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Automated model optimisation using the Cylc workflev engine (Cyclops v1.0) — Response to

Reviewers’ comments (round 2)

The reviewer commented:

“Revisions are good and the paper can be published subject to some more minor revisions. | think the
explanation of section 2.3 could be improved to clarify how the concurrent executions are done. The idea is
neat so is worth explaining well so others can see it too.

| put the following figure together to help me understand the approach. Suspect it is too much for the paper but
something like it would help some readers assuming it is correct.”

Our response:
We thank the reviewer for the attention he has given our manuscript.

In response, we have revised the text, principally section 2.3 on concurrency, apart from adding an equation (2)
earlier on to help get across the concept of what the "Optimise" task actually does.

The revised text addresses any confusion about the tests run with randomised values for objective function (f)
values that are still being evaluated, being more explicit about how these are run. We have tried to emphasise
that these multiple randomised tests are a serial process that happens within each Optimise task, to determine
if there is a single definitive parameter set for that cycle to proceed with. We also try to make it clearer that
those multiple tests are not being run in parallel.

The reviewer’s suggested figure did not quite represent the random testing process that we actually use, but
with the expanded explanation didn’t consider that any revised version of that suggested Figure would add
further clarification. However we did add a new Figure (3) after the description of the Cylc implementation of
concurrency (retry version) to talk through an example of how that might work in a test case.
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Abstract. Most geophysical models include many parameteisate not fully determined by theory, and cantheed’ to
improve the model’s agreement with available déta.might attempt to automate this tuning procesminbjective way by
employing an optimisation algorithm to find the sétparameters that minimises a cost function @erifrom comparing
model outputs with measurements. A number of algms are available for solving optimisation probfenn various
programming languages, but interfacing such softw@a complex geophysical model simulation, pressegrtain challenges.
To tackle this problem, we have developed an opttion suite (“Cyclops”) based on the Cylc workfl@mgine that
implements a wide selection of optimisation aldoris from the NLopt Python toolbox (Johnson, 20I#)e Cyclops
optimisation suite can be used to calibrate anyetliod system that has itself been implemented @eparate) Cylc model
suite, provided it includes computation and outgiuthe desired scalar cost function. A growing nemébf institutions are
using Cylc to orchestrate complex distributed suitinterdependent cycling tasks within their @penal forecast systems,
and in such cases application of the optimisatiote $s particularly straightforward.

As a test case, we applied the Cyclops to calilwagebal implementation of the WAVEWATCH Il (v} third generation
spectral wave model, forced by ERA-Interim inpetds. This was calibrated over a one-year peri@87), before applying
the calibrated model to a full (1979-2016) wavedeast. The chosen error metric was the spatiabgeeof the root-mean-
square error of hindcast significant wave heighnpared with collocated altimeter records. We déscthe results of a
calibration in which up to 19 parameters were oséd.

1 Introduction

Geophysical models generally include some empipasmeterisations that are not fully determinegHysical theory, and
which need calibration. The calibration processdfeen been somewhat subjective and poorly docusdef\toosen, 2016),
but in a more objective approach has the aim ofimiging some measure of error quantified from corngoas with
measurement (Hourdin et al., 2017). We can tusitho an optimisation problem: namely to find thi@imum of an objective
functionf(X) wherex represents the set of adjustable parameters,isacsingle error metric (e.g. the sum of RMSedihces
between measured and predicted values of a setpiitovariables) resulting from a model simulatidith that parameter set.
The most efficient optimisation algorithms requtte derivativé?f(:?) to be available alongsid€X). This, however, is rarely
the case for a geophysical modelling system, slrestrict our attention to the field of DiffereakiFree Optimisation (DFO),
in which the objective functiohcan be calculated, but its gradient is not avélab

Various methods exist, many of which are summariiséide review of Rios and Sahinidis (2012). Someegmod at exploring
parameter space to improve the likelihood of figdghobal rather than merely local minima. Others gneferred for quickly
moving to the absolute minimum once in its neightbood. The algorithms are encoded in various laggsde.g. Fortran,
C, Python, Matlab), and usually require the usesupply a subroutine to compu(&), that can be called as required by the
optimisation programme.

This is satisfactory for many problems where thectbve function is readily expressed as an albarjtbut is somewhat less

straightforward to interface an existing geophylsitadel, as well as all the methods needed to ss@nd compare
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measurement data with an optimisation code, intais Nevertheless, examples of this approach edaund in hydrological
and climate modelling applications. For exampleriseet al. (2015) developed a calibration tool{gdR software) to apply
the Shuffled Complex Evolution optimization algbrit to calibrate the Hydrologic Simulation Prograortfan (HSPF)
model. In climate modelling, Severijns and Hazelg@®05) used the downhill simplex method to optienthe parameter
values of the subgrid parameterizations of an gpimexic general circulation model. More recentlyitB¢ al. (2013) applied
a Gauss—Newton line search optimization algorithrmiitnate simulations with the Hadley Centre Atmuesie Model version
3 (HadAMB) forced with observed sea surface tentpezand sea ice, optimising an objective functlerived from reflected
shortwave radiation and outgoing longwave radiatiomparisons. The Tett et al. (2013) method waseently applied to
optimize the sea ice component of the global calipladCM3 climate model (Roach et al., 2017;Te#lgt2017).

Such custom applications of one particular optitiosealgorithm to a specific model, however, caguiee significant effort
to switch to alternative optimisation algorithmst@be applied to new models. Modern coupled diénmaodels, or operational
forecast systems for weather and related processesmpass a diverse set of software tools, oftening on multiple
platforms. Ideally, we would like to be able to iogise performance of the modellisgstem(not just a single model code)
without major reconfiguration of software betweba talibration and operational/production versiofithe system.

The Cylc workflow engine is now applied in severpérational centres to manage the scheduling ks taihin such systems.
So it seems natural to consider the possibilitdefeloping a framework within Cylc for the optintisam of the modelling

systems under its control.

2 Methods

In very general terms, a derivative-free optimmatlgorithm will explore parameter space, selecti@lues of the parameter
vectorX in some sequence. As eatis selected, it calls the (user-supplied) subrmuto evaluate the objective functifg).
In our case, this would amount to running a conepfeodel simulation with the corresponding paramséétings, comparing
outputs to measurements, from which a defined enetric is computed to provide the return valué. @this can involve a
lengthy simulation, needing a run tifigoqeiperhaps of order hours or days to reproduce manthisars of measurements.
A self-contained optimisation program, with an ésiflly-coded function-evaluation subroutine, willr much faster, with a
run time per iteratiofier typically being some small fraction of a secontd avill run in many orders of magnitude less time
than a typical geophysical model even if a numbeitevationsN of order 1000 are required. This might be the dase
“deliberately difficult” test problems: we might pect that a well-tested geophysical model will canité reasonable defaults
that in many new implementations will produce aitiewithin a relatively simple “basin of attractibso that O(10) iterations
may suffice to get very close.
If the optimisation procedure calls for a full mbden to evaluate the objective function, aXdterations are required for
convergence, the total run time would be

T = TO + N( Tmodel + Titer) (1)
including an overhead, for initial and final tasks.
As Tmodelis orders of magnitude larger thaniandTier, the geophysical modelling system totally domisaten time, and we
can comfortably afford not to be concerned withueig the efficiency of the optimisation routineea by a few orders of
magnitude.
So let’s consider a simple measure we might intcedo allow us to recover from an interruption paay through a long
optimisation process. Normally, the optimisatiomleavill retain in memory the values of eatlnd its objective function
f(¥) that has already been evaluated, to use in s&defcirther points to be evaluated. If we writegbevalues to file each time
the function evaluation is called, we can buildaupokup table to use in case we need to restprbcess. In that case, we

could have the function evaluation subroutine festrch the lookup table for a matckt(within some acceptable tolerance),



10

15

20

25

30

in which case it could return the tabulated eraug. Only in the case where a tabulated valuensa$ound would the full
model simulation be required to compute the retaine off.

Now rather than actually perform that computattbe, function evaluation subroutine could simplyteithex values (for the
n'" iteration, say) to file, and exit. We could them the model in its usual way, outside the optitiosacode, using those
values as parameters, and add that result to olupotable before restarting the whole process fsenatch. This time,
assuming the optimisation algorithm is determinjsaiith no random process influencing the sequefidgevalues, the firsh
points would be exactly the same sequence thaselasted previously, and could be quickly handigdalble lookup, and
the algorithm would either find that a convergendterion had been satisfied, or select a new poiitto be passed to the
model for simulation.

In effect, we are simply employing the optimisatalgorithm in a generic tool that, given the resoltall previous iterations,

either signals that convergence has been reachgdnerates the next parameter set to be evalbgtéte model i.e.
in+1 = OPt({fmvfm}m:I,...,n) 2

In this scheme, assuming that we start with an ghopkup table, the first pass has one iteratiothefoptimisation code, the
second has two, etc. So, allowing an additionartmadT for the full process, the total run time to reabh termination

condition(s) afteN iterations should be

N
T'=T+ Z (To + nTiter + Tnoder) (32
n=1
_ N(N +1)
=T+ N(To + Tmodel) + TTiter (43)
As Tmodelis orders of magnitude larger than the other tjrtiesratio of the two run times is
T' N+1T;
— =1+ — - _ter (54)
T 2 Tmodel

Given the expected relative magnitudes of the madeloptimisation iteration times, aNdf order 10s or 100s, the increase
in run time through this approach is actually ngigle.

On the other hand, this scheme has several bengfigst from being simple to code, the optimisatadgorithm, including
the user-defined function evaluation subrouting, ba completely generic, and applied unmodifiedifterent modelling
systems. The only requirements on the modellingesysare that, at the start of each simulationeaids in the parameter
values requested by the optimisation code and atapt to its standard input formats, then at the enthe simulation,
computes and writes to file a single error metaittie. The optimisation code and the model systartd¢ben remain separate,
both controlled by some form of scripting schenw, dxample. This means that having invested coredidke time and
resources in developing a complex modelling schexmenajor reconfiguration needs to be made to peeipéor optimisation

in this manner, or subsequently to re-implemenoitémised modelling system in operational or peithn mode.

2.1 Cylc

Cylc (http://cylc.github.io/cyld) is an Open Source workflow engine that can marayging distributed workflows of

cycling (repeating) tasks. It was originally deyegd at NIWA to automate environmental forecastiygjems, and has since
been adopted by many other institutions — notafilyWK Met Office and its international partnersciimate, weather, and
related sciences. Cylc can manage large produstistems of great complexity, but it is also easyde for individuals and
groups with less demanding automation requireméhk workflows (orsuiteg are defined with an efficient graph syntax
that expresses dependence between tasks, andi@aneffnheritance hierarchy for optimal sharing af task runtime

properties (exactly what each task should exeeute where and how to submit task jobs to run).

4
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Cylc tasks are related Iyigger expressionghat combine to form dependency graphThis trigger,

A:status=> B
says that task B depends on task A achieving #tesstatus(“=>" represents an arrow). The default triggeatss issucceeded
(job execution completed successfully) and can bigen simply as A => B; others includeibmitted, submit-failed, started,
finished, failed and custom task output messages. Tasks can depetheé wall clock and on external events, as aglbn
other tasks, and a task job can be submitted t@mnge all its dependencies are met. Cylc autonibtiemaps user-defined
task content (environment, scripting, etc.) in coalérap errors and report job status back to th server program via
authenticated HTTPS messages. Tasks can evernrtoffgasks in other suites, so for coupled systgouscan choose between
a larger suite that controls all tasks, and mudtigphaller suites that interact with each other.
In cycling systems tasks repeat on sequences tnatepresent forecast cycles, or separate churksmafdel simulation that
is too long for a single run, or iterations in guimization scheme, or different datasets to begssed as they are generated,
and so on. Cycling is specified with ISO 8601 datee recurrence expressions (e.g. for environmdaotakasting), or with
integer recurrence expressions (e.g. for itergineEesses). Both date-time and integer cyclinguaesl in the application
described in this paper. Dependence across cyobesifler a forecast model that is initialised vathputs from a previous
cycle) creates ongoing, potentially never-endingrkffows. Uniquely, Cylc can manage these withaopasing a global
cycle loop: one cycle does not have to completereehe next can start. Instead, tasks from maalesycan run concurrently
to the full extent allowed by individual task dedencies and external constraints such as compstinee and data
availability. So, for example, on restarting aetended downtime, a suite that processes realdatecan clear its backlog
and catch up again very quickly, by automaticaigileaving cycles.

2.2 Implementation

We have developed a Cylc suite (“Cyclopstips://zenodo.org/badge/latestdoi/1836289 perform optimisation of a

modelling system that has itself been set up aparate Cylc suite. In the example we describenele model suite controls
a multi-year wave model hindcast, including theppoeessing of necessary model inputs (principaligdwfields) and
verification data (satellite altimeter data), rumnihe wave model code, postprocessing of modeuésitand generation of
error statistics from comparisons of predicted abserved significant wave height fields.

Typically, date-time cycling is used to run a moalesuccessive forecast cycles, or to break adonglation into a succession
of shorter blocks. The optimisation suite, on thieeo hand, uses integer cycling, with each cycleesponding to a single
evaluation of the objective function.

There are several tasks controlled by the optinoisauite. One of these is responsible for runmingptimisation algorithm
to identify either an optimal parameter vector frprevious model runs, or the next parameter vetotdue evaluated. This
main optimisation task within the suite is implerehwith Python code calling the NLopt Python taoilfJohnson, 2014).
NLopt includes a selection of optimisation algamith both “local” solvers, which aim to find the mest local minimum to
the starting point as efficiently as possible, &jidbal” solvers, which are designed to explorefiiieparameter space, giving
high confidence in finding the optimal solution @fia possible multitude of local minima. NLoptlindes algorithms capable
of using derivative information where available,igrhis not the case in our application, and Cyclispgestricted to the
derivative-free algorithms listed in Table 1.

We have assumed that the sequence of parameters/éested by an optimisation algorithm is deterstim Several of the
algorithms available in NLopt have some inherestlichastic component. It is, however, possible aierthese algorithms
“repeatably stochastic” by enforcing a fixed seadthe random number generator.

In NLopt, any combination of the following termii@ conditions can be set:

1. maximum number of iterations by each call of thémjsation algorithm
2. absolute change in the parameter values less thegsaribed minimum

5
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3. relative change in the parameter values less thmastribed minimum
4. absolute change in the function value less thamscpbed minimum
5. relative change in the function value less thanesqribed minimum

6. function value less than a prescribed minimum

In the second and third of these convergence iajtére “change in parameter values” means the matgmof the vector

difference, i.e, XM7Y (Ax,)2.

We have implemented Python code that uses NLo}# wabeek a minimum of an objective functfaihat represents a non-
negative model error metric. As described above,user-defined function evaluation has been impigeteas a generic
Python functiorf(¥) that simply searches a lookup table (storedfilep If ¥ is found in the table it returns the corresponding
f value, otherwise it saves the veciolo a file and returns an invatilvalue. Any of the termination conditions listecbab
can be set by the user: the last of these can psesaribed minimunfivalue as a convergence condition, while an invialid
value signals that the optimisation algorithm happsed because a new parameter vectweds to be evaluated externally
by a model simulation. In this case a file is verittcontaining parameter names and values in a fahatican be parsed by
the modelling system to generate the needed iilpstfbr a simulation. At present a generic naniéismat is used as output
from Cyclops for this purpose.

A “parameter definition” file is used to specify paeter names and their initial values, as usedinwthe model. If a
parameter is allowed to be adjusted by the optitivisasuite, an allowable range is also set. Th@ahwill generally require
some experience with the particular model. Withia optimisation suite, these adjustable parametidirbe scaled linearly

to normalised parametefsthat lie between 0 and 1. Fixed parameters canchede for convenience, so that their names and
values will be written to the namelist file but sleeare ignored by the optimisation suite.

The major tasks carried out by Cyclops on eachecgos:

0. (first cycle only):Init : write initial normalised parameten§, to file, ...

1. Optimise: run the optimisation code, starting frainand evaluating every in the sequence, until either a
stopping criterion is met (in which case the tashkds a “stop” message), or a parametef $etreached that is not
in the lookup table so needs evaluating (signdiled “next” message)

2. Namelist Convertx to non-normalised parameters in a namelist file

3. Model: Create a new copy of the model suite, copy thmeetiat file to it, and run it in non-daemon mode (5o
the task will not complete until the model suiteitshdown). A new copy of the suite is made so fifes created in
one cycle do not overwrite those created on otheles.

4. Table: Read the resulting error value from the modeiesuaind update the lookup table

Within one cycle, the dependencies of the optirasasuite are simply:
Optimise:next =>Namelist=>Model => Table

to make these tasks run sequentially when no singition is met. We set a dependency on a pre\igake:
Table[-P1] =>Optimise

1At present < O is treated as an “invalid” return value, whistappropriate for positive-definite error metribst the
Python code could be modified to retdira None for more general cases.

6
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(the notation —P1 denotes a negative displacenfesmieocycle period), to ensure that the lookupeasblup to date with all
previous results before starting the next optintsatycle, and to prevent Cylc from running sucogssycles concurrently.
The stopping condition is handled by

Optimise:stop =>Namelist_Final => Stop
where theNamelist_Final task produces the final version of the namelist find theStop task does a final wrap-up of the
completed optimisation before the suite shuts ddventhe purposes of good housekeeping, we caradis@Model_delete
task to delete each copy of the model suite oriciésabutputs have been used. Also, tasks which wat be needed (e.g.
“Namelist” if “Optimise” gives a “stop” message)rche removed, along with any dependencies on ttasés, by so-called

“suicide triggers”. Figure 1 illustrates the woudl of the optimisation suite described above irpgteal form.

corresponding parameter set. The model suitenisirumon-daemon (non-detaching) mode, so that thde\itask does not
finish until the suite that it represents runs empletion. Information passed between the suitesists of two simple files:
a “namelist” file containing parameter names anldeswritten by the optimisation suite for the micslgte, and an “error”
file containing the single value of the error meteturned by the model suite.

The model suite needs to include a task to protessamelist file into the particular modelling ®ys’s standard input
formats. Because the formats are highly model-§ipechis task needs to be tailored for the patéicunodel suite. For
example, in our wave hindcast application describeldw, this task consists of a shell script whatimply includes the
namelist file verbatim as part of an ASCII contfiitd, which also has various timing parameters fted from environment
variables. Namelists can include named groupsrafipaters, which may be helpful in this processses where these groups
need to be treated differently (e.g. affecting eliéht model input files for multiple coupled modeisd pre- and post-
processing tasks within the model suite). Howeiféne namelist format proved inadequate to supipdyneeded information,
this format could be changed within the optimisatiuite to something more suitable. It should bessed, though, that no
change should be needed to the main model cod®sctn run as standard release versions undeasasepask within the

model suite.

2.3 Concurrent simulations

For some DFO algorithms, at least some parts okéwgience of vectors tested is predetermined, mdepéndent of the
function values found at those points. For exan@BY QA (which we chose to use in the test appitwatescribed below)
sets up a quadratic approximation by sampling titel point, plus a pair of points on either sideit in each dimension.
With N parameters, the firsf\21 iterations are spent evaluating thebl-2 fixed points, regardless of the function values
obtained there. In such situations, the functidnesfor each of these points could be evaluatedlsaneously.

This can be done within Cylc by allowing tasks fromaltiple cycles to run simultaneously. In practites means that multiple
copies of the model suite are running simultangousithe extent allowed by resource allocatiorif@nhost machine(s). This
makes it imperative that a new copy of the modiess made for each cycle.

If concurrent model simulations are allowed, thisams that at any time there are a certain setrafipgter vectors for which
the function values are still being determined ¢aa call this the “active” set). We can add anoff@ameter vector to that
set if it will be selected by the optimisation aigiom regardless of the function values at thevagtarameter vectors.

We would clearly like to determine that without diey specific knowledge of how the particular opsation algorithm

works. Instead we use a simple empirical methodthi®end, wenaintainsupplement the lookup table (of vectorsaady

computed, with the resultirforalues) withafilesecond tabl€the “active file”) listing the active vectqrand-make-an-addition

to. We havethe function evaluation subroutinee-that-if-itfails—te—find search faf infirst amongthe leokup—table,
it‘completed” vectorsthensearchesamonthe “activefile-and-if” vectors. Ifit finds ¥ there,among the active vectors (for

which f is not yet known), iassignd a random positive value (in this application wex'doe-initialise the random number
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generator with a fixed seed). Otherwise it write® file and returns an “invalidf' value to force the optimisation algorithm
to stop as usual.

The Python code controlling the optimisation algori has also been modified. Now when the actieei§ilempty it will act
as before, but if there are active vectors it with a small set of repeategbtimisations.applications of the optimisation

algorithm (Eqn 2), each of which will use a diffetset of randomisefdvalues for the active vectors. That is, in thei@jse

task for cyclen + 1_we evaluate

2@ _ 2 @)
B = ope(En 7)) ®)
for a set of iterationg = 1, ..., @, with
f(Q) — {‘r fm completed m @ _ { Formatted: Font: Not Italic
" andom_ . activem "7 —<~ - { Formatted: Font: Not Italic

If these all result in the same choice¥f, ;% valueto be evaluated, a “next” message is sent to trifigeher tasks for this {Formmed; Font: Not Italic
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cycle as before, since this choice is independethieoresults for the active parameter vectorsotf we do not have a definite
Xn+1% to evaluate, and we must wait until at least dnh® presently active simulations has finishecbetrying againse
a “wait” message is sent. But clearly this doesmean that the optimisation is complete.

We-can-now-allow-for-coneurrent-simulations-in-@xde-suite-in-two-ways. These repeated randomiseticaions of the

optimisation algorithm are run sequentially witline cycle of the Optimise task, simply to deternifnthere is a unique

parameter set with which further tasks for thaeyan be started, concurrently with Model tasksaaly running for other

cycles. They do not themselves need to run in fgdral

We also need to consider how the Cyic suite depeydstructure can accommodate concurrent simulstidhis can be

handled in two waydn the first method we let the Optimise task feilen it determines a “wait” condition, and utili8glc’s
facility to retry failed tasks at specified intelwa
We also replace the dependency

Table[-P1] =>Optimise
with the combination

Optimise[-P1] =>Optimise

Table[-PM] => Optimise
whereM is a specified maximum number of concurrent sittiies. This means that each cycle can first attémgtart a new
model simulation as soon as the previous cyclemikition hastartedand theMth previous simulation hasompletedThe
“Optimise” task will keep retrying at intervals it is able to give either a “stop” or “next” sigl. This method has a simple
workflow structure, illustrated in Figure 2, thates not change &4 increases.

A schematic illustration of how this might worksiBown in Figure 3. Here we consider an applicatiamhich the optimisation

algorithm uses predetermined values for the fingt parameter vectors, after which each new pammetctor selected

depends on all previous results (BOBYQA has thisaheur for a two-parameter optimisation). We alseume we have set

of the outcome of the cycle 1 Model task, so thahier cycle 2 tasks can start immediately. Siryildhe cycle 3 Model task

does not need to wait for the active cycle 1 aiMb@lel tasks to complete, and so forth up to cyclBu the cycle 6 Optimise

task will detect that its choice of a parameterteewill depend on the results of the active Motdedks, so it will fail and

retry. Under our assumptions it will not succeetiluro other Model tasks are active, and this wélinain the case for all

subsequent cycles.
The second method, described in Appendix A and ursede tests described here, uses more compleendepcies and

additional Optimise tasks, instead of a singleyiety Optimisze task. It is somewhat more efficient in that thisreo need to

wait on a (short) retry interval before determinih@ new cycle can start, but the workflow is me@mplicated and its
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complexity increases withl. Both methods achieve the same result, howevey: lloth allow up tavl model suites to run
concurrently, rather than iterating through themséquence.

It should be stressed that the optimisation cosifits simply run as a serial process in each:dage simply required to
produce the single set of parameters, if any,Herrtext model run given the known results of thegleted simulations. As
it checks that this parameter set is independettteofesults of the presently active model runsiet needing to know the

actual results, no parallel processing is requivitdin the optimisation code.

3 Application: a global wave hindcast based on ERAaterim inputs

Here we describe a global wave simulation, usimgWAVEWATCH Il model (WW3), forced by inputs fronihe ERA-
Interim Reanalysis, covering the period from Jand&79 to December 2016. Such multi-year wave msiellations are a
valuable means of obtaining wave climate infornmat spatial and temporal scales that are not gépevailable from
direct measurements. It is rare for a particuleatmn of interest to have a suitably long nearbsituwave record, e.g. from
a wave-recording buoy, to provide statisticallyakle measures of climate variability on inter-aalnime scales. And while
satellite altimetry has provided near-global resood significant wave height that have been avégldbr more than two
decades, these have limited use for many climgtécapions for several reasons, including a retyle that is too long to
resolve typical weather cycles, limitations in gding nearshore measurements, and lack of direaitioformation. Model
simulations can in many cases overcome these tiontg but available measurements still play aemtsal role in calibrating
and verifying the simulations.

In our case, one of the principal motivations farrging out this hindcast is to investigate therof wave-ice interactions in
the interannual variability of Antarctic sea icden, which plays an important role in the globahate system. The ERA-
Interim Reanalysis is a suitable basis for this kyaroviding a consistent long-term record, withedal control on any
extraneous factors (e.g. changing data sourcespdelling methods) that might introduce artifidiednds or biases into the
records. While the ERA-Interim Reanalysis includeupled wave model, direct use of the wave ostgoés not fully meet
our requirements, which include the need for theesvaindcast to be independent of near-ice satelldee, which were
assimilated into the ERA-Interim Reanalysis. Heweechose to carry out our own wave simulation,édraith ERA-Interim
wind fields, but with no assimilation of satelliteave measurements.

3.1 Comparison of model outputs with altimeter data

Rather than being assimilated in the hindcast/Igataltimetry measurements of significant waveghé were used as an
independent source of model calibration. These vedrmined from the IFREMER database of multi-missguality-
controlled and buoy-calibrated swath records (Quedu, 2004).

Swath records of significant wave height were figffocated to the hourly model outputs on the 2°mbdel grid. For each
calendar month simulated, collocations were thesumelated in 3°x3° blocks of 9 neighbouring celisproduce error
statistics, including model mean, altimeter medas fand root-mean-square error (RMSE), and corelatoefficientR.
Spatial averages of these error statistics werentaker the full model domain between 65°S and 6&%*¢tluding polar
regions with insufficient coverage).

The final error statistic used in the objectivedtion was the spatially-averaged RMSE, normalisethb spatially-averaged

altimeter mean, temporally averaged over the sitiwlgeriod, excluding spinup.
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3.2 WW3 parameters

For this simulation we used version 4.18 of the WAAWATCH Il (WW3) third generation wave model (Tolma2014). The
model represents the sea state by the two-dimesisioean wave spectruﬁ(?,?s, t), which gives the energy density of the
wave field as a function of wavenumberat each positio in the model grid and timeeof the simulation.
The spectrum evolves subject to a radiative traresfeation

O T, i) + o (k) + s (ON) = > (89
for the wave actionv(k,0,%,t) = F(E,)Z, t)/o(k), whereo is the frequency associated with waves of waverarmb
magnitudek through the linear dispersion relation, &hib the propagation direction. The dots represere tlerivatives. The
terms on the left hand side represent spatial aitwe@nd the shifts in wavenumber magnitude anection due to refraction
by currents and varying water depth. The sourae 8own the right hand side represents all other pezsethat transfer energy
to and from wave spectral components, includingrimmtions from wind forcing, energy dissipationdaweakly-nonlinear
four wave interactions.
Adjustable parameters within WW3 that can influeacdeep water global simulation such as the oneritbesl here are
principally concentrated in the wind input and gission source terms. It is generally necessarireat these two terms
together as a self-consistent ‘package’ of inpdtdissipation treatments designed to work togethehis study we undertook
two separate calibration exercises, based on taokaqges’ of input/dissipation source terms, firstigt of Tolman and
Chalikov (1996) (activated in WW3 by the ST2 swjtcnd secondly the Ardhuin et al (2010) formulat{asing the ST4
switch).
In Appendix B we describe some of the details ekthtwo packages. We also include some descriptitre WAM Cycle
4 (ST3) input source term formulation (Janssen,1},98n which the ST4 input term is based, evenghabe ST3 package
was not tested in this study.
In addition to the input and dissipation terms,dtieer main control on deep-water wave transforomas provided by weakly
nonlinear four-wave interactions (Hasselmann, 19@Xfortunately, acceptable run time requiremerds multiyear
simulations over extensive domains still precludmg a near-exact computation of these terms, asdhe Webb, Resio,
Tracy method (Webb, 1978;Tracy and Resio, 1983)ithavailable in spectral models including WW3r(Wdledder et al.,
2000). Instead we use the much-simplified formhef Discrete Interaction Approximation (Hasselmahal ¢ 1985), treating
its proportionality constar® as a tunable parameter.
Common to both optimisations, sea ice obstructias turned on (FLAGTR=4) with non-default valuestfur critical sea ice
concentrations,, ande,, between which wave obstruction by ice varies betwzero and total blocking: these were set to
0.25 and 0.75, respectively. All other availableapaeters beyond the input and dissipation term Weft with default
settings, noting that shallow water processes,endnitivated, are not expected to have more thagkgible and localised
influence on model outputs in a global simulatibd aresolution.
For initial testing, in which two sets (ST2 and $®#loptimisation parameters were compared, we asate month (January
1997) spinup to a three month calibration pericebfEary — April 1997). The selection of the caltlia period from the full
extent of the satellite record was arbitrary.
Relevant parameters used in the two calibratioadisted inTable 2Fable-andTable 3Table-3respectively, which refer to
the parameter names as defined (more completatywthado here) in the WW3 user manual (Tolman, 20ddd as specified
in namelist inputs to the model. These tables ohelthe initial values of the parameters, the ramgr which they were
allowed to vary, and the final optimised valuesh&@tparameters not listed were kept fixed. A palticexample was the

input wind vertical levek, (ST2)= z, (ST4) = 10 m which is a property of the input de¢s hence not appropriate to adjust.
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Others were left fixed after an initial test confed that they had negligible influence on the dbjedfunction, leaving 13

adjustable parameters for ST2 and 17 for ST4.

The selection of which parameters to tune, andahge over which they are allowed to vary, is aaavhere some (partly
subjective) judgement is still required, based ome familiarity with the relevant model parametatiisns. In this case,
parameter ranges were chosen to be physicallystiealind to cover the range of parameter choised in previous studies

reported in the literature.

3.3 Optimisation settings

We elected to primarily use the BOBYQA optimisatalgorithm (Powell, 2009) for this study. Given tha expected WW3
to be already reasonably well-tuned for a globalutation such as our test case, we wished to useah optimisation
algorithm that could reach a solution to a probleith 10-20 variables in as few iterations as pdssi®f the algorithms
available in NLopt that were included in the inEmparison study of Rios and Sahinidis (2012), BOBY\@as found to be
the most suitable in that respect. In particulafi@ws for concurrent model runs in the early s&gf the optimisation process.
Both optimisations were stopped when either th@labs change in (normalised) parameter values essthan 0.0001, or
the relative change in the objective function wesslthan 0.0001. Less stringent conditions weti@ligiused, but the ability
of the optimisation suite to be restarted with sed stopping criteria was invoked to extend thewpéation.

These first two tests used a local optimisationhmeéton the assumption that the respective defauétrpeter sets are near-
optimal, or at least within the “basin of attracficof the optimal solution. In order to test thissamption, two further
approaches can be considered. The first choicedimeilto use a truly global optimisation algorithorekplore the selected
parameter space as thoroughly as possible. Thimapp may be expected to require a number if imratin the thousands,
which is rather challenging given typical model times, especially as global methods do not gelyes#ibw for parallel
iterations.

A simpler approach is to still use a local algarittbut initialise it at a range of different stagipoints. This was the approach
we took for our next set of tests, restricted ®$74 case, in which the initial value of each peeter was selected at random
with uniform probability distribution over its alleed range. Five randomised tests were done, alaitly av control
optimisation starting from the default parameteruseed previously. For these tests we made sortteefusimplifications in
the interests of computational speed, running thédast for only one month (February 1997), antidilising all simulations
from a common initial condition, spun up over onenthh with the default parameter set. Both simplifiens detract from
how applicable the resulting parameter sets woelbbhindcast applications, but can be justifiedllowing a more extensive
examination of parameter space with a given contipmia resource. A slightly reduced set of ST4 paeters was optimised,

omitting CEEX, CHCK andsg. The initial and final values of these paramefsm each of the tests are listedTiable 4Table

4 andTable 5Fable-Srespectively. The allowed range of each of thestdble parameters was the same as in the previous
simulations, as listed in Table 3, while both siogycriteria were relaxed to a value of 0.005.

Despite the expected high computational demandsexeattempted an optimisation using the global@ionary algorithm
ESCH of da Silva Santos et al. (2010). This wattalised from the default parameter values, and tise same one month
hindcast, parameter ranges and stopping criterieessribed above.

Following these test simulations, the ST4 paransztton was chosen for a final calibration, carreed over a 12 month
period (January — December 1997) following a onexmapinup (December 1996). This calibration waalfy terminated
with both stopping criteria set to a value of 0.00Dhis was a somewhat arbitrary choice made terebghe evolution of the
solution. For practical applications the choicestifpping criteria should take into account the ity of the objective
function to measurement error in the data usethicalibration, to avoid unnecessary ‘over-tunioigthe model.

The full hindcast, from January 1979 through Decen#®16 was then run using the optimised paranseteiComparisons

with altimeter data were made for each month fromgust 1991 onward.
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Each WW3 simulation was run on 64 processors dnglescore of either an IBM Power6 or a Cray XC58@dmine. Other
processing tasks within the suites were run onlsipgocessors. The resulting hindcast simulatieagiired an average of

approximately 25 minutes of wall clock time to cdetp each month of simulation.

4 Results
4.1 Local optimisation of 3 month hindcasts with SZ and ST4 source terms

The BOBYQA algorithm develops a quadratic modetta objective function. To do so, the first iteoatievaluates the
objective function at the initial point, then petis each component in turn by a positive increntbefy by an equal negative
increment (leaving all other components at theahitalue). This can be seen for the ST2 optimissiih Figure 4Figure-3in
which the bottom panel shows the sequence of (n@®e) parameter values tested. With 13 adjustpblameters, this
amounts to 27 iterations in this preliminary phasethis sequence of parameter values is fixedprddent of the resulting
objective function values, all of the first 27 &éipbns could have been run simultaneously as eetabove, if permitted by
the queuing system. We, however, applied a limit parallel iterations in line with anticipated oesce limitations.

The 3-month ST2 optimisation only required a furthéerations after this initial phase to reaci@ping criterion. The ST2
default parameter settings used as the starting fmi optimisation resulted in an objective fuoctivalue of 0.1901, which
was reduced to 0.1424 in the optimisation process.

In the optimal configuration, none of the tunabdegmeters were at either of the limits of their @sgd range, indicating that
convergence to a true minimum (at least locally) heen reached. Most of the parameters were aglytlst modified from
their initial values: the largest changes weresrameters, (reduced from 0.0003 to 0.0002059) @n(D.47 to 0.2493), both
influencing the low frequency dissipation term.

The ST4 3-month optimisation was initialised wilte tdefault settings from the TEST451 case repdstedrdhuin et al
(2010), for which the objective function returnegsdue of 0.1427. Optimisation only managed to oedthis to 0.141%Higure
SFigured, indicating that the default ST4 parameter set aleeady quite closely tuned for our case, habigen selected by
Ardhuin et al (2010) largely from broadly simildudies, i.e. global simulations (at 0.5° resolutioampared with altimeter
records.

Three of the parameters ended the optimisatiomatend of their allowed range, in each case asdhee value at which it
was initialised. The 1Badjustable parametery) controls the assumed directional spread of thsipition spectrum, and the
fact that it remained at its upper limit suggebtst the optimisation may be improved by assumiegdibsipation spectrum to
have a narrower directional distribution than dptited. On the other hand, parametersCE4) and 15 ¢2°¥) are associated
with an alternative breaking formulation proposed Rilipot and Ardhuin (2012), who chose valu@* = 0.185 and
CHCK = 1.5 (and correspondingly, turned off the default sation-based dissipation term by settitf§* = 0) whereas this
term is turned off in the ST4 default, hence bo#hennitially set to zero. On the face of it, onig/nt think that the optimisation
algorithm would have been free to explore solutiaith positive values of these parameters, regyitiran optimal ‘hybrid’
total dissipation term. In fact the way the distiggaalgorithm is coded, this form of the dissipatiterm is not computed at
all in the event that ¥ = 0.0, which would have been the case when the BOBY @arithm explored sensitivity t65.¢

in the initial stages. This means that our choiténitial values may have spuriously caused the BQB\ algorithm to
underestimate sensitivity @:°%, and may have missed a distinct second local minirapproximately corresponding to the
parameter settings of Filipot and Ardhuin (2012)).

4.2 Tests with local optimisation with randomisedriitial parameter sets, and global optimisation

The next set of five tests compared results ofdbal BOBYQA algorithm starting from different paneter sets chosen at
random within the allowed rangeSable 4Fable-yi The resulting final parameter sets, listed @ble 5Fable-5show that
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each test located a different minimum. This indésahat there are multiple local minima for theoemetric in our chosen
parameter ranges, in addition to the local mininderived from the default parameters. The corresipgnehlues of the error
metric were all slightly higher than the value @54) obtained from the baseline optimisation stgrfirom the default
parameter set, although much reduced from thediiminialues Table 4Fable-}i Although none of those additional local
minima found so far has replaced the baselinessatcandidate for a global optimum, this gives nargntee that this would
not be the case after a more thorough search.

The attempted global optimisation (using the ES@drithm) of the same hindcast, had not convergedithin the chosen
tolerances after 800 cycles. However, in the coafsts operation it did identify over 30 paramesets with slightly lower
error metric than the minimum value (0.1450) ohgdiin the corresponding baseline local optimisatidme lowest value
within 800 iterations was 0.1441, and the corredpanparameter values are includedlable 5Fable-5This supports our
suspicion that a local optimisation algorithm canipe relied upon to identify the global optimum fbis hindcast problem.
On the other hand, the very small decrease inrtioe metric obtained from this wider search doetsgine strong justification
for making a significant change in parameters frogar their default values. We need to bear in rttiadl the optimisation
problem we have addressed in this set of testsfi@mising RMS errors in significant wave heidigm a one month partial

hindcast) is not quite the same as optimisingrfeasure over a more representative period.

4.3 Local optimisation of 12 month hindcast with S# source terms

In the final 12 month ST4 optimisation, two addiigh parameters were allowed to vary that were fixethe 3-month
optimisation, bringing the number of adjustablespagters to 19. These were the critical sea icessdration parametets ,
ande. , between which wave obstruction by ice varies betwaero and total blocking: these had been fix€d2& and 0.75,
respectively, in the 3 month optimisations. Othemryithe initial parameter§4ble 4Fable-Ylagain corresponded to the ST4
defaults, which in this case produced an errorimefr0.1436. At the termination after 89 iterasofwith the more stringent
stopping criteria), this had decreased to 0.1431.

Most of the resulting optimised parameters werselko the values obtained from the 3-month optititisgTable 3Fable-B

An exception was the fladjustable parametet,,,,, , scaling the strength of the turbulent contribatio dissipation, which
finished the 3-month optimisation at 0.41298, k.8 (the lower bound) in the 12 month simulations

For this longer optimisation, we have additionalbmputed a measure of the sensitivity of the ohjedunction,using the
initial phase of the BOBYQA iterations to estim#éte change in the (un-normalised) parameter reduaeroduce a 0.1%
change in the objective function. This is listed@slta” in the seventh column dfable 3Fable-3and provides a measure, at
least in relative terms, of the bounds within whéatth parameter value has been determined.

The full hindcast, run from 1979 to 2016, couldcbenpared with satellite data from August 1991 omlv@he resulting bias
in significant wave height, averaged over the Audi®91 — December 2016 comparison period, is shovigure 6Figure
E. Positive biases are obtained in latitudes sot##b8S, particularly south of Australia and in theuth Atlantic. This is also
seen in the vicinity of some island groups (notdblnch Polynesia, Micronesia, the Maldives, Al@usi, Carribean, Azores),
which may be indicative of insufficient sub-gricae obstruction. On the other hand, negative biaseseen near the western
sides of major ocean basins, and in the “swell shé&do the northeast of New Zealand. A similar pattis seen in the results
reported by Ardhuin et al (2010) for their TEST4#ke (their Figure 9).

Normalised root-mean-square error (i.e. RMSE eliaded by the observed mean) from the same comparagain averaged
over the period August 1991 — December 2016, isvehim Figure 7Figure-6Note that the objective function for our
optimisation used this measure, spatially averayed ocean waters between 61°S and 61°N. For therityaof the ocean
surface, this lies in the range 0.08 — 0.14, bt Wwigher values near some island chains and tiseeweboundaries of ocean
basins. Again, similar results were reported byhiid et al (2010).
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5 Discussion

In their review of methods used to tune Numericaldifier Prediction and climate models, Hourdin et24l17) observe that
with the number and complexity of parameterisatimmsonsider, the task of tuning these parameters far a long time
largely left to “expert judgement”, and that objeetmethods have made a more recent appearancenthiaa statistical,
engineering, and computing fields. The method aseetpresented here, along with the approachesvefis and Hazeleger
(2005), Tett et al. (2013), Roach et al. (2017dbed in the introduction, perform model tuningahgh the relatively direct
approach of defining and minimising a cost functi@ur method has the advantage of employing a(@t) that is already
commonly used to control complex workflows for weat forecasting and climate modelling systems, gonuze the
parameters of such a system under its control,waythat is simple to implement, and flexible imo&e of optimisation
algorithm.

We have shown this to be a practical method fointiping 10-20 parameters in a model applicatiosudficient complexity
to require several hours per simulation in a pargfocessing computing environment. For applicetithat are yet more
time-consuming, it is becoming increasingly comn(@Bellprat et al., 2012;Wang et al., 2014;Duan et2017) to first build
a surrogate model to provide a statistical emulétorthe actual model, and then apply an optimisaglgorithm to the
surrogate model. Such multi-stage model optimisafiameworks are beyond the scope of this papertheuflexibility of
our approach could potentially bring benefits terthas well. For example, it may be worth considgarhybrid approach of
using a surrogate model to quantify the role offtileset of model parameters and perform an ihglabal optimisation,
before switching to a method such as ours fora fiefinement using the original model directly.

In our study we have largely restricted our attemtio one local optimisation algorithm (BOBYQA), thaur initial results
suggest the need in some circumstances to apphyre giobal method. This is not difficult to do innxiple, with multiple
algorithms, both global and local, implemented irclGps. However, the generally higher computatiateahands of a global
algorithm put a limit on such applications. In tetsdy we have only been able to undertake a pirgdiry exploration of the
wider parameter space of our single chosen test ddss did however illustrate that the possibitifymultiple alternative
local minima must be considered.

As we have seen, there remains a need for carehétbhoices of which parameters to attempt tanapé, and what bounds
to set on their values. Most optimisation algorithare intended for continuously variable parametard may rely on the
objective function having a continuous dependencéhese parameters. In many cases it is clear vgacameters fall into
this category, as opposed to discrete valued optBat in some cases, model code may make binargehbased on real
parameters lying within discrete ranges, which rbegak this assumption. Hence the Cyclops optintinasuite is best
employed in conjunction with a good understandifithe role each parameter plays in the model, badriterplay between
them.

It is also important to be aware of the role plapgdthe design of the error metric, which may mikeensitive to some
parameters and insensitive to others. One shoulchbgof accepting a large change in these inseegiirameters to achieve
a tiny improvement in the chosen error metric, wtien resulting model could then perform poorly agaother relevant
criteria. In the particular wave modelling casehage investigated, our approach would not be saffton its own to identify
suitable values of the large set of WW3 parametéttsout guidance from previous studies.

Tett et al. (2017) point out that the inherenthaatic nature of the climate system means that &icelevel of noise is
introduced into evaluations of an atmospheric mai®iulation, which can cause problems in evaluatigtermination
criteria. They describe a procedure to rerun a lsitimn that had nominally satisfied the prescribedvergence criteria, with
randomised perturbations before determining whetheot to terminate. Unlike the atmosphere, ocaface waves are an
essentially dissipative system, and perturbatiotr®duced in the initial conditions and forcing Miénd to diminish, rather
than grow, with time. As a result, noise in theamlive function was not so relevant for our wavedoast application as for
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atmospheric models, but may need to be addresséd @ystems with an underlying chaotic nature, jpbsghrough
implementing similar measures to those of Tetl.g2817) into Cyclops.

Similarly, the dissipative nature of ocean wavesmnsehat a cost function based on a spatial averape (temporal) RMSE
of model-data comparisons will not be subject ® légvel of chaotic variability seen in similar meeess for atmospheric
models. Small scale variability in wave model otigittherefore more likely to be genuinely sensitio parameter variation.
In that case it is worth capturing such variabilitythe cost function, whereas for a chaotic systemay be wiser to average

out such variability before evaluating the costcfion.

Conclusions

The Cyclops Cylc-based optimisation suite offefeaible tool for tuning the parameters of any mitidg system that has
been implemented to run under the Cylc workflowiregMinimal customisation of the modelling systamequired beyond
providing tasks to input and apply model parameadues in a simple namelist format, and outputvdilee of the scalar error
metric that is to be minimised. This then allowy ah 16 optimisation algorithms (from the NLopt tbox) to be applied to
the optimisation. This optimisation suite is expgecto be especially applicable to operational faséiog systems, where
minimal re-configuration is required between “tugiimnd “operational/production” versions of thedoast suite.

Results of the initial test case we have investidaa global hindcast using a spectral wave matebtl by ERA-Interim
input fields, illustrate that the method is appiileato a modelling system of moderate complexibthbn terms of the number
of parameters to tune, and the computational ressuequired, at least for the purposes of locaimigation to fine tune a
model that already has a more-or-less well develapitial parameter set from previous studies. stigations of systems

that require a more global tuning approach, omaoee computationally demanding remain for futurekwvo

Code availability

Cyclops-v1.0 has been published through Zendutpg://doi.org/10.5281/zenodo.83790dnder a Creative Commons
Attribution Share-Alike 4.0 licence.

Cylc is available from GitHubh{tps://cylc.github.io/cylg/and Zenodohitps://zenodo.org/badge/latestdoi/1836PaAder
the GPLv3 licence.
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Appendix A: Handling concurrent simulations through dependencies

An alternative way to allow for concurrent simutats involves modifying the simple Cylc suite delsed above to have
several versions of the “Optimise” task. Now “Opt_runs the optimisation algorithm when there ameactive model
simulations still running, witmranging from 0 to a set maximuvit1, whereM is the maximum number of concurrent cycles

we chose to allow. There are a more complex s#¢péndencies to ensure that this is the casertioydar, there is a condition

Table[-P(m+1)] => Opt_m
to ensure that the lookup table has been updatibdtie results of all completed (i.e. inactive)legc If that is the case, the
optimisation code will be run to determine if a newdel simulation can be launched while thosesks are active. If not,
the suite will wait until one of the active modahs completes, and try again with “Opt-1", and so forth.
The dependency diagram for the case in which upr@e concurrent simulations are allowed (Me= 3) is illustrated in
Figure 8Figure-7Assume, for example, that we are still well stodrtonvergence, and that the optimisation algorith such
that the next parameter set tested depends omealiops results. Then “Opt_2" and “Opt_1" will alymgive a “wait”
message, and “Opt_0" will be needed on each citls effectively produces the same behaviour @&gare 1, with each
cycle waiting for the immediately preceding cyaecbmplete before “Opt_0” can start, leading t@e model run. If, on the
other hand, the algorithm never depends on thdtsesiithe previous two (active) calculations, “Opt will always give a
“next” message. This removes the “Opt_1 and “Opta@ks (and any dependencies upon them), leadithg ttModel” task
being called for cycl®& as soon as the cydd3 model run has completed and updated the lookup,taten if the cycléN-

2 andN-1 “Model” tasks are still running.

Appendix B: WW3 source term parameterisations
B.1 Tolman and Chalikov input + dissipation sourceerm package

The input source term is defined as

Sin(k,8) = oBfN(k,0) (B1)
wherep is a non-dimensional wind-wave interaction par@&mewhich has a parameterised dependence on wietsgnd
direction, through boundary layer properties infloed by the wave spectrum. These dependencieshenever, fully
determined with no user-adjustable terms, so we thmidetails here.
This input term was, however, adjusted by Tolmai0@) following a global test case to ameliorateeacessive dissipation
of swell in weak or opposing winds, in which cagesan be negative. This is done by applying, whés negative, a swell
filtering scaling factor with a constant valifg for frequencies below Ofp (wheref,, is the peak frequency), scaling linearly
up to 1 at 0.8,, with higher frequencies unmodified.
The same study also led to the introduction of meation for the effects of atmospheric stabilitywave growth identified
by Kahma and Calkoen (1992) by replacing the wipeksiu with an effective wind speed,, with

2
(%) =1+ ¢; tanh(max(0, f;{ST — §T})) + ¢, tanh (max (O,fl %{ST - Sﬂb})) (B2)
2
wheresST is a bulk stability parameter
hg Ty —Ts
ST =—;
uz T, (B3)

in terms of air, sea and reference temperatlyyeg; andT,, respectively, and,, the wind speed at reference height 10
m, with g the gravitational acceleration. As air and sefasertemperature fields are available from the HRt&rim dataset,

it was possible to apply this parametrisation,ttregc,, c,, ¢,, f; andST, as adjustable dimensionless parameters.
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The dissipation term consists of a dominant loverfiency constituent, with an empirical frequencyedefence parameterised
by constant$,, b, ¢..;, and a high-frequency term, parameterised by cotstg, a,, a,, the details of which we leave for
the WW3 manual (Tolman, 2014) and original refeesniherein.
B.2 WAM Cycle 4 source term package
The input source term implemented in WAM Cycle4Japssen (1982) was based on the wave growth tbéMijes (1957).
The starting point is the assumption the wind sgééds a logarithmic profile, so that if the windldie input to the model
are specified at elevatiar , then
U, Zy

U(z) == log (Z) (B4)

whereu, is the friction velocity, defined by the total wirstresg = u2, k is von Karman’s constant, angis a roughness

length modified by wave conditions:
Zo

J1—-1,/T (B5)

in whicht,, is the magnitude of the wave-supported stresdewhi
Z0=0aot/g (B6)

zZy =

with @, a tunable dimensionless parameter.

The wave-supported stress can be equated to thefratomentum transfer between wind and waves:

k
2y = f dk d9 7 Sin(k, 6) (87)

wherec is the wave phase velocity
The WAM Cycle 4 input source term is then given by

2
Sin(k,6) = z—“ﬁ me 2zt (“? +2,) [max(cos(® - 6,),0)PnoN(k, 0) + Seue (k, 0) (88)
w

with
K

cos(6 —6,) (% + za)

In these termp, andp,,are the densities of air and watgy,,, is a dimensionless constazgt,is a wave age tuning parameter

Z = log(kzy) + (B9)

andp,, is a parameter controlling the directional depeweéerelative to the wind directidh, .

The inter-dependence af,, andS;,expressed ingE7B7) and 88B8) creates an implicit functional dependence.obnU
andt,, /7. In practice, this dependence can be tabulatéuy tise resolved model spectrum for the low-frequye < k.,0x)
part of 8787, above which g~ diagnostic tail is assumed.

TheS,.; term represents a linear damping of swells, irfoe (Bidlot, 2012):

Spur(k,0) = 251}{;)—:/ (u?)2 [cos(B —6,) - ﬁfk%)] oN(k, 6) (B10)
with s; set to 1(0) to turn on(off) the damping.
Dissipation is represented in the form
Sas(k, 0) = Cys@?G [51% +6, (%)Z] N(k, 0) (B11)

whereC,, is a dimensionless constant, ahcandd, are weighting parameters. These take valdgs= —1.33,5; = 0.5
and §, = 0.5 in the ECMWF implementation of WAM as reportedBiglot (2012), but are adjustable within WW3. Mean
wavelength and frequency are defined as
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p
_ [ kPN(k, G)zik (B12)
[ N(k,0)dk
and
—-11/p
P
5= [oPN(k, G)zik (B13)
[Nk, 6)dk
with p = 0.5 andp = 1 being the respective WAM defaults (Bidlot, 2012)ile mean steepness is
@ = Ek? (B14)

B.3 Ardhuin (2010) source term package

This package introduces a saturation-based digsipgrm. In order to accommodate this, the WAM ey input source

function is modified by replacing., in (B888) with a frequency-dependent form

(W) = [u2 — Isy| (B15)

‘ v
f dk’ f d0— S (K, 0)
0 C

in whichs, =~ 1 is a sheltering coefficient, to allow for balangih a saturation-based dissipation term. Alsdirétican be
placed on the roughness length replacing B686) with

zg = min(@y 7/ 9, Zo,max) (B16)
The swell dissipation parameterisation of Ardhuiale(2009) is used, consisting of terms
P,
Soutwisc(k, 8) = —s5 p_a [Zk\/ ZVaG]N(k: 0) (B17)
w
and
P,
Saut,turb (k,0) = — p_a [16feo-zuorb,s/g]N(kv 6) (B18)
w
due to effects of the viscous and turbulent bountiayers respectively. The latter depends on theifitant surface orbital
velocity
1/2
Uprps = 2 [ f dkd6 o3N(k, 9)] (B19)
while v, is air viscosity and; is a tunable coefficient of order 1. The two telans combined in weighted form
Sout(k' 9) = r—Saut,vis(k' 9) + r+50ut,turb (k, 9) (BZO)
with weights
7. = 0.5(1 + tanh((Re — Re.")/s7)) (B21)
depending on a modified air-sea boundary layer Bleljgnnumber
Re = 2uorp sHs/vq (B22)
which is taken to have a threshold value dependimgignificant wave height:
Re. = Re,(4m/H ) =S (B23)
The turbulent dissipation term is parameterisedeigend on wind speed and direction:
fe= Slfe,GM + [|S3| + s,cos(6 — Hu)]u*/uorb (824)

based on the friction factgf ;) from the Grant and Madsen (1979) theory of odaitlaboundary layer flow over a rough
surface.

The dissipation term is based on the saturatidhefvave spectrum, and takes the form
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sat
g; [6; max(B(k) — By, 0)% + (1 — §;) max(B' (k, 8) — B, 0)2]N(k, 8) ©25)

+ Sbk,cu (k' 9) + Sturb (k' 9)

where the dissipation spectrum is integrated ovemitéed direction range, i.e.

Sas(k,0) =0

B (k, 0) = f T ok coss (6 — 8Nk, 6)de" (B26)
6-0p
and
B(k) = max(B'(k,0),6 € [0,2r]) (B27)
The cumulative breaking term, associated with lagge breakers overtaking short waves, is
2
Sorcu(k,6) = %N(l{, 0 fo e fo " 16" max (VBGF6) - /B, 0} (B28)

Wherer,, = 0.5 andC,, is a tuning coefficient.

The turbulent dissipation term is

Palt
Sturp (k, 8) = —2Cpyrpo cos(0y — 0)k ap

3N(k, ) (B29)

w

An alternative breaking formulation (Filipot anddfuin, 2012) based on a bore model uses a dissipegdtie per unit crest

1 cry 1P| gk
= s B30
Eck 4 Pwd [tanh(kh)cﬁfk tanh(kh) ( )

length of
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Table 1 Derivative-Free Optimisation algorithms fran the NLopt toolbox supported in the Cyclops optimsation suite

Global:

DIRECT: Dividing RECTangles (Jones et al., 1993)

DIRECT-L: Dividing RECTangles, locally optimised &Blonsky and Kelley, 2001)
DIRECT-L-RAND: a slightly randomised variant of DECT-L (Johnson, 2014)
CRS: Controlled Random Search (Hendrix et al., 2001

CRS2: Controlled Random Search (Price, 1983)

CRS2-LM: Controlled Random Search with Local Muat{Kaelo and Ali, 2006)
MLSL: Multi-Level Single-Linkage (Rinnooy Kan and G. Timmer, 1987)
ISRES: Improved Stochastic Ranking Evolution SgatRunarsson and Yao, 2005)
ESCH: Evolutionary algorithm (da Silva Santos et2010)

Local:

COBYLA: Constrained Optimization BY Linear Approxations (Powell, 1994)
BOBYQA: Bounded Optimization BY Quadratic Approxitiza (Powell, 2009)
NEWUOA: Unconstrained Optimization (Powell, 2004)

NEWUOA-BOUND: a bounded variant of NEWUOA (Johns2014)

PRAXIS: Principal Axis (Brent, 1972)

Nelder-Mead Simplex (Nelder and Mead, 1965)

Shplx: Nelder-Mead applied on a sequence of sulesp@owan, 1990)
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Table 2. Parameters used to calibrate the simulatiousing the source term package of Tolman and Ch&ov (1996), for February
through April 1997. The first two columns list the parameter as defined in the WW3 v4.18 user manua(Tolman, 2014), and as
specified in WW3 namelist input. The namelist groumgs in bold correspond to parameterisations relatet to wind input (SIN2),

dissipation (SDS2), nonlinear interactions (SNL1)and some “miscellaneous” parameters (MISC). Lower rad upper bounds are
specified for parameters adjusted during calibration, along with their final values, and the correspoding index n of the normalised
parameter vector, as used to label plots iRigure 4Figure-3 Other parameters were fixed at the initial value.

Parameter| Code Initial Lower Upper Final n
variable bound bound
SIN2:
X SWELLF | 0.1 0.0 1.0 0.1175 1
Co STABSH | 1.38 1.0 1.8 1.374 2
STy STABOF | -0.01 -0.02 -0.001 -0.01031 3
o CNEG -0.01 -0.02 -0.001 -0.01033 4
[ CPOS 0.01 0.001 0.02 0.009666 5
—fi FNEG 150.0 100.0 200.0 148.25 6
SDS2:
ay SDSAO0 4.8 4.0 6.0 4.8045 7
a, SDSA1l 1.7x16 | 1.0x10* | 5.0x10° | 1.7023x1¢ | 8
a, SDSA2 2.0 1.0 4.0 2.0120 9
b, SDSBO 0.3E-3 -0.01 0.01 0.0002059, 10
by SDSB1 0.47 0.2 1.0 0.2494 11
DPmin PHIMIN 0.003 0.002 0.005 0.002972 12
SNL1:
C NLPROP | 2.5x10 | 2.4x10° | 2.8x10" | 2.498x10 13
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Table 3. As forTable 2Fable-2 but for parameters used to calibrate the simulatin using the source term package of Ardhuin et al
(2010), for February through April 1997. The namelst groupings in bold correspond to parameterisatios related to wind input
(SIN4), dissipation (SDS4), nonlinear interaction$SNL1), and some “miscellaneous” parameters (MISC).ower and upper bounds
are specified for parameters adjusted during calibation, along with their final values, and the correponding indexn of the
normalised parameter vector, as used to label plois Figure SFigure4.

Parameter Code variable Initial Lower boundUpper bound Final n
SIN4:

Bmax | BETAMAX 1.52 1.0 2.0 15197 1
Su TAUWSHELTER| 1.0 0.0 15 0.9594 2
Sy SWELLF 0.8 0.5 1.2 0.8010 3
5 SWELLF2 -0.018 -0.03 -0.01 -0.01812 4
S3 SWELLF3 0.015 0.01 0.02 0.01484 5
Re, SWELLF4 1.0x106 | 0.8x10 1.5x16 0.9973x106 | 6
Ss SWELLF5 1.2 0.8 1.6 1.2078 7
S7 SWELLF7 2.3x16 | 0.0 4.0x18 2.2600x16 | 8

SDS4:

cset SDSC2 -2.2x18 | -2.5x10° 0.0 -2.1506%18 | 9
Ceu SDSCUM -0.40344 -0.5 0.0 -0.4020 10

Ceurb SDSC5 0.0 0.0 1.2 0.4168 11
64 SDSC6 0.3 0.0 1.0 0.2654 12
B, SDSBR 0.0009 | 0.0008 0.0010 0.000903 13

CEeK SDSBCK 0.0 0.0 0.2 0.0 14

chck SDSHCK 0.0 0.0 2.0 0.0933 15
S SDSCOS 2.0 0.0 2.0 2.0 16

SNL1:
c NLPROP 2.5x10 | 2.4x10 2.8x10° 2.510x10 17
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Table 4. Initial parameters used to calibrate the isnulations using the source term package of Ardhuiret al (2010), for Feb 1997,
using randomised initial conditions (simulations 15). Simulation 0 is the control case, with defaulnitial parameters.

Simulation number
Parametert Code variable 0 1 2 3 4 5
SIN4:

Pmax BETAMAX 1.520 1.215 1.160 1.538 1.660 1.550
Su TAUWSHELTER | 1.000 0.244 1.281 1.381 0.996 0.950
Sz SWELLF 0.800 0.962 0.948 0.582 0.995 1.026
S1 SWELLF2 -0.018 -0.022 -0.012 -0.026 -0.0253 -0.018
S3 SWELLF3 0.015 0.016 0.014 0.0116 0.0131 0.0159
Re, SWELLF4 1.000%16 1.428x16 | 1.368x16 | 1.295x16 | 0.837x16 | 0.809x16
Ss SWELLF5 1.200 1.100 1411 1.589 1.290 1.290
S7 SWELLF7 2.300%16 1.188x16 | 2.908x16 | 0.621x16 | 2.492x16 | 2.905x16

SDS4:

csat SDSC2 -2.200x10 | -1.528x1€ | -1.069x1€ | -1.493x1€ | -1.639x1€ | -1.303x1C
Ceu SDSCUM -0.403 -0.159 -0.470 -0.488 -0.205 -0.387

Ceurp SDSC5 0.000 1.116 1.074 1.025 0.476 0.882
Sa SDSC6 0.300 0.957 0.596 0.947 0.855 0.583
B, SDSBR 9.00x16* 9.13x10* 8.24x10* 8.14x10* 9.73x106* 8.39x10*

SNL1:
c NLPROP 2.500x10 2.690x10 | 2.794x16 | 2.644x10 | 2.780x10G | 2.437x10
Initial error score | 0.1454 0.1685 0.2346 0.1722 0.2156 0.1677
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Table 5. Final values of parameters from simulatios using the source term package of Ardhuin et al 0), for Feb 1997, using
BOBYQA with randomised initial conditions (simulations 1-5), and using ESCH with default initial paraneters. Simulation 0 is the
control case, using BOBYQA with default initial parameters.

Simulation number
Parameter Code variable 0 1 2 3 4 5 ESCH
SIN4:

Bumax BETAMAX 1.515 1.348 1.221 1.671 1.491 1.599 1.520
Su TAUWSHELTER | 0.950 0.244 1.275 1.385 1.035 0.953 0.898
Sz SWELLF 0.811 0.761 0.872 0.591 1.065 0.986 0.800
S SWELLF2 -0.0178 -0.0256 -0.0120 -0.0148 -0.0226| -0.024¢ .01®
S3 SWELLF3 0.0149 0.0168 0.0134 0.0112 0.0150 0.0170 0.0150
Re, SWELLF4 0.996x10 | 1.428x16 | 1.376x16 | 1.339x16 | 0.837x16 | 0.809x16 | 1.198x16
Ss SWELLF5 1.201 1.099 1.406 1.589 1.291 1.290 0.973
s7 SWELLF7 2.30x16 | 1.19x16 | 2.84x16 | 0.64x16 | 2.47x16 | 2.89x16 | 2.42x16

SDS4:

ciet SDSC2 2.12x10° | -1.75x10 | -0.09x1C° | -1.93x10° | -2.05x10° | -1.29x10° | -2.34x10°
Cey SDSCUM -0.401 -0.158 -0.469 -0.488 -0.209 -0.387 -0.454

Ceurp SDSC5 0.386 1.116 1.067 1.027 0.526 0.831 0.567
8q SDSC6 0.246 0.957 0.560 0.940 0.860 0.585 0.043
B, SDSBR 9.03x10° | 9.19x10' | 8.26x10' | 8.20x10" | 9.72x10* | 8.38x10" | 9.09x10*

SNL1:

c NLPROP 251x10 | 2.69x10 | 2.80x10 | 2.69x10 | 2.78x10 | 2.44x10 | 2.45x10
Error score 0.1450 0.1479 0.1513 0.1515 0.1501 0.1500] 0.1441
Iterations 38 37 41 62 37 39 800+

(not converged
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Table 6. As forTable 3Fable-3 but for parameters used to calibrate the simulatn using the source term package of Ardhuin et al
(2010), for Jan-Dec 1997. The “Delta” value in theeventh column is the estimated change in the (urermalised) parameter required
to produce a 0.1% change in the objective function.

Parameter; Code variable Initial Lower bound Uppeirtd | Final Delta n
SIN4:

Bmax BETAMAX 1.52 1.0 2.0 1.5194 0.02498 1
Sy TAUWSHELTER | 1.0 0.0 15 0.9339 0.2706 p
Sz SWELLF 0.8 0.5 1.2 0.8224 0.0206
S1 SWELLF2 -0.018 -0.03 -0.01 -0.01721 0.00064 4
S3 SWELLF3 0.015 0.01 0.02 0.01526 0.00042 5
Re. SWELLF4 1.0x10 | 0.8x1G 1.5x10 0.9888x18 | 0.2328x10 | 6
S5 SWELLF5 1.2 0.8 1.6 0.9360 0.3974 4
Sy SWELLF7 2.3x18 | 0.0 4.0x10 2.2433x18 | 0.7911x10 | 8

SDS4:

csot SDSC2 -2.2x18 | -2.5x10° 0.0 -2.1433x16 | 0.0087x16 | 9
Cey SDSCUM -0.40344| -0.5 0.0 -0.40194 0.02145 10

Courp | SDSC5 0.0 0.0 1.2 0.0 - 1
[ SDSC6 0.3 0.0 1.0 0.2736 0.0928 12
B, SDSBR 9.0x10 | 8.0x10* 10.0x10* 8.9788x1¢ | 0.0951 x1¢ | 13

cEex SDSBCK 0.0 0.0 0.2 0.0 - 1%

clicx SDSHCK 0.0 0.0 2.0 0.0 - 1p
Sg SDSCOS 2.0 0.0 2.0 2.0 0.0757 16

SNL1:
C NLPROP 2.5x10 | 2.4x10 2.8x10 2.5181x10 | 0.1191x10 | 17
MISC:
€co CICEO 0.25 0.15 0.45 0.2413 0.1285 s
€cn CICEN 0.75 0.55 0.85 0.7521 0.2358 19
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Figure 1: Dependency graph for a version of the Cyops optimisation suite in which no concurrent simtations are allowed, showing
three successive cycles. Arrows represent dependgnin that a task at the head of an arrow dependsrothe task at the tail of the
arrow meeting a specified condition (by default, t/s means completing successfully) before it can sta
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Figure 2: Dependency graph for an implementation ofhe Cyclops optimisation suite in which up tdVl concurrent simulations are
supported. Solid arrows represent dependency, in #t a task at the head of an arrow depends on the gk at the tail of the arrow
meeting a specified condition (by default, this me@ completing successfully) before it can start. ehdashed arrows represent a task
retrying after a set interval. Only four cycles areshown, omitting tasks in intervening cycles, andheir dependencies.
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Eigure 3: Example of the cycling behaviour of an implementtion of the Cyclops optimisation suite in which coourrent simulations
are supported. Optimise tasks (purple boxes) whickucceed trigger further tasks in the same cycle (¢ boxes representin:
sequence of Namelist, Model and Table tasks), anbe Optimise task in the next cycle. Green arrows mresent these dependencies
on task success. Optimise tasks which fail to selecparameter vector independent of the result of etive tasks ret ellow arrows'
at prescribed intervals until they succeed. The tim axis is not to scale: Model tasks will typicallhhave run times orders of magnitude
longer than the run times of Optimise tasks. In thé example, we suppose that the particular optimisétn algorithm employed allows
for up to five concurrent cycles during the initial stages.
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Figure 5: Sequence of objective function values () and parameter vector components (bottom) at eadkeration in the three month
(February — April 1997) ST4 calibration. The red dashed line marks the optimal solution found.
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Figure 6: Bias in significant wave height from thehindcast compared with satellite altimeter measuremnts, over the period August
1991 - December 2016.
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Figure 7: Normalised root-mean-square error in sigificant wave height from the hindcast compared withsatellite altimeter
measurements, over the period August 1991 — Decemi2916.
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Figure 8: Dependency graph for the Cyclops optimid#on suite, configured to use dependencies to allofier concurrent simulations.

This example shows four successive cycles, for tbase in which up to three parallel simulations arellowed. Arrows represent
dependency, which in some cases are combined byogital OR (enclosed “+” symbol). All tasks and exjit dependencies (other
than suicide triggers) are shown for cycl&\, but dependencies on cycles befol-3 are omitted for clarity.
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