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Automated model optimisation using the Cylc workflow engine (Cyclops v1.0) – Reviewers’ 

comments 
 

J.-H. Alves (Referee 1) 

The manuscript Automated model optimisation using the Cylc workflow engine (Cyclops v1.0) provides a method for 5 
objective optimization of source-term coefficients in NWP models, with an application to wind-wave modeling. The method 

fills in a longstanding gap in wave model  development, whereby typically tuning of source-term coefficients has been made 

in an ad hoc, trial-and-error-based manner, with high time costs and sometimes questionable effectiveness. The proposed 

method bridges that gap, being potentially a landmark contribution to improving the quality of wave forecasts at operational 

centers. 10 
The manuscript is well-written and engaging, concise, and clear. I recommend the paper be accepted after minor revisions. 

A list of suggestions to that end will be provided in a separate cover. 

 

Simon Tett (Referee 2) 

I think a potentially interesting paper that should eventually be published. The paper describes a method to use 15 
generic optimisation methods to optimise a wave model. In theory the approach could be used for other 

models though the paper does not really describe the challenges involved in doing this.  

I worry the paper is quite close to be a minimum publishable unit and so I am pushing the authors to do it more 

work. In essence to show their approach does indeed work. To that end I ask that the authors trial two or more 

additional algorithms. For purely selfish reasons I would be interested in seeing results of the Gauss-Newton 20 
approach trailed in Tett et al, 2013 & Tett et al, 2017. However, I understand that the algorithms available to 

the authors through the NLopt toolkit do not include this. I think the study would also benefit from doing 

another study in which they started from extreme parameters and see if they end up in the same local optimum 

or some other one.  

The authors do not really deal with the challenge of interfacing the optimisation algorithm to the model. Simply 25 
telling us that they generate a simple namelist which gets passed through to the wave model is insufficient 

detail. I think it would also help the reader if they provided a bit more detail on how the set of previous cases 

(and cost function values) are passed around. I’ve done something similar for HadAM3 and much of the effort 

was in modifying the model namelist variables. HadAM3 has many namelists, each with several variables spread 

across a few files.  30 
The authors should describe how concurrency happens. I suspect it depends on the optimisation algorithm. If 

they found a good solution to that that is worth sharing.  

One issue that worried us in Tett et al , 2017 was the effect of noise in the optimisation algorithm. If the 

evaluations needed to fit the 2nd order polynomial in BOBYQA are too close to one another then the difference 

will largely be chaotic noise. How does the authors approach mitigate against that?  35 
Minor comments  

P1, L15 – I don’t think the URL belongs in the abstract.  

L21 – don’t think TM belongs in the abstract (and the text uses (R) ).  

P2, L10. Note that Roach et al used the system described in Tett et al, 2017.  

P2, L12 – I personally don’t like 1 sentence paragraphs. Can this sentence be wrapped into the following or 40 
preceding paragraph?  

P3, L24 read -> reads  

P4, l6 A bit more detail on how Cyclops tasks interact would be useful as I don’t see a peer reviewed paper 

describing it. As the optimisation is implemented with special messages being sent some more discussion on 

messages would be helpful.  45 
P4, l12 interleaveseveral – insert some spaces  
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P5, line 14 – agree for cases where cost function is some squared difference then –ve values are reasonable. 

However, I think in the python world returning None to signal need to generate values would be more natural.  

P5, L15 – more detail on how the namelist is generated would be helpful. Looking at the code it looks like the 

text is simply generated. My experience with the Unified Model is that with multiple namelists in multiple files 

there is a bit of setup to be done to map optimisation variables to namelist variables (in some cases one 5 
optimisation variable can modify multiple namelist variables.) Some models may not use namelists so what 

would be done in this case?  

P5, L25 -- Some more detail on how Cycl iterates would be helpful. I think being explicit (and showing how) that 

Cycl can run several jobs in parallel would be helpful. I think discussing that in the context of the algorithms 

would also be helpful. I think many algorithms are coded to work serially so won’t make use of the ability to run 10 
several model simulations in parallel. But clearly authors report doing this so a bit of discussion would help 

here.  

P7, L7 – cite for the model please and don’t see the need for the (R)… But I leave it to GMD editors to decide 

that.  

P7, L35 Note this such a cost function (spatial average RMSE ) gives high weight to shortest spatial features 15 
which are close to model grid scale and thus very likely strongly affected by model grid and chaotic variability. 

This is one reason Tett et al, 20113 & 2017 focused on RMS error of large spatial averages. It is a mystery to me 

why people continue to focus on spatial average RMSE for model evaluation given the smallest scales are 

dominated by chaotic variability and thus not strongly related to parameter choice or model fidelity.  

P8, L2 – can this be typeset larger – probably display would help. Does the dot mean d/dt? If so I think better to 20 
spell it out.  

P8, line 35 – surely not zero impact. Imagine it is very small.  

P8 – I found the discussion on the two different packages rather confusing. The authors should rewrite to make 

this clearer.  

P9, L9 – why 0.02 rather than 0.05 or 0.01? Would algorithm terminate if any parameter changed by less than 25 
0.02 or would all need to have changed by less than 0.02?  

P9, L11 – why introduce two more parameters?  

P9, L24 a bit more discussion about parameter sensitivity here would be useful. For which parameters is the 

cost function most sensitive?  

Table 2 would benefit from some description of the parameters – what do they represent? I don’t think readers 30 
need to know about “n”. It is an implementation detail. Table should also explain what the bold labels are – 

perhaps better to break up into multiple tables with titles given by meaning of bold labels.  

Tables 3&4 – only show parameters that were modified. This would reduce the size considerably and make 

them less confusing.  

Figure 1 – text is small and unreadable (and I don’t think the colour is necessary). I suggest just showing one 35 
iteration of the work flow with some arrows showing the work flow looping back.  
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Automated model optimisation using the Cylc workflow engine (Cyclops v1.0) 
Response by to review comments  

The comments by Reviewer #1 are covered by our response to those of Reviewer #2, which we detail below. 

The reviewer has made some very constructive comments and suggestions, which we believe can be addressed, leading to an 

improved manuscript. 5 

It is suggested that the paper needs to be expanded by trialling two or three more additional algorithms, and also by including 

a study starting from a more extreme parameter set. We accept that suggestion, and have undertakes some further studies to 

include in the paper. Our aim was to introduce Cyclops as a potentially useful tool to apply any of a wide set of algorithms to 

optimise a numerical modelling system, in a way that can be quite readily adapted to different modelling systems. That still 

leaves a lot of work to do in designing the modelling system itself (e.g. designing verification metrics, selecting parameters to 10 

optimise and choosing the best optimisation algorithm). We did not intend those issues to be a major focus of the paper, and 

took the view that it would suffice to present one example application for which we made a set of choices that was seen as 

reasonable if not definitive. But in hindsight, it would help support our aim if we were to show several different optimisation 

algorithms being applied within Cyclops.  

We have included one global algorithm in these further tests, along with tests with a local algorithm starting from a series of 15 

different, randomly chosen, initial parameter sets. We believe this has helped clarifying whether we have located a global 

rather than merely local optimum to our wave hindcast calibration study. We did not, however, find it feasible to spend the 

necessary time implementing the Gauss-Newton approach into the NLopt toolbox. 

The other comments were addressed through changes in the text. On the principal points: 

1. The interface between the optimisation algorithm and the model 20 

As noted in the review, the optimisation suite simply outputs a single namelist file. This contains names and values for each 

parameter, which can be grouped by related sets of parameters. The variable names and allowed ranges are set in a “parameter 

definition” file that the user prepares. The model suite then needs to include a task that takes this namelist file as one of its 

inputs, and prepares whatever input files are needed for the model(s) to run. Because the formats are highly model-specific, 

this task needs to be tailored for the particular model suite. For example, in our wave hindcast application, this task consists 25 

of a shell script which simply includes the namelist file verbatim as part of an ASCII control file, which also has various timing 

parameters provided from environment variables. In this case, Wavewatch interprets the namelist groups as referring to sets 

of parameters for different physical processes (e.g. wind input, nonlinear interactions), and we don’t need to parse this 

information in the preprocessing step.  

In other cases, some slightly more complicated scripting may be required to generate model input files from the single namelist 30 

file. We have covered this requirement more extensively in the revised manuscript, as well as stressing that no change is needed 

to the main model codes 

When it comes to computing the cost function values, again the details are up to the model suite, but communication with the 

optimisation suite is very simple: some task within the model suite needs to write that single number to a file, which the 

optimisation suite reads when that particular implementation of the model suite has completed. The optimisation suite then 35 

appends that value, along with the corresponding parameter values, to a simple ASCII file which serves as the “lookup table”. 

Really, from the optimisation suite’s point of view, the model suite is just a black box that takes a namelist file with parameter 

names and values, written to a specified path relative to a new directory created for each iteration of the model suite, and 

computes a single objective function value which it writes to another specified path within that directory. 

2. Concurrency 40 

There are perhaps three points which need to be made in describing how Cyclops allows for concurrent simulations. 

1. How the optimisation algorithm can decide whether a new parameter set could be evaluated while waiting for other 
function evaluations (i.e. model runs) to complete. 
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2. How Cylc in general allows for tasks from different cycles to execute concurrently 
3. The specific way that Cyclops uses that ability to allow for concurrent model evaluations 

The way we have  

The description in Section 2.3 of how Cyclops can run several iterations of the model suite concurrently has been considerably 

rewritten. As noted, whether or not concurrent simulations can be run at any particular stage of the optimisation process does 5 

indeed depend on the particular algorithm being used. Also, any particular execution of the optimisation algorithm is done in 

a purely serial way.  

On the first point, we have tried to give a clearer description of how the “optimise” task works. Because of the particular 

generic “user supplied objective function” subroutine we have implemented, any run of the optimisation task simply amounts 

to reading previous results from the lookup table file and deciding, based on those results, what parameter set the particular 10 

algorithm would call for next. If there are “active” parameter sets still being evaluated, it can do a set of tests with random 

“answers” to those active evaluations, to decide if that affects the value of the parameters it calls for. 

The second point has been addressed by improving the description of Cylc in section 2.1, to emphasise that tasks will execute 

whenever their dependencies allow, and do not necessarily iterate in a rigid cycle. 

On the third point, we have attempted to provide a clearer description, aided by replacing the old Figure 1 with some clearer 15 

diagrams of task dependencies. In fact, we realised that there is a simpler way to implement concurrency in Cyclops, letting 

tasks retry after failure, rather than using the somewhat complex dependency structure we originally implemented. Having 

determined that the two methods achieve the same result, we describe the new method in the body of the text, so that readers 

can more readily grasp the important concepts. The original method is relegated to an Appendix. 

3. Effect of noise in the optimisation algorithm, and choice of cost function 20 

Tett et al (2017) point out that the inherently chaotic nature of the climate system means that a certain level of noise is 

introduced into evaluations of an atmospheric model simulation, which can cause problems in evaluating the termination 

criteria. They describe a procedure to rerun a simulation that had nominally satisfied the prescribed convergence criteria, with 

randomised perturbations before determining whether or not to terminate. 

Unlike the atmosphere, ocean surface waves are an essentially dissipative system, and perturbations introduced in the initial 25 

conditions and forcing will tend to diminish, rather than grow, with time. As a result, noise in the objective function was not 

so relevant for our wave hindcast application as for atmospheric models. Nevertheless, we can envision Cyclops being applied 

to optimisation of an atmospheric model, or some other system with un underlying chaotic nature. So have added a comment 

to that effect, suggesting that a measure such as that described by Tett et al (2017) could be introduced into Cyclops for use in 

such applications. Other references to Tett et al. (2017), which was published subsequent to our manuscript submission, have 30 

been added.  

Similarly, the dissipative nature of ocean waves means that a cost function based on a spatial average of the (temporal) RMSE 

of model-data comparisons will not be subject to the level of chaotic variability seen in similar measures for atmospheric 

models. Small scale variability in wave model output is therefore more likely to be genuinely sensitive to parameter variation. 

In that case it is worth capturing such variability in the cost function, whereas for a chaotic system it may be wiser to average 35 

out such variability before evaluating the cost function. We have added a mention this issue in the context that applications to 

different model systems may require variations in approach. 

4. Task interaction 

The way that task interaction is handled could be better described. This function is inherent to Cylc, so its description in Section 

2.1 has been improved.  40 

5. Selection of convergence criteria 
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In the convergence criteria, the “change in parameter values” means the magnitude of the vector difference, i.e. 

�∑ (Δ��)�	
���� . Section 2.2 was be changed to clarify this. The choice of 0.02 (in the original manuscript) was somewhat 

arbitrary initial choice. As we noted in Section 3.3, the suite can be restarted with revised criteria after stopping, either having 

met an initial set of convergence criteria, or through manual intervention. So in practice, you can start with quite loose criteria, 

then either decide to carry on further with tighter criteria, or reconfigure something and start again. For the two three-month 5 

hindcasts, the aim was to explore differences between the two model configurations, and guide the choice of settings to use 

for the more thorough 12 month optimisation. For that purpose, the results reached with the 0.02 criterion may have been 

sufficient, but we have now extended the iterations until stricter criteria (0.0001 fractional change) have been met. 

6. Tables 

The parameters in Table 2 are now more clearly referenced in the Table caption, which also mentions that the “n” values 10 

provide a key to the Figures.  

Parameters with fixed, default values were originally added to the Tables for completeness, but they have now been removed. 

7. Figures 

Figure 1 has been replaced by two clearer Figures 

8. Minor comments not addressed above 15 

L21, P7 L21: Inconsistencies in referencing the Wavewatch model have been addressed, in line with the model’s licensing 

terms. 

P5, L14. Agreed, it would be more robust and “pythonic” to return “None” than -1 in such cases. This does not cause a problem 

in the present application, but the point has been mentioned, and will be implemented in the code in future. 

P8, L2. Yes, dot means d/dt. This has been clarify in the text, and the equation layout improved 20 

P8, L35. We have changed “zero” to “negligible” 

P8 This section has been rewritten in a hopefully clearer manner 

P9, L11. The two ice parameters might, a priori, be expected to have more influence than some of the other parameters that 

were already included, which indeed turned out to be the case. In hindsight they should have been included from the start. 

P9, L24. More discussion of parameter sensitivity has been added, using the Delta parameter in Table 4 25 

Other points are minor edits which have been implemented as suggested. 
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Automated model optimisation using the Cylc workflow engine 
(Cyclops v1.0) 
Richard M. Gorman1, Hilary J. Oliver 2 
1 National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, New Zealand 
2 National Institute of Water and Atmospheric Research, Private Bag 14901, Wellington, New Zealand  5 
 
Correspondence to: Richard M. Gorman (Richard.Gorman@niwa.co.nz) 
 

Abstract. Most geophysical models include a number ofmany parameters that are not fully determined by theory, and can be 

‘tuned’ to improve the model’s agreement with available data. We might attempt to automate this tuning process in an objective 10 

way by employing an optimisation algorithm to find the set of parameters that minimises a cost function derived from 

comparing model outputs with measurements. A number of algorithms are available for solving optimisation problems, in 

various programming languages, but interfacing such software to a complex geophysical model simulation, presents certain 

challenges. 

To tackle this problem, we have developed an optimisation suite (“Cyclops”) based on the Cylc workflow engine 15 

(http://cylc.github.io/cylc/ and https://zenodo.org/badge/latestdoi/1836229) that implements a wide selection of optimisation 

algorithms from the NLopt pythonPython toolbox (Johnson, 2014). The Cyclops optimisation suite can be used to calibrate 

any modelling system that has itself been implemented as a (separate) Cylc model suite, provided it includes computation and 

output of the desired scalar cost function. A growing number of institutions are using Cylc to orchestrate complex distributed 

suites of interdependent cycling tasks within their operational forecast systems, and in such cases application of the 20 

optimisation suite is particularly straightforward.  

As a test case, we applied the Cyclops to calibrate a global implementation of the WavewatchWAVEWATCH III™ (v4.18) 

third generation spectral wave model, forced by ERA-Interim input fields. This was calibrated over a one-year period (1997), 

before applying the calibrated model to a full (1979-2016) wave hindcast. The chosen error metric was the spatial average of 

the root-mean-square error of hindcast significant wave height compared with collocated altimeter records. We describe the 25 

results of a calibration in which up to 19 parameters were optimised. 

1 Introduction 

Geophysical models generally include some empirical parameterisations that are not fully determined by physical theory, and 

which need calibration. The calibration process has often been somewhat subjective and poorly documented (Voosen, 

2016)(Voosen, 2016), but in a more objective approach has the aim of minimising some measure of error quantified from 30 

comparisons with measurement (Hourdin et al., 2017). We can turn this into an optimisation problem: namely to find the 

minimum of an objective function f(��) where �� represents the set of adjustable parameters, and f is a single error metric (e.g. 

the sum of RMS differences between measured and predicted values of a set of output variables) resulting from a model 

simulation with that parameter set. 

The most efficient optimisation algorithms require the derivative ∇����(��) to be available alongside f(��). This, however, is rarely 35 

the case for a geophysical modelling system, so will restrict our attention to the field of Differential Free Optimisation (DFO), 

in which the objective function f can be calculated, but its gradient is not available. 

Various methods exist, many of which are summarised in the review of Rios and Sahinidis (2012). Some are good at exploring 

parameter space to improve the likelihood of finding global rather than merely local minima. Others are preferred for quickly 

moving to the absolute minimum once in its neighbourhood. The algorithms are encoded in various languages (e.g. Fortran, 40 
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C, Python, Matlab), and usually require the user to supply a subroutine to compute f(��), that can be called as required by the 

optimisation programme. 

This is satisfactory for many problems where the objective function is readily expressed as an algorithm, but is somewhat less 

straightforward to interface an existing geophysical model, as well as all the methods needed to process and compare 

measurement data with an optimisation code, in this way. Nevertheless, examples of this approach can be found in hydrological 5 

and climate modelling applications. For example, Seong et al. (2015) developed a calibration tool (using R software) to apply 

the Shuffled Complex Evolution optimization algorithm to calibrate the Hydrologic Simulation Program-Fortran (HSPF) 

model. In climate modelling, Severijns and Hazeleger (2005) used the downhill simplex method to optimize the parameter 

values of the subgrid parameterizations of an atmospheric general circulation model. More recently, Tett et al. (2013) applied 

a Gauss–Newton line search optimization algorithm to climate simulations with the Hadley Centre Atmosphere Model version 10 

3 (HadAM3) forced with observed sea surface temperature and sea ice, optimising an objective function derived from reflected 

shortwave radiation and outgoing longwave radiation comparisons. The Tett et al. (2013) method was subsequently applied to 

optimize the sea ice component of the global coupled HadCM3 climate model (Roach et al., 2017).(Roach et al., 2017;Tett et 

al., 2017).  

Such custom applications of one particular optimisation algorithm to a specific model, however, can require significant effort 15 

to switch to alternative optimisation algorithms, or to be applied to new models. 

 Modern coupled climate models, or operational forecast systems for weather and related processes, encompass a diverse set 

of software tools, often running on multiple platforms. Ideally, we would like to be able to optimise performance of the 

modelling system (not just a single model code) without major reconfiguration of software between the calibration and 

operational/production versions of the system. 20 

The Cylc workflow engine is now applied in several operational centres to manage the scheduling of tasks within such systems. 

So it seems natural to consider the possibility of developing a framework within Cylc for the optimisation of the modelling 

systems under its control. 

2 Methods 

In very general terms, a derivative-free optimisation algorithm will explore parameter space, selecting values of the parameter 25 

vector �� in some sequence. As each �� is selected, it calls the (user-supplied) subroutine to evaluate the objective function f(��). 
In our case, this would amount to running a complete model simulation with the corresponding parameter settings, comparing 

outputs to measurements, from which a defined error metric is computed to provide the return value of f. This can involve a 

lengthy simulation, needing a run time Tmodel perhaps of order hours or days to reproduce months or years of measurements.  

A self-contained optimisation program, with an explicitly-coded function-evaluation subroutine, will run much faster, with a 30 

run time per iteration Titer typically being some small fraction of a second, and will run in many orders of magnitude less time 

than a typical geophysical model even if a number of iterations N of order 1000 are required. This might be the case for 

“deliberately difficult” test problems: we might expect that a well-tested geophysical model will come with reasonable defaults 

that in many new implementations will produce a result within a relatively simple “basin of attraction” so that O(10) iterations 

may suffice to get very close.  35 

If the optimisation procedure calls for a full model run to evaluate the objective function, and N iterations are required for 

convergence, the total run time would be 

�	 ≈ 	 �� 	+ 	�(	������ 	+ 	�����)	          (1) 

 �	 ≈ 	�� 	+ 	�(	������ 	+ 	�����) (1) 

including an overhead To for initial and final tasks. 
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As Tmodel is orders of magnitude larger than To and Titer, the geophysical modelling system totally dominates run time, and we 

can comfortably afford not to be concerned with reducing the efficiency of the optimisation routine, even by a few orders of 

magnitude.  

So let’s consider a simple measure we might introduce to allow us to recover from an interruption part way through a long 

optimisation process. Normally, the optimisation code will retain in memory the values of each �� and its objective function 5 

f(��) that has already been evaluated, to use in selecting further points to be evaluated. If we write these values to file each time 

the function evaluation is called, we can build up a lookup table to use in case we need to restart the process. In that case, we 

could have the function evaluation subroutine first search the lookup table for a match to �� (within some acceptable tolerance), 

in which case it could return the tabulated error value. Only in the case where a tabulated value was not found would the full 

model simulation be required to compute the return value of f.  10 

Now rather than actually perform that computation, the function evaluation subroutine could simply write the �� values (for the 

nth iteration, say) to file, and terminate the optimisation. exit. We could then run the model in its usual way, outside the 

optimisation code, using those �� values as parameters, and add that result to our lookup table before restarting the whole 

process from scratch. This time, assuming the optimisation algorithm is deterministic, with no random process influencing the 

sequence of �� values, the first n points would be exactly the same sequence that was selected previously, and could be quickly 15 

handled by table lookup, and the algorithm would either find that a convergence criterion had been satisfied, or select a new 

point n+1 to be passed to the model for simulation.  

In effect, we are simply employing the optimisation algorithm in a generic tool that, given the results of all previous iterations, 

either signals that convergence has been reached, or generates the next parameter set to be evaluated by the model. 

In this scheme, and assuming that we start with an empty lookup table, the first pass has one iteration of the optimisation code, 20 

the second has two, etc. So, allowing an additional overhead �  for the full process, the total run time to reach the termination 

condition(s) after N iterations should be 

�′ = � + ∑ (�� + #����� + ������)	��          (2) 

= � + �(�� + ������) + 	(	$�)� �����         (3) 

 �′ = � + %(�� + #����� + ������)	
��

 (2) 

 = � + �(�� + ������) + �(� + 1)2 ����� (3) 

As Tmodel is orders of magnitude larger than the other times, the ratio of the two run times is 25 
()( ≈ 1 + 	$�� (*+,-(./0,1           (4) 

 
�′� ≈ 1 + � + 12 ����������� (4) 

Given the expected relative magnitudes of the model and optimisation iteration times, and N of order 10s or 100s, the increase 

in run time through this approach is actually negligible.  

On the other hand, this scheme has several benefits. Apart from being simple to code, the optimisation algorithm, including 

the user-defined function evaluation subroutine, can be completely generic, and applied unmodified to different modelling 30 

systems. The only requirements on the modelling system are that, at the start of each simulation, it readreads in the parameter 

values requested by the optimisation code and adapt them to its standard input formats, then at the end of the simulation, 

computes and writes to file a single error metric value. The optimisation code and the model system could then remain separate, 

both controlled by some form of scripting scheme, for example. This means that having invested considerable time and 

resources in developing a complex modelling scheme, no major reconfiguration needs to be made to prepare it for optimisation 35 

in this manner, and thenor subsequently to re-implement the optimised modelling system in operational or production mode. 

Commented [HO1]: “terminate the optimization” might give the 
impression that the whole process is done, rather than simply waiting 
for another model run? 
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2.1 Cylc 

The Cylc workflow engine (http://cylc.github.io/cylc/) wasis an Open Source workflow engine that can manage ongoing 

distributed workflows of cycling (repeating) tasks. It was originally developed at NIWA to control the EcoConnect operational 

forecasting system and related automate environmental forecasting research systems, and is now usedhas since been adopted 

by severalmany other institutions for similar purposes. EcoConnect manages incoming data feeds of real time atmospheric and 5 

stream flow data observations, as well as daily 144-hour global weather forecasts from– notably the UK Met Office. These 

provide inputs for New Zealand regional data-assimilating numerical weather forecasts running on six hourly cycles and a 

daily global wave forecast, which and its international partners in turn provide inputs for regional wave, storm surge and river 

flow models. EcoConnect also has a multitude of tasks to process multiple data streams for both data assimilation and 

verification, and to generate products for dissemination.  10 

climate, weather, and related sciences. Cylc orchestrates tasks in complex cycling workflows, or “can manage large production 

systems of great complexity, but it is also easy to use for individuals and groups with less demanding automation requirements. 

Cylc workflows (or suites”, respecting the interdependencies) are defined with an efficient graph syntax that expresses 

dependence between them. Rather than explicitly calling tasks in a defined sequence, Cylc manages a pooltasks, and an 

efficient inheritance hierarchy for optimal sharing of autonomous tasks (proxies for the actual computing jobs), with defined 15 

dependencies on other tasks. Any all task can start (i.e. runtime properties (exactly what each task should execute, and where 

and how to submit its jobtask jobs to run) when all its dependencies are met. These dependencies, which combine to form a 

dependency graph for the suite, can be specified by a set of statements of the form).  

Cylc tasks are related by trigger expressions that combine to form a dependency graph.  This trigger, 

 A:status => B 20 

which denotes that initiation of task B requires task A to have reach a specified status. The trigger status defaults to successful 

completion, but other conditions may be used, e.g. start of execution, submission to a batch scheduler job queue, submission 

or execution failure, or  user-specified task output messages.   

Tasks may says that task B depends on task A achieving the status status (“=>” represents an arrow). The default trigger status 

is succeeded (job execution completed successfully) and can be written simply as A => B; others include submitted, submit-25 

failed, started, finished, failed, and custom task output messages. Tasks can depend on the wall clock and on external events, 

as well as on other tasks, and a task job can be submitted to run once all its dependencies are met. Cylc automatically wraps 

user-defined task content (environment, scripting, etc.) in code to trap errors and report job status back to the suite server 

program via authenticated HTTPS messages. Tasks can even trigger off tasks in other suites, so for coupled systems you can 

choose between a larger suite that controls all tasks, and multiple smaller suites that interact with each other. 30 

In cycling systems tasks repeat on date-time cycling sequences  (e.g. representing successivethat may represent forecast cycles) 

defined by , or separate chunks of a model simulation that is too long for a single run, or iterations in an optimization scheme, 

or different datasets to be processed as they are generated, and so on. Cycling is specified with ISO 8601 date-time recurrence 

expressions, with intra-cycle dependencies (for different operations needed for each new  (e.g. for environmental forecasting), 

or with integer recurrence expressions (e.g. for iterative processes). Both date-time and integer cycling are used in the 35 

application described in this paper. Dependence across cycles (consider a forecast) and inter-cycle dependencies (e.g. where a 

forecast model that is initialised fromwith outputs from a previous cycle). 

Tasks associated with more than) creates ongoing, potentially never-ending, workflows. Uniquely, Cylc can manage these 

without imposing a global cycle loop: one cycle does not have to complete before the next can start. Instead, tasks from many 

cycles can run concurrently, if the dependencies allow it (i.e. you don’t have to finish one cycle before starting the next).   to 40 

the full extent allowed by individual task dependencies and external constraints such as compute resource and data availability. 

So, for example, whenon restarting after an extended system downtime, a tasksuite that processes near-real-time data from 

Formatted: Font: Italic
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external sources may be able to interleaveseveral cycles concurrently to can clear theits backlog of data, allowing for an 

efficientand catch- up. 

Cylc also supports integer cycling to control workflows that are not date-time-based (e.g. to apply processing operations to a 

set of different data sources, such as from multiple recording instruments). 

A single suite can control all the separate tasks of a coupled system. Alternatively, separate suites can interact through tasks 5 

in one suite polling tasks in another suite on which they depend. An example of this is seen in the present implementation of 

NIWA’s EcoConnect forecasting system, in which each of the forecast models is implemented in its own Cylc suite, so that a 

regional wave forecast suite, for example, will poll the relevant tasks in the regional weather forecast suite and the global wave 

forecast suite to determine when necessary inputs produced again very quickly, by those tasks are available.  Cylc also supports 

clock and event triggers to allow triggering of tasks off the real-time clock and external events such as arrival of new datasets. 10 

automatically interleaving cycles. 

2.2 Implementation 

We have developed a Cylc suite (“Cyclops”)”, https://zenodo.org/badge/latestdoi/1836229) to perform optimisation of a 

modelling system that has itself been set up as a separate Cylc suite. In the example we describe below, the model suite controls 

a multi-year wave model hindcast, including the preprocessing of necessary model inputs (principally wind fields) and 15 

verification data (satellite altimeter data), running the Wavewatchwave model code, postprocessing of model outputs, and 

generation of error statistics from comparisons of predicted and observed significant wave height fields.  

Typically, a model suite will use date-time-based cycling is used to run, for example,  a model at successive forecast cycles, 

or to break up a long simulation into a succession of timeshorter blocks. The optimisation suite, on the other hand, uses integer 

cycling, with each cycle corresponding to step through iterationsa single evaluation of the objective function.  20 

There are several tasks controlled by the optimisation suite. One of these is responsible for running an optimisation algorithm 

to either identify either an optimal parameter vector from data provide by previous model runs, or identify the next parameter 

vector that needs to be evaluated in that process.. This main optimisation task within the suite is implemented with 

pythonPython code calling the NLopt pythonPython toolbox (Johnson, 2014). 

NLopt includes a selection of optimisation algorithms: both “local” solvers, which aim to find the nearest local minimum to 25 

the starting point as efficiently as possible, and “global” solvers, which are designed to explore the full parameter space, giving 

high confidence in finding the optimal solution out of a possible multitude of local minima. NLopt includes algorithms capable 

of using derivative information where available, which is not the case in our application, and Cyclops is restricted to the 

derivative-free algorithms listed in Table 1. 

We have assumed that the sequence of parameter vectors tested by an optimisation algorithm is deterministic. Several of the 30 

algorithms available in NLopt have some inherently stochastic component. It is, however, possible to make these algorithms 

“repeatably stochastic” by enforcing a fixed seed for the random number generator. 

In NLopt, any combination of the following termination conditions can be set: 

1. maximum number of iterations by each call of the optimisation algorithm 

2. absolute change in the parameter values less than a prescribed minimum 35 

3. relative change in the parameter values less than a prescribed minimum 

4. absolute change in the function value less than a prescribed minimum 

5. relative change in the function value less than a prescribed minimum 

6. function value less than a prescribed minimum 
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In the second and third of these convergence criteria, the “change in parameter values” means the magnitude of the vector 

difference, i.e. �∑ (Δ��)�	
���� .  

We have implemented pythonPython code that uses NLopt calls to seek a minimum of an objective function f that represents 

a non-negative model error metric. As described above, the user-defined function evaluation has been implemented as a generic 

pythonPython function f(��) that simply searches a lookup table (stored in a file). If �� is found in the table it returns the 5 

corresponding f value, otherwise it saves the vector �� to a file and returns a negativean invalid1 f value. Any of the termination 

conditions listed above can be set by the user: the last of these can use a positive prescribed minimum f value as a convergence 

condition, while a negativean invalid f value signallingsignals that the optimisation algorithm has stopped because a new 

parameter vector x needs to be evaluated externally by a model simulation.  

At present a generic namelist format is used as output from Cyclops to supply the names and values of parameters to the model 10 

suite. This was chosen as convenient for use with Wavewatch, which uses this format directly - other model suites will need 

to include a customised task to process the namelist file into the model’s usual input formats. In this case a file is written 

containing parameter names and values in a format that can be parsed by the modelling system to generate the needed input 

files for a simulation. At present a generic namelist format is used as output from Cyclops for this purpose.Namelists can 

include named groups of parameters, which may be helpful in this process in cases where these groups need to be treated 15 

differently (e.g. affecting different model input files).  

A “parameter definition” file is used to specify parameter names and their initial values, as used within the model. If a 

parameter is to be allowed to be adjusted by the optimisation suite, an allowable range is also set. This choice will generally 

require some experience with the particular model. Within the optimisation suite, these adjustable parameters will be scaled 

linearly to normalised parameters �� that lie between 0 and 1. Fixed parameters can be include for convenience, so that their 20 

names and initial values will be written to the namelist file but these are ignored by the optimisation suite. 

The major tasks carried out by Cyclops on each iterationcycle are: 

0. (first iterationcycle only): initInit : write initial normalised parameters  ��� to file, … 

1. optimise_stepOptimise: run the optimisation code, starting from ��� and evaluating every �� in the sequence, until 

either a stopping criterion is met (in which case the task sends a “stop_iter” message), or a parameter set �� is 25 

reached that is not in the lookup table so needs evaluating (signalled by a “next_iter” message) 

2. make_namelistNamelist: Convert �� to non-normalised parameters in a namelist file 

3. run_modelModel: Create a new copy of the model suite, copy the namelist file to it, and run it in non-daemon 

mode (i.e. so the task will not complete until the model suite shuts down). A new copy of the suite is made so that 

files created in one iterationcycle do not overwrite those created on other iterationscycles. 30 

4. update_tableTable: Read the resulting error value from the model suite, and update the lookup table 

Within one iterationcycle, the dependencies of the optimisation suite are simply: 

optimise_step:next_iter => make_namelist => run_model => update_table 

Optimise:next => Namelist => Model => Table 

to make these tasks run sequentially when no stop condition is met. The suite is made to iterate by settingWe set a dependency 35 

on a previous cycle: 

                                                           
1At present f < 0 is treated as an “invalid” return value, which is appropriate for positive-definite error metrics, but the 
Python code could be modified to return f = None for more general cases. 
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update_tableTable[-P1] => optimise_stepOptimise 

(the notation –P1 denotes a negative displacement of one cycle period), while the to ensure that the lookup table is up to date 

with all previous results before starting the next optimisation cycle, and to prevent Cylc from running successive cycles 

concurrently. 

The stopping condition is handled by  5 

optimise_step:stop_iter => stop_iter 

Where the stop_iterOptimise:stop => Namelist_Final => Stop 

where the Namelist_Final task produces the final version of the namelist file, and the Stop task does a final wrap-up of the 

completed optimisation before the suite shuts down. For the purposes of good housekeeping, we can also add a 

modelModel_delete task to delete each copy of the model suite once all its outputs have been used.  10 

Also, tasks which will not be needed (e.g. “Namelist” if “Optimise” gives a “stop” message) can be removed, along with any 

dependencies on those tasks, by so-called “suicide triggers”. Figure 1 illustrates the workflow of the optimisation suite 

described above in graphical form. 

The optimisation suite’s “Model” task for each cycle is a proxy for a copy of the full model suite being run for the 

corresponding parameter set.  The model suite is run in non-daemon (non-detaching) mode, so that the Model task does not 15 

finish until the suite that it represents runs to completion. Information passed between the suites consists of two simple files: 

a “namelist” file containing parameter names and values written by the optimisation suite for the model suite, and an “error” 

file containing the single value of the error metric returned by the model suite. 

The model suite needs to include a task to process the namelist file into the particular modelling system’s standard input 

formats. Because the formats are highly model-specific, this task needs to be tailored for the particular model suite. For 20 

example, in our wave hindcast application described below, this task consists of a shell script which simply includes the 

namelist file verbatim as part of an ASCII control file, which also has various timing parameters provided from environment 

variables. Namelists can include named groups of parameters, which may be helpful in this process in cases where these groups 

need to be treated differently (e.g. affecting different model input files for multiple coupled models and pre- and post-

processing tasks within the model suite). However, if the namelist format proved inadequate to supply the needed information, 25 

this format could be changed within the optimisation suite to something more suitable. It should be stressed, though, that no 

change should be needed to the main model codes: they can run as standard release versions under a separate task within the 

model suite. 

2.3 Parallel iterationsConcurrent simulations 

For some DFO algorithms, at least some parts of the sequence of vectors tested is predetermined, and independent of the 30 

function values found at those points. For example, BOBYQA (which we chose to use in the test application described below) 

sets up a quadratic approximation by sampling the initial point, plus a pair of points on either side of it in each dimension. 

With N parameters, the first 2N+1 iterations are spent evaluating these 2N+1 fixed points, regardless of the function values 

obtained there. In such situations, the function values for each of these points could be evaluated simultaneously. 

This can be done within Cylc by allowing tasks from multiple iteration cycles to run simultaneously. In practice, this means 35 

that multiple copies of the model suite are running simultaneously, to the extent allowed by resource allocation on the host 

machine(s). This makes it imperative that a new copy of the model suite is made for each iterationcycle. 

If parallel iterationsIf concurrent model simulations are allowed, this means that at any time there are a certain set of parameter 

vectors for which the function values are still being determined (we can call this the “active” set). We can add another parameter 

vector to that set if it will be selected by the optimisation algorithm regardless of the function values at the active parameter 40 

vectors.  
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We would clearly like to determine that without needing specific knowledge of how the particular optimisation algorithm 

works. Instead we use a simple “empirical”  method. To this end, we maintain a file (the “active file”) listing the active vectors, 

and make an addition to the function evaluation subroutine, so that if it fails to find �� in the lookup table, it then searches the 

active file and if it finds �� there, assigns f a random positive value (in this application we don’t re-initialise the random number 

generator with a fixed seed). Otherwise it writes �� to file and returns a negative fan “invalid” f value to force the optimisation 5 

algorithm to stop as usual. The pythonPython code controlling the optimisation algorithm has also been modified. Now when 

the active file is empty it will act as before, but if there are active vectors it will run a small set of repeated optimisations. If all 

of these all result in the same choice of 	�� value to be evaluated, a “next_iter” message is sent to trigger further tasks for this 

iteration cycle as before, since this choice is independent of the results for the active parameter vectors. If not, we do not have 

a definite �� to evaluate, and we must wait until at least one of the presently active simulations has finished before trying again, 10 

so a “wait_iter” message is sent. But clearly this does not mean that the optimisation is complete. 

This is handled within the Cylc suite by having several versions of the “optimise_step” task. Now “optimise_step _m” runs 

the optimisation algorithm when there are m active model simulations still running, with m ranging from 0 to a set maximum 

M.We can now allow for concurrent simulations in the Cylc suite in two ways. In the first method we let the Optimise task fail 

when it determines a “wait” condition, and utilise Cylc’s facility to retry failed tasks at specified intervals. 15 

We also replace the dependency 

Table[-P1] => Optimise 

with the combination 

Optimise[-P1] => Optimise 

Table[-PM] => Optimise 20 

where M is a specified maximum number of concurrent simulations. This means that each cycle can first attempt to start a new 

model simulation as soon as the previous cycle’s simulation has started and the Mth previous simulation has completed. The 

“Optimise” task will keep retrying at intervals until it is able to give either a “stop” or “next” signal. This method has a simple 

workflow structure, illustrated in Figure 2, that does not change as M increases. 

The second method, described in Appendix A and used in the tests described here, uses more complex dependencies and 25 

additional Optimise tasks, instead of a single retrying Optimize task. It is somewhat more efficient in that there is no need to 

wait on a (short) retry interval before determining if a new cycle can start, but the workflow is more complicated and its 

complexity increases with M. Both methods achieve the same result, however: they both allow up to M model suites to run 

concurrently, rather than iterating through them in sequence. 

It should be stressed that the optimisation code itself is simply run as a serial process in each case: it is simply required to 30 

produce the single set of parameters, if any, for the next model run given the known results of the completed simulations. As 

it checks that this parameter set is independent of the results of the presently active model runs without needing to know the 

actual results, no parallel processing is required within the optimisation code. 

 There are a more complex set of dependencies to ensure that this is the case. In particular, there is a condition 

update_table[-P(m+1)] => optimise_step_m 35 

to ensure that the lookup table has been updated with the results of all completed (i.e. inactive) iterations, while the other 

requirements to trigger optimise_step _m are expressed as: 

optimise_step_m+1:wait_iter | optimise_step_m-1[-P1]:next_iter => optimise_step_m 

That is, we can either come to run the present iteration with m active simulations already running through the previous iteration 

(with m-1 active simulations) launching the mth active simulation, or through trying to run with m+1 active simulations giving 40 

a wait condition. 
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Hence there are now a family of “optimise_step” tasks, represented in Figure 1 by octagonal figures which hide the individual 

family members, and their dependencies. 

3 Application: a global wave hindcast based on ERA-Interim inputs 

Here we describe a global wave simulation, using the WavewatchWAVEWATCH III® model, (WW3), forced by inputs from 

the ERA-Interim Reanalysis, covering the period from January 1979 to December 2016.  5 

Such multi-year wave model simulations are a valuable means of obtaining wave climate information at spatial and temporal 

scales that are not generally available from direct measurements. It is rare for a particular location of interest to have a suitably 

long nearby in situ wave record, e.g. from a wave-recording buoy, to provide statistically reliable measures of climate 

variability on inter-annual time scales. And while satellite altimetry has provided near-global records of significant wave height 

that have been available for more than two decades, these have limited use for many climate applications for several reasons, 10 

including a return cycle that is too long to resolve typical weather cycles, limitations in providing nearshore measurements, 

and lack of directional information.  Model simulations can in many cases overcome these limitations, but available 

measurements still play an essential role in calibrating and verifying the simulations. 

In our case, one of the principal motivations for carrying out this hindcast is to investigate the role of wave-ice interactions in 

the interannual variability of Antarctic sea ice extent, which plays an important role in the global climate system. The ERA-15 

Interim Reanalysis is a suitable basis for this work, providing a consistent long-term record, with careful control on any 

extraneous factors (e.g. changing data sources, or modelling methods) that might introduce artificial trends or biases into the 

records. While the ERA-Interim Reanalysis includes a coupled wave model, direct use of the wave outputs does not fully meet 

our requirements, which include the need for the wave hindcast to be independent of near-ice satellite wave, which were 

assimilated into the ERA-Interim Reanalysis. Hence we chose to carry out our own wave simulation, forced with ERA-Interim 20 

wind fields, but with no assimilation of satellite wave measurements. 

3.1 Comparison of model outputs with altimeter data 

Rather than being assimilated in the hindcast, satellite altimetry measurements of significant wave height were used as an 

independent source of model calibration. These were obtained from the IFREMER database of multi-mission quality-

controlled and buoy-calibrated swath records (Queffeulou, 2004). 25 

Swath records of significant wave height were first collocated to the hourly model outputs on the 1°×1° model grid. For each 

calendar month simulated, collocations were then accumulated in 3°×3° blocks of 9 neighbouring cells to produce error 

statistics, including model mean, altimeter mean, bias and root-mean-square error (RMSE), and correlation coefficient R. 

Spatial averages of these error statistics were taken over the full model domain between 65°S and 65°N (excluding polar 

regions with insufficient coverage).  30 

The final error statistic used in the objective function was the spatially-averaged RMSE, normalised by the spatially-averaged 

altimeter mean, temporally averaged over the simulation period, excluding spinup.  

3.2 WavewatchWW3 parameters 

For this simulation we used version 4.18 of the WavewatchWAVEWATCH III ® (WW3) third generation wave model 

(Tolman, 2014)(Tolman, 2014). The model represents the sea state by the two-dimensional ocean wave spectrum ),,( txkF
rr

35 

,2(3��, ��, 5), which gives the energy density of the wave field as a function of wavenumber 3��, at each position �� in the model 

grid and time t of the simulation.  

The spectrum evolves subject to a radiative transfer equation 
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6	6� + ∇���7 ∙ (�9�) + 66: ;39�< + 66= ;>9�< = ?@         (5) 

 
A�A5 + ∇���7 ∙ ;��9�< + AA3 ;39�< + AA> ;>9�< = BC (5) 

for the wave action �(3, >, ��, 5) = 2(3��, ��, 5)/C(3) , where C  is the frequency associated with waves of wavenumber 

magnitude k through the linear dispersion relation, and > is the propagation direction. The dots represent time derivatives. The 

terms on the left hand side represent spatial advection, and the shifts in wavenumber magnitude and direction due to refraction 

by currents and varying water depth. The source term S on the right hand side represents all other processes that transfer energy 5 

to and from wave spectral components, including contributions from wind forcing, energy dissipation and weakly-nonlinear 

four wave interactions. 

Adjustable parameters within the Wavewatch modelWW3 that can influence a deep water global simulation such as the one 

described here are principally concentrated in the wind input and dissipation source terms. It is generally necessary to treat 

these two terms together as a ‘package’.self-consistent ‘package’ of input and dissipation treatments designed to work together. 10 

In this study we undertook two separate calibration exercises, based on two ‘packages’ of input/dissipation source terms, firstly 

that of Tolman and Chalikov (1996)(1996) (activated in WavewatchWW3 by the ST2 switch), and secondly the Ardhuin et al 

(2010) formulation (using the ST4 switch).  

In the Appendix B we describe some of the details of these two packages. We also include some description of the WAM 

Cycle 4 (ST3) input source term formulation (Janssen, 1991), on which the ST4 input term is based, even though the ST3 15 

package was not tested in this study. 

In addition to the input and dissipation terms, the other main control on deep-water wave transformation is provided by weakly 

nonlinear four-wave interactions (Hasselmann, 1962). Unfortunately, acceptable run time requirements for multiyear 

simulations over extensive domains still preclude using a near-exact computation of these terms, such as the Webb, Resio, 

Tracy method (Webb, 1978;Tracy and Resio, 1982)(Webb, 1978;Tracy and Resio, 1982) that is available in spectral models 20 

including WavewatchWW3 (van Vledder et al., 2000)(van Vledder et al., 2000). Instead we use the much-simplified form of 

the Discrete Interaction Approximation (Hasselmann et al., 1985), treating its proportionality constant C as a tunable 

parameter. 

Common to both optimisations, sea ice obstruction was turned on (FLAGTR=4) with non-default values for the critical sea ice 

concentrations EF,� and EF,� between which wave obstruction by ice varies between zero and total blocking: these were set to 25 

0.25 and 0.75, respectively. All other available parameters beyond the input and dissipation terms were left with default 

settings, noting that shallow water processes, while activated, are not expected to have more than a negligible and localised 

influence on model outputs in a global simulation at 1° resolution. 

For initial testing, in which two sets (ST2 and ST4) of optimisation parameters were compared, we used a one month (January 

1997) spinup to a three month calibration period (February – April 1997). The selection of the calibration period from the full 30 

extent of the satellite record was arbitrary. 

Relevant parameters used in the two calibrations are listed in Table 2 and Table 3, respectively, which refer to the parameter 

names as defined (more completely than we do here) in the WavewatchWW3 user manual (Tolman, 2014)(Tolman, 2014), 

and as specified in namelist inputs to the model. These tables include the initial values of the parameters, the range over which 

they were allowed to vary, and the final optimised values. Some fixedOther parameters are alsonot listed for completeness. 35 

Forwere kept fixed. A particular example, was the input wind vertical level G� (ST2) = GH (ST4) = 10 m which is a property 

of the input data set, so was left fixed.hence not appropriate to adjust. Others were left fixed after an initial test confirmed that 

they had zeronegligible influence on the objective function, leaving 13 adjustable parameters for ST2 and 17 for ST4. 

The selection of which parameters to tune, and the range over which they are allowed to vary, is an area where some (partly 

subjective) judgement is still required, based on some familiarity with the relevant model parameterisations. In this case, 40 
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parameter ranges were chosen to be physically realistic, and to cover the range of parameter choices used in previous studies 

reported in the literature. 

3.3 Optimisation settings 

We elected to primarily use the BOBYQA optimisation algorithm (Powell, 2009) for this study. Given that we expected 

WavewatchWW3 to be already reasonably well-tuned for a global simulation such as our test case, we wished to use a local 5 

optimisation algorithm that could reach a solution to a problem with 10-20 variables in as few iterations as possible. Of the 

algorithms available in NLopt that were included in the intercomparison study of Rios and Sahinidis (2012), BOBYQA was 

found to be the most suitable in that respect. In particular it allows for concurrent model runs in the early stages of the 

optimisation process. 

Both optimisations were stopped when either the absolute change in (normalised) parameter values was less than 0.020001, or 10 

the relative change in the objective function was less than 0.02. 0001. Less stringent conditions were initially used, but the 

ability of the optimisation suite to be restarted with revised stopping criteria was invoked to extend the optimisation. 

These first two tests used a local optimisation method on the assumption that the respective default parameter sets are near-

optimal, or at least within the “basin of attraction” of the optimal solution. In order to test this assumption, two further 

approaches can be considered. The first choice would be to use a truly global optimisation algorithm to explore the selected 15 

parameter space as thoroughly as possible. This approach may be expected to require a number if iterations in the thousands, 

which is rather challenging given typical model run times, especially as global methods do not generally allow for parallel 

iterations.  

A simpler approach is to still use a local algorithm, but initialise it at a range of different starting points. This was the approach 

we took for our next set of tests, restricted to the ST4 case, in which the initial value of each parameter was selected at random 20 

with uniform probability distribution over its allowed range. Five randomised tests were done, along with a control 

optimisation starting from the default parameter set used previously. For these tests we made some further simplifications in 

the interests of computational speed, running the hindcast for only one month (February 1997), and initialising all simulations 

from a common initial condition, spun up over one month with the default parameter set. Both simplifications detract from 

how applicable the resulting parameter sets would be for hindcast applications, but can be justified in allowing a more extensive 25 

examination of parameter space with a given computational resource. A slightly reduced set of ST4 parameters was optimised, 

omitting I�JKLM,	I�JNLM and OK. The initial and final values of these parameters from each of the tests are listed in Table 4 and 

Table 5, respectively. The allowed range of each of the adjustable parameters was the same as in the previous simulations, as 

listed in Table 3, while both stopping criteria were relaxed to a value of 0.005. 

Despite the expected high computational demands, we next attempted an optimisation using the global evolutionary algorithm 30 

ESCH of da Silva Santos et al. (2010). This was initialised from the default parameter values, and used the same one month 

hindcast, parameter ranges and stopping criteria as described above. 

Following the two comparisonthese test simulations, the ST4 parameterisation was chosen for a final calibration, carried out 

over a 12 month period (January – December 1997) following a one-month spinup (December 1996). For thisThis calibration, 

the same settings were initially used, but the ability of the optimisation suite to be restarted with revised  was finally terminated 35 

with both stopping criteria was invoked to extend the optimisation with both criteria reducedset to a value of 0.0001. This was 

a somewhat arbitrary choice made to observe the evolution of the solution. For practical applications the choice of stopping 

criteria should take into account the sensitivity of the objective function to measurement error in the data used for the 

calibration, to avoid unnecessary ‘over-tuning’ of the model. 

The full hindcast, from January 1979 through December 2016 was then run using the optimised parameter set. Comparisons 40 

with altimeter data were made for each month from August 1991 onward. 
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Each WavewatchWW3 simulation was run on 64 processors on a single core of either an IBM Power6 or a Cray XC50 

machine. Other processing tasks within the suites were run on single processors. The resulting hindcast simulations required 

an average of approximately 25 minutes of wall clock time to complete each month of simulation. 

4 Results 

4.1 Local optimisation of 3 month hindcasts with ST2 and ST4 source terms 5 

The BOBYQA algorithm develops a quadratic model of the objective function. To do so, the first iteration evaluates the 

objective function at the initial point, then perturbs each component in turn by a positive increment, then by an equal negative 

increment (leaving all other components at the initial value). This can be seen for the ST2 optimisation in Figure 3, in which 

the bottom panel shows the sequence of (normalised) parameter values tested. With 13 adjustable parameters, this amounts to 

27 iterations in this preliminary phase. As this sequence of parameter values is fixed, independent of the resulting objective 10 

function values, all of the first 27 iterations could have been run simultaneously as detailed above, if permitted by the queuing 

system. We, however, applied a limit of 7 parallel iterations in line with anticipated resource limitations. 

The 3-month ST2 optimisation only required a further 57 iterations after this initial phase to reach a stopping criterion. The 

ST2 default parameter settings used as the starting point for optimisation resulted in an objective function value of 0.1901, 

which was reduced to 0.14951424 in the optimisation process. 15 

In the optimal configuration, none of the tunable parameters were at either of the limits of their imposed range, indicating that 

convergence to a true minimum (at least locally) had been reached. Most of the parameters were only slightly modified from 

their initial values: the largest changes were in parameters P� (reduced from 0.0003 to 0.000226140002059) and P�(0.47 to 

0.275612493), both influencing the low frequency dissipation term. 

The ST4 3-month optimisation was initialised with the default settings from the TEST451 case reported by Ardhuin et al 20 

(2010), for which the objective function returned a value of 0.1427. Optimisation only managed to reduce this to 0.14221419 

(Figure 4), indicating that the default ST4 parameter set was already quite closely tuned for our case, having been selected by 

Ardhuin et al (2010) largely from broadly similar studies, i.e. global simulations (at 0.5° resolution) compared with altimeter 

records. 

Three of the parameters ended the optimisation at one end of their allowed range, in each case at the same value at which it 25 

was initialised. The 16th adjustable parameter (OK) controls the assumed directional spread of the dissipation spectrum, and the 

fact that it remained at its upper limit suggests that the optimisation may be improved by assuming the dissipation spectrum to 

have a narrower directional distribution than anticipated. On the other hand, parameters 14 (I�JKLM) and 15 (I�JNLM) are associated 

with an alternative breaking formulation proposed by Filipot and Ardhuin (2012), who chose values I�JKLM = 0.185 and 

I�JNLM = 1.5 (and correspondingly, turned off the default saturation-based dissipation term by setting I�JJ�� = 0) whereas this 30 

term is turned off in the ST4 default, hence both were initially set to zero. On the face of it, one might think that the optimisation 

algorithm would have been free to explore solutions with positive values of these parameters, resulting in an optimal ‘hybrid’ 

total dissipation term. In fact the way the dissipation algorithm is coded, this form of the dissipation term is not computed at 

all in the event that I�JKLM = 0.0, which would have been the case when the BOBYQA algorithm explored sensitivity to I�JNLM  

in the initial stages. This means that our choice of initial values may have spuriously caused the BOBYQA algorithm to 35 

underestimate sensitivity to I�JNLM, and may have missed a distinct second local minimum (approximately corresponding to the 

parameter settings of Filipot and Ardhuin (2012)). 

4.2 Tests with local optimisation with randomised initial parameter sets, and global optimisation 

The next set of five tests compared results of the local BOBYQA algorithm starting from different parameter sets chosen at 

random within the allowed ranges (Table 4). The resulting final parameter sets, listed in Table 5, show that each test located a 40 
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different minimum. This indicates that there are multiple local minima for the error metric in our chosen parameter ranges, in 

addition to the local minimum derived from the default parameters. The corresponding values of the error metric were all 

slightly higher than the value (0.1454) obtained from the baseline optimisation starting from the default parameter set, although 

much reduced from their initial values (Table 4). Although none of those additional local minima found so far has replaced 

the baseline set as a candidate for a global optimum, this gives no guarantee that this would not be the case after a more 5 

thorough search. 

The attempted global optimisation (using the ESCH algorithm) of the same hindcast, had not converged to within the chosen 

tolerances after 800 cycles. However, in the course of its operation it did identify over 30 parameter sets with slightly lower 

error metric than the minimum value (0.1450) obtained in the corresponding baseline local optimisation. The lowest value 

within 800 iterations was 0.1441, and the corresponding parameter values are included in Table 5. This supports our suspicion 10 

that a local optimisation algorithm cannot be relied upon to identify the global optimum for this hindcast problem. On the other 

hand, the very small decrease in the error metric obtained from this wider search does not give strong justification for making 

a significant change in parameters from near their default values. We need to bear in mind that the optimisation problem we 

have addressed in this set of tests (i.e. minimising RMS errors in significant wave height from a one month partial hindcast) is 

not quite the same as optimising this measure over a more representative period. 15 

4.3 Local optimisation of 12 month hindcast with ST4 source terms 

In the final 12 month ST4 optimisation, two additional parameters were allowed to vary that were fixed in the 3-month 

optimisation, bringing the number of adjustable parameters to 19. These were the critical sea ice concentration parameters EF,� 

and EF,� between which wave obstruction by ice varies between zero and total blocking: these were set tohad been fixed at 

0.25 and 0.75, respectively., in the 3 month optimisations. Otherwise, the initial parameters (Table 4Table 4) again 20 

corresponded to the ST4 defaults, which in this case produced an error metric of 0.1436. At the termination after 89 iterations 

(with the more stringent stopping criteria), this had decreased to 0.1431. 

Most of the resulting optimised parameters were close to the values obtained from the 3-month optimisation (Table 3). An 

exception was the 11th adjustable parameter, I�H�U , scaling the strength of the turbulent contribution to dissipation, which 

finished the 3-month optimisation at 0.41298, but at 0.0 (the lower bound) in the 12 month simulations. 25 

For this longer optimisation, we have additionally computed a measure of the sensitivity of the objective function, using the 

initial phase of the BOBYQA iterations to estimate the change in the (un-normalised) parameter required to produce a 0.1% 

change in the objective function. This is listed as “Delta” in the seventh column of Table 3, and provides a measure, at least in 

relative terms, of the bounds within which each parameter value has been determined. 

The full hindcast, run from 1979 to 2016, could be compared with satellite data from August 1991 onward. The resulting bias 30 

in significant wave height, averaged over the August 1991 – December 2016 comparison period, is shown in Figure 5. Positive 

biases are obtained in latitudes south of 45°S, particularly south of Australia and in the South Atlantic. This is also seen in the 

vicinity of some island groups (notably French Polynesia, Micronesia, the Maldives, Aleutians, Carribean, Azores), which 

may be indicative of insufficient sub-grid scale obstruction. On the other hand, negative biases are seen near the western sides 

of major ocean basins, and in the “swell shadow” to the northeast of New Zealand. A similar pattern is seen in the results 35 

reported by Ardhuin et al (2010) for their TEST441 case (their Figure 9). 

Normalised root-mean-square error (i.e. RMSE error divided by the observed mean) from the same comparison, again averaged 

over the period August 1991 – December 2016, is shown in Figure 6. Note that the objective function for our optimisation 

used this measure, spatially averaged over ocean waters between 61°S and 61°N. For the majority of the ocean surface, this 

lies in the range 0.08 – 0.14, but with higher values near some island chains and the western boundaries of ocean basins. Again, 40 

similar results were reported by Ardhuin et al (2010). 
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5 Discussion 

In their review of methods used to tune Numerical Weather Prediction and climate models, Hourdin et al. (2017) observe that 

with the number and complexity of parameterisations to consider, the task of tuning these parameters was for a long time 

largely left to “expert judgement”, and that objective methods have made a more recent appearance than in the statistical, 

engineering, and computing fields. The  method we have presented here, along with the approaches of Severijns and Hazeleger 5 

(2005), Tett et al. (2013), Roach et al. (2017) described in the introduction, perform model tuning through the relatively direct 

approach of defining and minimising a cost function. Our method has the advantage of employing a tool (Cylc) that is already 

becoming commonly used to control complex workflows for weather forecasting and climate modelling systems, to optimize 

the parameters of such a system under its control, in a way that is simple to implement, and flexible in choice of optimisation 

algorithm. 10 

We have shown itthis to be a practical method for optimising 10-20 parameters in a model application of sufficient complexity 

to require several hours per simulation in a parallel processing computing environment. For applications that are yet more 

time-consuming, it is becoming increasingly common (Bellprat et al., 2012;Wang et al., 2014Wang et al., 2014;Duan et al., 

2017) to first build a surrogate model to provide a statistical emulator for the actual model, and then apply an optimisation 

algorithm to the surrogate model. Such multi-stage model optimisation frameworks are presently beyond the scope of our 15 

techniquethis paper, but it may be worth considering whether the flexibility of our approach may alsocould potentially bring 

benefits within such frameworksto them as well. For example, it may be worth considering a hybrid approach of using a 

surrogate model to quantify the role of the full set of model parameters and perform an initial global optimisation, before 

switching to a method such as ours for a final refinement using the original model directly. 

In our study we have largely restricted our attention to one local optimisation algorithm (BOBYQA), but our initial results 20 

suggest the need in some circumstances to apply a more global method. This is not difficult to do in principle, with multiple 

algorithms, both global and local, implemented in Cyclops, but just not investigated in. However, the generally higher 

computational demands of a global algorithm put a limit on such applications. In this initial study.  we have only been able to 

undertake a preliminary exploration of the wider parameter space of our single chosen test case. This did however illustrate 

that the possibility of multiple alternative local minima must be considered. 25 

As we have seen, there remains a need for care with the choices of which parameters to attempt to optimise, and what bounds 

to set on their values. Most optimisation algorithms are intended for continuously variable parameters, and may rely on the 

objective function having a continuous dependence on these parameters. In many cases it is clear which parameters fall into 

this category, as opposed to discrete valued options. But in some cases, model code may make binary choices based on real 

parameters lying within discrete ranges, which may break this assumption. Hence the Cyclops optimisation suite is best 30 

employed in conjunction with a good understanding of the role each parameter plays in the model, and the interplay between 

them. 

It is also important to be aware of the role played by the design of the error metric, which may make it sensitive to some 

parameters and insensitive to others. One should be wary of accepting a large change in these insensitive parameters to achieve 

a tiny improvement in the chosen error metric, when the resulting model could then perform poorly against other relevant 35 

criteria. In the particular wave modelling case we have investigated, our approach would not be sufficient on its own to identify 

suitable values of the large set of WW3 parameters without guidance from previous studies. 

Tett et al. (2017) point out that the inherently chaotic nature of the climate system means that a certain level of noise is 

introduced into evaluations of an atmospheric model simulation, which can cause problems in evaluating the termination 

criteria. They describe a procedure to rerun a simulation that had nominally satisfied the prescribed convergence criteria, with 40 

randomised perturbations before determining whether or not to terminate. Unlike the atmosphere, ocean surface waves are an 

essentially dissipative system, and perturbations introduced in the initial conditions and forcing will tend to diminish, rather 

than grow, with time. As a result, noise in the objective function was not so relevant for our wave hindcast application as for 

Commented [HO2]: Trying to avoid duplication of “it may be 
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atmospheric models, but may need to be addressed in to systems with an underlying chaotic nature, possibly through 

implementing similar measures to those of Tett et al. (2017) into Cyclops.  

Similarly, the dissipative nature of ocean waves means that a cost function based on a spatial average of the (temporal) RMSE 

of model-data comparisons will not be subject to the level of chaotic variability seen in similar measures for atmospheric 

models. Small scale variability in wave model output is therefore more likely to be genuinely sensitive to parameter variation. 5 

In that case it is worth capturing such variability in the cost function, whereas for a chaotic system it may be wiser to average 

out such variability before evaluating the cost function.  

Conclusions 

The Cyclops Cylc-based optimisation suite offers a flexible tool for tuning the parameters of any modelling system that has 

been implemented to run under the Cylc workflow engine. Minimal customisation of the modelling system is required beyond 10 

providing tasks to input and apply model parameter values in a simple namelist format, and output the value of the scalar error 

metric that is to be minimised. This then allows any of 16 optimisation algorithms (from the NLopt toolbox) to be applied to 

the optimisation. This optimisation suite is expected to be especially applicable to operational forecasting systems, where 

minimal re-configuration is required between “tuning” and “operational/production” versions of the forecast suite. 

Results of the initial test case we have investigated, a global hindcast using a spectral wave model forced by ERA-Interim 15 

input fields, illustrate that the method is applicable to a modelling system of moderate complexity, both in terms of the number 

of parameters to tune, and the computational resources required, at least for the purposes of local optimisation to fine tune a 

model that already has a more-or-less well developed initial parameter set from previous studies. Investigations of systems 

that require a more global tuning approach, or are more computationally demanding remain for future work.  

Code availability 20 

Cyclops-v1.0 has been published through zenodoZenodo (https://doi.org/10.5281/zenodo.837907) under a Creative Commons 

Attribution Share-Alike 4.0 licence. 

Cylc is available from GitHub (https://cylc.github.io/cylc/) and Zenodo (https://zenodo.org/badge/latestdoi/1836229) under 

the GPLv3 licence. 
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Appendix A: Handling concurrent simulations through dependencies 

An alternative way to allow for concurrent simulations involves modifying the simple Cylc suite described above to have 

several versions of the “Optimise” task. Now “Opt_m” runs the optimisation algorithm when there are m active model 

simulations still running, with m ranging from 0 to a set maximum M-1, where M is the maximum number of concurrent cycles 

we chose to allow. There are a more complex set of dependencies to ensure that this is the case. In particular, there is a condition 5 

Table[-P(m+1)] => Opt_m 

to ensure that the lookup table has been updated with the results of all completed (i.e. Wavewatchinactive) cycles. If that is the 

case, the optimisation code will be run to determine if a new model simulation can be launched while those m tasks are active. 

If not, the suite will wait until one of the active model runs completes, and try again with “Opt_m-1”, and so forth.  

The dependency diagram for the case in which up to three concurrent simulations are allowed (i.e. M = 3) is illustrated in 10 

Figure 7. Assume, for example, that we are still well short of convergence, and that the optimisation algorithm is such that the 

next parameter set tested depends on all previous results. Then “Opt_2” and “Opt_1” will always give a “wait” message, and 

“Opt_0” will be needed on each cycle. This effectively produces the same behaviour as in Figure 1, with each cycle waiting 

for the immediately preceding cycle to complete before “Opt_0” can start, leading to a new model run. If, on the other hand, 

the algorithm never depends on the results of the previous two (active) calculations, “Opt_2” will always give a “next” 15 

message. This removes the “Opt_1 and “Opt_0” tasks (and any dependencies upon them), leading to the “Model” task being 

called for cycle N as soon as the cycle N-3 model run has completed and updated the lookup table, even if the cycle N-2 and 

N-1 “Model” tasks are still running. 

Appendix B: WW3 source term parameterisations 

AB.1 Tolman and Chalikov input + dissipation source term package 20 

The input source term is defined as  

B��(3, >) = CV�(3, >)           (A1) 

Where 

 B��(3, >) = CV�(3, >) (B1) 

where V is a non-dimensional wind-wave interaction parameter, which has a parameterised dependence on wind speed and 

direction, through boundary layer properties influenced by the wave spectrum. These dependencies are, however, fully 25 

determined with no user-adjustable terms, so we omit the details here. 

This input term was, however, adjusted by Tolman (2002)(2002) following a global test case to ameliorate an excessive 

dissipation of swell in weak or opposing winds, in which cases V can be negative. This is done by applying, when V is negative, 

a swell filtering scaling factor with a constant value WJ for frequencies below 0.6�
 (where �
 is the peak frequency), scaling 

linearly up to 1 at 0.8�
, with higher frequencies unmodified.   30 

The same study also led to the introduction of a correction for the effects of atmospheric stability on wave growth identified 

by Kahma and Calkoen (1992) by replacing the wind speed X with an effective wind speed X�, with 

YH,H Z� = 1 + [� tanh(max(0, ��bcd − cd�f)) + [� tanh Ymax Y0, �� FgFh bcd − cd�fZZ    (A2) 

 YX�X Z� = 1 + [� tanh(max(0, ��bcd − cd�f)) + [� tanh imaxi0, �� [�[� bcd − cd�fjj (B2) 

where cd is a bulk stability parameter 

cd = klHmh
(no(p(q             (A3) 35 
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 cd = ℎsXk�
�� − �J��  (B3) 

in terms of air, sea and reference temperatures ��, �J and ��, respectively, and Xk the wind speed at reference height ℎ = 10 

m, with s the gravitational acceleration. As air and sea surface temperature fields are available from the ERA-Interim dataset, 

it was possible to apply this parametrisation, treating [�, [�, [�, ��  and cd� as adjustable dimensionless parameters. 

The dissipation term consists of a dominant low-frequency constituent, with an empirical frequency dependence parameterised 

by constants P�, P�, t��� and a high-frequency term, parameterised by constants u�, u�, u�, the details of which we leave for 5 

the WavewatchWW3 manual (Tolman, 2014) and original references therein. 

AB.2 WAM Cycle 4 source term package 

The input source term implemented in WAM Cycle4 by Janssen (1982) was based on the wave growth theory of Miles (1957). 

The starting point is the assumption the wind speed v has a logarithmic profile, so that if the wind fields input to the model 

are specified at elevation GH , then 10 

v(GH) = H∗x log Y|}|gZ             (A4) 

 v(GH) = X∗~ log iGHG�j (B4) 

where X∗ is the friction velocity, defined by the total wind stress � = X∗�, κ is von Karman’s constant, and G� is a roughness 

length modified by wave conditions:  

G� = |q��o�� �⁄             (A5) 

 G� = G��1 − �� �⁄  (B5) 

in which �� is the magnitude of the wave-supported stress, while 15 

G� = �� � s⁄             (A6) 

 G� = �� � s⁄  (B6) 

with �� a tunable dimensionless parameter. 

The wave-supported stress can be equated to the rate of momentum transfer between wind and waves:  

��� = ��3 �> :��L B��(3, >)            (A7) 

 ��� = ��3 �> 3��I B��(3, >) (B7) 

where c is the wave phase velocity 20 

The WAM Cycle 4 input source term is then given by 

B��(3, >) = �n��
�.n�xh ���� YH∗L + G�Z� �max	(cos(> − >H) , 0)�
*�C�(3, >) + B�H�(3, >)    (A8) 

 B��(3, >) = ����
V��7~� ���� YX∗I + G�Z� �max	(cos(> − >H) , 0)�
*�C�(3, >) + B�H�(3, >) (B8) 

with 

� = log(3G�) + x
���(=o=})Y}∗� $|�Z           (A9) 

 � = log(3G�) + ~
cos(> − >H) YX∗I + G�Z (B9) 

In these terms �� and ��are the densities of air and water, V��7 is a dimensionless constant, G� is a wave age tuning parameter 25 

and ��� is a parameter controlling the directional dependence relative to the wind direction >H.  

Field Code Changed
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The inter-dependence of  �� and B��expressed in (A7) and (A8B7) and (B8) creates an implicit functional dependence of X∗ 
on v and �� �⁄ . In practice, this dependence can be tabulated, using the resolved model spectrum for the low-frequency (3 <
3��7) part of (A7B7), above which a �o� diagnostic tail is assumed.  

The B�H� term represents a linear damping of swells, in the form (Bidlot, 2012):  

B�H�(3, >) = 2O�~ �n�� YH∗L Z� �cos(> − >H) − xLH∗ �¡	(:|q)¢ C�(3, >)      (A10) 5 

With 

 B�H�(3, >) = 2O�~ ���� YX∗I Z� £cos(> − >H) − ~IX∗log	(3G�)¤ C�(3, >) (B10) 

with O� set to 1(0) to turn on(off) the damping. 

Dissipation is represented in the form 

B�J(3, >) = I�J�¥�C¥ £¦� ::¥ + ¦� Y::¥Z�¤�(3, >)        (A11) 

 B�J(3, >) = I�J�¥�C¥ §¦� 33¥ + ¦� i33¥j
�¨�(3, >) (B11) 

where I�J is a dimensionless constant, and ¦� and ¦� are weighting parameters. These take values  I�J = −1.33, ¦� = 	0.5 10 

and  ¦� = 	0.5  in the ECMWF implementation of WAM as reported by Bidlot (2012), but are adjustable within 

WavewatchWW3. Mean wavelength and frequency are defined as 

3¥ = ��:ª	(:,=)�:���	(:,=)�:�� ¢�/
           (A12) 

 3¥ = «�3
�(3, >)�3��
��(3, >)�3�� ¬�/
 (B12) 

and 

C¥ = ��@ª	(:,=)�:���	(:,=)�:�� ¢�/
           (A13) 15 

 C¥ = «�C
�(3, >)�3��
��(3, >)�3�� ¬�/
 (B13) 

with � = 0.5 and � = 1 being the respective WAM defaults (Bidlot, 2012) while mean steepness is 

�¥ = 3¥�            (A14) 

A 

 �¥ = 3¥� (B14) 

B.3 Ardhuin (2010) source term package 

This package introduces a saturation-based dissipation term. In order to accommodate this, the WAM Cycle 4 input source 20 

function is modified by replacing  X∗ in (B8) with a frequency-dependent form 

;X∗)(3)<� = ®X∗� − |OH| ®� �3):� ��> :°�����
L B��(3′, >)®	®        (A15) 

In 

 ;X∗)(3)<� = ±X∗� − |OH| ±� �3):
� ��> 3)����I B��(3′, >)±	± (B15) 

in which OH ≈ 1 is a sheltering coefficient, to allow for balance with a saturation-based dissipation term. Also, a limit can be 

placed on the roughness length G�, replacing (B6) with 25 

Field Code Changed
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G� = min(�� � s⁄ , G�,³´µ)           (A16) 

 G� = min(�� � s⁄ , G�,³´µ) (B16) 

The swell dissipation parameterisation of Ardhuin et al. (2009) is used, consisting of terms 

B�H�,¶�JF(3, >) = −O� �n�� ·23�2¸�C¹�(3, >)         (A17) 

 B�H�,¶�JF(3, >) = −O� ���� ·23�2¸�C¹�(3, >) (B17) 

and 

B�H�,�H�U(3, >) = − �n�� ·16��C�X��U,J/s¹�(3, >)        (A18) 5 

 B�H�,�H�U(3, >) = − ���� ·16��C�X��U,J/s¹�(3, >) (B18) 

due to effects of the viscous and turbulent boundary layers respectively. The latter depends on the significant surface orbital 

velocity 

X��U,J = 2�� �3�> C»�(3, >)��/�          (A19) 

 X��U,J = 2 £��3�> C»�(3, >)¤�/� (B19) 

while ̧ � is air viscosity and O� is a tunable coefficient of order 1. The two terms are combined in weighted form 

B�H�(3, >) = ¼oB�H�,¶�J(3, >) + ¼$B�H�,�H�U(3, >)        (A20) 10 

 B�H�(3, >) = ¼oB�H�,¶�J(3, >) + ¼$B�H�,�H�U(3, >) (B20) 

with weights 

¼± = 0.5(1 ± tanh((¾� − ¾�F))/O¿))         (A21) 

 ¼± = 0.5(1 ± tanh((¾� − ¾�F))/O¿)) (B21) 

depending on a modified air-sea boundary layer Reynolds number 

¾� = 2X��U,JÀJ/¸�           (A22) 

 ¾� = 2X��U,JÀJ/¸� (B22) 

which is taken to have a threshold value depending on significant wave height:  15 

¾�F) = ¾�F(4Â/ÀJ)�oJÃ           (A23) 

 ¾�F) = ¾�F(4Â/ÀJ)�oJÃ (B23) 

The turbulent dissipation term is parameterised to depend on wind speed and direction:  

�� = O���,ÄÅ + �|O»| + O�cos	(> − >H)�X∗/X��U        (A24) 

 �� = O���,ÄÅ + �|O»| + O�cos	(> − >H)�X∗/X��U (B24) 

based on the friction factor ��,ÄÅ from the Grant and Madsen (1979) theory of oscillatory boundary layer flow over a rough 

surface. 20 

The dissipation term is based on the saturation of the wave spectrum, and takes the form 

B�J(3, >) = C L0ppn+
K-h �¦� max(Æ(3) − Æ� , 0)� + (1 − ¦�)max(Æ)(3, >) − Æ� , 0)���(3, >) + BU:,FH(3, >) + B�H�U(3, >)	

             (A25) 

 
B�J(3, >) = C I�JJ��

Æ�� �¦� max(Æ(3) − Æ� , 0)� + (1 − ¦�)max(Æ)(3, >) − Æ� , 0)���(3, >)
+ BU:,FH(3, >) + B�H�U(3, >) 

(B25) 

where the dissipation spectrum is integrated over a limited direction range, i.e.  

Æ)(3, >) = � C3» cosJK(> − >))�(3, >)�>)=$ÇÈ=oÇÈ         (A26) 25 
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 Æ)(3, >) = � C3» cosJK(> − >))�(3, >)�>)=$ÇÈ
=oÇÈ

 (B26) 

and 

Æ(3) = max	(Æ)(3, >), > ∈ �0,2Ê�)	         (A27) 

 Æ(3) = max	(Æ)(3, >), > ∈ �0,2Ê�) (B27) 

The cumulative breaking term, associated with large scale breakers overtaking short waves, is 

BU:,FH(3, >) = o��.�LË}Ìh �(3, >) � �3) � �>) maxÍ�Æ(�), >)) − �Æ� 	,0Î��Ì��Ë}	h :�      (A28) 

 BU:,FH(3, >) = −14.2IFHÊ� �(3, >)� �3) � �>) max Ï�Æ(�), >)) − �Æ� 	,0Ð��Ì
�

�Ë}	h :
�  (B28) 

Where ¼FH = 0.5 and IFH is a tuning coefficient. 5 

The turbulent dissipation term is 

B�H�U(3, >) = −2I�H�UC cos(>H − >)3 �nH∗hl�� �(3, >)	        (A29) 

 B�H�U(3, >) = −2I�H�UC cos(>H − >)3 ��X∗�s�� �(3, >)	 (B29) 

An alternative breaking formulation (Filipot and Ardhuin, 2012) based on a bore model uses a dissipation rate per unit crest 

length of  

ELM = �� ��s £ I�OÆIÑÀ
tanh(3ℎ)I�OÀIÑ¤3 � s3

tanh(3ℎ)          (A30) 10 

 ELM = 14��s § I�OÆIÑÀ
tanh(3ℎ)I�OÀIÑ¨3 Ò s3

tanh(3ℎ) (B30) 
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Table 1 Derivative-Free Optimisation algorithms from the NLopt toolbox supported in the Cyclops optimisation suite 

Global: 

DIRECT: Dividing RECTangles (Jones et al., 1993) 

DIRECT-L: Dividing RECTangles, locally optimised (Gablonsky and Kelley, 2001) 

DIRECT-L-RAND: a slightly randomised variant of DIRECT-L (Johnson, 2014) 

CRS: Controlled Random Search (Hendrix et al., 2001) 

CRS2: Controlled Random Search (Price, 1983) 

CRS2-LM: Controlled Random Search with Local Mutation (Kaelo and Ali, 2006) 

MLSL: Multi-Level Single-Linkage (Rinnooy Kan and G. T. Timmer, 1987) 

ISRES: Improved Stochastic Ranking Evolution Strategy (Runarsson and Yao, 2005) 

ESCH: Evolutionary algorithm (da Silva Santos et al., 2010) 

Local: 

COBYLA: Constrained Optimization BY Linear Approximations (Powell, 1994) 

BOBYQA: Bounded Optimization BY Quadratic Approximation (Powell, 2009) 

NEWUOA: Unconstrained Optimization (Powell, 2004) 

NEWUOA-BOUND: a bounded variant of NEWUOA (Johnson, 2014) 

PRAXIS: Principal Axis (Brent, 1972) 

Nelder-Mead Simplex (Nelder and Mead, 1965) 

Sbplx: Nelder-Mead applied on a sequence of subspaces (Rowan, 1990) 
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Table 2. Parameters used to calibrate the simulation using the source term package of Tolman and Chalikov (1996)(1996), for 
February through April 1997. The first two columns list the parameter as defined in the WavewatchWW3 v4.18 user manual  
(Tolman, 2014)(Tolman, 2014), and as specified in WavewatchWW3 namelist input (with. The namelist groupings in bold 
correspond to parameterisations related to wind input (SIN2), dissipation (SDS2), nonlinear interactions (SNL1), and some 5 
“miscellaneous” parameters (MISC). Lower and upper bounds are specified for parameters adjusted during calibration, along with 
their final values, and the corresponding index n of the normalised parameter vector., as used to label plots in Figure 3. Other 
parameters were fixed at the initial value. 

Parameter Code 

variable 

Initial Lower 

bound 

Upper 

bound 

Final n 

 SIN2:      

G� ZWND 10.0     

WJ SWELLF 0.1 0.0 1.0 0.114491175 1 

[� STABSH 1.38 1.0 1.8 1.4009374 2 

cd� STABOF -0.01 -0.02 -0.001 -0.01024701031 3 

[� CNEG -0.01 -0.02 -0.001 -0.01026101033 4 

[� CPOS 0.01 0.001 0.02 0.0097342009666 5 

−�� FNEG 150.0 100.0 200.0 148.6125 6 

 SDS2:      

u� SDSA0 4.8 4.0 6.0 4.80368045 7 

u� SDSA1 1.7×10-4 1.0×10-4 5.0×10-3 1.70177023×10-4 8 

u� SDSA2 2.0 1.0 4.0 2.00940120 9 

P� SDSB0 0.3E-3 -0.01 0.01 0.000226140002059 10 

P� SDSB1 0.47 0.2 1.0 0.275612494 11 

t��� PHIMIN 0.003 0.002 0.005 0.0029775002972 12 

 SNL1:      

I NLPROP 2.5×10-7 2.4×10-7 2.8×10-7 2.49867498×10-7 13 

 MISC:      

EF,� CICE0 0.25     

EF,� CICEN 0.75     

 FLAGTR 4     
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Table 3. As for Table 2, but for parameters used to calibrate the simulation using the source term package of Ardhuin et al (2010), 
for February through April 1997. The namelist groupings in bold correspond to parameterisations related to wind input (SIN4), 
dissipation (SDS4), nonlinear interactions (SNL1), and some “miscellaneous” parameters (MISC). Lower and upper bounds are 
specified for parameters adjusted during calibration, along with their final values, and the corresponding index n of the normalised 5 
parameter vector, as used to label plots in Figure 4. 

Parameter Code variable Initial Lower bound Upper bound Final n 

 SIN4:      

GH ZWND 10.0     

�� ALPHA0 0.0095     

V��7 BETAMAX 1.52 1.0 2.0 1.52015197 1 

��� SINTHP 2.0     

G� ZALP 0.006     

OH TAUWSHELTER 1.0 0.0 1.5 0.956499594 2 

O� SWELLFPAR 1     

O� SWELLF 0.8 0.5 1.2 0.800148010 3 

O� SWELLF2 -0.018 -0.03 -0.01 -0.01820501812 4 

O» SWELLF3 0.015 0.01 0.02 0.01477101484 5 

¾�F SWELLF4 1.0×105 0.8×105 1.5×105 0.997079973×105 6 

O� SWELLF5 1.2 0.8 1.6 1.20852078 7 

OÓ SWELLF6 0.0     

O¿ SWELLF7 2.3×105 0.0 4.0×105 2.25542600×105 8 

G� Z0RAT 0.04     

G�.��7 Z0MAX 0.0     

 SINBR 0.0     

 SDS4:      

 SDSC1 0.0     

� WNMEANP 0.5     

 FXPM3 4.0     

�ÔÅ FXFM3 9.9     

I�JJ�� SDSC2 -2.2×10-5 -2.5×10-5 0.0 -2.15411506×10-5 9 

IFH SDSCUM -0.40344 -0.5 0.0 -0.401864020 10 

Æ� SDSC4 1.0     

I�H�U SDSC5 0.0 0.0 1.2 0.412984168 11 

¦� SDSC6 0.3 0.0 1.0 0.261352654 12 

Æ� SDSBR 0.0009 0.0008 0.0010 0.000904720009035 13 

 SDSBR2 0.8     

�J�� SDSP 2.0     

 SDSISO 2     
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I�JKLM SDSBCK 0.0 0.0 0.2 0.0 14 

 SDSABK 1.5     

 SDSPBK 4.0     

 SDSBINT 0.3     

I�JNLM SDSHCK 0.0 0.0 2.0 0.00933 15 

Δ= SDSDTH 80.0     

OK SDSCOS 2.0 0.0 2.0 2.0 16 

 SDSBRF1 0.5     

 SDSBRFDF 0     

 SDSBM0 1.0     

 SDSBM1 0.0     

 SDSBM2 0.0     

 SDSBM3 0.0     

 SDSBM4 0.0     

 WHITECAPWIDTH 0.3     

 SNL1:      

I NLPROP 2.5×10-7 2.4×10-7 2.8×10-7 2.5108510×10-7 17 

 MISC:      

EF,� CICE0 0.25     

EF,� CICEN 0.75     

 FLAGTR 4     
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Table 4. As for Table 2. Initial parameters used to calibrate the simulations using the source term package of Ardhuin et al 
(2010), for Feb 1997, using randomised initial conditions (simulations 1-5). Simulation 0 is the control case, with default initial 
parameters.  

  Simulation number 

Parameter Code variable 0 1 2 3 4 5 

 SIN4:       

V��7 BETAMAX 1.520 1.215 1.160 1.538 1.660 1.550 

OH TAUWSHELTER 1.000 0.244 1.281 1.381 0.996 0.950 

O� SWELLF 0.800 0.962 0.948 0.582 0.995 1.026 

O� SWELLF2 -0.018 -0.022 -0.012 -0.026 -0.0253 -0.018 

O» SWELLF3 0.015 0.016 0.014 0.0116 0.0131 0.0159 

¾�F SWELLF4 1.000×105 1.428×105 1.368×105 1.295×105 0.837×105 0.809×105 

O� SWELLF5 1.200 1.100 1.411 1.589 1.290 1.290 

O¿ SWELLF7 2.300×105 1.188×105 2.908×105 0.621×105 2.492×105 2.905×105 

 SDS4:        

I�JJ�� SDSC2 -2.200×10-5 -1.528×10-5 -1.069×10-5 -1.493×10-5 -1.639×10-5 -1.303×10-5 

IFH SDSCUM -0.403 -0.159 -0.470 -0.488 -0.205 -0.387 

I�H�U SDSC5 0.000 1.116 1.074 1.025 0.476 0.882 

¦� SDSC6 0.300 0.957 0.596 0.947 0.855 0.583 

Æ�  SDSBR 9.00×10-4 9.13×10-4 8.24×10-4 8.14×10-4 9.73×10-4 8.39×10-4 

 SNL1:       

I NLPROP 2.500×107 2.690×107 2.794×107 2.644×107 2.780×107 2.437×107 

 Initial error score  0.1454 0.1685 0.2346 0.1722 0.2156 0.1677 

  5 
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Table 5. Final values of parameters from simulations using the source term package of Ardhuin et al (2010), for Feb 1997, using 
BOBYQA with randomised initial conditions (simulations 1-5), and using ESCH with default initial parameters. Simulation 0 is the 
control case, using BOBYQA with default initial parameters.  

  Simulation number  

Parameter Code variable 0 1 2 3 4 5 ESCH 

 SIN4:         

V��7 BETAMAX 1.515 1.348 1.221 1.671 1.491 1.599 1.520 

OH TAUWSHELTER  0.950 0.244 1.275 1.385 1.035 0.953 0.898 

O� SWELLF  0.811 0.761 0.872 0.591 1.065 0.986 0.800 

O� SWELLF2  -0.0178 -0.0256 -0.0120 -0.0148 -0.0226 -0.0248 -0.018 

O» SWELLF3  0.0149 0.0168 0.0134 0.0112 0.0150 0.0170 0.0150 

¾�F SWELLF4  0.996×105 1.428×105 1.376×105 1.339×105 0.837×105 0.809×105 1.198×105 

O� SWELLF5  1.201 1.099 1.406 1.589 1.291 1.290 0.973 

O¿ SWELLF7  2.30×105 1.19×105 2.84×105 0.64×105 2.47×105 2.89×105 2.42×105 

 SDS4:         

I�JJ�� SDSC2  -2.12×10-5 -1.75×10-5 -0.09×10-5 -1.93×10-5 -2.05×10-5 -1.29×10-5 -2.34×10-5 

IFH SDSCUM  -0.401 -0.158 -0.469 -0.488 -0.209 -0.387 -0.454 

I�H�U SDSC5  0.386 1.116 1.067 1.027 0.526 0.831 0.567 

¦� SDSC6  0.246 0.957 0.560 0.940 0.860 0.585 0.043 

Æ�  SDSBR  9.03×10-4 9.19×10-4 8.26×10-4 8.20×10-4 9.72×10-4 8.38×10-4 9.09×10-4 

 SNL1:         

I NLPROP 2.51×107 2.69×107 2.80×107 2.69×107 2.78×107 2.44×107 2.45×107 

 Error score 0.1450 0.1479 0.1513 0.1515 0.1501 0.1500 0.1441 

 Iterations 38 37 41 62 37 39 800+  

(not converged) 
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Table 6. As for Table 3, but for parameters used to calibrate the simulation using the source term package of Ardhuin et al (2010), 
for Jan-Dec 1997. The “Delta” value in the seventh column is the estimated change in the (un-normalised) parameter required to 
produce a 0.1% change in the objective function. 

Parameter Code variable Initial Lower bound Upper bound Final Delta n 

 SIN4:       

GH ZWND 10.0      

�� ALPHA0 0.0095      

V��7 BETAMAX 1.52 1.0 2.0 1.5194 0.02498 1 

��� SINTHP 2.0      

G� ZALP 0.006      

OH TAUWSHELTER 1.0 0.0 1.5 0.9339 0.2706 2 

O� SWELLFPAR 1      

O� SWELLF 0.8 0.5 1.2 0.8224 0.0206 3 

O� SWELLF2 -0.018 -0.03 -0.01 -0.01721 0.00064 4 

O» SWELLF3 0.015 0.01 0.02 0.01526 0.00042 5 

¾�F SWELLF4 1.0×105 0.8×105 1.5×105 0.9888×105 0.2328×105 6 

O� SWELLF5 1.2 0.8 1.6 0.9360 0.3974 7 

OÓ SWELLF6 0.0      

O¿ SWELLF7 2.3×105 0.0 4.0×105 2.2433×105 0.7911×105 8 

G�  Z0RAT 0.04      

G�.��7 Z0MAX 0.0      

 SINBR 0.0      

 SDS4:       

 SDSC1 0.0      

� WNMEANP 0.5      

 FXPM3 4.0      

�ÔÅ FXFM3 9.9      

I�JJ�� SDSC2 -2.2×10-5 -2.5×10-5 0.0 -2.1433×10-5 0.0087×10-5 9 

IFH SDSCUM -0.40344 -0.5 0.0 -0.40194 0.02145 10 

Æ� SDSC4 1.0      

I�H�U SDSC5 0.0 0.0 1.2 0.0 - 11 

¦� SDSC6 0.3 0.0 1.0 0.2736 0.0928 12 

Æ� SDSBR 9.0×10-4 8.0×10-4 10.0×10-4 8.9788×10-4 0.0951 ×10-4 13 

 SDSBR2 0.8      

�J�� SDSP 2.0      

 SDSISO 2      

I�JKLM SDSBCK 0.0 0.0 0.2 0.0 - 14 

 SDSABK 1.5      

 SDSPBK 4.0      

 SDSBINT 0.3      

I�JNLM SDSHCK 0.0 0.0 2.0 0.0 - 15 

Δ= SDSDTH 80.0      

OK SDSCOS 2.0 0.0 2.0 2.0 0.0757 16 

 SDSBRF1 0.5      

 SDSBRFDF 0      

 SDSBM0 1.0      
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 SDSBM1 0.0      

 SDSBM2 0.0      

 SDSBM3 0.0      

 SDSBM4 0.0      

 WHITECAPWIDTH 0.3      

 SNL1:       

I NLPROP 2.5×107 2.4×107 2.8×107 2.5181×107 0.1191×107 17 

 MISC:       

EF,� CICE0 0.25 0.15 0.45 0.2413 0.1285 18 

EF,� CICEN 0.75 0.55 0.85 0.7521 0.2358 19 

 FLAGTR 4      
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Figure 1: Dependency graph for a version of the Cyclops optimisation suite, showing the first three iteration cycles. Numerals refer 
to the iteration number. Ellipses represent individual tasks, while the octagonal boxes represent families of tasks, for the case where 
parallel in which no concurrent simulations are allowed., showing three successive cycles. Arrows represent dependency, in that a 
task at the head of an arrow depends on the task at the tail of the arrow meeting a specified condition (by default, this means 5 
completing successfully) before it can start. 
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Figure 2: Sequence of objective function values (top) and parameter vector components (bottom) at each iteration in the three month 
(February – April 1997) : Dependency graph for an implementation of the Cyclops optimisation suite in which up to M concurrent 
simulations are supported. Solid arrows represent dependency, in that a task at the head of an arrow depends on the task at the tail 5 
of the arrow meeting a specified condition (by default, this means completing successfully) before it can start. The dashed arrows 
represent a task retrying after a set interval. Only four cycles are shown, omitting tasks in intervening cycles, and their dependencies. 
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ST2 calibration. The red dashed line marks the optimal solution found. 
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Figure 3: Sequence of objective function values (top) and parameter vector components (bottom) at each iteration in the three month 
(February – April 1997) ST2 calibration. The red dashed line marks the optimal solution found. 
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Figure 4: Sequence of objective function values (top) and parameter vector components (bottom) at each iteration in the three month 
(February – April 1997) ST4 calibration. The red dashed line marks the optimal solution found.  
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Figure 5: Bias in significant wave height from the hindcast compared with satellite altimeter measurements, over the period August 
1991 – December 2016.  
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Figure 6: Normalised root-mean-square error in significant wave height from the hindcast compared with satellite altimeter 
measurements, over the period August 1991 – December 2016.  

  



45 
 

 

 

Figure 7: Dependency graph for the Cyclops optimisation suite, configured to use dependencies to allow for concurrent simulations. 
This example shows four successive cycles, for the case in which up to three parallel simulations are allowed.   Arrows represent 
dependency, which in some cases are combined by a logical OR (enclosed “+” symbol). All tasks and explicit dependencies (other 5 
than suicide triggers) are shown for cycle N, but dependencies on cycles before N-3 are omitted for clarity. 

 


