Sea,
Marine Pollution Bulletin, 64, 2489-2501, doi:10.1016/j.marpolbul.2012.07.036, 2012.

Blanke, B., Raynaud, S., Blanke, B., and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent:
An Eulerian and Lagrangian Approach from GCM Results, Journal of Physical Oceanography, 27, 1038—
1053, doi:10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2, http://journals.ametsoc.org/doi/abs/10.
1175/1520-0485%281997%29027%3C1038%3AKOTPEU%3E2.0.CO%3B2, 1997.

Breivik, @. and Allen, A. A.: An operational search and rescue model for the Norwegian Sea and the North Sea,
J Marine Syst, 69, 99-113, arXiv:1111.1102, doi:10.1016/j.jmarsys.2007.02.010, 2008.

Breivik, 9., Allen, A. A., Maisondieu, C., and Roth, J. C.: Wind-induced drift of objects at sea: The leeway
field method, Appl Ocean Res, 33, 100-109, arXiv:1111.0750, doii10.1016/j.apor.2011.01.005, 2011.

Breivik, @., Allen, A., Maisondieu, C., Roth, J.-C., and Forest, B.: The Leeway of Shipping Containers at
Different Immersion Levels, Ocean Dyn, 62, 741-752, arXiv:1201.0603, doi:10.1007/s10236-012-0522-z,
sAR special issue, 2012a.

Breivik, @., Bekkvik, T. C., Ommundsen, A., and Wettre, C.: BAKTRAK: Backtracking drifting objects us-
ing an iterative algorithm with a forward trajectory model, Ocean Dyn, 62, 239-252, arXiv:1111.0756,
doi:10.1007/s10236-011-0496-2, 2012b.

Breivik, @., Allen, A., Maisondieu, C., and Olagnon, M.: Advances in Search and Rescue at Sea, Ocean Dyn,
63, 83-88, arXiv:1211.0805, doi:10/jtx} 2013.

Breivik, @., Janssen, P., and Bidlot, J.: Approximate Stokes Drift Profiles in Deep Water, J Phys Oceanogr, 44,
2433-2445, arXiv:1406.5039, doii10.1175/JPO-D-14-0020.1} 2014.

Breivik, @., Bidlot, J.-R., and Janssen, P. A.: A Stokes drift approximation based on the Phillips spectrum,
Ocean Model, 100, 49-56, arXiv:1601.08 092, doii10.1016/j.ocemod.2016.01.005, 2016.

Brovchenko, I., Kuschan, A., Maderich, V., Shliakhtun, M., Yuschenko, S., and Zheleznyak, M.: The mod-
elling system for simulation of the oil spills in the Black Sea, Elsevier Oceanography Series, 69, 586-591,
doi:10.1016/S0422-9894(03)80095-8, 2003.

Dagestad, K.-F. and Rohrs, J.: Assessing satellite derived ocean currents (GlobCurrent) for forecasting drift of

oil and objects, Remote Sensing of the Environment, 2017.

25

https://www.scienceopen.com/document?vid=53b16ebf-bddc-4332-8719-1bb180e1cdaa
https://www.scienceopen.com/document?vid=53b16ebf-bddc-4332-8719-1bb180e1cdaa
https://www.scienceopen.com/document?vid=53b16ebf-bddc-4332-8719-1bb180e1cdaa
http://dx.doi.org/10.1016/j.jenvrad.2015.02.025
http://linkinghub.elsevier.com/retrieve/pii/S0265931X15000612
http://linkinghub.elsevier.com/retrieve/pii/S0265931X15000612
http://linkinghub.elsevier.com/retrieve/pii/S0265931X15000612
http://dx.doi.org/10.1016/j.marpolbul.2012.07.036
http://dx.doi.org/10.1175/1520-0485(1997)027%3C1038:KOTPEU%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485%281997%29027%3C1038%3AKOTPEU%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485%281997%29027%3C1038%3AKOTPEU%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485%281997%29027%3C1038%3AKOTPEU%3E2.0.CO%3B2
http://dx.doi.org/10.1016/j.jmarsys.2007.02.010
http://dx.doi.org/10.1016/j.apor.2011.01.005
http://dx.doi.org/10.1007/s10236-012-0522-z
http://dx.doi.org/10.1007/s10236-011-0496-2
http://dx.doi.org/10/jtx
http://dx.doi.org/10.1175/JPO-D-14-0020.1
http://dx.doi.org/10.1016/j.ocemod.2016.01.005
http://dx.doi.org/10.1016/S0422-9894(03)80095-8

620

625

630

635

640

645

650

655

Daniel, P.: Operational forecasting of oil spill drift at Météo-France, doi:10.1016/S1353-2561(96)00030-8,
1996.

Davidson, F. J. M., Allen, A., Brassington, G. B., Breivik, @., Daniel, P., Kamachi, M., Sato, S., King, B.,
Lefevre, F., Sutton, M., and Kaneko, H.: Applications of GODAE ocean current forecasts to search and
rescue and ship routing, Oceanography, 22, 176-181, doi:10.5670/oceanog.2009.76, 2009.

De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R.: MEDSLIK-II, a Lagrangian marine surface oil
spill model for short-term forecasting — Part 1: Theory, Geoscientific Model Development, 6, 1851-1869,
doii10.5194/gmd-6-1851-2013 http://www.geosci-model-dev.net/6/1851/2013/, 2013.

Delvigne, G. and Sweeney, C.: Natural Dispersion of Oil, Publication No. 399, Tech. rep., Delft Hydraulic
Laboratory, Delft, The Netherlands, 1989.

Dick, S. and Soetje, K. C.: An operational oil dispersion model for the German Bight., Hydrographische
Zeitschrift, 16, 1990.

Doos, K., Kjellsson, J., and Jonsson, B.: TRACMASS—A Lagrangian Trajectory Model, in: Preventive Meth-
ods for Coastal Protection, pp. 225-249, Springer International Publishing, Heidelberg, doi;10.1007/978-3-
319-00440-2_7, http://link.springer.com/10.1007/978-3-319-00440-2_7, 2013.

Johansen, O., Reed, M., and Bodsberg, N. R.: Natural dispersion revisited, Marine Pollution Bulletin, 93, 20—
26, doii10.1016/j.marpolbul.2015.02.026, http://linkinghub.elsevier.com/retrieve/pii/S0025326X15001162,
2015.

Jones, C. E., Dagestad, K.-F., Breivik, O., Holt, B., Rohrs, J., Christensen, K. H., Espeseth, M., Brekke, C., and
Skrunes, S.: Measurement and modeling of oil slick transport, Journal of Geophysical Research: Oceans,
121, 7759-7775, doi;10.1002/2016JC012113; http://doi.wiley.com/10.1002/2016JC012113, 2016.

Kenyon, K. E.: Stokes Drift for Random Gravity Waves, J Geophys Res, 74, 6991-6994,
doii10.1029/1C074i028p06991, 1969.

Kratzke, T. M., Stone, L. D., and Frost, J. R.: Search and Rescue Optimal Planning System, in: Proceedings of
the 13 International Conference on Information Fusion, p. 8 pp, IEEE, 2010.

Kubat, 1., Sayed, M., Savage, S. B., Carrieres, T., and Crocker, G.: An Operational Iceberg Deterioration
Model, in: The Seventeenth International Offshore and Polar Engineering Conference, 1-6 July, Lisbon, Por-
tugal, International Society of Offshore and Polar Engineers, https://www.onepetro.org/conference-paper/
ISOPE-1-07-282, 2007.

Kvile, K., Romagnoni, G., and Dagestad, K.-F.: Sensitivity of North Sea cod larvae transport to model resolution
and inclusion of vertical behavior, Manuscript in preparation., 2017.

Lardner, R., Zodiatis, G., Loizides, L., and Demetropoulos, A.: An operational oil spill model for the Levantine
Basin (Eastern Mediterranean Sea), International Symposium on Marine Pollution., 1998.

Lehr, W., Jones, R., Evans, M., Simecek-Beatty, D., and Overstreet, R.: Revisions of the ADIOS oil spill
model, Environmental Modelling & Software, 17, 189-197, doii10.1016/S1364-8152(01)00064-0, http:
/Minkinghub.elsevier.com/retrieve/pii/S1364815201000640, 2002.

Li, Z., Spaulding, M. L., and French-McCay, D.: An algorithm for modeling entrainment and naturally and
chemically dispersed oil droplet size distribution under surface breaking wave conditions, Marine Pollution
Bulletin, 119, 145-152, doi:10.1016/j.marpolbul.2017.03.048, http://www.sciencedirect.com/science/article/
pii/S0025326X 17302680, 2017.

26

http://dx.doi.org/10.1016/S1353-2561(96)00030-8
http://dx.doi.org/10.5670/oceanog.2009.76
http://dx.doi.org/10.5194/gmd-6-1851-2013
http://www.geosci-model-dev.net/6/1851/2013/
http://dx.doi.org/10.1007/978-3-319-00440-2{_}7
http://dx.doi.org/10.1007/978-3-319-00440-2{_}7
http://dx.doi.org/10.1007/978-3-319-00440-2{_}7
http://link.springer.com/10.1007/978-3-319-00440-2_7
http://dx.doi.org/10.1016/j.marpolbul.2015.02.026
http://linkinghub.elsevier.com/retrieve/pii/S0025326X15001162
http://dx.doi.org/10.1002/2016JC012113
http://doi.wiley.com/10.1002/2016JC012113
http://dx.doi.org/10.1029/JC074i028p06991
https://www.onepetro.org/conference-paper/ISOPE-I-07-282
https://www.onepetro.org/conference-paper/ISOPE-I-07-282
https://www.onepetro.org/conference-paper/ISOPE-I-07-282
http://dx.doi.org/10.1016/S1364-8152(01)00064-0
http://linkinghub.elsevier.com/retrieve/pii/S1364815201000640
http://linkinghub.elsevier.com/retrieve/pii/S1364815201000640
http://linkinghub.elsevier.com/retrieve/pii/S1364815201000640
http://dx.doi.org/10.1016/j.marpolbul.2017.03.048
http://www.sciencedirect.com/science/article/pii/S0025326X17302680
http://www.sciencedirect.com/science/article/pii/S0025326X17302680
http://www.sciencedirect.com/science/article/pii/S0025326X17302680

660

665

670

675

680

685

690

695

Margvelashvily, N., Maderich, V., and Zheleznyak, M.: THREETOX - A Computer Code to Simulate Three-
Dimensional Dispersion of Radionuclides in Stratified Water Bodies, Radiation Protection Dosimetry, 73,
177-180, 1997.

McKenna, D. S., Konopka, P., Groo8, J., Giinther, G., Miiller, R., Spang, R., Offermann, D., and Orsolini,
Y.: A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 1. Formulation of advection and mix-
ing, Journal of Geophysical Research, 107, 4309, doi:10.1029/2000JD0001 14, http://doi.wiley.com/10.1029/
2000JD000114, 2002.

Paris, C. B., Helgers, J., van Sebille, E., and Srinivasan, A.: Connectivity Modeling System: A probabilis-
tic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean, Environmental
Modelling & Software, 42, 47-54, doi:10.1016/J.ENVSOFT.2012.12.006, https://www.sciencedirect.com/
science/article/pii/S136481521200312X, 2013.

Rohrs, J., Christensen, K. H., Vikebg, F., Sundby, S., Setra, ., and Brostrom, G.: Wave-induced
transport and vertical mixing of pelagic eggs and larvae, Limnol Oceanogr, 59, 1213-1227,
doii10.4319/10.2014.59.4.1213| 2014.

Schemm, S., Nummelin, A., Kvamstg, N. G., and Breivik, O.: The Ocean Version of the Lagrangian Analysis
Tool LAGRANTO, Journal of Atmospheric and Oceanic Technology, pp. 16-0198, doi:10.1175/ITECH-D-
16-0198.1, http://journals.ametsoc.org/do1/10.1175/JTECH-D-16-0198.1, 2017.

Schlag, Z. R. and North, E. W.: Lagrangian TRANSport model (LTRANS v.2) User’s Guide, Tech. rep., Uni-
versity of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, MD., 2012.

Schwartzberg, H. G.: THE MOVEMENT OF OIL SPILLS, International Oil Spill Conference Pro-
ceedings, 1971, 489-494, doi:10.7901/2169-3358-1971-1-489\ http://ioscproceedings.org/doi/abs/10.7901/
2169-3358-1971-1-489, 1971.

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-
explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model, 9, 347-404,
doi;10.1016/j.ocemod.2004.08.002, 2005.

Simpson, D., Benedictow, A., Berge, H., Bergstrom, R., Emberson, L. D., Fagerli, H., Flechard, C. R.,
Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyiri, A., Richter, C., Semeena, V. S., Tsyro,
S., Tuovinen, J.-P., Valdebenito, A., and Wind, P.. The EMEP MSC-W chemical transport model; tech-
nical description, Atmospheric Chemistry and Physics, 12, 7825-7865, doi:10.5194/acp-12-7825-2012,
http://www.atmos-chem-phys.net/12/7825/2012/, 2012.

Se¢rgard, E. and Vada, T.: Observations and modelling of drifting ships. Report 96-2011., Tech. rep., DnV, 2011.

Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool — version 2.0, Geoscientific Model De-
velopment, 8, 2569-2586, doii10.5194/gmd-8-2569-2015, http://www.geosci-model-dev.net/8/2569/2015/,
2015.

Stein, A. F.,, Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., Ngan, F, Stein, A. F,, Draxler,
R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Trans-
port and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96, 2059-2077,
doii10.1175/BAMS-D-14-00110.1} http://journals.ametsoc.org/doi/10.1175/BAMS-D-14-00110.1} 2015.

Stohl, A., Wotawa, G., Seibert, P., Kromp-Kolb, H., Stohl, A., Wotawa, G., Seibert, P., and Kromp-

Kolb, H.: Interpolation Errors in Wind Fields as a Function of Spatial and Temporal Resolution and

27

http://dx.doi.org/10.1029/2000JD000114
http://doi.wiley.com/10.1029/2000JD000114
http://doi.wiley.com/10.1029/2000JD000114
http://doi.wiley.com/10.1029/2000JD000114
http://dx.doi.org/10.1016/J.ENVSOFT.2012.12.006
https://www.sciencedirect.com/science/article/pii/S136481521200312X
https://www.sciencedirect.com/science/article/pii/S136481521200312X
https://www.sciencedirect.com/science/article/pii/S136481521200312X
http://dx.doi.org/10.4319/lo.2014.59.4.1213
http://dx.doi.org/10.1175/JTECH-D-16-0198.1
http://dx.doi.org/10.1175/JTECH-D-16-0198.1
http://dx.doi.org/10.1175/JTECH-D-16-0198.1
http://journals.ametsoc.org/doi/10.1175/JTECH-D-16-0198.1
http://dx.doi.org/10.7901/2169-3358-1971-1-489
http://ioscproceedings.org/doi/abs/10.7901/2169-3358-1971-1-489
http://ioscproceedings.org/doi/abs/10.7901/2169-3358-1971-1-489
http://ioscproceedings.org/doi/abs/10.7901/2169-3358-1971-1-489
http://dx.doi.org/10.1016/j.ocemod.2004.08.002
http://dx.doi.org/10.5194/acp-12-7825-2012
http://www.atmos-chem-phys.net/12/7825/2012/
http://dx.doi.org/10.5194/gmd-8-2569-2015
http://www.geosci-model-dev.net/8/2569/2015/
http://dx.doi.org/10.1175/BAMS-D-14-00110.1
http://journals.ametsoc.org/doi/10.1175/BAMS-D-14-00110.1

700

705

710

715

720

725

Their Impact on Different Types of Kinematic Trajectories, Journal of Applied Meteorology, 34, 2149—
2165, doi:10.1175/1520-0450(1995)034<2149:IEIWFA>2.0.CO;2, |http://journals.ametsoc.org/doi/abs/10.
1175/1520-0450%281995%29034%3C2149%3 AIEIWFA%3E2.0.CO%3B2, 1995.

Sundby, S.: A one-dimensional model for the vertical distribution of pelagic fish eggs in the mixed layer, Deep-
Sea Res A, 30, 645-661, doii10.1016/0198-0149(83)90042-0, 1983.

Sundby, S., Kristiansen, T., Nash, R., and Johannessen, T.: Dynamic Mapping of North Sea Spawning - Report
of the KINO Project, Fisken og Havet, Tech. rep., Intitute of Marine Research, Norway, Bergen, http://www.
imr.no/filarkiv/2017/02/togh_nr_2-2017_kino_report_ss.pdf_1/nb-no, 2017.

Thygesen, U. and Adlandsvik, B.: Simulating vertical turbulent dispersal with finite volumes and binned random
walks, Marine Ecology Progress Series, 347, 145-153, doii10.3354/meps06975, http://www.int-res.com/
abstracts/meps/v347/p145-153/, 2007.

Tkalich, P. and Chan, E. S.: Vertical mixing of oil droplets by breaking waves, Mar Pollut Bull, 44, 1219-1229,
doii10.1016/S0025-326X(02)00178-9, 2002.

van Sebille, E., England, M. H., and Froyland, G.: Origin, dynamics and evolution of ocean
garbage patches from observed surface drifters, Environmental Research Letters, 7, 044040,
doii10.1088/1748-9326/7/4/044040, http://stacks.10p.org/1748-9326/7/1=4/a=0440407key=crossref.
8575675042bdb07866c752a02bbc 1668, 2012.

van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D., van Franeker, J. A., Eriksen, M.,
Siegel, D., Galgani, F., and Law, K. L.: A global inventory of small floating plastic debris, Environmental
Research Letters, 10, 124 006, doii10.1088/1748-9326/10/12/124006, http://stacks.iop.org/1748-9326/10/i=
12/a=124006?key=crossref.56648155cc7e4c5554d3217914246a05, 2015.

Visser, A.: Using random walk models to simulate the vertical distribution of particles in a turbulent water
column, Marine Ecology Progress Series, 158, 275-281, doi:10.3354/meps158275, http://www.int-res.com/
abstracts/meps/v158/p275-281/, 1997.

Wernli, B. H. and Davies, H. C.: A lagrangian-based analysis of extratropical cyclones. I: The
method and some applications, Quarterly Journal of the Royal Meteorological Society, 123, 467-489,
doii10.1002/qj.49712353811}, |http://doi.wiley.com/10.1002/qj.49712353811, 1997.

Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical, high-resolution shoreline database, Jour-
nal of Geophysical Research: Solid Earth, 101, 8741-8743, doi3110.1029/96JB00104, http://doi.wiley.com/
10.1029/96JB00104, 1996.

28

http://dx.doi.org/10.1175/1520-0450(1995)034%3C2149:IEIWFA%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281995%29034%3C2149%3AIEIWFA%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281995%29034%3C2149%3AIEIWFA%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281995%29034%3C2149%3AIEIWFA%3E2.0.CO%3B2
http://dx.doi.org/10.1016/0198-0149(83)90042-0
http://www.imr.no/filarkiv/2017/02/fogh_nr_2-2017_kino_report_ss.pdf_1/nb-no
http://www.imr.no/filarkiv/2017/02/fogh_nr_2-2017_kino_report_ss.pdf_1/nb-no
http://www.imr.no/filarkiv/2017/02/fogh_nr_2-2017_kino_report_ss.pdf_1/nb-no
http://dx.doi.org/10.3354/meps06975
http://www.int-res.com/abstracts/meps/v347/p145-153/
http://www.int-res.com/abstracts/meps/v347/p145-153/
http://www.int-res.com/abstracts/meps/v347/p145-153/
http://dx.doi.org/10.1016/S0025-326X(02)00178-9
http://dx.doi.org/10.1088/1748-9326/7/4/044040
http://stacks.iop.org/1748-9326/7/i=4/a=044040?key=crossref.8575675042bdb07866c752a02bbc1668
http://stacks.iop.org/1748-9326/7/i=4/a=044040?key=crossref.8575675042bdb07866c752a02bbc1668
http://stacks.iop.org/1748-9326/7/i=4/a=044040?key=crossref.8575675042bdb07866c752a02bbc1668
http://dx.doi.org/10.1088/1748-9326/10/12/124006
http://stacks.iop.org/1748-9326/10/i=12/a=124006?key=crossref.56648155cc7e4c5554d3217914246a05
http://stacks.iop.org/1748-9326/10/i=12/a=124006?key=crossref.56648155cc7e4c5554d3217914246a05
http://stacks.iop.org/1748-9326/10/i=12/a=124006?key=crossref.56648155cc7e4c5554d3217914246a05
http://dx.doi.org/10.3354/meps158275
http://www.int-res.com/abstracts/meps/v158/p275-281/
http://www.int-res.com/abstracts/meps/v158/p275-281/
http://www.int-res.com/abstracts/meps/v158/p275-281/
http://dx.doi.org/10.1002/qj.49712353811
http://doi.wiley.com/10.1002/qj.49712353811
http://dx.doi.org/10.1029/96JB00104
http://doi.wiley.com/10.1029/96JB00104
http://doi.wiley.com/10.1029/96JB00104
http://doi.wiley.com/10.1029/96JB00104

