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Abstract. Most geophysical models include many parameteatsédte not fully determined by theory, and cantbeéd’ to
improve the model’s agreement with available déta.might attempt to automate this tuning procesminbjective way by
employing an optimisation algorithm to find the sétparameters that minimises a cost function éerifrom comparing
model outputs with measurements. A number of algms are available for solving optimisation probéenn various
programming languages, but interfacing such sofiw@a complex geophysical model simulation, pressegrtain challenges.
To tackle this problem, we have developed an opttion suite (“Cyclops”) based on the Cylc workfl@mgine that
implements a wide selection of optimisation alduoris from the NLopt Python toolbox (Johnson, 20I#)e Cyclops
optimisation suite can be used to calibrate anyetliod system that has itself been implemented @&parate) Cylc model
suite, provided it includes computation and outpiuthe desired scalar cost function. A growing nembf institutions are
using Cylc to orchestrate complex distributed su@kinterdependent cycling tasks within their @pienal forecast systems,
and in such cases application of the optimisatiotess particularly straightforward.

As a test case, we applied the Cyclops to calilaagebal implementation of the WAVEWATCH Il (vB} third generation
spectral wave model, forced by ERA-Interim inpeids. This was calibrated over a one-year peri@87), before applying
the calibrated model to a full (1979-2016) wavedemmst. The chosen error metric was the spatiabgeeof the root-mean-
square error of hindcast significant wave heighhpared with collocated altimeter records. We déscthe results of a

calibration in which up to 19 parameters were ofstad.

1 Introduction

Geophysical models generally include some empipeshmeterisations that are not fully determineglysical theory, and
which need calibration. The calibration processdften been somewhat subjective and poorly docusdef\toosen, 2016),
but in a more objective approach has the aim ofiriging some measure of error quantified from corgoas with

measurement (Hourdin et al., 2017). We can tusitho an optimisation problem: namely to find thimimum of an objective
functionf(X) wherex represents the set of adjustable parameterd,isiacsingle error metric (e.g. the sum of RMSatihces

between measured and predicted values of a setmiditovariables) resulting from a model simulatwith that parameter set.

The most efficient optimisation algorithms requine derivative_v)f(a?) to be available alongsid€). This, however, is rarely
the case for a geophysical modelling system, slaresgtrict our attention to the field of DiffereatiFree Optimisation (DFO),
in which the objective functiofican be calculated, but its gradient is not avélab

Various methods exist, many of which are summariseie review of Rios and Sahinidis (2012). Someegwod at exploring
parameter space to improve the likelihood of figdiiobal rather than merely local minima. Othes @eferred for quickly
moving to the absolute minimum once in its neighbood. The algorithms are encoded in various lageside.g. Fortran,
C, Python, Matlab), and usually require the usesujoply a subroutine to compuf{&), that can be called as required by the

optimisation programme.
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This is satisfactory for many problems where thgctive function is readily expressed as an algarjtbut is somewhat less
straightforward to interface an existing geophylsitedel, as well as all the methods needed to pe@nd compare
measurement data with an optimisation code, inthis Nevertheless, examples of this approach edound in hydrological
and climate modelling applications. For examplegrigeet al. (2015) developed a calibration tool{gdR software) to apply
the Shuffled Complex Evolution optimization algbrit to calibrate the Hydrologic Simulation Prograortfan (HSPF)
model. In climate modelling, Severijns and Hazetg@005) used the downhill simplex method to optienthe parameter
values of the subgrid parameterizations of an aptmesc general circulation model. More recentlytt e al. (2013) applied
a Gauss—Newton line search optimization algorithiclimate simulations with the Hadley Centre Atrruose Model version
3 (HadAM3) forced with observed sea surface tentpezaand sea ice, optimising an objective functlerived from reflected
shortwave radiation and outgoing longwave radiatiomparisons. The Tett et al. (2013) method waseylently applied to
optimize the sea ice component of the global calpladCM3 climate model (Roach et al., 2017;Te#lgt2017).

Such custom applications of one particular optitiesaalgorithm to a specific model, however, caguiee significant effort
to switch to alternative optimisation algorithmstmbe applied to new models. Modern coupled diénmaodels, or operational
forecast systems for weather and related processesmpass a diverse set of software tools, oftening on multiple
platforms. Ideally, we would like to be able to iopse performance of the modellisgstem(not just a single model code)
without major reconfiguration of software betweka talibration and operational/production versiofithe system.

The Cylc workflow engine is now applied in sevaypérational centres to manage the scheduling ké taghin such systems.
So it seems natural to consider the possibilitgefeloping a framework within Cylc for the optintisa of the modelling

systems under its control.

2 Methods

In very general terms, a derivative-free optimmathlgorithm will explore parameter space, selgctiaues of the parameter
vectorX in some sequence. As eaths selected, it calls the (user-supplied) subrauto evaluate the objective functifgi).
In our case, this would amount to running a conepfiebdel simulation with the corresponding paramst#tings, comparing
outputs to measurements, from which a defined enedric is computed to provide the return valué. dthis can involve a
lengthy simulation, needing a run timig.derperhaps of order hours or days to reproduce mamthiears of measurements.
A self-contained optimisation program, with an esifil-coded function-evaluation subroutine, willm much faster, with a
run time per iteratioffier typically being some small fraction of a secomj aill run in many orders of magnitude less time
than a typical geophysical model even if a numidfeitevationsN of order 1000 are required. This might be the dase
“deliberately difficult” test problems: we might pact that a well-tested geophysical model will conith reasonable defaults
that in many new implementations will produce aitewithin a relatively simple “basin of attractibso that O(10) iterations
may suffice to get very close.
If the optimisation procedure calls for a full mbden to evaluate the objective function, aNdterations are required for
convergence, the total run time would be

T = TO + N( Tmodel + Titer) (1)
including an overhead, for initial and final tasks.
As Tmodelis orders of magnitude larger th@nandTier, the geophysical modelling system totally domieaten time, and we
can comfortably afford not to be concerned withuadg the efficiency of the optimisation routin@ga by a few orders of
magnitude.
So let's consider a simple measure we might inttedio allow us to recover from an interruption paaty through a long
optimisation process. Normally, the optimisatiomewill retain in memory the values of eathnd its objective function

f(¥) that has already been evaluated, to use in s&defcirther points to be evaluated. If we writesbevalues to file each time
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the function evaluation is called, we can buildaulpokup table to use in case we need to restapithcess. In that case, we
could have the function evaluation subroutine fiesrch the lookup table for a matcttfwithin some acceptable tolerance),
in which case it could return the tabulated ermlug. Only in the case where a tabulated valuensa$ound would the full
model simulation be required to compute the retalne off.

Now rather than actually perform that computatibe, function evaluation subroutine could simplytevthex values (for the
n" iteration, say) to file, and exit. We could them the model in its usual way, outside the optitiésacode, using thosé
values as parameters, and add that result to okufotable before restarting the whole process fsomatch. This time,
assuming the optimisation algorithm is determinijstiith no random process influencing the sequefigevalues, the firsh
points would be exactly the same sequence thaselasted previously, and could be quickly handhedable lookup, and
the algorithm would either find that a convergendterion had been satisfied, or select a new pwoiftto be passed to the
model for simulation.

In effect, we are simply employing the optimisatalgorithm in a generic tool that, given the resoltall previous iterations,
either signals that convergence has been reachgénerates the next parameter set to be evalbgitte model.

In this scheme, assuming that we start with an ghopkup table, the first pass has one iteratiothefoptimisation code, the
second has two, etc. So, allowing an additionartwsadT for the full process, the total run time to realh termination

condition(s) afteN iterations should be

N
T'=T+ z (To + nTiter + Tmodel) (2)
n=1
R N(N+1)
=T+ N(To + Tmodel) + 2 Titer (3)

As Tmodelis orders of magnitude larger than the other tjrtiesratio of the two run times is
T' N+ 1 Tier

~

~1+
T 2 Tmodel

Given the expected relative magnitudes of the madeloptimisation iteration times, aNdf order 10s or 100s, the increase

(4)

in run time through this approach is actually ngigle.

On the other hand, this scheme has several bengfitst from being simple to code, the optimisatagorithm, including
the user-defined function evaluation subroutingy lba completely generic, and applied unmodifiediifterent modelling
systems. The only requirements on the modellingesysare that, at the start of each simulationedids in the parameter
values requested by the optimisation code and atiapt to its standard input formats, then at theé enthe simulation,
computes and writes to file a single error metalue. The optimisation code and the model systartddben remain separate,
both controlled by some form of scripting schenw, éxample. This means that having invested coridie time and
resources in developing a complex modelling schexmenajor reconfiguration needs to be made to pesipfor optimisation

in this manner, or subsequently to re-implementitimised modelling system in operational or piigin mode.

2.1 Cylc

Cylc (http://cylc.qithub.io/cyldy is an Open Source workflow engine that can mar@aggwing distributed workflows of

cycling (repeating) tasks. It was originally deyed at NIWA to automate environmental forecastiygjems, and has since
been adopted by many other institutions — notaiyUWK Met Office and its international partnersclimate, weather, and
related sciences. Cylc can manage large produsyistems of great complexity, but it is also easyde for individuals and
groups with less demanding automation requireméhtk: workflows (orsuiteg are defined with an efficient graph syntax
that expresses dependence between tasks, andiganefinheritance hierarchy for optimal sharing af task runtime

properties (exactly what each task should exeeutg where and how to submit task jobs to run).
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Cylc tasks are related Ibsigger expressionthat combine to form dependency graphThis trigger,

A:status=> B
says that task B depends on task A achieving #tesstatus(“=>" represents an arrow). The default triggeitss issucceeded
(job execution completed successfully) and can bigen simply as A => B; others includabmitted, submit-failed, started,
finished, failed and custom task output messages. Tasks can depethé wall clock and on external events, as aglon
other tasks, and a task job can be submitted tmnge all its dependencies are met. Cylc autonibtiesiaps user-defined
task content (environment, scripting, etc.) in coaldrap errors and report job status back to thite server program via
authenticated HTTPS messages. Tasks can evernrtoffggesks in other suites, so for coupled systgmscan choose between
a larger suite that controls all tasks, and mudtgrhaller suites that interact with each other.
In cycling systems tasks repeat on sequences thatepresent forecast cycles, or separate churksnafdel simulation that
is too long for a single run, or iterations in gitimization scheme, or different datasets to begssed as they are generated,
and so on. Cycling is specified with ISO 8601 datee recurrence expressions (e.g. for environmédatakasting), or with
integer recurrence expressions (e.g. for itergtnacesses). Both date-time and integer cyclinguaesl in the application
described in this paper. Dependence across cyabesifler a forecast model that is initialised vathputs from a previous
cycle) creates ongoing, potentially never-endingrkitows. Uniquely, Cylc can manage these withoupdsing a global
cycle loop: one cycle does not have to completerleghe next can start. Instead, tasks from maolesycan run concurrently
to the full extent allowed by individual task depencies and external constraints such as compstunee and data
availability. So, for example, on restarting ai&tended downtime, a suite that processes realdatecan clear its backlog

and catch up again very quickly, by automaticathgrleaving cycles.

2.2 Implementation

We have developed a Cylc suite (“Cyclopsiips://zenodo.org/badge/latestdoi/1836289 perform optimisation of a

modelling system that has itself been set up aparate Cylc suite. In the example we describedpele model suite controls
a multi-year wave model hindcast, including theppoeessing of necessary model inputs (principaligdwfields) and
verification data (satellite altimeter data), rumnithe wave model code, postprocessing of mod@iutsitand generation of
error statistics from comparisons of predicted abserved significant wave height fields.

Typically, date-time cycling is used to run a moaesuccessive forecast cycles, or to break adonglation into a succession
of shorter blocks. The optimisation suite, on thigeo hand, uses integer cycling, with each cycleesponding to a single
evaluation of the objective function.

There are several tasks controlled by the optinoisatuite. One of these is responsible for run@ingptimisation algorithm
to identify either an optimal parameter vector frpmvious model runs, or the next parameter vectdre evaluated. This
main optimisation task within the suite is implerneghwith Python code calling the NLopt Python tanil{Johnson, 2014).
NLopt includes a selection of optimisation algami both “local” solvers, which aim to find the nest local minimum to
the starting point as efficiently as possible, agidbal” solvers, which are designed to exploreftiieparameter space, giving
high confidence in finding the optimal solution afita possible multitude of local minima. NLoptlndes algorithms capable
of using derivative information where available,igthis not the case in our application, and Cycligpeestricted to the
derivative-free algorithms listed in Table 1.

We have assumed that the sequence of parameters/éested by an optimisation algorithm is deterstinn Several of the
algorithms available in NLopt have some inheresthychastic component. It is, however, possible afk@rthese algorithms
“repeatably stochastic” by enforcing a fixed seadtfie random number generator.

In NLopt, any combination of the following termiiat conditions can be set:

1. maximum number of iterations by each call of thérmjsation algorithm
2. absolute change in the parameter values less theesaribed minimum

4
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3. relative change in the parameter values less thpaszribed minimum
4. absolute change in the function value less tharescpbed minimum
5. relative change in the function value less thaneasgribed minimum

6. function value less than a prescribed minimum

In the second and third of these convergence @&jtédre “change in parameter values” means the matgmof the vector

difference, i.e. /ZZZ‘jr(Axn)z.

We have implemented Python code that uses NLof#t takeek a minimum of an objective functicthat represents a non-
negative model error metric. As described above,uber-defined function evaluation has been impfgeteas a generic
Python functiorf(X) that simply searches a lookup table (storedfileq If ¥ is found in the table it returns the corresponding
f value, otherwise it saves the vectoio a file and returns an invatiivalue. Any of the termination conditions listecbab
can be set by the user: the last of these can psesaribed minimunfivalue as a convergence condition, while an invalid
value signals that the optimisation algorithm hapged because a new parameter vectwgeds to be evaluated externally
by a model simulation. In this case a file is veriticontaining parameter names and values in a fdhaacan be parsed by
the modelling system to generate the needed iflpatfér a simulation. At present a generic nanhétismat is used as output
from Cyclops for this purpose.

A “parameter definition” file is used to specify ramneter names and their initial values, as usedinvihe model. If a
parameter is allowed to be adjusted by the optiisauite, an allowable range is also set. Tha@aghwill generally require
some experience with the particular model. Withia optimisation suite, these adjustable paramet#rbe scaled linearly

to normalised parametefsthat lie between 0 and 1. Fixed parameters candbede for convenience, so that their names and
values will be written to the namelist file but sieeare ignored by the optimisation suite.

The major tasks carried out by Cyclops on eachecgcé:

0. (first cycle only):Init : write initial normalised parametetg, to file, ...

1. Optimise: run the optimisation code, starting frainand evaluating ever¥ in the sequence, until either a
stopping criterion is met (in which case the taeshds a “stop” message), or a parametef sereached that is not
in the lookup table so needs evaluating (signdied “next” message)

2. Namelist ConvertX to non-normalised parameters in a namelist file

3. Model: Create a new copy of the model suite, copy thmdtiat file to it, and run it in non-daemon mode (iso
the task will not complete until the model suiteitshdown). A new copy of the suite is made so fitest created in
one cycle do not overwrite those created on otheles.

4. Table: Read the resulting error value from the modeksuaind update the lookup table

Within one cycle, the dependencies of the optinosasuite are simply:
Optimise:next =>Namelist=>Model => Table

to make these tasks run sequentially when no singition is met. We set a dependency on a pre\igote:
Table[-P1] =>Optimise

At present < 0 is treated as an “invalid” return value, whistappropriate for positive-definite error metyibsit the
Python code could be modified to retdirn None for more general cases.

5
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(the notation —P1 denotes a negative displacenfestecycle period), to ensure that the lookupeablup to date with all
previous results before starting the next optinasatycle, and to prevent Cylc from running sucoessycles concurrently.
The stopping condition is handled by

Optimise:stop =>Namelist_Final => Stop
where theNamelist_Final task produces the final version of the namellst find theStop task does a final wrap-up of the
completed optimisation before the suite shuts ddven.the purposes of good housekeeping, we caradid@Model_delete
task to delete each copy of the model suite orcigssabutputs have been used. Also, tasks whichnat be needed (e.g.
“Namelist” if “Optimise” gives a “stop” message)rcae removed, along with any dependencies on ttasés, by so-called
“suicide triggers”. Figure 1 illustrates the woidfl of the optimisation suite described above irpbreal form.
The optimisation suite’sModel” task for each cycle is a proxy for a copy of #h#l model suite being run for the
corresponding parameter set. The model suitenisirimon-daemon (non-detaching) mode, so that tbdeitask does not
finish until the suite that it represents runs eonpletion. Information passed between the suitesists of two simple files:
a “namelist” file containing parameter names andes written by the optimisation suite for the micglgte, and an “error”
file containing the single value of the error meteturned by the model suite.
The model suite needs to include a task to prodessiamelist file into the particular modelling ®m’s standard input
formats. Because the formats are highly model-fipethis task needs to be tailored for the paféicunodel suite. For
example, in our wave hindcast application describeldw, this task consists of a shell script whitimply includes the
namelist file verbatim as part of an ASCII contiitd, which also has various timing parameters jtest from environment
variables. Namelists can include named groupsmafrpaters, which may be helpful in this processaBes where these groups
need to be treated differently (e.g. affecting etiéiht model input files for multiple coupled modelsd pre- and post-
processing tasks within the model suite). Howei¥éine namelist format proved inadequate to supipdyneeded information,
this format could be changed within the optimisatsnite to something more suitable. It should bessed, though, that no
change should be needed to the main model cod®scHn run as standard release versions undersasepask within the

model suite.

2.3 Concurrent simulations

For some DFO algorithms, at least some parts ok#wrience of vectors tested is predetermined, radepéndent of the
function values found at those points. For exanp@BY QA (which we chose to use in the test appitatiescribed below)
sets up a quadratic approximation by sampling iteai point, plus a pair of points on either siofeit in each dimension.
With N parameters, the first\&-1 iterations are spent evaluating theblP fixed points, regardless of the function values
obtained there. In such situations, the functidnesfor each of these points could be evaluatedltaneously.

This can be done within Cylc by allowing tasks fromaltiple cycles to run simultaneously. In practitgs means that multiple
copies of the model suite are running simultangguslthe extent allowed by resource allocatiorttenhost machine(s). This
makes it imperative that a new copy of the modikds made for each cycle.

If concurrent model simulations are allowed, thisams that at any time there are a certain setrafipeter vectors for which
the function values are still being determined faa call this the “active” set). We can add anoffaameter vector to that
set if it will be selected by the optimisation aligiom regardless of the function values at thevagbiarameter vectors.

We would clearly like to determine that without dag specific knowledge of how the particular opsation algorithm
works. Instead we use a simple empirical methodthi®end, we maintain a file (the “active filef$ting the active vectors,
and make an addition to the function evaluatiorrsutine, so that if it fails to finé in the lookup table, it then searches the
active file and if it finds¢ there, assignfsa random positive value (in this application wa'tce-initialise the random number
generator with a fixed seed). Otherwise it write® file and returns an “invalidf value to force the optimisation algorithm

to stop as usual. The Python code controlling ft@sation algorithm has also been modified. Nolew the active file is
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empty it will act as before, but if there are aetixectors it will run a small set of repeated ofgations. If these all result in
the same choice of value to be evaluated, a “next” message is setnigiger further tasks for this cycle as beforacsithis
choice is independent of the results for the agii@mmeter vectors. If not, we do not have a defiio evaluate, and we
must wait until at least one of the presently acimulations has finished before trying againaswait” message is sent.
But clearly this does not mean that the optimisaisocomplete.
We can now allow for concurrent simulations in €yc suite in two ways. In the first method we tle¢ Optimise task fail
when it determines a “wait” condition, and utili8gIc’s facility to retry failed tasks at specifigdtervals.
We also replace the dependency

Table[-P1] =>Optimise
with the combination

Optimise[-P1] =>Optimise

Table[-PM] => Optimise
whereM is a specified maximum number of concurrent sitimtes. This means that each cycle can first attémptart a new
model simulation as soon as the previous cycl&sikition hastartedand theMth previous simulation hasompleted The
“Optimise” task will keep retrying at intervals irit is able to give either a “stop” or “next” sigl. This method has a simple
workflow structure, illustrated in Figure 2, thate$ not change &4 increases.
The second method, described in Appendix A and useabe tests described here, uses more compleendepcies and
additional Optimise tasks, instead of a singleyiety Optimize task. It is somewhat more efficiemthat there is no need to
wait on a (short) retry interval before determinifign new cycle can start, but the workflow is ma@mplicated and its
complexity increases withl. Both methods achieve the same result, howevey: both allow up tdM model suites to run
concurrently, rather than iterating through themsequence.
It should be stressed that the optimisation coskdfits simply run as a serial process in each:dage simply required to
produce the single set of parameters, if any,Herrtext model run given the known results of thegleted simulations. As
it checks that this parameter set is independetiteofesults of the presently active model runseuit needing to know the

actual results, no parallel processing is requividin the optimisation code.

3 Application: a global wave hindcast based on ERAaterim inputs

Here we describe a global wave simulation, usirgWAVEWATCH Il model (WW3), forced by inputs frotthe ERA-
Interim Reanalysis, covering the period from Japd#®79 to December 2016. Such multi-year wave meidelilations are a
valuable means of obtaining wave climate informati spatial and temporal scales that are not gbyevailable from
direct measurements. It is rare for a particulaatmn of interest to have a suitably long nearbsitu wave record, e.g. from
a wave-recording buoy, to provide statisticallyaikele measures of climate variability on inter-asnime scales. And while
satellite altimetry has provided near-global resood significant wave height that have been avaldbr more than two
decades, these have limited use for many climgiécations for several reasons, including a retwycle that is too long to
resolve typical weather cycles, limitations in pdirg nearshore measurements, and lack of diregtioformation. Model
simulations can in many cases overcome these tiontg but available measurements still play ae®tsasl role in calibrating
and verifying the simulations.

In our case, one of the principal motivations farrging out this hindcast is to investigate therof wave-ice interactions in
the interannual variability of Antarctic sea icdext, which plays an important role in the globahate system. The ERA-
Interim Reanalysis is a suitable basis for this kygroviding a consistent long-term record, withefal control on any
extraneous factors (e.g. changing data sourcaapdelling methods) that might introduce artifidie@dnds or biases into the

records. While the ERA-Interim Reanalysis includenupled wave model, direct use of the wave ostgoes not fully meet
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our requirements, which include the need for theenaindcast to be independent of near-ice satelldge, which were
assimilated into the ERA-Interim Reanalysis. Heweechose to carry out our own wave simulation,édraith ERA-Interim

wind fields, but with no assimilation of satellil®ve measurements.

3.1 Comparison of model outputs with altimeter data

Rather than being assimilated in the hindcast/lgataltimetry measurements of significant waveghé were used as an
independent source of model calibration. These vedatained from the IFREMER database of multi-missguality-
controlled and buoy-calibrated swath records (Quédfu, 2004).

Swath records of significant wave height were fisflocated to the hourly model outputs on the 2°mbdel grid. For each
calendar month simulated, collocations were thesumeilated in 3°x3° blocks of 9 neighbouring cetisproduce error
statistics, including model mean, altimeter medas land root-mean-square error (RMSE), and coivelatoefficientR.
Spatial averages of these error statistics werentalver the full model domain between 65°S and 6*¢luding polar
regions with insufficient coverage).

The final error statistic used in the objectivedtion was the spatially-averaged RMSE, normalisgthb spatially-averaged

altimeter mean, temporally averaged over the sitimrgeriod, excluding spinup.

3.2 WW3 parameters

For this simulation we used version 4.18 of the WAAWATCH IIl (WW3) third generation wave model (Tolma2014). The
model represents the sea state by the two-dimealsicean wave spectruﬁ(l_c), %, t), which gives the energy density of the

wave field as a function of wavenumberat each positioi in the model grid and timeof the simulation.

The spectrum evolves subject to a radiative trarmjaation

N S

YT V- (XN) +or (kN) +5 (eN) = (5)
for the wave actionV(k,8,%,t) = F(k, %, t)/o(k), whereo is the frequency associated with waves of wavemrmb
magnitudek through the linear dispersion relation, ahis the propagation direction. The dots represerd terivatives. The
terms on the left hand side represent spatial didve@nd the shifts in wavenumber magnitude anectibn due to refraction
by currents and varying water depth. The source 8wn the right hand side represents all other psaethat transfer energy
to and from wave spectral components, includingrdoutions from wind forcing, energy dissipationdaweakly-nonlinear
four wave interactions.
Adjustable parameters within WW3 that can influeacdeep water global simulation such as the oneritbesl here are
principally concentrated in the wind input and ghiasion source terms. It is generally necessariraat these two terms
together as a self-consistent ‘package’ of inpdtdiasipation treatments designed to work togethehis study we undertook
two separate calibration exercises, based on twokgges’ of input/dissipation source terms, firgtigt of Tolman and
Chalikov (1996) (activated in WW3 by the ST2 swjtcand secondly the Ardhuin et al (2010) formulat{osing the ST4
switch).
In Appendix B we describe some of the details eSthtwo packages. We also include some descriptitre WAM Cycle
4 (ST3) input source term formulation (Janssen,11.98n which the ST4 input term is based, evendhahe ST3 package
was not tested in this study.
In addition to the input and dissipation terms,dbiger main control on deep-water wave transforonat provided by weakly
nonlinear four-wave interactions (Hasselmann, 19&X)fortunately, acceptable run time requiremerds multiyear
simulations over extensive domains still precludang a near-exact computation of these terms, aadhe Webb, Resio,
Tracy method (Webb, 1978;Tracy and Resio, 1983%)ithavailable in spectral models including WW3r(Wlledder et al.,
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2000). Instead we use the much-simplified formhef Discrete Interaction Approximation (Hasselmaial.e 1985), treating
its proportionality constar® as a tunable parameter.

Common to both optimisations, sea ice obstructias turned on (FLAGTR=4) with non-default valuestfwe critical sea ice
concentrations. , ande,, between which wave obstruction by ice varies betwsero and total blocking: these were set to
0.25 and 0.75, respectively. All other availablegpaeters beyond the input and dissipation termse veft with default
settings, noting that shallow water processes,enutivated, are not expected to have more thasghgible and localised
influence on model outputs in a global simulatibd aresolution.

For initial testing, in which two sets (ST2 and $dfloptimisation parameters were compared, we asgtke month (January
1997) spinup to a three month calibration periogbfiaary — April 1997). The selection of the calttma period from the full
extent of the satellite record was arbitrary.

Relevant parameters used in the two calibratioedisted in Table 2 and Table 3, respectively, Wwhiefer to the parameter
names as defined (more completely than we do liethe WW3 user manual (Tolman, 2014), and as ipddn namelist
inputs to the model. These tables include theainithlues of the parameters, the range over whief were allowed to vary,
and the final optimised values. Other parametetdisted were kept fixed. A particular example vilas input wind vertical
level z,. (ST2)= z, (ST4) = 10 m which is a property of the input ds¢d, hence not appropriate to adjust. Others leére
fixed after an initial test confirmed that they hadgligible influence on the objective functionawing 13 adjustable
parameters for ST2 and 17 for ST4.

The selection of which parameters to tune, andahge over which they are allowed to vary, is aaawvhere some (partly
subjective) judgement is still required, based ome familiarity with the relevant model parametatisns. In this case,
parameter ranges were chosen to be physicallystiealand to cover the range of parameter choised in previous studies
reported in the literature.

3.3 Optimisation settings

We elected to primarily use the BOBY QA optimisatalgorithm (Powell, 2009) for this study. Giventla expected WW3
to be already reasonably well-tuned for a globaluation such as our test case, we wished to useah optimisation
algorithm that could reach a solution to a probleith 10-20 variables in as few iterations as pdssi@f the algorithms
available in NLopt that were included in the intamparison study of Rios and Sahinidis (2012), BOBY@as found to be
the most suitable in that respect. In particulatldws for concurrent model runs in the early stagf the optimisation process.
Both optimisations were stopped when either thelabes change in (normalised) parameter values essthan 0.0001, or
the relative change in the objective function wesslthan 0.0001. Less stringent conditions wetialigiused, but the ability
of the optimisation suite to be restarted with sedi stopping criteria was invoked to extend thénopation.

These first two tests used a local optimisationhm@ton the assumption that the respective defaunitrpeter sets are near-
optimal, or at least within the “basin of attracticof the optimal solution. In order to test thissamption, two further
approaches can be considered. The first choicednmailto use a truly global optimisation algoritroreiplore the selected
parameter space as thoroughly as possible. Thi®agip may be expected to require a number if itaratin the thousands,
which is rather challenging given typical model itimes, especially as global methods do not gelyeatibw for parallel
iterations.

A simpler approach is to still use a local algarittbut initialise it at a range of different stagipoints. This was the approach
we took for our next set of tests, restricted @874 case, in which the initial value of each peter was selected at random
with uniform probability distribution over its alleed range. Five randomised tests were done, alaitiy av control
optimisation starting from the default parameteérused previously. For these tests we made sortgefusimplifications in

from a common initial condition, spun up over onenth with the default parameter set. Both simpdificns detract from

9



10

15

20

25

30

35

40

how applicable the resulting parameter sets woelfbbhindcast applications, but can be justifiedllowing a more extensive
examination of parameter space with a given contiouta resource. A slightly reduced set of ST4 paeters was optimised,
omitting C5¢%, CHEX andsg. The initial and final values of these paramefess each of the tests are listed in Table 4 and
Table 5, respectively. The allowed range of eacthefadjustable parameters was the same as imghi®ps simulations, as
listed in Table 3, while both stopping criteria weelaxed to a value of 0.005.

Despite the expected high computational demandseweattempted an optimisation using the global@ionary algorithm
ESCH of da Silva Santos et al. (2010). This watsalised from the default parameter values, andl uise same one month
hindcast, parameter ranges and stopping criteritesaribed above.

Following these test simulations, the ST4 paransgtton was chosen for a final calibration, carr@d over a 12 month
period (January — December 1997) following a onextm@pinup (December 1996). This calibration waalfy terminated
with both stopping criteria set to a value of 0.D00his was a somewhat arbitrary choice made terebshe evolution of the
solution. For practical applications the choicestifpping criteria should take into account the gty of the objective
function to measurement error in the data usethicalibration, to avoid unnecessary ‘over-tunioigthe model.

The full hindcast, from January 1979 through Decem#916 was then run using the optimised paranseteitComparisons
with altimeter data were made for each month fromgst 1991 onward.

Each WW3 simulation was run on 64 processors anglescore of either an IBM Power6 or a Cray XC58amne. Other
processing tasks within the suites were run onlsipgocessors. The resulting hindcast simulati@sgired an average of

approximately 25 minutes of wall clock time to cdatp each month of simulation.

4 Results
4.1 Local optimisation of 3 month hindcasts with SZ and ST4 source terms

The BOBYQA algorithm develops a quadratic modelhaf objective function. To do so, the first iteoatievaluates the
objective function at the initial point, then petis each component in turn by a positive increntéeth by an equal negative
increment (leaving all other components at thaahitalue). This can be seen for the ST2 optimisath Figure 3, in which
the bottom panel shows the sequence of (normalsm@meter values tested. With 13 adjustable paeasehis amounts to
27 iterations in this preliminary phase. As thigusnce of parameter values is fixed, independettieofesulting objective
function values, all of the first 27 iterations thave been run simultaneously as detailed abhbpermitted by the queuing
system. We, however, applied a limit of 7 paratklations in line with anticipated resource lintibas.

The 3-month ST2 optimisation only required a furth@erations after this initial phase to readi@ping criterion. The ST2
default parameter settings used as the starting fmi optimisation resulted in an objective fuoctivalue of 0.1901, which
was reduced to 0.1424 in the optimisation process.

In the optimal configuration, none of the tunabdegmeters were at either of the limits of their asgd range, indicating that
convergence to a true minimum (at least locally) haen reached. Most of the parameters were aglytlst modified from
their initial values: the largest changes weredrameters, (reduced from 0.0003 to 0.0002059) @q(D.47 to 0.2493), both
influencing the low frequency dissipation term.

The ST4 3-month optimisation was initialised witte tdefault settings from the TEST451 case repdmtedrdhuin et al
(2010), for which the objective function returnedadue of 0.1427. Optimisation only managed to oediis to 0.1419 (Figure
4), indicating that the default ST4 parameter s&t already quite closely tuned for our case, haveen selected by Ardhuin
et al (2010) largely from broadly similar studies, global simulations (at 0.5° resolution) congzhwith altimeter records.
Three of the parameters ended the optimisatiomatemd of their allowed range, in each case asdge value at which it
was initialised. The 1Badjustable parametesy) controls the assumed directional spread of tasiptation spectrum, and the

fact that it remained at its upper limit suggekts the optimisation may be improved by assumiegdiksipation spectrum to
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have a narrower directional distribution than aptited. On the other hand, parametersCF4%{) and 15 ¢4¢

k) are associated
with an alternative breaking formulation proposedHilipot and Ardhuin (2012), who chose valug& = 0.185 and
CHEX = 1.5 (and correspondingly, turned off the default sation-based dissipation term by settirig® = 0) whereas this
term is turned off in the ST4 default, hence bodheninitially set to zero. On the face of it, onigint think that the optimisation
algorithm would have been free to explore solutiaith positive values of these parameters, regitiran optimal ‘hybrid’
total dissipation term. In fact the way the dissipaalgorithm is coded, this form of the dissipatterm is not computed at

all in the event that2¢¥ = 0.0, which would have been the case when the BOBY@arihm explored sensitivity t65¢

S
in the initial stages. This means that our choitéitial values may have spuriously caused the BQR\ algorithm to
underestimate sensitivity ©/¥, and may have missed a distinct second local minirtapproximately corresponding to the

parameter settings of Filipot and Ardhuin (2012)).

4.2 Tests with local optimisation with randomisednitial parameter sets, and global optimisation

The next set of five tests compared results ofidhal BOBYQA algorithm starting from different panater sets chosen at
random within the allowed ranges (Table 4). Theltewy final parameter sets, listed in Table 5,vgtibat each test located a
different minimum. This indicates that there ardtiple local minima for the error metric in our cten parameter ranges, in
addition to the local minimum derived from the défgparameters. The corresponding values of ther enetric were all
slightly higher than the value (0.1454) obtainexhrfithe baseline optimisation starting from the ditfaarameter set, although
much reduced from their initial values (Table 4jthAugh none of those additional local minima fowwudfar has replaced
the baseline set as a candidate for a global optinhis gives no guarantee that this would notheedase after a more
thorough search.

The attempted global optimisation (using the ES@érithm) of the same hindcast, had not convergedithin the chosen
tolerances after 800 cycles. However, in the coafdts operation it did identify over 30 paramesets with slightly lower
error metric than the minimum value (0.1450) oledin the corresponding baseline local optimisatiime lowest value
within 800 iterations was 0.1441, and the corredpunparameter values are included in Table 5. Singports our suspicion
that a local optimisation algorithm cannot be itlipon to identify the global optimum for this haadt problem. On the other
hand, the very small decrease in the error mebiained from this wider search does not give stijastification for making

a significant change in parameters from near fthefault values. We need to bear in mind that the@vgation problem we
have addressed in this set of tests (i.e. miniMIRMS errors in significant wave height from a enenth partial hindcast) is

not quite the same as optimising this measure @aveore representative period.

4.3 Local optimisation of 12 month hindcast with S source terms

In the final 12 month ST4 optimisation, two additid parameters were allowed to vary that were fikethe 3-month
optimisation, bringing the number of adjustablespagters to 19. These were the critical sea icesstration parametees ,
ande.,, between which wave obstruction by ice varies betweero and total blocking: these had been fix€d2& and 0.75,
respectively, in the 3 month optimisations. Otheeyithe initial parameters (Table 4) again corredpd to the ST4 defaults,
which in this case produced an error metric of B6L4At the termination after 89 iterations (witte thnore stringent stopping
criteria), this had decreased to 0.1431.

Most of the resulting optimised parameters werselm the values obtained from the 3-month optitisieaTable 3). An
exception was the Madjustable parametaf,,,, , scaling the strength of the turbulent contributio dissipation, which
finished the 3-month optimisation at 0.41298, k.8 (the lower bound) in the 12 month simulations

For this longer optimisation, we have additionalbmputed a measure of the sensitivity of the ohjedunction,using the

initial phase of the BOBYQA iterations to estiméte change in the (un-normalised) parameter redju@rgoroduce a 0.1%
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change in the objective function. This is listed@slta” in the seventh column of Table 3, and pdes a measure, at least in
relative terms, of the bounds within which eachapaeter value has been determined.

The full hindcast, run from 1979 to 2016, couldcbenpared with satellite data from August 1991 omwahe resulting bias
in significant wave height, averaged over the Atd®91 — December 2016 comparison period, is showigure 5. Positive
biases are obtained in latitudes south of 45°Siqodarly south of Australia and in the South AtianThis is also seen in the
vicinity of some island groups (notably French Palsia, Micronesia, the Maldives, Aleutians, CamilpeAzores), which
may be indicative of insufficient sub-grid scalestsbction. On the other hand, negative biaseseme sear the western sides
of major ocean basins, and in the “swell shadowthi northeast of New Zealand. A similar pattersdsn in the results
reported by Ardhuin et al (2010) for their TEST4#ke (their Figure 9).

Normalised root-mean-square error (i.e. RMSE alivided by the observed mean) from the same cosparagain averaged
over the period August 1991 — December 2016, isvahia Figure 6. Note that the objective functiom émr optimisation
used this measure, spatially averaged over ocetarsMaetween 61°S and 61°N. For the majority ofdbean surface, this
lies in the range 0.08 — 0.14, but with higher ealnear some island chains and the western boesddrcean basins. Again,

similar results were reported by Ardhuin et al (@01

5 Discussion

In their review of methods used to tune Numericaaitier Prediction and climate models, Hourdin et28117) observe that
with the number and complexity of parameterisatitmsonsider, the task of tuning these parametas far a long time
largely left to “expert judgement”, and that objeetmethods have made a more recent appearancentliaa statistical,
engineering, and computing fields. The method axeelpresented here, along with the approachesvefifes and Hazeleger
(2005), Tett et al. (2013), Roach et al. (2017xdbed in the introduction, perform model tuningaihgh the relatively direct
approach of defining and minimising a cost functionir method has the advantage of employing a(tt) that is already
commonly used to control complex workflows for weat forecasting and climate modelling systems, gtinoze the
parameters of such a system under its control,vimy that is simple to implement, and flexible imie of optimisation
algorithm.

We have shown this to be a practical method foindping 10-20 parameters in a model applicatiosudficient complexity
to require several hours per simulation in a pargltocessing computing environment. For applicetithat are yet more
time-consuming, it is becoming increasingly comn(Ballprat et al., 2012;Wang et al., 2014;Duan et2017) to first build
a surrogate model to provide a statistical emul&torthe actual model, and then apply an optimigaglgorithm to the
surrogate model. Such multi-stage model optimisafiameworks are beyond the scope of this papértheuflexibility of
our approach could potentially bring benefits terthas well. For example, it may be worth considgarhybrid approach of
using a surrogate model to quantify the role offtileset of model parameters and perform an ihglabal optimisation,
before switching to a method such as ours fora fiefinement using the original model directly.

In our study we have largely restricted our attamtio one local optimisation algorithm (BOBYQA),thour initial results
suggest the need in some circumstances to applyr@ ghobal method. This is not difficult to do innxiple, with multiple
algorithms, both global and local, implemented ytilBps. However, the generally higher computatiateahands of a global
algorithm put a limit on such applications. In tetady we have only been able to undertake a pirgdiry exploration of the
wider parameter space of our single chosen test ddss did however illustrate that the possibilifymultiple alternative
local minima must be considered.

As we have seen, there remains a need for carehetbhoices of which parameters to attempt tontipé, and what bounds
to set on their values. Most optimisation algorithame intended for continuously variable parametard may rely on the

objective function having a continuous dependencéhese parameters. In many cases it is clear wiachmeters fall into
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this category, as opposed to discrete valued opntiBuat in some cases, model code may make binargehbased on real
parameters lying within discrete ranges, which rbagak this assumption. Hence the Cyclops optinuirasiuite is best
employed in conjunction with a good understandifithe role each parameter plays in the model, bhadrterplay between
them.

It is also important to be aware of the role playpgdthe design of the error metric, which may miakeensitive to some
parameters and insensitive to others. One shoulchbgof accepting a large change in these inseegirameters to achieve
a tiny improvement in the chosen error metric, when resulting model could then perform poorly agaiother relevant
criteria. In the particular wave modelling caseha®e investigated, our approach would not be saffion its own to identify
suitable values of the large set of WW3 parameté@isout guidance from previous studies.

Tett et al. (2017) point out that the inherenthaatic nature of the climate system means that tioelevel of noise is
introduced into evaluations of an atmospheric mai@lulation, which can cause problems in evaluatime termination
criteria. They describe a procedure to rerun a ksitimn that had nominally satisfied the prescribedvergence criteria, with
randomised perturbations before determining whatheiot to terminate. Unlike the atmosphere, ocaface waves are an
essentially dissipative system, and perturbatiatr®educed in the initial conditions and forcing Wénd to diminish, rather
than grow, with time. As a result, noise in theemjve function was not so relevant for our wavedast application as for
atmospheric models, but may need to be addresséd s&ystems with an underlying chaotic nature, ipbsshrough
implementing similar measures to those of Tetl.g2817) into Cyclops.

Similarly, the dissipative nature of ocean wavesmsethat a cost function based on a spatial averfahe (temporal) RMSE
of model-data comparisons will not be subject t® lavel of chaotic variability seen in similar meses for atmospheric
models. Small scale variability in wave model ottigitherefore more likely to be genuinely sensitio parameter variation.
In that case it is worth capturing such variabiiitythe cost function, whereas for a chaotic systemay be wiser to average

out such variability before evaluating the costchion.

Conclusions

The Cyclops Cylc-based optimisation suite offeferible tool for tuning the parameters of any mitidg system that has
been implemented to run under the Cylc workflowiragMinimal customisation of the modelling systemequired beyond
providing tasks to input and apply model parametdues in a simple namelist format, and outputéiee of the scalar error
metric that is to be minimised. This then allowy ah16 optimisation algorithms (from the NLopt tbox) to be applied to

the optimisation. This optimisation suite is exgecto be especially applicable to operational fasting systems, where
minimal re-configuration is required between “tugiimnd “operational/production” versions of thedoast suite.

Results of the initial test case we have investigaa global hindcast using a spectral wave maatebtl by ERA-Interim

input fields, illustrate that the method is apgiileato a modelling system of moderate complexiothbin terms of the number
of parameters to tune, and the computational ressurequired, at least for the purposes of loctimigation to fine tune a
model that already has a more-or-less well developigial parameter set from previous studies. tigations of systems

that require a more global tuning approach, omamee computationally demanding remain for futurekvo

Code availability

Cyclops-v1.0 has been published through Zendutpg://doi.org/10.5281/zenodo.83790i@nder a Creative Commons
Attribution Share-Alike 4.0 licence.

Cylc is available from GitHubhttps://cylc.github.io/cyld/ and ZenodoHhttps://zenodo.org/badge/latestdoi/18362aader
the GPLv3 licence.
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Appendix A: Handling concurrent simulations through dependencies

An alternative way to allow for concurrent simutats involves modifying the simple Cylc suite desed above to have
several versions of the “Optimise” task. Now “Opt_runs the optimisation algorithm when there ameactive model
simulations still running, witimranging from 0 to a set maximuvi1, whereM is the maximum number of concurrent cycles

we chose to allow. There are a more complex sg¢péndencies to ensure that this is the casertioydar, there is a condition

Table[-P(m+1)] => Opt_m
to ensure that the lookup table has been updatixdtheé results of all completed (i.e. inactive) legc If that is the case, the
optimisation code will be run to determine if a nemwdel simulation can be launched while thostasks are active. If not,
the suite will wait until one of the active modahs completes, and try again with “Opt-1", and so forth.
The dependency diagram for the case in which upree concurrent simulations are allowed (Ve= 3) is illustrated in
Figure 7. Assume, for example, that we are still gleort of convergence, and that the optimisatitgorithm is such that the
next parameter set tested depends on all prevesusts. Then “Opt_2" and “Opt_1" will always giveé\aait” message, and
“Opt_0" will be needed on each cycle. This effeelvproduces the same behaviour as in Figure h, @dth cycle waiting
for the immediately preceding cycle to completeobef'Opt_0" can start, leading to a new model ifiron the other hand,
the algorithm never depends on the results of teeigus two (active) calculations, “Opt_2" will ahys give a “next”
message. This removes the “Opt_1 and “Opt_0" témkd any dependencies upon them), leading to thed&\1 task being
called for cycleN as soon as the cydi-3 model run has completed and updated the lookup,talsen if the cyclé&\-2 and

N-1“Model” tasks are still running.

Appendix B: WW3 source term parameterisations
B.1 Tolman and Chalikov input + dissipation sourcgerm package

The input source term is defined as

Sin(k,0) = oN(k,0) (B1)
wherep is a non-dimensional wind-wave interaction paramewhich has a parameterised dependence on waetsgpnd
direction, through boundary layer properties infloed by the wave spectrum. These dependencieshanaver, fully
determined with no user-adjustable terms, so we traidetails here.
This input term was, however, adjusted by Tolmd@0g} following a global test case to ameliorateegcessive dissipation
of swell in weak or opposing winds, in which cagesan be negative. This is done by applying, wBes negative, a swell
filtering scaling factor with a constant valig for frequencies below Ofp (wheref, is the peak frequency), scaling linearly
up to 1 at 0.8,, with higher frequencies unmodified.
The same study also led to the introduction of membion for the effects of atmospheric stabilitywave growth identified
by Kahma and Calkoen (1992) by replacing the wipeksiu with an effective wind speed,, with

Up\2 c
(f) = 1+ ¢; tanh(max(0, f1{ST — 8T,})) + ¢, tanh (max (O, fi C—I{ST - STO})) (B2)
2
whereST is a bulk stability parameter
hg Ta - Ts
ST =—
uz T (B3)

in terms of air, sea and reference temperatfjyeg; andT,, respectively, and, the wind speed at reference height 10
m, with g the gravitational acceleration. As air and seéasertemperature fields are available from the HRt&rim dataset,

it was possible to apply this parametrisation,ttngec,, c;, c,, fi andsT; as adjustable dimensionless parameters.
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The dissipation term consists of a dominant lovgifiency constituent, with an empirical frequencyatefence parameterised
by constant$,, b,, ¢, @and a high-frequency term, parameterised by cots4g, a,, a,, the details of which we leave for
the WW3 manual (Tolman, 2014) and original refeesniherein.

B.2 WAM Cycle 4 source term package

The input source term implemented in WAM Cycledlapssen (1982) was based on the wave growth tbébfijes (1957).
The starting point is the assumption the wind sgééas a logarithmic profile, so that if the windidig input to the model

are specified at elevaticrr& , then
Zy 08 1 ( )

whereu, is the friction velocity, defined by the total wirstress = u?, « is von Karman’s constant, aagis a roughness

length modified by wave conditions:
Zg

J1—1,/T (B5)

in whicht,, is the magnitude of the wave-supported stresdewhi

Zo0=apT/g (B6)

Z] =

with « a tunable dimensionless parameter.

The wave-supported stress can be equated to thefratomentum transfer between wind and waves:

k
7, = f dk d6 = Sin (I, 6) (B7)

wherec is the wave phase velocity

The WAM Cycle 4 input source term is then given by
_ pa ﬁmax Zr74 U, 2 .
Sin((,0) = L= 72 (F +24) [max(cos(8 - 6,),0)]PnaN (k,0) + Soue (k, 6) (B8)
w
with
K
cos(6 —6,) (% + za)

In these termgp, andp,,are the densities of air and watg,,, is a dimensionless constagt, is a wave age tuning parameter

Z =log(kzy) + (B9)

andp;, is a parameter controlling the directional depederelative to the wind directia,.

The inter-dependence of,, andS;,expressed in (B7) and (B8) creates an implicit fiemal dependence of, onU and
T,/ 7. In practice, this dependence can be tabulatén tise resolved model spectrum for the low-frequet < k) part
of (B7), above which #~° diagnostic tail is assumed.

TheS,,; term represents a linear damping of swells, irfohen (Bidlot, 2012):

Syue(k,0) = 25,22 (E)2 [cos(@ —6,) - L] oN(k,0) (B10)
pw \C u*log(kz,)
with s; set to 1(0) to turn on(off) the damping.
Dissipation is represented in the form
.k %
S4o(k, 0) = Cpe@?5 [51 =+, (E> ]N(k, 0 (B11)

whereCy; is a dimensionless constant, ahdandd, are weighting parameters. These take valdgs= —1.33, §; = 0.5
and &, = 0.5 in the ECMWF implementation of WAM as reportedBigdlot (2012), but are adjustable within WW3. Mean

wavelength and frequency are defined as
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p
F = [N 0)dk (B12)
[N(k,6)dk
and
p
— M (B13)
[ N(k,0)dk
with p = 0.5 andp = 1 being the respective WAM defaults (Bidlot, 2013)ile mean steepness is
@ = Ek? (B14)

B.3 Ardhuin (2010) source term package

This package introduces a saturation-based digsiptgrm. In order to accommodate this, the WAM eyt input source

function is modified by replacing, in (B8) with a frequency-dependent form

12 2 2 4 12 F !
(ul(k))” = |uZ — Isyl f dk fdefsin(k,e) (B15)
0

in whichs, = 1 is a sheltering coefficient, to allow for balangith a saturation-based dissipation term. Alsaat Ican be

placed on the roughness length replacing (B6) with

2o = min(ay 7/9 , Zo,max) (B16)
The swell dissipation parameterisation of Ardhuiale(2009) is used, consisting of terms
p
Soutwisc(k,0) = —ss5 p_a [Zk\/ ZVaG]N(k: 0) (B17)
w
and
p
Sout turs (k, 0) = == [16fe0%tors, s/ g]N (k, 0) (B18)
w
due to effects of the viscous and turbulent bounttarers respectively. The latter depends on theifitant surface orbital
velocity
1/2
Uprps = 2 U dkd6 a3N(k, 9)] (B19)
while v, is air viscosity ands is a tunable coefficient of order 1. The two telans combined in weighted form
Sout (k, 9) = T—Sout,vis (k, 9) + r+Sout,turb (k, 9) (BZO)
with weights
ry = 0.5(1 £ tanh((Re — Re.")/s7)) (B21)
depending on a modified air-sea boundary layer Bielfgmnumber
Re = 2u,rp sHs Vg (B22)
which is taken to have a threshold value dependimgignificant wave height:
Re.' = Re.(4m/Hg)1 ™% (B23)
The turbulent dissipation term is parameterisedejpend on wind speed and direction:
fe = Slfe,GM + [|S3| + SZCOS(9 - gu)]u*/uorb (824)

based on the friction factg} ;5 from the Grant and Madsen (1979) theory of odoitlaboundary layer flow over a rough
surface.

The dissipation term is based on the saturatidhefvave spectrum, and takes the form
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Sas(k,0) =0 d; [64 max(B (k) — B,,0)? + (1 — ;) max(B’(k,8) — B,,0)2|N(k, 6)
B? (B25)
+ Sbk,cu (k: 9) + Sturb (k: 9)
where the dissipation spectrum is integrated ovenited direction range, i.e.
6+Ag
B'(k,0) = f ok3cos*B(6 — 0")N(k,0)de’ (B26)
6-Ag
and
B(k) = max(B'(k,0),0 € [0,2r]) (B27)
The cumulative breaking term, associated with |lacpde breakers overtaking short waves, is
—14.2C réu k 2m 2
Soieu(k, 0) = ——3— “N(k,6) J dk’ J d6’ max {,/B(f', 6") — /B, ,o} (B28)
0 0
Wherer,,, = 0.5 andC_, is a tuning coefficient.
The turbulent dissipation term is
pauis
Sturp(k,0) = —2Cpyrp0 cos(6, — O)k 9 N(k,0) (B29)

w
An alternative breaking formulation (Filipot anddkuin, 2012) based on a bore model uses a dissipatte per unit crest
length of

1 cEky TP k
[ ds ] g (830)

€ck = —
cK 4—'Dwg tanh(kh)C’JfK tanh(kh)
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Table 1 Derivative-Free Optimisation algorithms fromthe NLopt toolbox supported in the Cyclops optimiation suite

Global:

DIRECT: Dividing RECTangles (Jones et al., 1993)

DIRECT-L: Dividing RECTangles, locally optimised #Blonsky and Kelley, 2001)
DIRECT-L-RAND: a slightly randomised variant of DHCT-L (Johnson, 2014)
CRS: Controlled Random Search (Hendrix et al., 2001

CRS2: Controlled Random Search (Price, 1983)

CRS2-LM: Controlled Random Search with Local Muat{Kaelo and Ali, 2006)
MLSL: Multi-Level Single-Linkage (Rinnooy Kan and. G. Timmer, 1987)

ISRES: Improved Stochastic Ranking Evolution Sggt@Runarsson and Yao, 2005)
ESCH: Evolutionary algorithm (da Silva Santos et2010)

Local:

COBYLA: Constrained Optimization BY Linear Approxations (Powell, 1994)
BOBYQA: Bounded Optimization BY Quadratic Approxitita (Powell, 2009)
NEWUOA: Unconstrained Optimization (Powell, 2004)

NEWUOA-BOUND: a bounded variant of NEWUOA (Johns@A14)

PRAXIS: Principal Axis (Brent, 1972)

Nelder-Mead Simplex (Nelder and Mead, 1965)

Shplx: Nelder-Mead applied on a sequence of sulesp@owan, 1990)
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Table 2. Parameters used to calibrate the simulationsing the source term package of Tolman and Chaldv (1996), for February
through April 1997. The first two columns list the parameter as defined in the WW3 v4.18 user manual Tblman, 2014), and as
specified in WW3 namelist input. The namelist groupigs in bold correspond to parameterisations relatedo wind input (SIN2),

dissipation (SDS2), nonlinear interactions (SNL1), ed some “miscellaneous” parameters (MISC). Lower andipper bounds are
specified for parameters adjusted during calibratia, along with their final values, and the correspoding index n of the normalised

parameter vector, as used to label plots in Figur8. Other parameters were fixed at the initial value

Parameter| Code Initial Lower Upper Final n
variable bound bound
SIN2:
X, SWELLF | 0.1 0.0 1.0 0.1175 1
Co STABSH | 1.38 1.0 1.8 1.374 2
ST, STABOF | -0.01 -0.02 -0.001 -0.01031 3
c1 CNEG -0.01 -0.02 -0.001 -0.01033 4
o CPOS 0.01 0.001 0.02 0.009666 5
-f1 FNEG 150.0 100.0 200.0 148.25 6
SDS2:
ay SDSAO 4.8 4.0 6.0 4.8045 7
a, SDSA1 1.7x16 | 1.0x10* | 5.0x106° | 1.7023x1¢ | 8
a, SDSA2 2.0 1.0 4.0 2.0120 9
by SDSBO 0.3E-3 -0.01 0.01 0.0002059 10
b, SDSB1 0.47 0.2 1.0 0.2494 11
Dmin PHIMIN | 0.003 0.002 0.005 0.002972 12
SNL1:
C NLPROP | 2.5x10 | 2.4x10" | 2.8x10° | 2.498x10 13
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Table 3. As for Table 2, but for parameters used toatibrate the simulation using the source term packge of Ardhuin et al (2010),
for February through April 1997. The namelist groupings in bold correspond to parameterisations relatedo wind input (SIN4),
dissipation (SDS4), nonlinear interactions (SNL1), rad some “miscellaneous” parameters (MISC). Lower andipper bounds are
specified for parameters adjusted during calibratian, along with their final values, and the correspoding index n of the normalised

parameter vector, as used to label plots in Figurd.

Parameter Code variable Initial Lower boundUpper bound Final n
SIN4:
Bmax | BETAMAX 1.52 1.0 2.0 1.5197 1
Su TAUWSHELTER| 1.0 0.0 1.5 0.9594 2
S5 SWELLF 0.8 0.5 1.2 0.8010 3
S1 SWELLF2 -0.018 -0.03 -0.01 -0.01812 4
S3 SWELLF3 0.015 0.01 0.02 0.01484 b
Re, SWELLF4 1.0x10 | 0.8x10 1.5x10 0.9973x18 | 6
Ssg SWELLF5 1.2 0.8 1.6 1.2078 1
Sy SWELLF7 2.3x10 | 0.0 4.0x18 2.2600x10 | 8
SDS4:
cset SDSC2 -2.2x18 | -2.5x10° 0.0 -2.1506x16 | 9
Cey SDSCUM -0.40344 -0.5 0.0 -0.4020 10
Ceurp SDSC5 0.0 0.0 1.2 0.4168 11
o SDSC6 0.3 0.0 1.0 0.2654 12
B, SDSBR 0.0009 0.0008 0.0010 0.0009035 13
CECK SDSBCK 0.0 0.0 0.2 0.0 14
cHCK SDSHCK 0.0 0.0 2.0 0.0933 15
Sp SDSCOS 2.0 0.0 2.0 2.0 16
SNL1:
C NLPROP 2.5x10 | 2.4x10’ 2.8x10’ 2.510x10 17
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Table 4. Initial parameters used to calibrate the snulations using the source term package of Ardhuiret al (2010), for Feb 1997,

using randomised initial conditions (simulations 15). Simulation 0 is the control case, with defaulnitial parameters.

Simulation number
Parameter Code variable 0 1 2 3 4 5
SIN4:

Bmax BETAMAX 1.520 1.215 1.160 1.538 1.660 1.550
Sy TAUWSHELTER | 1.000 0.244 1.281 1.381 0.996 0.950
S SWELLF 0.800 0.962 0.948 0.582 0.995 1.026
51 SWELLF2 -0.018 -0.022 -0.012 -0.026 -0.0253 -0.018
S3 SWELLF3 0.015 0.016 0.014 0.0116 0.0131 0.0159
Re, SWELLF4 1.000x16 | 1.428x10 | 1.368x16 | 1.295x16 | 0.837x16 | 0.809x16
Ss SWELLF5 1.200 1.100 1.411 1.589 1.290 1.290
Sz SWELLF7 2.300x16 | 1.188x16 | 2.908x10 | 0.621x16 | 2.492x106 | 2.905x16

SDS4:

cset SDSC2 -2.200x1C° | -1.528x1@ | -1.069x16 | -1.493x1C | -1.639x1C | -1.303x1C
Ceu SDSCUM -0.403 -0.159 -0.470 -0.488 -0.205 -0.387

Courb SDSC5 0.000 1.116 1.074 1.025 0.476 0.882
64 SDSC6 0.300 0.957 0.596 0.947 0.855 0.583
B, SDSBR 9.00x10* 9.13x10* 8.24x10 8.14x16 9.73x1¢ 8.39x16¢

SNL1:
c NLPROP 2.500x10 2.690x10 | 2.794x10 | 2.644x16 | 2.780x10 | 2.437x10
Initial error score | 0.1454 0.1685 0.2346 0.1722 0.2156 0.1677
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Table 5. Final values of parameters from simulationsising the source term package of Ardhuin et al (2®), for Feb 1997, using
BOBYQA with randomised initial conditions (simulations 1-5), and using ESCH with default initial parameers. Simulation 0 is the
control case, using BOBYQA with default initial parameters.

Simulation number
Parameterl Code variable 0 1 2 3 4 5 ESCH
SIN4:

Binax BETAMAX 1.515 1.348 1.221 1.671 1.491 1.599 1.520
Su TAUWSHELTER | 0.950 0.244 1.275 1.385 1.035 0.953 0.898
Sy SWELLF 0.811 0.761 0.872 0.591 1.065 0.986 0.800
1 SWELLF?2 -0.0178 -0.0256 -0.0120 -0.0148 -0.0226 -0.0248 .01®
S3 SWELLF3 0.0149 0.0168 0.0134 0.0112 0.0150 0.0170 0.0150

Re, SWELLF4 0.996x16 | 1.428x16 | 1.376x16 | 1.339x16 | 0.837x10 | 0.809x16 | 1.198x16

Ss SWELLF5 1.201 1.099 1.406 1.589 1.291 1.290 0.973

S, SWELLF7 2.30x16 | 1.19x16 | 2.84x10 | 0.64x10 | 2.47x10 | 2.89x10 | 2.42x10
SDS4:

cset SDSC2 -2.12x10 | -1.75x10 | -0.09x1% | -1.93x1% | -2.05x1% | -1.29x10 | -2.34x10P

Cou SDSCUM -0.401 -0.158 -0.469 -0.488 -0.209 -0.387 -0.454

Crurd SDSC5 0.386 1.116 1.067 1.027 0.526 0.831 0.567
84 SDSC6 0.246 0.957 0.560 0.940 0.860 0.585 0.043
B, SDSBR 9.03x10' | 9.19x10" | 8.26x10' | 8.20x10"' | 9.72x10" | 8.38x10"' | 9.09x10'

SNL1:

C NLPROP 251x10 | 2.69x10 | 2.80x10 | 2.69x10 | 2.78x10 | 2.44x10 | 2.45x10
Error score 0.1450 0.1479 0.1513 0.1515 0.1501 0.1500 0.1441
Iterations 38 37 41 62 37 39 800+

(not converged
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Table 6. As for Table 3, but for parameters used toatibrate the simulation using the source term packge of Ardhuin et al (2010),
for Jan-Dec 1997. The “Delta” value in the seventhatumn is the estimated change in the (un-normalisgcarameter required to

produce a 0.1% change in the objective function.

Parametenn Code variable Initial Lower bound Uppemub| Final Delta n
SIN4:

Bmax BETAMAX 1.52 1.0 2.0 1.5194 0.02498 1
Su TAUWSHELTER | 1.0 0.0 1.5 0.9339 0.2706 2
S5 SWELLF 0.8 0.5 1.2 0.8224 0.0206 3
S1 SWELLF2 -0.018 -0.03 -0.01 -0.01721 0.00064 4
S3 SWELLF3 0.015 0.01 0.02 0.01526 0.00042

Re. SWELLF4 1.0x18 | 0.8x1C 1.5x10¢ 0.9888x106 | 0.2328x10 | 6

Ss SWELLF5 1.2 0.8 1.6 0.9360 0.3974 14

S7 SWELLF7 2.3x18 | 0.0 4.0x16 2.2433x106 | 0.7911x18 | 8
SDS4:

cst SDSC2 -2.2x10 | -2.5x10° 0.0 -2.1433x19 | 0.0087x1€¢ | 9
Ceu SDSCUM -0.40344 -0.5 0.0 -0.40194 0.02145 10

Cewrs | SDSC5 0.0 0.0 1.2 0.0 - 1
b4 SDSC6 0.3 0.0 1.0 0.2736 0.0928 12
B, SDSBR 9.0x1¢ | 8.0x10* 10.0x16* 8.9788x1¢ | 0.0951 x1¢ | 13

CECK SDSBCK 0.0 0.0 0.2 0.0 - 14

CHCK SDSHCK 0.0 0.0 2.0 0.0 - 16
Sg SDSCOS 2.0 0.0 2.0 2.0 0.0757 L6

SNL1:
Cc NLPROP 2.5x10 | 2.4x10 2.8x10 2.5181x10 | 0.1191x10 | 17
MISC:
€co CICEO 0.25 0.15 0.45 0.2413 0.1285 8
€cm CICEN 0.75 0.55 0.85 0.7521 0.2358 19
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Figure 1: Dependency graph for a version of the Cyops optimisation suite in which no concurrent simiations are allowed, showing
three successive cycles. Arrows represent dependgnin that a task at the head of an arrow dependsrothe task at the tail of the
arrow meeting a specified condition (by default, tls means completing successfully) before it can sta
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Figure 2: Dependency graph for an implementation ofthe Cyclops optimisation suite in which up tdM concurrent simulations are
supported. Solid arrows represent dependency, in #i a task at the head of an arrow depends on thegk at the tail of the arrow
meeting a specified condition (by default, this me®s completing successfully) before it can start. Theéashed arrows represent a task
retrying after a set interval. Only four cycles areshown, omitting tasks in intervening cycles, andheir dependencies.
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Figure 3: Sequence of objective function values () and parameter vector components (bottom) at eadkeration in the three month
(February — April 1997) ST2 calibration. The red dasled line marks the optimal solution found.
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Figure 4: Sequence of objective function values () and parameter vector components (bottom) at eadkeration in the three month
(February — April 1997) ST4 calibration. The red dasled line marks the optimal solution found.
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Figure 5: Bias in significant wave height from the mdcast compared with satellite altimeter measuremas, over the period August
1991 — December 2016.
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Figure 6: Normalised root-mean-square error in sigificant wave height from the hindcast compared withsatellite altimeter
measurements, over the period August 1991 — Deceml2916.
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Figure 7: Dependency graph for the Cyclops optimidéon suite, configured to use dependencies to allofer concurrent simulations.

This example shows four successive cycles, for these in which up to three parallel simulations are llowed. Arrows represent
dependency, which in some cases are combined byogital OR (enclosed “+” symbol). All tasks and exptit dependencies (other
than suicide triggers) are shown for cycléN, but dependencies on cycles befo-3 are omitted for clarity.
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