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Automated model optimisation using the Cylc workflev engine (Cyclops v1.0) — Reviewers’

comments

J.-H. Alves (Referee 1)

The manuscript Automated model optimisation using the Cylc workflow engine (Cyclops v1.0) provides a method for
objective optimization of source-term coefficients in NWP models, with an application to wind-wave modeling. The method
fills in a longstanding gap in wave model development, whereby typically tuning of source-term coefficients has been made
in an ad hog, trial-and-error-based manner, with high time costs and sometimes questionable effectiveness. The proposed
method bridges that gap, being potentially a landmark contribution to improving the quality of wave forecasts at operational
centers.

The manuscript is well-written and engaging, concise, and clear. | recommend the paper be accepted after minor revisions.
A list of suggestions to that end will be provided in a separate cover.

Simon Tett (Referee 2)

I think a potentially interesting paper that should eventually be published. The paper describes a method to use
generic optimisation methods to optimise a wave model. In theory the approach could be used for other
models though the paper does not really describe the challenges involved in doing this.

| worry the paper is quite close to be a minimum publishable unit and so | am pushing the authors to do it more
work. In essence to show their approach does indeed work. To that end | ask that the authors trial two or more
additional algorithms. For purely selfish reasons | would be interested in seeing results of the Gauss-Newton
approach trailed in Tett et al, 2013 & Tett et al, 2017. However, | understand that the algorithms available to
the authors through the NLopt toolkit do not include this. | think the study would also benefit from doing
another study in which they started from extreme parameters and see if they end up in the same local optimum
or some other one.

The authors do not really deal with the challenge of interfacing the optimisation algorithm to the model. Simply
telling us that they generate a simple namelist which gets passed through to the wave model is insufficient
detail. | think it would also help the reader if they provided a bit more detail on how the set of previous cases
(and cost function values) are passed around. I’'ve done something similar for HadAM3 and much of the effort
was in modifying the model namelist variables. HadAM3 has many namelists, each with several variables spread
across a few files.

The authors should describe how concurrency happens. | suspect it depends on the optimisation algorithm. If
they found a good solution to that that is worth sharing.

One issue that worried us in Tett et al , 2017 was the effect of noise in the optimisation algorithm. If the
evaluations needed to fit the 2na order polynomial in BOBYQA are too close to one another then the difference
will largely be chaotic noise. How does the authors approach mitigate against that?

Minor comments

P1, L15 — I don’t think the URL belongs in the abstract.

L21 — don’t think TM belongs in the abstract (and the text uses (R) ).

P2, L10. Note that Roach et al used the system described in Tett et al, 2017.

P2, L12 — | personally don’t like 1 sentence paragraphs. Can this sentence be wrapped into the following or
preceding paragraph?

P3, L24 read -> reads

P4, 16 A bit more detail on how Cyclops tasks interact would be useful as | don’t see a peer reviewed paper
describing it. As the optimisation is implemented with special messages being sent some more discussion on
messages would be helpful.

P4, 112 interleaveseveral — insert some spaces
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P5, line 14 — agree for cases where cost function is some squared difference then —ve values are reasonable.
However, | think in the python world returning None to signal need to generate values would be more natural.
P5, L15 — more detail on how the namelist is generated would be helpful. Looking at the code it looks like the
text is simply generated. My experience with the Unified Model is that with multiple namelists in multiple files
there is a bit of setup to be done to map optimisation variables to namelist variables (in some cases one
optimisation variable can modify multiple namelist variables.) Some models may not use namelists so what
would be done in this case?

P5, L25 -- Some more detail on how Cycl iterates would be helpful. | think being explicit (and showing how) that
Cycl can run several jobs in parallel would be helpful. I think discussing that in the context of the algorithms
would also be helpful. | think many algorithms are coded to work serially so won’t make use of the ability to run
several model simulations in parallel. But clearly authors report doing this so a bit of discussion would help
here.

P7, L7 — cite for the model please and don’t see the need for the (R)... But | leave it to GMD editors to decide
that.

P7, L35 Note this such a cost function (spatial average RMSE ) gives high weight to shortest spatial features
which are close to model grid scale and thus very likely strongly affected by model grid and chaotic variability.
This is one reason Tett et al, 20113 & 2017 focused on RMS error of large spatial averages. It is a mystery to me
why people continue to focus on spatial average RMSE for model evaluation given the smallest scales are
dominated by chaotic variability and thus not strongly related to parameter choice or model fidelity.

P8, L2 — can this be typeset larger — probably display would help. Does the dot mean d/dt? If so | think better to
spell it out.

P8, line 35 — surely not zero impact. Imagine it is very small.

P8 — I found the discussion on the two different packages rather confusing. The authors should rewrite to make
this clearer.

P9, L9 — why 0.02 rather than 0.05 or 0.01? Would algorithm terminate if any parameter changed by less than
0.02 or would all need to have changed by less than 0.02?

P9, L11 — why introduce two more parameters?

P9, L24 a bit more discussion about parameter sensitivity here would be useful. For which parameters is the
cost function most sensitive?

Table 2 would benefit from some description of the parameters — what do they represent? | don’t think readers
need to know about “n”. It is an implementation detail. Table should also explain what the bold labels are —
perhaps better to break up into multiple tables with titles given by meaning of bold labels.

Tables 3&4 — only show parameters that were modified. This would reduce the size considerably and make
them less confusing.

Figure 1 —text is small and unreadable (and I don’t think the colour is necessary). | suggest just showing one
iteration of the work flow with some arrows showing the work flow looping back.
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Automated model optimisation using the Cylc workflav engine (Cyclops v1.0)
Response by to review comments

The comments by Reviewer #1 are covered by ouorespto those of Reviewer #2, which we detail below

The reviewer has made some very constructive cortsnagm suggestions, which we believe can be adelielsading to an
improved manuscript.

It is suggested that the paper needs to be expdndeidlling two or three more additional algoritk, and also by including
a study starting from a more extreme parameteVgetaccept that suggestion, and have undertakes &ather studies to
include in the paper. Our aim was to introduce @pslas a potentially useful tool to apply any efide set of algorithms to
optimise a numerical modelling system, in a way e be quite readily adapted to different modgléystems. That still
leaves a lot of work to do in designing the modefisystem itself (e.g. designing verification netriselecting parameters to
optimise and choosing the best optimisation algor)t We did not intend those issues to be a majud of the paper, and
took the view that it would suffice to present @an@mple application for which we made a set of oé®ithat was seen as
reasonable if not definitive. But in hindsightwibuld help support our aim if we were to show seldifferent optimisation
algorithms being applied within Cyclops.

We have included one global algorithm in thesehtartests, along with tests with a local algoritstarting from a series of
different, randomly chosen, initial parameter s¥t® believe this has helped clarifying whether agenlocated a global
rather than merely local optimum to our wave hirsl@libration study. We did not, however, findeasible to spend the
necessary time implementing the Gauss-Newton appriogo the NLopt toolbox.

The other comments were addressed through chamgies fext. On the principal points:

1. The interface between the optimisation algorithm ad the model

As noted in the review, the optimisation suite dyrgutputs a single namelist file. This containsnes and values for each
parameter, which can be grouped by related setaraineters. The variable names and allowed ramgesain a “parameter
definition” file that the user prepares. The mosi@ke then needs to include a task that takesndmselist file as one of its
inputs, and prepares whatever input files are rééalethe model(s) to run. Because the formatshaghly model-specific,
this task needs to be tailored for the particuladet suite. For example, in our wave hindcast appihn, this task consists
of a shell script which simply includes the nantdile verbatim as part of an ASCII control filehieh also has various timing
parameters provided from environment variableshis case, Wavewatch interprets the namelist grasp®ferring to sets
of parameters for different physical processes. (@igd input, nonlinear interactions), and we donéed to parse this
information in the preprocessing step.

In other cases, some slightly more complicategog may be required to generate model input files the single namelist
file. We have covered this requirement more extatgin the revised manuscript, as well as stressiat no change is needed
to the main model codes

When it comes to computing the cost function valagsin the details are up to the model suitecbmtmunication with the
optimisation suite is very simple: some task witthie model suite needs to write that single nuntbex file, which the
optimisation suite reads when that particular immatation of the model suite has completed. Themigation suite then
appends that value, along with the correspondimgrpater values, to a simple ASCII file which serasghe “lookup table”.
Really, from the optimisation suite’s point of viethie model suite is just a black box that takeamelist file with parameter
names and values, written to a specified pathiveldd a new directory created for each iteratibthe model suite, and
computes a single objective function value whichrites to another specified path within that diceg.

2. Concurrency

There are perhaps three points which need to be imadkescribing how Cyclops allows for concurrantidations.

1. How the optimisation algorithm can decide whetheew parameter set could be evaluated while wafongther
function evaluations (i.e. model runs) to complete.

3
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2. How Cylc in general allows for tasks from differenytles to execute concurrently
3. The specific way that Cyclops uses that abilitgltow for concurrent model evaluations

The way we have
The description in Section 2.3 of how Cyclops aamseveral iterations of the model suite conculydras been considerably
rewritten. As noted, whether or not concurrent $ations can be run at any particular stage of fhteosation process does
indeed depend on the particular algorithm beingluséso, any particular execution of the optimisatalgorithm is done in
a purely serial way.
On the first point, we have tried to give a cleadescription of how the “optimise” task works. Besa of the particular
generic “user supplied objective function” subroative have implemented, any run of the optimisatsk simply amounts
to reading previous results from the lookup taileednd deciding, based on those results, whatpeter set the particular
algorithm would call for next. If there are “activearameter sets still being evaluated, it can detof tests with random
“answers” to those active evaluations, to decidbat affects the value of the parameters it dalis
The second point has been addressed by improvindescription of Cylc in section 2.1, to emphatise tasks will execute
whenever their dependencies allow, and do not sedésiterate in a rigid cycle.
On the third point, we have attempted to providdearer description, aided by replacing the oldiFégl with some clearer
diagrams of task dependencies. In fact, we realisetthere is a simpler way to implement concwayen Cyclops, letting
tasks retry after failure, rather than using thmeahat complex dependency structure we originaliplemented. Having
determined that the two methods achieve the sasudtreve describe the new method in the body ofee so that readers
can more readily grasp the important concepts.oftggnal method is relegated to an Appendix.

3. Effect of noise in the optimisation algorithm, andchoice of cost function

Tett et al (2017) point out that the inherently afi@ nature of the climate system means that aaicetevel of noise is
introduced into evaluations of an atmospheric mai®lulation, which can cause problems in evaluatihegtermination
criteria. They describe a procedure to rerun a lsitimn that had nominally satisfied the prescribedvergence criteria, with
randomised perturbations before determining whetheot to terminate.

Unlike the atmosphere, ocean surface waves arssemgally dissipative system, and perturbatiot®éuced in the initial
conditions and forcing will tend to diminish, rattthan grow, with time. As a result, noise in thgeative function was not
so relevant for our wave hindcast application asfmospheric models. Nevertheless, we can envBjatops being applied
to optimisation of an atmospheric model, or sontepsystem with un underlying chaotic nature. Seeredded a comment
to that effect, suggesting that a measure sudhaaslescribed by Tett et al (2017) could be intoedlinto Cyclops for use in
such applications. Other references to Tett €R8l17), which was published subsequent to our n@ipisubmission, have
been added.

Similarly, the dissipative nature of ocean wavesinsethat a cost function based on a spatial avexfape (temporal) RMSE
of model-data comparisons will not be subject ® légvel of chaotic variability seen in similar meeess for atmospheric
models. Small scale variability in wave model owfigttherefore more likely to be genuinely sensitio parameter variation.
In that case it is worth capturing such variabilitythe cost function, whereas for a chaotic systemay be wiser to average
out such variability before evaluating the costcliion. We have added a mention this issue in tinieso that applications to
different model systems may require variationsgpraach.

4. Task interaction
The way that task interaction is handled coulddtéel described. This function is inherent to Cgtijts description in Section

2.1 has been improved.
5. Selection of convergence criteria
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In the convergence criteria, the “change in parameflues’” means the magnitude of the vector diffee, i.e.

/Zﬁf‘l"(Axn)z. Section 2.2 was be changed to clarify this. Tiheiae of 0.02 (in the original manuscript) was saiat

arbitrary initial choice. As we noted in Sectio,3he suite can be restarted with revised critfiier stopping, either having
met an initial set of convergence criteria, or thglo manual intervention. So in practice, you cart stith quite loose criteria,
then either decide to carry on further with tighteteria, or reconfigure something and start aggor the two three-month
hindcasts, the aim was to explore differences betvihe two model configurations, and guide the @haif settings to use
for the more thorough 12 month optimisation. Fatthurpose, the results reached with the 0.02rizntenay have been
sufficient, but we have now extended the iterationtdl stricter criteria (0.0001 fractional chandwgve been met.

6. Tables

The parameters in Table 2 are now more clearlyeated in the Table caption, which also mentioms the “n” values
provide a key to the Figures.
Parameters with fixed, default values were oridginatided to the Tables for completeness, but tlaeng mow been removed.

7. Figures

Figure 1 has been replaced by two clearer Figures

8. Minor comments not addressed above

L21, P7 L21: Inconsistencies in referencing the ¥eatch model have been addressed, in line withrtbeel’s licensing
terms.

P5, L14. Agreed, it would be more robust and “pyilbto return “None” than -1 in such cases. Thegslnot cause a problem
in the present application, but the point has bmentioned, and will be implemented in the codeuinffe.

P8, L2. Yes, dot means d/dt. This has been clarifiie text, and the equation layout improved

P8, L35. We have changed “zero” to “negligible”

P8 This section has been rewritten in a hopefuéigrer manner

P9, L11. The two ice parameters might, a prioriekpected to have more influence than some of tiher parameters that
were already included, which indeed turned outetdhe case. In hindsight they should have beendec from the start.

P9, L24. More discussion of parameter sensitivitg heen added, using the Delta parameter in Table 4

Other points are minor edits which have been impleted as suggested.
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Automated model optimisation using the Cylc workflav engine
(Cyclops v1.0)

Richard M. Gormah Hilary J. Oliver?
! National Institute of Water and Atmospheric ResBaPO Box 11-115, Hamilton, New Zealand
2 National Institute of Water and Atmospheric ReskaPrivate Bag 14901, Wellington, New Zealand

Correspondence tdRichard M. Gorman (Richard.Gorman@niwa.co.nz)

Abstract. Most geophysical models includerumberofmanparameters that are not fully determined by theangl can be
‘tuned’ to improve the model’s agreement with aabié data. We might attempt to automate this tupiogess in an objective
way by employing an optimisation algorithm to fitlle set of parameters that minimises a cost fumatierived from
comparing model outputs with measurements. A nurobedgorithms are available for solving optimisatiproblems, in
various programming languages, but interfacing saftware to a complex geophysical model simulatpresents certain
challenges.

To tackle this problem, we have developed an opttion suite (“Cyclops”) based on the Cylc workflemgine
hitp:Heyle-github-ieleylel-and-hitps://zenodedradgedatestdoi/1836228at implements a wide selection of optimisation
algorithms from the NLoppythenPythortoolbox (Johnson, 2014). The Cyclops optimisagaite can be used to calibrate

any modelling system that has itself been impleettas a (separate) Cylc model suite, providectitées computation and
output of the desired scalar cost function. A grigywnumber of institutions are using Cylc to orchatstcomplex distributed
suites of interdependent cycling tasks within thefrerational forecast systems, and in such casphcaipn of the
optimisation suite is particularly straightforward.

As a test case, we applied the Cyclops to calimaj®bal implementation of thé&avewatchWAVEWATCHIII™ (v4.18)
third generation spectral wave model, forced by BRW&rim input fields. This was calibrated overreeeyear period (1997),
before applying the calibrated model to a full (@2016) wave hindcast. The chosen error metricthaspatial average of
the root-mean-square error of hindcast significaate height compared with collocated altimeter rdsoWe describe the

results of a calibration in which up to 19 paraneteere optimised.

1 Introduction

Geophysical models generally include some empipashmeterisations that are not fully determinegHysical theory, and
which need calibration. The calibration process bfien been somewhat subjective and poorly documdefiteesen,
2016)(Voosen, 2016put in a more objective approach has the aim iofmising some measure of error quantified from
comparisons with measurement (Hourdin et al., 200V can turn this into an optimisation problemmedy to find the
minimum of an objective functioff¥) wherex represents the set of adjustable parameters, iaraisingle error metric (e.g.
the sum of RMS differences between measured ardicped values of a set of output variables) resglfrom a model
simulation with that parameter set.

The most efficient optimisation algorithms requite derivativeif (%) to be available alongsid€z). This, however, is rarely
the case for a geophysical modelling system, slrestrict our attention to the field of DiffereakiFree Optimisation (DFO),
in which the objective functiohcan be calculated, but its gradient is not avélab

Various methods exist, many of which are summariiséide review of Rios and Sahinidis (2012). Someegwod at exploring
parameter space to improve the likelihood of figdghobal rather than merely local minima. Others gneferred for quickly

moving to the absolute minimum once in its neighbood. The algorithms are encoded in various laggsde.g. Fortran,
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C, Python, Matlab), and usually require the usesupply a subroutine to compu{&), that can be called as required by the
optimisation programme.

This is satisfactory for many problems where thectbve function is readily expressed as an albarjtbut is somewhat less
straightforward to interface an existing geophylisivedel, as well as all the methods needed to ge@nd compare
measurement data with an optimisation code, intlis Nevertheless, examples of this approach edaound in hydrological
and climate modelling applications. For examplarfgeet al. (2015) developed a calibration tool{gdR software) to apply
the Shuffled Complex Evolution optimization algbrit to calibrate the Hydrologic Simulation Prograorifan (HSPF)
model. In climate modelling, Severijns and Hazelg@®05) used the downhill simplex method to optienthe parameter
values of the subgrid parameterizations of an gpmexsc general circulation model. More recentlyitB¢ al. (2013) applied

a Gauss—Newton line search optimization algorithmlitnate simulations with the Hadley Centre Atmuese Model version

3 (HadAMB) forced with observed sea surface tentpezand sea ice, optimising an objective functierived from reflected
shortwave radiation and outgoing longwave radiatiomparisons. The Tett et al. (2013) method wasemyently applied to
optimize the sea ice component of the global calpledCM3 climate modé€Reach-etal—2617).(Roach et al., 2017;Tett et
al., 2017).

Such custom applications of one particular optitiosealgorithm to a specific model, however, caguiee significant effort

to switch to alternative optimisation algorithmste be applied to new models.

_Modern coupled climate models, or operational fastsystems for weather and related processesngass a diverse set
of software tools, often running on multiple platfs. Ideally, we would like to be able to optimiserformance of the
modelling system(not just a single model code) without major reggunfation of software between the calibration and
operational/production versions of the system.

The Cylc workflow engine is now applied in severpérational centres to manage the scheduling ks taghin such systems.
So it seems natural to consider the possibilitdefeloping a framework within Cylc for the optintisam of the modelling

systems under its control.

2 Methods

In very general terms, a derivative-free optimimaglgorithm will explore parameter space, selecti@lues of the parameter
vectorX in some sequence. As eatls selected, it calls the (user-supplied) subrmuto evaluate the objective functif§).
In our case, this would amount to running a conepfeodel simulation with the corresponding paramsé#tings, comparing
outputs to measurements, from which a defined enedric is computed to provide the return valué. @this can involve a
lengthy simulation, needing a run tifigoqeiperhaps of order hours or days to reproduce manthisars of measurements.
A self-contained optimisation program, with an éciflly-coded function-evaluation subroutine, willr much faster, with a
run time per iteratiofie typically being some small fraction of a secont avill run in many orders of magnitude less time
than a typical geophysical model even if a numbeitevationsN of order 1000 are required. This might be the dase
“deliberately difficult” test problems: we might pect that a well-tested geophysical model will canité reasonable defaults
that in many new implementations will produce ailewithin a relatively simple “basin of attractibso that O(10) iterations
may suffice to get very close.
If the optimisation procedure calls for a full mbden to evaluate the objective function, aXdterations are required for
convergence, the total run time would be

N roaer—+Frrer 1)

T = TO + N(Tmodel + Titer) (1)

T~;E9L1\!{_’E S+ T Y

including an overhead, for initial and final tasks.
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As Todelis orders of magnitude larger thémandTier, the geophysical modelling system totally domisaten time, and we
can comfortably afford not to be concerned withueidg the efficiency of the optimisation routineee by a few orders of
magnitude.

So let’s consider a simple measure we might intcedio allow us to recover from an interruption paaty through a long
optimisation process. Normally, the optimisatiomleavill retain in memory the values of eathnd its objective function
f(¥) that has already been evaluated, to use in s&defcirther points to be evaluated. If we writegbevalues to file each time
the function evaluation is called, we can buildaujpokup table to use in case we need to restamprbcess. In that case, we
could have the function evaluation subroutine Sesirch the lookup table for a matckétfwithin some acceptable tolerance),
in which case it could return the tabulated eraug. Only in the case where a tabulated valuensagound would the full
model simulation be required to compute the retaine off.

Now rather than actually perform that computattbe, function evaluation subroutine could simplyteithex values (for the
optimisation code, using thosevalues as parameters, and add that result toookup table before restarting the whole
process from scratch. This time, assuming the egdition algorithm is deterministic, with no randpnocess influencing the
sequence of values, the firsh points would be exactly the same sequence thaselasted previously, and could be quickly
handled by table lookup, and the algorithm wouttegi find that a convergence criterion had beeisfgad, or select a new
pointn+1 to be passed to the model for simulation.

In effect, we are simply employing the optimisatadgorithm in a generic tool that, given the resoltall previous iterations,

either signals that convergence has been reachgdnerates the next parameter set to be evalbgtéiee model.

In this schemegndassuming that we start with an empty lookup table first pass has one iteration of the optimisatiode,
the second has two, etc. So, allowing an additiomathead” for the full process, the total run time to re#of termination
condition(s) afteN iterations should be

=43 (T 4 nT 4+ T h 2)
T Zap=I\Cte T rireE T model \
—’T“J_M(T + T N\ MND 3)
FA-N T+ FmpaeD+——Feer
N
T'=T+ Z(Ta + nTjger + Tmodel) (2)
n=1
_ NN +1)
=T+ N(To + Tnoaer) + ——— Ticer (3)
As Tmodelis orders of magnitude larger than the other tjrtiesratio of the two run times is
T ~1 +N—-‘-—I Titer /4)
2 2 Tooaa *
T' N+ 1 Tier

T s 2 Tmodel (4)
Given the expected relative magnitudes of the madeloptimisation iteration times, aNcf order 10s or 100s, the increase
in run time through this approach is actually ngigle.

On the other hand, this scheme has several bengfigst from being simple to code, the optimisatadgorithm, including
the user-defined function evaluation subrouting, ba completely generic, and applied unmodifiedifterent modelling
systems. The only requirements on the modellingesysre that, at the start of each simulatioredtireadin the parameter
values requested by the optimisation code and atapt to its standard input formats, then at the enthe simulation,
computes and writes to file a single error metailtie. The optimisation code and the model systartd¢ben remain separate,
both controlled by some form of scripting schenw, dxample. This means that having invested coredide time and
resources in developing a complex modelling schexmepajor reconfiguration needs to be made to pesipéor optimisation

in this mannerard-thenor subsequently re-implement the optimised modelling systeroperational or production mode.

8

W

Commented [HO1]: “terminate the optimization” might give thy
impression that the whole process is done, rattzer $imply waiting
for another model rui
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2.1 Cylc

The Cylc werkflow-engine(http://cylc.qgithub.io/cylcy wasis an Open Source workflow engine that can n&a oin
distributed workflows of cycling (repeating) taskswas originallydeveloped at NIWA teentrol-the-EcoConnect-operational
forecasting-system-and-related autoneateironmental forecastln@seapetsystems anénew-usedhas since been adopted
and

climate, weather, and related scien€®dc erchestrates-tasks-in-complex-cyeling-werkflows;gan manage large production

systems of great complexity, but it is also ea@for individuals and groups with less demandimgmation requirements.

ies) are_defineth wh efficient graph syntax that expresses- {Formatted Font: Italic

Qooltasks and an

dependenaes—en—e&he{—task—s—A_ytaﬂikean—staﬂ—e—e runtime properties (exactly whathetask should execute, and where
and how tosubmnns—;ebtask jobgo ru

Cylc tasks are related Ibyigger expressionthat combine to form dependency graphThis trigger,

A:status=> B

Fasks-may says that task B depends on task A aobithe statustatus(“=>" represents an arrow). The default triggextiss

is succeededjob execution completed successfully) and cawtiten simply as A => B; others includeibmitted, submit-

failed, started, finished, faile@nd custom task output messages. Tasks can depehd wall clock and on external events,

as well as on other tasks, and a task job can itted to run once all its dependencies are mgt @utomatically wraps

user-defined task content (environment, scriptetg,) in code to trap errors and report job stéusk to the suite server

program via authenticated HTTPS messages. Tasksweamtrigger off tasks in other suites, so forpted systems you can

choose between a larger suite that controls &btand multiple smaller suites that interact veidith other.

In cycling systems taskepeat omlate-time-eyclingequencege-g- representing-suecessivethat may représesgast cycles
defined-by , or separate chunks of a model sinaratiat is too long for a single run, or iteratiomsn optimization scheme,

or different datasets to be processed as the gted and so on. Cycling is specified W8® 8601 date-time recurrence

i PR ew (e.g. for environméotatasting),
or with integer recurrence expressions (e.g. ferative processes). Both date-time and integeriraycre used in the
application described in this paper. Dependencesaarycles (considerfarecastand-inter-cycle-dependencies{e-g-—where a
forecast model thas initialisedfremwith outputs from a previous cygle
Fasks-associated-with-mere-than) creates ongoistgnpally never-ending, workflows. Uniquely, Cytan manage these

without imposing a global cycle loopne cycledoes not have to complete before the next can statead, tasks from many

expressions#

cyclescan run concurrentjy

the full extent allowed by individual task depencies and external constraints such as computeneasand data availability.

So, for exampleyhenonrestarting afteen-extendedsystemdowntime, atasksuitethat processesearreal-time datdrom
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automatically interleaving cycles.

2.2 Implementation

We have developed a Cylc suite (“Cyclgpshttps://zenodo.org/badge/latestdoi/1836228)perform optimisation of a

modelling system that has itself been set up aparate Cylc suite. In the example we describeele model suite controls

a multi-year wave model hindcast, including theppoeessing of necessary model inputs (principaligdwfields) and
verification data (satellite altimeter data), rummithe Wavewatehwave modealode, postprocessing of model outputs, and
generation of error statistics from comparisonpreflicted and observed significant wave heighti§iel

Typically, a-medel suite-will use_datéme-basedcyclingis usedo run-for-example, a modeit successive forecast cycles,

or to breakspa long simulation into a successiortigfeshorteiblocks. The optimisation suite, on the other harséés integer
cycling, with each cycle corresponditgstep-through-terationsa single evaluation of thiective function

There are several tasks controlled by the optinoisauite. One of these is responsible for runmingptimisation algorithm
to eitheridentify eitheran optimal parameter vector frasata-provide-bprevious model runs, édentify-the next parameter
vector that—needgo be evaluatedn—thatprecess.This main optimisation task within the suite isplemented with

pythenPythorcode calling the NLoptythenPythortoolbox (Johnson, 2014).
NLopt includes a selection of optimisation algamith both “local” solvers, which aim to find the mest local minimum to

the starting point as efficiently as possible, &idbal” solvers, which are designed to explorefiileparameter space, giving
high confidence in finding the optimal solution @fia possible multitude of local minima. NLoptlimdes algorithms capable
of using derivative information where available,igrhis not the case in our application, and Cyclispgestricted to the
derivative-free algorithms listed in Table 1.

We have assumed that the sequence of parameters/éested by an optimisation algorithm is deterstin Several of the
algorithms available in NLopt have some inherestlichastic component. It is, however, possible aierthese algorithms
“repeatably stochastic” by enforcing a fixed seedtfie random number generator.

In NLopt, any combination of the following termii@ conditions can be set:

1. maximum number of iteratiorsy each call of the optimisation algorithm

2. absolute change in the parameter values less theesaribed minimum
3. relative change in the parameter values less thmastribed minimum
4. absolute change in the function value less tharescpbed minimum
5. relative change in the function value less thanesqribed minimum

6. function value less than a prescribed minimum
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In the second and third of these convergence iaitdre “change in parameter values” means the inatmof the vector

difference, i.e. [Y NP4 (Ax,)2.

We have implementeglythenPythorcode that uses NLopt calls to seek a minimum aftgective functiorf that represents

a non-negative model error metric. As described/apibie user-defined function evaluation has begrlemented as a generic
pythenPythonfunction f(¥) that simply searches a lookup table (stored fileq If X is found in the table it returns the
corresponding value, otherwise it saves the vectaio a file and returns-negativean invalidf value. Any of the termination

conditions listed above can be set by the usetagiof these can useasitiveprescribed minimurfivalue as a convergence
condition, whilea—regativean invalid value sighalingsignalshat the optimisation algorithm has stopped bezausew

parameter vector needs to be evaluated externally by a model simoula

containing parameter names and values in a formaatcan be parsed by the modelling system to gentra needed input

files for a simulation. At present a generic nastelormat is used as output from Cyclops for thisppseNamelists—ean

A-this—Brece A es-wherethesegrowssine-betreated

A “parameter definition” file is used to specify paeter names and their initial values, as usedinwthe model. If a
parameter iso-beallowed to be adjusted by the optimisation swuteallowable range is also set. This choice wiliegally
require some experience with the particular modéthin the optimisation suite, these adjustableapsaters will be scaled
linearly to normalised parameteithat lie between 0 and 1. Fixed parameters candbede for convenience, so that their
names anéhitial-values will be written to the namelist file but sieeare ignored by the optimisation suite.
The major tasks carried out by Cyclops on easfationcycleare:

0. (first iterationcycleonly): ipitlnit : write initial normalised parametet, to file, ...

1. optimise—stepOptimise run the optimisation code, starting fraipand evaluating every in the sequence, until
either a stopping criterion is met (in which case task sends a “stepes” message), or a parameter $e¢
reached that is not in the lookup table so needhiating (signalled by a “nextes” message)

2. make—namelistNamelist Convert to non-normalised parameters in a namelist file

3. run—medelModel: Create a new copy of the model suite, copy theatiat file to it, and run it in non-daemon
mode (i.e. so the task will not complete until thedel suite shuts down). A new copy of the suit@asle so that
files created in ongerationcycledo not overwrite those created on othertienscycles

4. update—tableTable Read the resulting error value from the modeiesw@ind update the lookup table

Within oneiteratiencycle the dependencies of the optimisation suite anglgt

Optimise:next =>Namelist => Model => Table

to make these tasks run sequentially when no stogiton is metFhe-suite-is-made-te-iterate-by-setting\Weasdependency
on a previous cycle:

At present < 0 is treated as an “invalid” return value, whistappropriate for positive-definite error metribst the
Python code could be modified to retdira None for more general cases.
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update—tableTabld-P1] =>eptimise— Optimise
(the notation —P1 denotes a negative displacenfemecycle period)hile-the to ensure that the lookup table is ugdte

with all previous results before starting the negtimisation cycle, and to prevent Cylc from runmpisuccessive cycles
concurrently.
Thestopping condition is handled by
irrise_ iter= .
Where-thestop—iterOptimise:stop =>Namelist Final => Stop

where theNamelist_Final task produces the final version of the namelist find theStop task does a final wrap-up of the

completed optimisation before the suite shuts dowor the purposes of good housekeeping, we can adsb a
rmedelModel deletetask to delete each copy of the model suite oldes autputs have been used.

Also, tasks which will not be needed (e.g. “Nanteiis"Optimise” gives a “stop” message) can be wrad, along with any

dependencies on those tasks, by so-called “suicidgers”. Figure 1 illustrates the workflow of the optimigati suite

described above in graphical form.
The optimisation suite’s Model” task for each cycle is a proxy for a copy of #hl model suite being run for the

corresponding parameter set. The model suitenisirmon-daemon (non-detaching) mode, so that thdelitask does not

finish until the suite that it represents runs emnpletion. Information passed between the suitesists of two simple files:

a “namelist” file containing parameter names andeswritten by the optimisation suite for the micslgte, and an “error”

file containing the single value of the error menéturned by the model suite.

The model suite needs to include a task to protdessiamelist file into the particular modelling ®ys's standard input

formats. Because the formats are highly model-§ipethis task needs to be tailored for the patticunodel suite. For

example, in our wave hindcast application describelbw, this task consists of a shell script wheitmply includes the

namelist file verbatim as part of an ASCII contiit#, which also has various timing parameters ftest from environment

variablesNamelists can include named groups of parametdishwnay be helpful in this process in cases witese groups

need to be treated differently (eaffecting different model input files for multipleoupled models and pre- and post-

processing tasks within the model suite). Howelféine namelist format proved inadequate to supiptyneeded information,

this format could be changed within the optimisatsuite to something more suitable. It should bessed, though, that no

change should be needed to the main model cod®scén run as standard release versions undemsasepask within the

model suite.

2.3 ParalleHterationsConcurrent simulations

For some DFO algorithms, at least some parts okéwgience of vectors tested is predetermined, mdepéndent of the
function values found at those points. For exanp@BYQA (which we chose to use in the test appiaratiescribed below)
sets up a quadratic approximation by sampling nit&l point, plus a pair of points on either sidleit in each dimension.
With N parameters, the firsi\&1 iterations are spent evaluating theb& 2 fixed points, regardless of the function values
obtained there. In such situations, the functidnesfor each of these points could be evaluatadlgineously.

This can be done within Cylc by allowing tasks framltiple iteratiorcycles to run simultaneously. In practice, this ngea
that multiple copies of the model suite are runrsirgultaneously, to the extent allowed by resoaitgcation on the host
machine(s). This makes it imperative that a newyadfthe model suite is made for eagrationcycle

H-paralleHterationslf concurrent model simulatgare allowed, this means that at any time therae aegtain set of parameter
vectors for which the function values are stillfgedetermined (we can call this the “active” Sétp can add another parameter
vector to that set if it will be selected by thetiopsation algorithm regardless of the functionues at the active parameter

vectors.
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We would clearly like to determine that without dirgy specific knowledge of how the particular opsation algorithm
works. Instead we use a simplmpirical method. To this end, we maintain a file (the “eefiile”) listing the active vectors,
and make an addition to the function evaluationautine, so that if it fails to find in the lookup table, it then searches the
active file and if it finds¢ there, assignfsa random positive value (in this application wa'tice-initialise the random number
generator with a fixed seed). Otherwise it write® file and returns-regativean “invalid” f valueto force the optimisation
algorithm to stop as usual. ThgthenPythorcode controlling the optimisation algorithm hasoabeen modified. Now when
the active file is empty it will act as before, liftthere are active vectoiswill run a small set of repeated optimisationsaHf

of theseall result in the same choice @fvalue to be evaluated, a “neie” message is sent to trigger further tasks for this
iterationcycle as before, since this choice is independetiite results for the active parameter vectorsotf we do not have

a definiteX to evaluate, and we must wait until at least drtb@presently active simulations has finishedbefrying again,

S0 a “waitites” message is sent. But clearly this does not mieahnthe optimisation is complete.

“ ”

M:We can now allow for concurrent simulations in @c suite in two ways. In the first method wetle Optimise task fail

when it determines a “wait” condition, and utili8glc’s facility to retry failed tasks at specifigdtervals.

We also replace the dependency

Table[-P1] =>Optimise

with the combination

Optimise[-P1] =>Optimise
Table[-PM] => Optimise

whereM is a specified maximum number of concurrent sitiites. This means that each cycle can first attémptart a new

model simulation as soon as the previous cycl@sikition hastartedand theMth previous simulation haompletedThe

“Optimise” task will keep retrying at intervals ilnt is able to give either a “stop” or “next” sial. This method has a simple

workflow structure, illustrated ifigure 2 that does not change llsincreases.

The second method, described in Appendix A and irsede tests described here, uses more complegndepcies and

additional Optimise tasks, instead of a singleyrety Optimize task. It is somewhat more efficiemthat there is no need to

wait on a (short) retry interval before determinih@ new cycle can start, but the workflow is me@mplicated and its

complexity increases withl. Both methods achieve the same result, howevey. oth allow up tdl model suites to run

concurrently, rather than iterating through themsénuence.

It should be stressed that the optimisation cosklfits simply run as a serial process in each:dage simply required to

produce the single set of parameters, if any,Herrtext model run given the known results of thegleted simulations. As

it checks that this parameter set is independetiteofesults of the presently active model runeuit needing to know the

actual results, no parallel processing is requivitdin the optimisation code.
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3 Application: a global wave hindcast based on ERAaterim inputs

Here we describe a global wave simulation, usiegthvewatehWAVEWAT CHII® mode} (WW3), forced by inputs from
the ERA-Interim Reanalysis, covering the periodrfréanuary 1979 to December 2016.

Such multi-year wave model simulations are a vdkiateans of obtaining wave climate informationgtsl and temporal
scales that are not generally available from dineeasurements. It is rare for a particular locatibinterest to have a suitably
long nearbyin situ wave record, e.g. from a wave-recording buoy, tovide statistically reliable measures of climate
variability on inter-annual time scales. And whshgellite altimetry has provided near-global resafisignificant wave height
that have been available for more than two decadbese have limited use for many climate applicetifor several reasons,
including a return cycle that is too long to resotypical weather cycles, limitations in providingarshore measurements,
and lack of directional information. Model simudats can in many cases overcome these limitatibns,available
measurements still play an essential role in cafibg and verifying the simulations.

In our case, one of the principal motivations farrging out this hindcast is to investigate thesrof wave-ice interactions in
the interannual variability of Antarctic sea icdem, which plays an important role in the globahate system. The ERA-
Interim Reanalysis is a suitable basis for this kygroviding a consistent long-term record, withiedal control on any
extraneous factors (e.g. changing data sourceapdelling methods) that might introduce artifidiednds or biases into the
records. While the ERA-Interim Reanalysis includeupled wave model, direct use of the wave ostpoés not fully meet
our requirements, which include the need for theenvaindcast to be independent of near-ice satellitee, which were
assimilated into the ERA-Interim Reanalysis. Heweechose to carry out our own wave simulation,ddrawith ERA-Interim

wind fields, but with no assimilation of satellileve measurements.

3.1 Comparison of model outputs with altimeter data

Rather than being assimilated in the hindcast/lgataltimetry measurements of significant waveghé were used as an
independent source of model calibration. These vedatained from the IFREMER database of multi-missguality-
controlled and buoy-calibrated swath records (Quedu, 2004).

Swath records of significant wave height were figffocated to the hourly model outputs on the 2°mbdel grid. For each
calendar month simulated, collocations were thesumalated in 3°x3° blocks of 9 neighbouring celisproduce error
statistics, including model mean, altimeter medas land root-mean-square error (RMSE), and coioelatoefficientR.
Spatial averages of these error statistics werentaker the full model domain between 65°S and 6&*¢tluding polar
regions with insufficient coverage).

The final error statistic used in the objectivedtion was the spatially-averaged RMSE, normalisethb spatially-averaged

altimeter mean, temporally averaged over the sitirlgeriod, excluding spinup.
3.2 WavewatehW\W3 parameters

For this simulation we used version 4.18 of thevewatehWAVEWATCHIII®_(WW3) third generation wave model

{Felman20%4)(Tolman, 2014The model represents the sea state by the twerdiimnal ocean wave spectruﬁﬁ%}%ﬁ

SF(k, %, ), which gives the energy density of the wave fieddagfunction of wavenumbér, at each positiof in the model

grid and time of the simulation.

The spectrum evolves subject to a radiative traresfeation
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N . . a .. S

—+V, - (XN)+—(kN) + —(6N) == 5

5e Vet (GN) + 5 (kN) + 55 (ON) = )
for the wave actiomV(k,0,%,t) = F(E, %,t)/o(k), whereo is the frequency associated with waves of waversmb

magnitudek through the linear dispersion relation, @i the propagation directioihe dots represent time derivativéhe

terms on the left hand side represent spatial aiwe@nd the shifts in wavenumber magnitude anection due to refraction
by currents and varying water depth. The souraee &on the right hand side represents all other pesethat transfer energy
to and from wave spectral components, includingrifmmtions from wind forcing, energy dissipationdaweakly-nonlinear
four wave interactions.

Adjustable parameters withihe-Wavewatch-medelW\Wthat can influence a deep water global simulasioch as the one
described here are principally concentrated invifrel input and dissipation source terms. It is gele necessary to treat
these two terms together a'package’.self-consistent ‘package’ of input anskipation treatments designed to work together.

In this study we undertook two separate calibrageercises, based on two ‘packages’ of input/diggip source terms, firstly
that of Tolman and Chalikai4996)(1996)activated inAavewatechWWdy the ST2 switch), and secondly the Ardhuin et al
(2010) formulation (using the ST4 switch).

In the-Appendix B we describe some of the details of these two maekaWe also include some description of the WAM
Cycle 4 (ST3) input source term formulation (Jansd®91), on which the ST4 input term is basedneheugh the ST3
package was not tested in this study.

In addition to the input and dissipation terms,dtieer main control on deep-water wave transforoma provided by weakly
nonlinear four-wave interactions (Hasselmann, 19@Xfortunately, acceptable run time requiremerds multiyear
simulations over extensive domains still precludag a near-exact computation of these terms, asdhe Webb, Resio,
Tracy methodWebb,-1978:Fracy-and-Resio1982)(Webb, 1978;Teawy Resio, 198Zhat is available in spectral models
including WavewatehWW3van-\edderetak—2000)(van Vledder et al., 200istead we use the much-simplified form of

the Discrete Interaction Approximation (Hasselmaginal., 1985), treating its proportionality condtéhas a tunable

parameter.

Common to both optimisations, sea ice obstructies turned on (FLAGTR=4) with non-default valuestf critical sea ice
concentrations,, ande,, between which wave obstruction by ice varies betwzero and total blocking: these were set to
0.25 and 0.75, respectively. All other availableapaeters beyond the input and dissipation term Weft with default
settings, noting that shallow water processes,enduitivated, are not expected to have more thagkgible and localised
influence on model outputs in a global simulatibd aresolution.

For initial testing, in which two sets (ST2 and $dfoptimisation parameters were compared, we as@te month (January
1997) spinup to a three month calibration pericebfEary — April 1997). The selection of the caltlia period from the full
extent of the satellite record was arbitrary.

Relevant parameters used in the two calibratioadisted in Table 2 and Table 3, respectively, Wwhigfer to the parameter
names as defined (more completely than we do he ke WavewatechWW3user manuafFetman,—2634)(Tolman, 2014)
and as specified in namelist inputs to the modegsE tables include the initial values of the patens, the range over which
they were allowed to vary, and the final optimisedues.Seme-fixedOtheparametersre-atsonotisted fer-cempleteness.
Ferwere kept fixed. A particulaxample wasthe input wind vertical leved, (ST2)= z, (ST4) = 10 mwhichis a property
of the input data setp-was-teftfixed.hence not appropriate to adjOthers were left fixed after an initial test confed that
they hadzerenegligibleinfluence on the objective function, leaving 13usthble parameters for ST2 and 17 for ST4.

The selection of which parameters to tune, andahge over which they are allowed to vary, is aaavhere some (partly
subjective) judgement is still required, based ome familiarity with the relevant model parametatizns. In this case,
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parameter ranges were chosen to be physicallystieakind to cover the range of parameter choised in previous studies

reported in the literature.

3.3 Optimisation settings

We elected tqrimarily use the BOBYQA optimisation algorithm (Powell, 2QGor this study. Given that we expected
WavewatechWW3o be already reasonably well-tuned for a glolralugation such as our test case, we wished to Useah
optimisation algorithm that could reach a solutiora problem with 10-20 variables in as few itemas as possible. Of the
algorithms available in NLopt that were includedlie intercomparison study of Rios and Sahinid®l@, BOBYQA was
found to be the most suitable in that respéctparticular it allows for concurrent model ruimsthe early stages of the
optimisation process.

Both optimisations were stopped when either thelabs change in (normalised) parameter values esssthan @20001 or

the relative change in the objective function wesslthan @2-0001. Less stringent conditions were initialsed, but the

ability of the optimisation suite to be restarteithwevised stopping criteria was invoked to extémesl optimisation.

These first two tests used a local optimisationhméton the assumption that the respective defauétrpeter sets are near-

optimal, or at least within the “basin of attracfioof the optimal solution. In order to test thissamption, two further

approaches can be considered. The first choicedumilto use a truly global optimisation algorithorekplore the selected

parameter space as thoroughly as possible. Thiwagp may be expected to require a number if itgratin the thousands,

which is rather challenging given typical model times, especially as global methods do not gelyes#ibw for parallel

iterations.

A simpler approach is to still use a local algarittbut initialise it at a range of different stagipoints. This was the approach

we took for our next set of tests, restricted ®$T4 case, in which the initial value of each peater was selected at random

with uniform probability distribution over its alleed range. Five randomised tests were done, aldily av control

optimisation starting from the default parameterused previously. For these tests we made sortieefusimplifications in

the interests of computational speed, running thédast for only one month (February 1997), antialiing all simulations

from a common initial condition, spun up over onenthh with the default parameter set. Both simpidifiens detract from

how applicable the resulting parameter sets woelfbhbhindcast applications, but can be justifiedllowing a more extensive

examination of parameter space with a given contipmiz resource. A slightly reduced set of ST4 paeters was optimised,

omitting CZE¥, cHX andsg. The initial and final values of these paramefeys each of the tests are listedTiable 4and

Table5, respectively. The allowed range of each of thjesidble parameters was the same as in the presimusations, as

listed in Table 3, while both stopping criteria weelaxed to a value of 0.005.

Despite the expected high computational demandsiexeattempted an optimisation using the globaléionary algorithm

ESCH of da Silva Santos et al. (2010). This wattailiged from the default parameter values, andi tise same one month

hindcast, parameter ranges and stopping criterieessribed above.
Following the-two-cemparisonthese tesimulations, the ST4 parameterisation was chosea final calibration, carried out

over a 12 month period (January — December 19%9pfimg a one-month spinup (December 19%8):thisThiscalibration
he-same-settings-were-initially- used;-but thetgist the-optimisation-suite-to-be restarted-withised _was finally terminated
i imisati i i edsdb a value of 0.0001. This was

with bothstopping criteriaw
a somewhat arbitrary choice made to observe thkigmo of the solution. For practical applicaticthe choice of stopping
criteria should take into account the sensitivifytlve objective function to measurement error ia thata used for the
calibration, to avoid unnecessary ‘over-tuningtteé model.

The full hindcast, from January 1979 through Decen#®16 was then run using the optimised paranseteiComparisons

with altimeter data were made for each month fromgust 1991 onward.
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EachWavewatehWW3simulation was run on 64 processors on a singte obeitheran IBM Power6or a Cray XC50
machine. Other processing tasks within the suit®wun on single processors. The resulting hiridsieaulations required

an average of approximately 25 minutes of wall klme to complete each month of simulation.

4 Results

4.1 Local optimisation of 3 month hindcasts with SZ and ST4 source terms

The BOBYQA algorithm develops a quadratic modettaf objective function. To do so, the first iteoatievaluates the
objective function at the initial point, then petis each component in turn by a positive increnteen by an equal negative
increment (leaving all other components at theahitalue). This can be seen for the ST2 optimigain Figure 3, in which
the bottom panel shows the sequence of (normalgE@dmeter values tested. With 13 adjustable pasamehis amounts to
27 iterations in this preliminary phase. As thigugnce of parameter values is fixed, independethieofesulting objective
function values, all of the first 27 iterations ébhave been run simultaneously as detailed abbpermitted by the queuing
system. We, however, applied a limit of 7 paratiedations in line with anticipated resource liniibas.

The 3-month ST2 optimisation only required a furthé iterations after this initial phase to reach gptog criterion. The
ST2 default parameter settings used as the stgyting for optimisation resulted in an objectivanétion value of 0.1901,
which was reduced toD4951424in the optimisation process.

In the optimal configuration, none of the tunabdegmeters were at either of the limits of their @sgd range, indicating that
convergence to a true minimum (at least locally) heen reached. Most of the parameters were aglytlst modified from
their initial values: the largest changes wereamnameters$, (reduced from 0.0003 to@2622614000205%ndb, (0.47 to
0.275612493, both influencing the low frequency dissipatienn.

The ST4 3-month optimisation was initialised wilte tdefault settings from the TEST451 case repdstedrdhuin et al
(2010), for which the objective function returnedadue of 0.1427. Optimisation only managed to oedthis to k4221419
(Figure4), indicating that the default ST4 parameter s&t already quite closely tuned for our case, haveen selected by
Ardhuin et al (2010) largely from broadly simildudies, i.e. global simulations (at 0.5° resolutioampared with altimeter
records.

Three of the parameters ended the optimisatiomatemd of their allowed range, in each case asdhee value at which it
was initialised. The 1Badjustable parametery) controls the assumed directional spread of thsipition spectrum, and the
fact that it remained at its upper limit suggebtst the optimisation may be improved by assumiegdibsipation spectrum to
have a narrower directional distribution than dptited. On the other hand, parametersCE4() and 15 ¢4X) are associated
with an alternative breaking formulation proposed Rilipot and Ardhuin (2012), who chose valu@* = 0.185 and
CHCK = 1.5 (and correspondingly, turned off the default sation-based dissipation term by settitf§* = 0) whereas this
term is turned off in the ST4 default, hence bo#hennitially set to zero. On the face of it, onig/nt think that the optimisation
algorithm would have been free to explore solutiaith positive values of these parameters, regyitiran optimal ‘hybrid’
total dissipation term. In fact the way the dissigraalgorithm is coded, this form of the dissipatiterm is not computed at
all in the event that ¥ = 0.0, which would have been the case when the BOBY @arithm explored sensitivity t65.¢

in the initial stages. This means that our choiténitial values may have spuriously caused the BQB\ algorithm to
underestimate sensitivity @:°%, and may have missed a distinct second local minirapproximately corresponding to the
parameter settings of Filipot and Ardhuin (2012)).

4.2 Tests with local optimisation with randomisediitial parameter sets, and global optimisation

The next set of five tests compared results ofdbhal BOBYQA algorithm starting from different paneter sets chosen at

random within the allowed rangeBable 4. The resulting final parameter sets, listed ibl&®, show that each test located a
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different minimum. This indicates that there ardtiple local minima for the error metric in our cden parameter ranges, in

addition to the local minimum derived from the défgparameters. The corresponding values of ther enetric were all

slightly higher than the value (0.1454) obtainexnhfithe baseline optimisation starting from the ditfaarameter set, although

much reduced from their initial valueBaple 4. Although none of those additional local mininwaurid so far has replaced

the baseline set as a candidate for a global optinthis gives no guarantee that this would notheedase after a more

thorough search.
The attempted global optimisation (using the ES@érthm) of the same hindcast, had not convergedithin the chosen

tolerances after 800 cycles. However, in the coafsts operation it did identify over 30 paramesets with slightly lower

error metric than the minimum value (0.1450) obdiin the corresponding baseline local optimisatidme lowest value

within 800 iterations was 0.1441, and the corredpanparameter values are included in Tdbl€his supports our suspicion

that a local optimisation algorithm cannot be igtligpon to identify the global optimum for this h@adt problem. On the other

hand, the very small decrease in the error mebiained from this wider search does not give stijostification for making

a significant change in parameters from near tihefault values. We need to bear in mind that theregation problem we

have addressed in this set of tests (i.e. minimiBIMS errors in significant wave height from a onenth partial hindcast) is

not quite the same as optimising this measure @veore representative period.

4.3 Local optimisation of 12 month hindcast with S# source terms

In the final 12 month ST4 optimisation, two addiig parameters were allowed to vary that were fixethe 3-month
optimisation, bringing the number of adjustablespagters to 19. These were the critical sea icessuration parametees ,
ande. , between which wave obstruction by ice varies betweero and total blocking: thesere-set-tohad been fixed at

0.25 and 0.75, respectivelyin the 3 month optimisation©therwise, the initial parameterdaple—able 4) again

corresponded to the ST4 defaults, which in thige gasduced an error metric of 0.1436. At the teation after 89 iterations
(with the more stringent stopping criteria), thadhdecreased to 0.1431.

Most of the resulting optimised parameters werselm the values obtained from the 3-month optitiisaTable 3). An
exception was the FMadjustable parametet,,,, , scaling the strength of the turbulent contribatto dissipation, which
finished the 3-month optimisation at 0.41298, k.8 (the lower bound) in the 12 month simulations

For this longer optimisation, we have additionalbmputed a measure of the sensitivity of the ohjedunction,using the
initial phase of the BOBYQA iterations to estimé#te change in the (un-normalised) parameter reduaeroduce a 0.1%
change in the objective function. This is listed@slta” in the seventh column of Table 3, and pdexs a measure, at least in
relative terms, of the bounds within which eactapaeter value has been determined.

The full hindcast, run from 1979 to 2016, couldchenpared with satellite data from August 1991 omlwa@he resulting bias
in significant wave height, averaged over the Aud®91 — December 2016 comparison period, is showigure 5. Positive
biases are obtained in latitudes south of 45°Sicparly south of Australia and in the South AtianThis is also seen in the
vicinity of some island groups (notably French Pelsia, Micronesia, the Maldives, Aleutians, CamifneAzores), which
may be indicative of insufficient sub-grid scalestthction. On the other hand, negative biasese®e sear the western sides
of major ocean basins, and in the “swell shadowth® northeast of New Zealand. A similar pattersdsn in the results
reported by Ardhuin et al (2010) for their TEST4#ke (their Figure 9).

Normalised root-mean-square error (i.e. RMSE eliaded by the observed mean) from the same comparagain averaged
over the period August 1991 — December 2016, isvehia Figure 6. Note that the objective functiom éur optimisation
used this measure, spatially averaged over ocetersMaetween 61°S and 61°N. For the majority ofdbean surface, this
lies in the range 0.08 — 0.14, but with higher ealnear some island chains and the western boesadmcean basins. Again,

similar results were reported by Ardhuin et al @01
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5 Discussion

In their review of methods used to tune Numericaldifier Prediction and climate models, Hourdin et24l17) observe that
with the number and complexity of parameterisatitmsonsider, the task of tuning these parametass far a long time
largely left to “expert judgement”, and that objeetmethods have made a more recent appearancenthiaa statistical,
engineering, and computing fields. The method aeetpresented here, along with the approachesvefis and Hazeleger
(2005), Tett et al. (2013), Roach et al. (2017dbed in the introduction, perform model tuningahgh the relatively direct
approach of defining and minimising a cost functi@ur method has the advantage of employing a(@t) that is already
beeomingcommonly used to control complex workflows for wes forecasting and climate modelling systemspiimize
the parameters of such a system under its comralway that is simple to implement, and flexilsleehoice of optimisation
algorithm.

We have showiithis to be a practical method for optimising 10-20 paeters in a model application of sufficient comjitiex
to require several hours per simulation in a parglfocessing computing environment. For applicetithat are yet more
time-consuming, it is becoming increasingly comn(Ballprat et al., 2012/ang-et-ak—2014Wang et al., 20Ddan et al.,
2017) to first build a surrogate model to providstatistical emulator for the actual model, anchtbpply an optimisation
algorithm to the surrogate model. Such multi-steg®lel optimisation frameworks apgesentiybeyond the scope afur
techniguethis papgbutit-may-be-worth-considering-wheththe flexibility of our approachray-aisocould potentiallring

surrogate model to quantify the role of the full s@ model parameters and perform an initial globgiimisation, before

switching to a method such as ours for a finahefient using the original model directly.
In our study we hav&rgely restricted our attention to one local optimisatagorithm (BOBYQA), but our initial results
suggest the need in some circumstances to applyra giobal method. This is not difficult to do principle with multiple

algorithms, both global and local, implemented iyclBps—but-just-noet-investigated- in. However, the geleraigher
computational demands of a global algorithm putrét lon such applications. ihisiaitiat-study-_we have only been able to

undertake a preliminary exploration of the widergmaeter space of our single chosen test case dithisowever illustrate

that the possibility of multiple alternative logainima must be considered.

As we have seen, there remains a need for careth@tbhoices of which parameters to attempt tanapé, and what bounds
to set on their values. Most optimisation algorishare intended for continuously variable parameterd may rely on the
objective function having a continuous dependencéhese parameters. In many cases it is clear vwacameters fall into
this category, as opposed to discrete valued optiBat in some cases, model code may make binarigehbased on real
parameters lying within discrete ranges, which rhegak this assumption. Hence the Cyclops optinueasiuite is best
employed in conjunction with a good understandifithe role each parameter plays in the model, badrtterplay between
them.

It is also important to be aware of the role plapgdthe design of the error metric, which may méksensitive to some

parameters and insensitive to others. One shoulehbeof accepting a large change in these inseegiirameters to achieve

a tiny improvement in the chosen error metric, wkien resulting model could then perform poorly agaiother relevant

criteria. In the particular wave modelling casehage investigated, our approach would not be gaffton its own to identify

suitable values of the large set of WW3 parametéttsout quidance from previous studies.

Tett et al. (2017) point out that the inherenthaatic nature of the climate system means that &ioelevel of noise is

introduced into evaluations of an atmospheric mai@lulation, which can cause problems in evaluath®termination

criteria. They describe a procedure to rerun a lsitimn that had nominally satisfied the prescribedvergence criteria, with

randomised perturbations before determining whetheot to terminate. Unlike the atmosphere, oceaface waves are an

essentially dissipative system, and perturbatiatr®@duced in the initial conditions and forcing iénd to diminish, rather

than grow, with time. As a result, noise in theemlive function was not so relevant for our wavedast application as for
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atmospheric models, but may need to be addresséd @ystems with an underlying chaotic nature, jphgghrough

implementing similar measures to those of Tetl.€2817) into Cyclops.

Similarly, the dissipative nature of ocean wavesmsghat a cost function based on a spatial averfahe (temporal) RMSE

of model-data comparisons will not be subject ® léwel of chaotic variability seen in similar meeess for atmospheric

models. Small scale variability in wave model otiistherefore more likely to be genuinely sensitio parameter variation.

In that case it is worth capturing such variabilitythe cost function, whereas for a chaotic systemay be wiser to average

out such variability before evaluating the costcfion.

Conclusions

The Cyclops Cylc-based optimisation suite offefeaible tool for tuning the parameters of any mitidg system that has
been implemented to run under the Cylc workflowieegMinimal customisation of the modelling systemequired beyond
providing tasks to input and apply model paramedtues in a simple namelist format, and outputiee of the scalar error
metric that is to be minimised. This then allowy ah16 optimisation algorithms (from the NLopt tbox) to be applied to
the optimisation. This optimisation suite is exjecto be especially applicable to operational faséng systems, where
minimal re-configuration is required between “tugiimnd “operational/production” versions of thedoast suite.

Results of the initial test case we have investidaa global hindcast using a spectral wave matebtl by ERA-Interim

input fields, illustrate that the method is appiileato a modelling system of moderate complexibthbn terms of the number
of parameters to tune, and the computational ressuequired, at least for the purposes of locaigation to fine tune a
model that already has a more-or-less well developitial parameter set from previous studies. stigations of systems

that require a more global tuning approach, omawee computationally demanding remain for futurekwvo

Code availability

Cyclops-v1.0 has been published throeghedoZenod¢https://doi.org/10.5281/zenodo.8379@inder a Creative Commons

Cylc is available from GitHub (https://cylc.qgithidycylc/) and Zenodo (https://zenodo.org/badgedtatei/1836229) under
the GPLv3 licence.

20

_-— ‘[Formatted: Font: Not Bold




10

15

20

25

30

35

Appendix A: Handling concurrent simulations through dependencis

An alternative way to allow for concurrent simutats involves modifying the simple Cylc suite delsed above to have

several versions of the “Optimise” task. Now “Opt_runs the optimisation algorithm when there ameactive model

simulations still running, witim ranging from 0 to a set maximuvi+1, whereM is the maximum number of concurrent cycles

we chose to allowlhere are a more complex set of dependenciestoethat this is the case. In particular, thesedsndition

Table[-P(m+1)] => Opt m
to ensure that the lookup table has been updatbdivé results of all completed (iMavewatehinactive) cycles. If that is the

case, the optimisation code will be run to detemiira new model simulation can be launched wiigséem tasks are active.

If not, the suite will wait until one of the activaodel runs completes, and try again with “Qpt1”, and so forth.

The dependency diagram for the case in which uibree concurrent simulations are allowed (Me= 3) is illustrated in

Figure7. Assume, for example, that we are still well stwdrtonvergence, and that the optimisation algorith such that the

next parameter set tested depends on all prevésusts. Then “Opt_2”" and “Opt_1" will always give‘wait” message, and

“Opt_0" will be needed on each cycle. This effeelvproduces the same behaviour aFigure 1 with each cycle waiting

for the immediately preceding cycle to completeobef'Opt 0" can start, leading to a new model ifyron the other hand,

the algorithm never depends on the results of tieeipus two (active) calculations, “Opt_2" will ahys give a “next”

message. This removes the “Opt_1 and “Opt_0" tésikd any dependencies upon them), leading to thed&¥ task being

called for cycleN as soon as the cyclé-3 model run has completed and updated the lookup,taben if the cycléN-2 and

N-1“Model” tasks are still running.

Appendix B: WW3 source term parameterisations
AB.1 Tolman and Chalikov input + dissipation sourceérm package

The input source term is defined as

S (e 8y = BN 8 (A1)
AT AR/ ¢
Where

Sin(k, 8) = aiN(k,0) (B1)

wherep is a non-dimensional wind-wave interaction par@&methich has a parameterised dependence on wietlsgnd
direction, through boundary layer properties infloed by the wave spectrum. These dependencieshewnever, fully
determined with no user-adjustable terms, so we treidetails here.

This input term was, however, adjusted by Tolnf2@62)(2002)following a global test case to ameliorate an este
dissipation of swell in weak or opposing windswimich case$ can be negative. This is done by applying, whes negative,
a swell filtering scaling factor with a constantueX; for frequencies below Off (wheref,, is the peak frequency), scaling
linearly up to 1 at 08, with higher frequencies unmodified.

The same study also led to the introduction of meation for the effects of atmospheric stabilitywave growth identified

by Kahma and Calkoen (1992) by replacing the wipekshu with an effective wind speed,, with
2

A e
- ; T
Ug\? G
(;) =1 + ¢, tanh(max(0, £, {ST — STy})) + ¢, tanh (max(O, fi 8T ~ 570})) (B2)
2
wheresT is a bulk stability parameter
sy = ot (A3)
u,z.l Fo N
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sy =9Ta T

(B3)

uz T
in terms of air, sea and reference temperatlyyeg; andT,, respectively, and,, the wind speed at reference height 10
m, with g the gravitational acceleration. As air and seéasertemperature fields are available from the HRt&rim dataset,
it was possible to apply this parametrisation,ttregcy, c,, ¢,, fi andsT, as adjustable dimensionless parameters.
The dissipation term consists of a dominant loverfiency constituent, with an empirical frequencyedefence parameterised
by constant$,, b, ¢.,.;, and a high-frequency term, parameterised by cotstg, a,, a,, the details of which we leave for

AB.2 WAM Cycle 4 source term package

The input source term implemented in WAM Cycle4Japssen (1982) was based on the wave growth tbéMijes (1957).
The starting point is the assumption the wind sgééds a logarithmic profile, so that if the windldie input to the model

are specified at elevatiar , then

Ul )= oe(72) (A4)
\ZTo) PR ) kX

Zy

Uz =g () (84)

whereu, is the friction velocity, defined by the total wirstresg = u2, x is von Karman’s constant, amgis a roughness
length modified by wave conditions:

=% (A5)
T EPe— T

Zg

Zl:,/l—fw/r (B5)

in whicht,, is the magnitude of the wave-supported stresdewhi

Zp=ayT/g (B6)
with @, a tunable dimensionless parameter.
The wave-supported stress can be equated to thefratomentum transfer between wind and waves:

2 = (dlkdo=s (l. 9\ (A7
W ST T m YT N
) k
2y = f dk d9 7 Sin(k, 6) (B7)
wherec is the wave phase velocity
The WAM Cycle 4 input source term is then given by
_ Pa Pmax z,4 (¥= 2
g223 g P JFZ c 23 w/ g 0
_ Pa .Emax Z 74 Uy z D
Sin(le,0) = L2 (T4 20 [max(cos(68 = 6,),0)P"oN(k,0) + Soue (k. 0) (®8)
w
with
Z=logths)+——" A9)
<
7 = log(kz,) + £
= loglrzy
cos(6 —6,) (% + za) (B9)

In these termp, andp,,are the densities of air and watgy,,, is a dimensionless constagt,is a wave age tuning parameter

andp,, is a parameter controlling the directional depeweéeelative to the wind directidh, .
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The inter-dependence af,, ands;,expressed inA7)-and-(A8E7) and (BB) creates an implicit functional dependence:of
onU andr, /7. In practice, this dependence can be tabulatédg tise resolved model spectrum for the low-frequeft <
kmax) part of @&7B7), above which & =5 diagnostic tail is assumed.

TheS,,; term represents a linear damping of swells, irfoe (Bidlot, 2012):

— Pa (#)2 K6
P \ € T westheny ! )

Soue(k, 6) = 2 p“(u*)z[ ©-0,) K ]N(k@) B10
out\K, = SlKPW C cos u u*log(kzo) a ) (B10)

with s; set to 1(0) to turn on(off) the damping.
Dissipation is represented in the form

ook \?

X : Seon (5 v, (A11)

2
Sus(l, 0) = Cue@?6 [51 % +5, (g) ] N(k, 9) (B11)

whereCy; is a dimensionless constant, aidands, are weighting parameters. These take valdgs= —1.33,8; = 0.5
and §, = 0.5 in the ECMWF implementation of WAM as reported Bydlot (2012), but are adjustable within
WavewatehWW3Mean wavelength and frequency are defined as

L [LREneea] T (A12)
Tl fvesan *
-11/p
P
f = |[LKPN G, 6)dk (B12)
[ N(k,6)dk
and
o [fetmard (A13)
[ facearak | v
-11/p
P
- M (B13)
[ N(k,8)dk
with p = 0.5 andp = 1 being the respective WAM defaults (Bidlot, 2012)ily mean steepness is
a="FEk2 (AL4)
A
a=Ek? (B14)

B.3 Ardhuin (2010) source term package

This package introduces a saturation-based digsip&rm. In order to accommodate this, the WAM ey input source

function is modified by replacing., in (B8) with a frequency-dependent form _ - [ Field Code Changed
f1‘{l\\2—|-.2 | ||rk,u*r,mk_’c rl’n\ll (A15)

furto) = —sat {f ek 46 Smbl o) (A15)

In

k 7

k
(u.(k))* = [u? — Is, f dk’J’dHESin(k’,B) (B15)
0

in whichs, =~ 1is a sheltering coefficient, to allow for balangi¢h a saturation-based dissipation term. Alsaatlcan be

placed on the roughness length replacing,B6) with _ - [ Field Code Changed
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= minl

=R A E ) (A16)

Zo = min(a, T/g 'ZO,max) (B16)
The swell dissipation parameterisation of Ardhuimle(2009) is used, consisting of terms

I (@)= m—s P22 o0 SIN(}k 8) (AL7)

G A A S R A \aca

D
Soutwisc(k,0) = —ss p—“ [2k\/2v,0|N(k, 6) (B17)
w
and
(e @)= —PE[16F 52, 1 A AN(le-0) (A18)
ouLturb \Vr v/ P [*YTeY Horhs/ TV U7 H=+o)
_ _Pa 2
Suut,turh (k, 6) - ,0_ [16f90' uorb,s/g]N(kv 6) @18)
w

due to effects of the viscous and turbulent bountiayers respectively. The latter depends on tgeifitant surface orbital

velocity
o2 dled8 63N 02 (A19)
7 J TS 97T {
1/2
Ugrps = 2 [ j dkd6 3N (k,6) (B19)
while v, is air viscosity and; is a tunable coefficient of order 1. The two telans combined in weighted form
< (e 0) =2 G (Je O 4L o C (Je- ) (A20)
GUENT I =Rt ps U V) T RO oLt I 7 =y
Sout(k,0) = rfsuut,vis(kv 0) + 74 Sout,curb (k,0) (B20)
with weights
P05 b Re—Re o) (A21)
* - € J7 77T \
7. = 0.5(1 + tanh((Re — Re.")/s7)) (B21)
depending on a modified air-sea boundary layer Bleljgnnumber
Re-=2ugmpHofvg (A22)
Re = 2uypp sHs/Vq (B22)
which is taken to have a threshold value dependingignificant wave height:
Rez"=Re4mfH =" (A23)
Re.' = Re (4m/H) =% (B23)
The turbulent dissipation term is parameterisedepend on wind speed and direction:
£ —=c £ 4+ [l | 4 (0 O 1oy /oy (A24)
Je TleM T T LIS 7 YT+ "eF¥h =T
fe = S1feom + [Is3] + s2c05(0 — 0,)]w. /Uy (B24)

based on the friction factgf ;) from the Grant and Madsen (1979) theory of odailaboundary layer flow over a rough

surface.

The dissipation term is based on the saturatidheofvave spectrum, and takes the form

(A25)
cast
Sas(k,0) = 0 —=[64 max(B (k) — B, 0)* + (1 — §,) max(B'(k, 8) — B, 0)*IN(k, 6)
B2 (B25)
+ Sbk,cu (k' 9) + Sturb (kv 0)
where the dissipation spectrum is integrated ovemitéed direction range, i.e.
B8y = [0+ 113 sBlg — ANk 8)do" (A26)

Jo—ng
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B'(k,0) = f ok3 cossB(6 — 8")N(k, 6)do’ (B26)
6-4g

and
B =max(B"(Ue0)-6-€{0:27)- (A27
B(k) = max(B'(k,0),6 € [0,2r]) (B27)

The cumulative breaking term, associated with |&gme breakers overtaking short waves, is

1426 ok ., 2% 2 )

—14.2 21 2
Spie,cu(k, 0) = CuN(k 9)f dk' | d6'max {«/B(f’.@’) - /B, ,0} (B28)
0
Wherer,, = 0.5 andC,, is a tuning coefficient.
The turbulent dissipation term is
S et — e et (h29)
Seury (k, 0) = (B29)

An alternative breaking formulation (Filipot anddfuin, 2012) based on a bore model uses a dissipegdie per unit crest

length of

T (A30)

far'a f"wyl T \]
1 CEKH
== B30)
€ck =7 PwY tanh(kh)(m tanh(kh (B30)
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Table 1 Derivative-Free Optimisation algorithms fran the NLopt toolbox supported in the Cyclops optimsation suite

DIRECT: Dividing RECTangles (Jones et al., 1993)

DIRECT-L: Dividing RECTangles, locally optimised &Blonsky and Kelley, 2001)

DIRECT-L-RAND: a slightly randomised variant of DECT-L (Johnson, 2014)

CRS: Controlled Random Search (Hendrix et al., 2001

CRS2: Controlled Random Search (Price, 1983)

CRS2-LM: Controlled Random Search with Local Muat{Kaelo and Ali, 2006)

MLSL: Multi-Level Single-Linkage (Rinnooy Kan and G. Timmer, 1987)

ISRES: Improved Stochastic Ranking Evolution SgatRunarsson and Yao, 2005)

ESCH: Evolutionary algorithm (da Silva Santos et2010)

COBYLA: Constrained Optimization BY Linear Approxations (Powell, 1994)

BOBYQA: Bounded Optimization BY Quadratic Approxitiza (Powell, 2009)

NEWUOA: Unconstrained Optimization (Powell, 2004)

NEWUOA-BOUND: a bounded variant of NEWUOA (Johns2014)

PRAXIS: Principal Axis (Brent, 1972)

Nelder-Mead Simplex (Nelder and Mead, 1965)

Shplx: Nelder-Mead applied on a sequence of sulesp@owan, 1990)
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Table 2. Parameters used to calibrate the simulatiousing the source term package of Tolman and Chébov {£996)(1996) for
February through April 1997. The first two columns list the parameter as defined in theWavewatehWW3 v4.18 user manual
- )(Tolman, 2014) and as specified inWavewatehWW3 namelist input—{with. The namelist groupings in bold
correspond to parameterisations related to wind inpt (SIN2), dissipation (SDS2), nonlinear interactios (SNL1), and some
“miscellaneous” parameters (MISQ. Lower and upper bounds are specified for parametrs adjusted during calibration, along with

their final values, and the corresponding indexn of the normalised parameter vector, as used to label plots ifFigure 3. Other ‘[Formatted: Font: Italic

parameters were fixed at the initial value.

Parameter| Code Initial Lower Upper Final n
variable bound bound
SIN2:
Zx Z2NND 10.0
X SWELLF | 0.1 0.0 1.0 014491175 1
Co STABSH | 1.38 1.0 1.8 4009374 2
STy STABOF | -0.01 -0.02 -0.001 01624701031 3
c1 CNEG -0.01 -0.02 -0.001 026101033 4
cy CPOS 0.01 0.001 0.02 am97342009666 |5
-f1 FNEG 150.0 100.0 200.0 14825 6
SDS2:
a, SDSAQ0 4.8 4.0 6.0 80368045 7
a, SDSAl 1.7x10 | 1.0x10* | 5.0x10° | 1.7017702%10* 8
a, SDSA2 2.0 1.0 4.0 20940120 9
by SDSBO 0.3E-3 -0.01 0.01 dno226140002059 10
by SDSB1 0.47 0.2 1.0 B75612494 11
émmn | PHIMIN | 0.003 0.002 0.005 0020775002972 | 12
SNL1:
C NLPROP | 2.5x10 | 2.4x10° | 2.8x10° | 2.4986749&107 13
e
€y |CICEO [025
FLAGTR [ 4
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Table 3. As for Table 2, but for parameters used toalibrate the simulation using the source term paage of Ardhuin et al (2010),
for February through April 1997. The namelist groupings in bold correspond to paranterisations related to wind input (SIN4),
dissipation (SDS4), nonlinear interactions (SNL1)and some “miscellaneous” parameters (MISC). Lower id upper bounds are
specified for parameters adjusted during calibratio, along with their final values, and the correspoding indexn of the normalised

parameter vector, as used to label plots in Figurd.

Parameter Code variable Initial Lower boundUpper bound Final n
SIN4:
P ZWND 160
&y ALRHAQ 0.0095
Bmax BETAMAX 1.52 1.0 2.0 152015197 1
Bin SINTHP 20
Zz A 0-006
Sy TAUWSHELTER | 1.0 0.0 15 ®@56499594 2
S5 SWELLFPAR 1
S SWELLF 0.8 0.5 1.2 800148010 3
51 SWELLF2 -0.018 -0.03 -0.01 @1820501812 4
S3 SWELLF3 0.015 0.01 0.02 477101484 5
Re, SWELLF4 1.0x106 | 0.8x10 1.5x16 099707997810 6
Ss SWELLF5 1.2 0.8 1.6 20852078 7
P SWELLF6 0.0
S7 SWELLF7 2.3x18 | 0.0 4.0x10 22554260610 8
# ZORAT 0.04
x| ZOMAX 60
SRR 60
SDS4:
shecl 80
P WNMEANR 05
] 490
Fear | FXFM3 9.9
cset SDSC2 -2.2x18 | -2.5x10° 0.0 -21541150&10° 9
Cey SDSCUM -0.40344 -0.5 0.0 401864020 10
By shecd 10
Ceuro | SDSC5 0.0 0.0 1.2 812984168 11
bq SDSC6 0.3 0.0 1.0 61352654 12
B, SDSBR 0.0009 | 0.0008 0.0010 00090472000903513
e 0.8
pset | spsp 20
shelen 2
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CECK [ SDSBCK 0.0 0.0 0.2 0.0 il
shenzl 5
SBSPBK 40
SBSBINT 03
CHCK | SDSHCK 0.0 0.0 2.0 00933 15
2 e 800
Sg SDSCOS 2.0 0.0 2.0 2.0
SDSBRF1 65
SRERREDE 0
SBSBMO 10
SBSBMA 60
SRERRE 60
SBSBM3 90
SbSBM4 00
WHHECAPWADTH 03
SNL1:
c NLPROP 2.5x10 | 2.4x10 2.8x10 2510851107 17
MHSC-
€y CICED 625
ELAsTR 4
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Table 4—As—tgr—'liable-2 Initial parameters used to calibate the simulations using the source term package Ardhuin et al
Feb 1

2010), for randomised initial coritions (simulations 1-5). Simulation 0 is the conwl case, with default initial
parameters.
Simulation number
Parameterl Code variable 0 1 2 3 4 5
SIN4:
Brmax BETAMAX 1.520 1.215 1.160 1.538 1.660 1.550
Su TAUWSHELTER | 1.000 0.244 1.281 1.381 0.996 0.950
S2 SWELLF 0.800 0.962 0.948 0.582 0.995 1.026
Sq SWELLF2 -0.018 -0.022 -0.012 -0.026 -0.0253 -0.018
S3 SWELLF3 0.015 0.016 0.014 0.0116 0.0131 0.0159
Re, SWELLF4 1.000x10 | 1.428x16 | 1.368x16 | 1.295x10 | 0.837x16 | 0.809x10
S5 SWELLF5 1.200 1.100 1411 1.589 1.290 1.290
S7 SWELLF7 2.300x16 | 1.188x10 | 2.908x16 | 0.621x10 | 2.492x16 | 2.905x10
SDsa:
csat SDSC2 -2.200x10@ | -1.528x1@ | -1.069x10 | -1.493x10 | -1.639x10 | -1.303x10°
Ceu SDSCUM -0.403 -0.159 -0.470 -0.488 -0.205 -0.387
Ceurp SDSC5 0.000 1.116 1.074 1.025 0.476 0.882
8a SDSC6 0.300 0.957 0.596 0.947 0.855 0.583
B, SDSBR 9.00x10* 9.13x10* 8.24x10* 8.14x10* 9.73x10* 8.39x10*
SNL1:
c NLPROP 2.500x10 | 2.690x10 | 2.794x10 | 2.644x10 | 2.780x1G | 2.437x10
Initial error score | 0.1454 0.1685 0.2346 0.1722 0.2156 0.1677
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Table 5. Final values of parameters from simulations usinghe source term package of Ardhuin et al (2010)of Feb 1997, usmg
BOBYOQA with randomised initial conditions (simulations 1-5), and using ESCH with default initial paraneters. Simulation O is the

control case, using BOBYQA with default initial parameters.

Simulation number
Parameter Code variable 0 1 2 3 4 3 ESCH
SIN4:
Brmax BETAMAX 1515 1.348 1.221 1.671 1.491 1.599 1.520

Su TAUWSHELTER | -0.950 0.244 1.275 1.385 1.035 0.953 0.898

s2 SWELLF 0.811 0.761 0.872 0.591 1.065 0.986 0.800

S SWELLF2 -0.0178 | -0.0256 | -0.0120 | -0.0148 | -0.0226 | -0.0248 | -0.018

S3 SWELLF3 0.0149 0.0168 0.0134 0.0112 0.0150 0.0170 0.0150

Re, SWELLF4 0.996x10 | 1.428x10 | 1.376x10 | 1.339x16 | 0.837x16 | 0.809x16 | 1.198x16

S5 SWELLF5 1.201 1.099 1.406 1.589 1.291 1.290 0.973

57 SWELLF7 2.30x16 | 1.19x16 | 2.84x16G | 0.64x16 | 2.47x16 | 2.89x16 | 2.42x1G
SDS4:

csat SDSC2 -2.12x10 | -1.75x10° | -0.09x1C° | -1.93x1C° | -2.05x1C° | -1.29x1C° | -2.34x10°
Ceu SDSCUM -0.401 -0.158 -0.469 -0.488 -0.209 -0.387 -0.454
Ceurp SDSC5 0.386 1.116 1.067 1.027 0.526 0.831 0.567

8q SDSC6 0.246 0.957 0.560 0.940 0.860 0.585 0.043

B, SDSBR 9.03x10° | 9.19x10' | 8.26x10° | 8.20x10° | 9.72x10* | 8.38x10* | 9.09x10*
SNL1:

c NLPROP 251x10 | 2.69x10 | 2.80x10 | 2.69x10 | 2.78x10 | 2.44x10 | 2.45x10
Error score 0.1450 0.1479 0.1513 0.1515 0.1501 0.1500 0.1441
lterations 38 37 41 62 37 39 800+

(not converged
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Table 6. As for Table 3, but for parameters used to calibrate theimulation using the source term package of Ardhuiret al (2010),
for Jan-Dec 1997. The “Delta” value in the seventkolumn is the estimated change in the (un-normalisg parameter required to
produce a 0.1% change in the objective function.

Parameter; Code variable Initial Lower bound  Uppmirdl | Final Delta n
SIN4:
P ZWND 100
ay ALPHAQ 0.0095
Bmax | BETAMAX |1.52 | 1.0 2.0 1.5194 0.02498 1
P Sl 20
EN LZALP 0.006
Su TAUWSHELTER| 1.0 | 0.0 1.5 0.9339 0.2706 >
s SWELLFPAR |1 |
P SWELLF 0.8 0.5 1.2 0.8224 0.0206
51 SWELLF2 -0.018 -0.03 -0.01 -0.01721 0.00064 4
S5 SWELLF3 0.015 0.01 0.02 0.01526 0.00042 5
Re. SWELLF4 1.0x18 | 0.8x1G 1.5x16 0.9888x18 | 0.2328x18 | 6
S5 SWELLF5 1.2 0.8 16 0.9360 0.3974 7
55 SWELLF6 0.0
7 SWELLF7 2.3x18 [ 0.0 4.0x18 2.2433x18 | 0.7911x18 | 8
P ZORAT 0-04
Ftyers ZOMAX 0:0
SINBR 00
SDS4:
Sbsc1 0-0
» WNMEANP 05
FXPM3 40
Femr FXFM3 9.9
cia SDSC2 -2.2x18 | -2.5x10° 0.0 -2.1433x18 | 0.0087x16 | 9
Ce SDSCUM -0.40344] -0.5 0.0 -0.40194 0.02145 10
By Sbsc4 10
Crry | SDSC5 0.0 0.0 1.2 0.0 - 11
84 SDSC6 0.3 0.0 1.0 0.2736 0.0928 L2
B, SDSBR 9.0x10 | 8.0x10% 10.0x10° 8.9788x16 | 0.0951 x16 | 13
SDSBR2 08
pset | SDSP 2.0
SbSIso 2
cBek | sDSBCK | 0.0 | 0.0 0.2 0.0 - 1
SBSABK 15
SDSPBK 4.0
SDSBINT 03
cHek 1 SDSHCK | 0.0 | 0.0 2.0 0.0 - 15
Ay SBSBFH |s@@
sp SDSCOS | 2.0 | 0.0 2.0 2.0 0.0757 16
SDSBRF1 05
SDSBRFDF 0
SDSBMO 1.0
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£ 8888

SNL1:

NLPROP

2.5x10

2.4x10

2.8x10

2.5181x10

0.1191x10

17

MISC:

CICEO

0.25

0.15

0.45

0.2413

0.1285

8

CICEN

0.75

0.55

0.85

0.7521

0.2358

19
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Cycle N- 7z 5

Namelist_Final

‘—{Namelist ‘{ Model }—'{ Table ‘

A = e I R | DL

"[ Model }4'{ Table ‘

Optimise

—-{ Namelist

Optimise

parauel in WhICh no concurrent 5|mulat|ons are aIIowed showmq three successive cycle&rrows represent dependency, in that a

task at the head of an arrow depends on the task dhe tail of the arrow meeting a specified conditio (by default, this means
completing successfully) before it can start.
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Figure 2:-S jec uActi alues{top)-a o PO
{February —Apri-1997)-: Dependency graph for aniinplementation of the Cyclops opti

simulations are supported. Solid arrows representependency, in that a task at the head of an arrowehends on the task at the tail
of the arrow meeting a specified condition (by defalt, this means completing successfully) before @an start. The dashed arrows
represent a task retrying after a set interval. Ony four cycles are shown, omitting tasks in interveing cycles, and their dependencies.
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Figure 3: Sequence of objective function values () and parameter vector components (bottom) at eadkeration in the three month
(February — April 1997) ST2 calibration. The red dashed line marks the opthal solution found.
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Figure 4: Sequence of objective function values (top) andypameter vector components (bottom) at each iteratin in the three month
(February — April 1997) ST4 calibration. The red dashed line marks the optnal solution found.
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Figure 5: Bias in significant wave height from thehindcast compared with satellite altimeter measuremnts, over the period August
1991 - December 2016.
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Figure 6: Normalised root-mean-square error in sigificant wave height from the hindcast compared withsatellite altimeter
measurements, over the period August 1991 — Decemi2916.
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Eigure 7: Dependency graph for the Cyclops optimisation st&, configured to use dependencies to allow for coarrent simulations.

This example shows four successive cycles, for these in which up to three parallel simulations ar@llowed. Arrows represent
dependency, which in some cases are combined byoaital OR (enclosed “+” symbol). All tasks and exjitit dependencies (other
than suicide triggers) are shown for cycld\, but dependencies on cycles befo-3 are omitted for clarity.
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