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Abstract. Automated calibration of complex deterministic water quality models with a large number 

of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical 15 
judgements of model fit. We undertook auto-calibration of the one-dimensional hydrodynamic-

ecological lake model DYRESM-CAEDYM, using a Monte Carlo Sampling (MCS) method, in order 

to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand). The 

calibration procedure involved independently minimising the root-mean-square-error (RMSE), 

maximizing the Pearson correlation coefficient (r) and Nash-Sutcliffe efficient coefficient (Nr) for 20 
comparisons of model state variables against measured data. An assigned number of parameter 

permutations was used for 10,000 simulation iterations. The ‘optimal’ temperature calibration produced 

a RMSE of 0.54 °C, Nr-value of 0.99 and r-value of 0.98 through the whole water column based on 

comparisons with 540 observed water temperatures collected between 13 July 2007–13 January 2009. 

The modeled bottom dissolved oxygen concentration (20.5 m below surface) was compared with 467 25 
available observations. The calculated RMSE of the simulations compared with the measurements was 

1.78 mg L-1, the Nr-value was 0.75 and the r-value was 0.87. The autocalibrated model was further 

tested for an independent data set by simulating bottom-water hypoxia events for the period 15 January 

2009 to 8 June 2011 (875 days). This verification produced an accurate simulation of five hypoxic 

events corresponding to DO < 2 mg L-1 during summer of 2009–2011.  The RMSE was 2.07 mg L-1, 30 
Nr-value 0.62 and r-value of 0.81, based on the available data set of 738 days. The auto-calibration 

software of DYRESM-CAEDYM developed here is substantially less time-consuming and more 

efficient in parameter optimisation than traditional manual calibration which has been the standard tool 

practiced for similar complex water quality models.  
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Introduction 

Water quality models provide an important framework for scientific assessment to support water 

quality management decision making (Stow et al., 2007, Schmolke et al., 2010) and test the future 

climatic impacts on aquatic ecosystems (Elliott, 2012; Tang et al., 2015). They can help in 

understanding processes operating at a wide variety of temporal and spatial scales, such as the 5 
mechanisms contributing to algal blooms, resuspension of sediments, and climate impacts on water 

quality (Asaeda et al., 2001; Robson & Hamilton, 2004, Chung et al., 2009; Pierson et al., 2013). 

Process-based water quality models use process representations of the major physical and 

biogeochemical processes in order to simulate observed data and to forecast changes that may occur 

under scenarios with changed forcings, for example, altered hydrology or climate (Cox, 2003, 10 
Whitehead et al., 2009). There have been many applications of coupled hydrodynamic-ecological 

models for assessments of surface water quality, including DYRESM-CAEDYM (Han et al., 2000; 

Asaeda et al, 2001; Copetti et al., 2006; Tanentzap et al., 2008, Takkouk & Casamitjana, 2016), 

ELCOM-CAEDYM (Vilhena et al., 2010; Chung  et al., 2014; Mosley et al., 2015), EFDC (Li et al., 

2013a; Alarcon et al., 2014), QUAL2Kw (Pelletier et al., 2006; Kannel  et al., 2007a; Marsili-Libelli & 15 
Giusti, 2008), PCLake (Hu et al., 2016) and SWAT (Santhi et al., 2001; van Griensven et al., 2002; 

Jayakrishnan et al., 2005; Heathman et al., 2008).  Each of these models requires extensive calibration 

in order to simulate relevant water quality state variables. 

 

Before the application of any environmental model, it is necessary to conduct parameter sensitivity 20 
analysis, calibration and validation before the model can be used as a tool or to set up prognoses for a 

specific case area (Jorgensen, 1995; Refsgaard et al., 2007). Much of the uncertainty relating to model 

predictions can be traced back to the assigned values of model parameters and the initial and boundary 

forcing data. In most model applications, parameters may be arbitrarily chosen within selected ranges, 

or manually adjusted using laboratory experimental data (Robson & Hamilton, 2004), small-scale field 25 
results (Burger et al., 2008, Zhang et al., 2009), modeller experience or reference to values in the 

literature (Copetti et al., 2006; Kannel et al., 2007b), or mathematical optimization methods (Jackson et 

al., 2000; Kim & Sheng, 2010; Li et al., 2013b; Liang et al., 2015). The traditional calibration 

procedure of a stepwise iterative manual adjustment of parameters by the model user is labour intensive 

and the success of the calibration is strongly dependent on the experience, skill and knowledge of the 30 
modeller. The increasing complexity of many water quality models has made manual calibration a 

significantly more difficult task. Numerous development efforts are on the way to ease the model 

burden (e.g. adjustment of massive parameters and management of a vast amount of data in 

heterogeneous computing environments) and offer model development platforms that allow scientists 

to focus on their science (Fekete et al., 2009). Auto-calibration, which takes advantage of the speed of 35 
modern computers while being more objective and potentially increasing the accuracy of model 

simulations, is an alternative approach (Vrugt et al., 2003, Wu et al., 2014). It can overcome some of 

the shortcomings of trial-and-error calibration, as noted in a number of case studies (Gan & Biftu, 1996; 

Solomatine et al., 1999; Madsen, 2000; van Griensven & Bauwens, 2003; Green & van Griensven, 

2008; Liu, 2009). 40 
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Auto-calibration usually involves automated adjustment of model parameter values in order to find 

those values that minimize the error between model outputs and observations, represented in terms of 

single- or multi-objective functions or statistics. The normalized objective functions, with a range from 

0–1 (0 being the best and 1 the worst) are minimized by searching for parameter space combinations 5 
that give objective functions as close as possible to zero (van Griensven & Bauwens, 2003). This 

method has been widely used in watershed-runoff simulations (Krajewski, et al., 1991; Madsen, 2000; 

van Griensven & Bauwens, 2003; Green & van Griensven, 2008) but less frequently for models with 

many state variables such as water quality or ecosystem models (Rose et al., 2007). An auto-calibration 

procedure involves a sampling algorithm (e.g., random Monte-Carlo sampling, Latin Hypercube 10 
sampling  etc.) to define a parameter value from within its defined range, which is based on 

experimental, field and/or literature values. A search algorithm, which evaluates the objective function, 

is then typically used to identify optimal parameter values, based on a number of model iterations.  

This auto-calibration approach can save the modeller time by effectively calibrating models which may 

have large numbers of parameters. There are numerous approaches to search algorithms that aim to 15 
evaluate a parameter space and minimize model error. These include, for example, set coverage 

techniques, random search methods such as Monte Carlo sampling, probability distribution search 

algorithms such as Bayesian Monte Carlo (Arhonditsis et al., 2006) or Markov Chain Monte Carlo 

(MCMC) techniques, multiple local search methods (multi-start) using clustering, simulated annealing, 

trajectory techniques and tunnelling approaches (Solomatine, 1998; Solomatine et al., 1999).  20 
 

In complex models with many parameters, there are potentially many “sets” of parameter values that 

can be manipulated in concert to yield similar model performance (Stow et al., 2007). In environmental 

systems this problem is known as “equifinality” (Beven & Binley, 1992; Beven, 1993; Beven & Freer, 

2001, Beven, 2006, Vrugt et al., 2009a, 2009b; Beven 2009). This phenomenon has been exploited to 25 
define a range of model responses, rather than a single solution (Madsen, 2000). With traditional multi-

objective optimization, it is well known that a lower value for one optimization function may 

correspond to an increase of one or more other optimization functions (van Griensven & Bauwens, 

2003). As a result, Beven & Binley (1992) advocated a generalised likelihood uncertainty estimation 

(GLUE) procedure in which model input parameters are randomly selected. This Monte Carlo 30 
simulation approach has been increasingly used to obtain parameter values in hydrological models 

(Seppelt & Voinov, 2002; Refsgaard et al., 2007).  Monte Carlo selection of parameters can be readily 

incorporated into a modelling framework (Hession et al., 1996; van der Perk & Bierkens, 1997; Kannel 

et al., 2007a) but a large number of simulations and extensive computer storage may be required in 

order to reliably estimate the probability distribution of model output variables (Refsgaard et al., 2007). 35 
 

A Monte Carlo simulation method has previously been built into the water quality model QUAL2E for 

the purpose of assisting with parameter selection (Ng & Perera, 2003) but there have been few other 

examples of the application of auto-calibration in lake or reservoir water quality models. Because many 

of these models have a large number of state variables and the algorithms tend to be empirical, based 40 
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on biogeochemical rates, there are often a larger number of parameters, especially compared with 

rainfall-runoff models. Our objective was therefore to use a Monte Carlo approach to develop an auto-

calibration procedure for the one-dimensional water quality model DYRESM-CAEDYM, a lake 

ecosystem model that has been applied to simulate water quality in a large number of lakes and 

reservoirs (e.g., Hamilton, 1999; Antenucci et al., 2003; Trolle et al., 2008a, 2008b; Cui et al., 2016). 5 
We set out to test the performance of this technique using an example of concentrations of dissolved 

oxygen in bottom waters of a large lake which, because of its eutrophic status and polymictic nature, 

undergoes large variations in dissolved oxygen that have important ecosystem-wide effects (Burger et 

al., 2008).  

 10 
2. Methods 

2.1   DYRESM-CAEDYM 

DYRESM-CAEDYM was developed at the Centre for Water Research (CWR), University of Western 

Australia. It couples the one-dimensional hydrodynamic model DYRESM with an aquatic ecology 

model CAEDYM, thus allowing investigation into the relationships between physical, biological and 15 
chemical variables in waterbodies over seasonal and inter-annual timescales. DYRESM divides a lake 

or reservoir into a series of horizontally-homogeneous Lagrangian layers. The number of layers is 

determined largely by the resolution required to adequately represent the vertical density gradient. 

Layer sizes are reduced where the vertical density gradient is greatest. Layers can also expand or 

contract in response to inflows or outflows, and mixing is accomplished by amalgamation of adjacent 20 
layers (Hamilton & Schladow, 1995). CAEDYM comprises subroutines for phytoplankton production 

and loss, nutrient cycling and dissolved oxygen dynamics (Hamilton & Schladow, 1997). It can 

simulate up to seven phytoplankton groups, dissolved oxygen (DO), and nutrient concentrations using a 

series of partial differential equations that include different biogeochemical rate constants (Robson & 

Hamilton, 2004). The bottom sediment is characterised in the model as a permanent sink for particulate 25 
matter that settles out of the water column, with releases of dissolved nutrients from the sediments 

prescribed from overlying water column properties (Burger et al., 2008). Makler-Pick et al. (2011) has 

developed a sensitivity analysis approach for this coupled model but there are few reports about 

automatic calibration software for this model. More detailed information about DYRESM-CAEDYM 

is given in Hamilton & Schladow (1997), Romero et al. (2004) and applications (Trolle et al., 2008a, 30 
2008b; Gal et al., 2014; Cui et al., 2016). 

 

2.2   Dissolved oxygen module 

In CAEDYM, the algorithms that affect DO relate to air-water fluxes, sediment oxygen demand (SOD), 

microbial uptake during organic matter mineralization and nitrification, oxygen production and 35 
respiration by primary producers (e.g., phytoplankton), and respiration by other optional biotic 

components (Hipsey et al., 2007). The air-water DO flux is calculated using the model of Wanninkhof 

(1992) and the flux equation of Riley & Skirrow (1974). SOD is represented by a function that varies 

the rate with overlying water temperature and DO concentration. Removal of DO is by microbial 
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activity, including mineralisation of organic matter and nitrification, as well as phytoplankton 

respiration. Fig. 1 shows a schematic for the DO flux paths in CAEDYM. 

 

Insert Fig. 1 here 

 5 
2.3   Data collection 

A water quality and meteorological monitoring buoy was installed in Lake Rotorua, New Zealand, near 

the deep central part (38°04ʹ32.7ʺS, 176°16ʹ01.88ʺE) in July 2007. Lake Rotorua is a shallow, 

eutrophic lake with area 80 km2 and mean depth 10.8 m. The buoy transmits in near real-time data 

collected at 15-minute intervals for a range of variables encompassing meteorology (wind speed and 10 
direction, air temperature, relative humidity, barometric pressure, precipitation) and water quality 

(surface and bottom DO concentration and percentage saturation, surface chlorophyll fluorescence, and 

water temperature at 2 m intervals over the 21 m water depth where the buoy is located). The data are 

telemetered to an on-line database by GRPS modem. Short-wave solar radiation was measured at a 

weather station near the lake edge. All sensors were calibrated regularly for quality assurance. The 15 
quarter-hourly data were aggregated to hourly and daily time-steps prior to analysis, in order to smooth 

some of the unexplained instantaneous anomalies that can sometimes occur with in situ optical 

instrumentation. In addition, total phosphorus and total nitrogen concentrations were measured monthly 

at two depths (1 meter and 19 meters below surface) near the lake buoy station. 

 20 
2.4   Auto-calibration procedure for DYRESM-CAEDYM 

The auto-calibration model was implemented by following a number of steps.  First, the modeller 

chooses a fixed simulation period when all the data required by the model were collected (i.e. the 

initial water quality data at the beginning of simulation, inflows, outflows and meteorological data 

during the whole period). The time step was set to be 3600 seconds for the numerical integration in all 25 
simulations. Then all physical and biogeochemical parameters were fixed in their respective input files. 

When the model output was not sensitive to the parameter judged by experience or when fixed 

parameter values could be used (e.g., stoichiometric parameters), the minimum and maximum value 

were set to be equal and the parameter calibration was deemed unnecessary. A random search module 

was then run for all remaining parameters to produce files with combinations of parameters which 30 
could then be used to generate independent runs of the DYRESM hydrodynamic module. Simulations 

of water temperature extracted from the output file (DYsim.nc) were then compared with temperatures 

measured at corresponding depths and times. A physical parameter set was then chosen automatically 

based on minimising the RMSE in comparisons between simulations and observations (Tab. 1). An 

alternative approach is to enter the physical parameters manually as many of these parameters can be 35 
fixed on the basis of their theoretically constrained values. We used a total of 10,000 iterations to 

choose the best-fit of the physical parameter set. The DYRESM-CAEDYM model was then run with 

the selected physical parameters and a set of water quality parameters chosen from the MCS procedure 

with the same number of iterations. The root mean square error (RMSE) was estimated for comparisons 

of simulations and observations for the variables chlorophyll a and DO. The combined RMSE is the 40 
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sum of RMSEs for chlorophyll a and DO with each RMSE multiplied by an arbitrarily chosen weighing 

factor varying from 0 to 1. The four DYRESM-CAEDYM parameter files (par, bio, chm and sed) were 

chosen which minimised the combined RMSE of these variables with corresponding weighing factors 

between the model simulations and measured values. 

 5 
2.5  Statistical evaluation methods for the auto-calibrated model 

The accuracy of the auto-calibrated model was tested by RMSE, Nash-Sutcliffe efficient coefficient (Nr) 

and Pearson correlation coefficient (r) as follows: 
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where 
iO is the measured value, 

iS is the simulated value, 
iO  is the average of measured values,  15 

iS   is the average of simulated values and N is the total number of observations. Nr is known as the 

modelling efficiency and can be negative or positive. A positive value indicates that the simulations 

describe the trend of measurements better than the mean of observations and a negative value shows 

the opposite. The maximum value of Nr is 1.0, which means the model fits the observed values exactly. 

The subscript i for O and S represents the serial number of observations and simulations which are used 20 
for the statistical analysis. The objective of the auto-calibration procedure was to minimize the RMSE 

values and maximize Nr and r-values. One of these three parameters or a combined value of them can 

be chosen for obtaining the serial number of the iteration that produces the ‘best’ simulation.  

 

We used the period 13 Jul. 2007–13 Jan. 2009  (551 days) for model calibration, and validated the 25 
calibrated model using data from the period 15 Jan. 2009–8 Jun. 2011 (875 days) 

 

3. Results  

3.1 Physical parameter set selection 

Tab. 1 shows the set of physical parameters that minimised the RMSE for temperature over the 10,000 30 
model runs. A comparison of simulated and observed water temperature is shown in Fig. 2. 

 

Insert Tab. 1 here 
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Insert Fig. 2 here 

 

The water temperature simulations agreed well with observed values at all 11 observed depths (0.5 m 

to 20.5 m at intervals of 2 m), and captured dynamic nature of lake mixing, which in Lake Rotorua is 

characterised by occasional periods of stratification in which there are vertical temperature gradients 5 
interspersed with little or no temperature gradient when the lake is vertically mixed (Read et al., 2011). 

The Pearson correlation coefficient (r) between model output and measured temperature over all depths 

exceeded 0.98 with a RMSE of < 0.71 °C (Tab. 2).  The RMSE was lowest at a depth of 6.5 m (0.44 °C) 

of all of the observed depths, and the r value was also greatest and Nr closest to 1.0 at this depth. The 

accuracy of simulations of bottom water temperature were not generally as accurate (in terms of RMSE, 10 
r and Nr statistics) as for surface water temperature, but the ability of the model to capture the timing, 

frequency and duration of stratification events (Fig. 2) was considered acceptable as a basis to carry out 

simulations of water quality by coupling DYRESM with CAEDYM. 

 

Insert Tab. 2 here 15 
 

3.2   Hypoxia simulation  

3.2.1  Auto-calibration 

In CAEDYM, the most sensitive parameters in the DO simulation are the sediment oxygen demand and 

half saturation constant for DO consumption, DO production through phytoplankton photosynthesis, 20 
and DO consumption through respiration of phytoplankton, mineralisation of organic matter, 

nitrification and denitrification.  These processes are represented schematically in the CAEDYM 

configuration shown in Fig. 1. From a total of 10,000 simulations of the DYRESM-CAEDYM model 

with different input parameters it was possible to identify the parameter data set with the minimum 

value of RMSE to obtain the best match to observed values of DO. The values of the optimized 25 
parameters are shown in Tab. 3 and the hypoxia simulation results, represented by concentrations of 

DO, are shown in Fig. 3. 

 

Insert Tab. 3 here 

 30 
Insert Fig. 3 here  

 

During the simulation period, there were five separate DO depletion events (DO < 4 mg L-1) observed 

in the bottom waters. The first occurred during 7 Sep–1 Oct 2007 with minimum DO of 3.95 mg L-1 

(simulation 2.46 mg L-1) on 24 Sep (Julian day 267). The second and third events were observed in 35 
summer 2008, specifically 7 Jan 2008–10 Feb 2008 and 17 Mar–3 Apr 2008. The lowest DO 

(observation 0.21 mg L-1 and simulation 0.36 mg L-1) for the second event occurred on 18 Jan 2008 and 

for the third event on 31 Mar 2008 (0.19 mg L-1 and simulation 0.89 mg L-1). The fourth and fifth 

events were recorded in summer of 2009 with a minimum value of 0.72 mg L-1 (simulation 0.84 mg L-1) 

on 10 Dec 2008 and 0.5 mg L-1 (simulation 1.6 mg L-1) on 11 Jan 2009. All five bottom DO depletion 40 
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events were captured with the DYRESM-CAEDYM model simulations, although the simulated trough 

(minima) of the first event was slightly below the observed values while all the other troughs exceeded 

the observations. Statistical tests to relate simulated and observed values over the entire simulation 

period gave a RMSE of 1.78 mg L-1, r of 0.87 and Nr of 0.75 (N=467). The simulations well reflected 

the variation pattern of time-serial measurements with slightly oscillated gap in winter and early 5 
autumn of 2008 (Julian day from 170 to 309). There was a small DO depletion event during 18 

September 2008 (Julian day 262)–3 October 2008 (Julian day 277), which was not captured by the 

model with the average value of DO (11.90 mg L-1) higher than the average observation value (8.40 mg 

L-1) by 3.5 mg L-1. 

 10 
3.2.2  Model validation 

The recorded bottom DO data from 15 January 2009 to 8 June 2011 (875 days) were used for model 

validation with the selected parameter set from the auto-calibration process. The model captured all 

five hypoxic events with DO < 2 mg L-1 measured during 31 January 2009–21 February 2010, 12 

February–25 March 2010, 2–24 December 2010, 9–17 January 2011 and 16 February –1 March 2011, 15 
with a RMSE of 2.07 mg L-1, Nr-value of 0.62 and  r-value of 0.81 (N=738, Fig. 4). There was only one 

hypoxic event induced by intense stratification in each summer of 2009 and 2010, while three events 

were observed in the summer of 2011. In all cases, DO concentrations were < 0.7 mg L-1 during these 

events. The pattern of variation during these events was well reproduced by the model with the auto-

calibration parameter set although there were still minor differences between the absolute values for 20 
simulations and observations.  

 

4. Discussion 

The DO capacity of water is greatly affected by temperature but the distribution of DO in the water 

column is also strongly influenced by water column stratification, which in Lake Rotorua is controlled 25 
by variations in water density as water heats and cools. Therefore, to be able to simulate accurately the 

DO concentrations, it is necessary to choose a model of lake physical processes which accurately 

simulates water temperature dynamics, as shown with DYRESM model simulations in this study. The 

temperature profiles were well reproduced by the model although there was water loss reflected by 

water level decrease in the model by almost half meter in the January and February of 2008. The water 30 
loss probably resulted from the inflows/outflows boundary conditions which were induced by a 

catchment model.  

 

Compared to the previous model parameter values reported by Burger et al. (2008), the value for water 

albedo yielded by the auto-calibration was somewhat higher (0.084 compared to 0.07 in Burger et al., 35 
2008), but water surface emissivity (0.94 in this work and 0.96 reported by Burger et al. (2008)) was 

very similar. Thus our auto-calibration procedure results in slightly less total solar energy received by 

the lake. Albedo at the water surface is one of the key parameters affecting the water heat budget in 

DYRESM. Nunez (1972) found that on a daily basis, albedo ranged between 0.07 in early July to 0.11 

in mid–November for Lake Ontario, North America, and that surface waves increase the value of 40 
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direct-beam albedo, particularly at higher solar zenith angles. Albedo varies according to latitude and 

season, so some physical parameters may continue to require some flexibility in their values as long as 

there is not a complete process representation for them. There are five parameters related to vertical 

mixing in DYRESM: critical wind speed, potential energy mixing efficiency, shear production 

efficiency, wind stirring efficiency and the vertical mixing coefficient. Their values, as selected by 5 
auto-calibration were 6.5 m s-1, 0.29, 0.084, 0.29 and 305.5, while they were given by Burger et al. 

(2008) as 4.0 m s-1, 0.25, 0.08, 0.6 and 400 based on trial-and-error calibration within the parameter 

limits (Yeates and Imberger, 2003). Statistical tests showed that RMSE values between simulated and 

observed water temperatures for the upper mixed layer (0.48 ºC, 0–9 m) and the bottom layer (0.61 ºC, 

19.0 m) using our auto-calibration approach were smaller than those reported by Burger et al. (2008) 10 
(0.97 ºC for the surface-mixed layer and 0.88 ºC for the bottom waters for a calibration period, and 

0.86 ºC and 0.67 ºC, respectively, for the validation period). Therefore, auto-calibration of DYRESM 

water temperature appears to be a useful tool to improve simulation accuracy for Lake Rotorua and 

potentially for other lakes.  

 15 
Simulated bottom DO represented observations well in the calibration process, as it correctly captured 

the occurrence of five DO depletion events for bottom waters. One of the most sensitive parameters for 

DO simulations in bottom waters is sediment oxygen demand (SOD, g m-2 d-1). It varies as a function 

of the overlying water temperature and dissolved oxygen levels in CAEDYM but, as noted by Burger 

et al. (2008), it does not account for variations contributed by the dynamic nature of sediment 20 
composition (e.g. increased organic deposition following algal blooms). The SOD selected by auto-

calibration was 8.08 g m-2 d-1 in this study, which is greater than values selected for modelling a 

eutrophic estuary in Western Australia (6.0 g m-2 d-1; Robson and Hamilton, 2004), Tolo Harbour in 

Hong Kong (0.4–1.3 g m-2 d-1, Hu et al., 2001), shallow eutrophic Lake Alsdorf  in Germany (1.5 g m-2 

d-1, Strauss & Ratte, 2002) and Lake Onondaga in New York (1.68 g m-2 d-1, Gelda et al., 1995), but in 25 
the range of 0.34–9.02 g m-2 d-1 measured in the five southwestern lakes of  USA by Veenstra and 

Nolen (1991). Sources of SOD may be divided into three basic categories: 1) microbial oxygen demand 

(bacteria, protozoa); 2) macrofaunal oxygen demand (primarily tubificid oligochaetes and insect 

larvae); and 3) chemical oxygen demand by inorganic oxidation of reduced chemical compounds 

(Finkelstein & McCall, 1981).  Due to these varied influences, SOD can vary widely over time and 30 
space, both within and between lakes. For example, SOD in Lake Rotorua has been measured at values 

from 0.3 g m-2 d-1 (site 2, Aug 2003) to 4.0 g m-2 d-1 (site 3, Nov 2003, Burger et al., 2008). A value of 

2.8 g m-2 d-1 was used for DO simulations with DYRESM-CAEDYM by Burger et al. (2008). In five 

southwestern U.S. lakes (Broken Bow, Texoma, Birch, Pine Creek, and Pat Mayse) SOD ranged from 

0.34 to 9.02 g m-2 d-1, after correction for temperature (Veenstra & Nolen, 1991). This parameter is 35 
mostly dependent on sediment components (i.e. organic matter, bacterial activity, and benthic fauna) 

and the overlying water environment (water temperature, underwater light and vertical mixing), which 

will vary over seasons and locations in a specific lake.    
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Monte Carlo methods are generally preferred and more widely used for parameter estimation in 

environmental models than first-order variance propagation (Hession et al., 1996). Monte Carlo-based 

approaches continue to evolve and include Bayesian Monte Carlo (BMC, Dilks et al., 1992; Bergin & 

Milford, 2000), Markov Chain Monte Carlo (MCMC, Gelfand & Smith, 1990; Gelfand et al., 1990; 

Zobitz et al., 2011) and GLUE techniques (Beven & Binley, 1992; Vrugt et al., 2009a, 2009b).  Among 5 
these methods, the Monte Carlo sampling is a general approach and assumes no structure associated 

with model error. It often serves as a screening approach to identify plausible regions of model 

parameter values (Stow et al., 2007). The BMC is based on MCS but with assumptions about model 

error structure to delimit plausible parameter regions (Stow et al., 2007). The main problem with this 

technique is that it does not converge toward the most probable region of the posterior distribution and 10 
can be extremely inefficient, rarely sampling from the most probable region (Qian et al., 2003). This 

problem is likely to be exacerbated when there are wide parameter ranges designated to include all 

possible values but this may miss the important region of the posterior distribution in the Monte Carlo 

sample (Qian et al, 2003). GLUE is similar to BMC but permits a broader range of functions that 

define the model error structure (Stow et al., 2007). MCMC is specifically designed to sample from the 15 
posterior distribution in order to eliminate these problems and is regarded as one of the most efficient 

approaches for parameter sampling (Stow et al., 2007). It has been integrated into some auto-

calibration tools such as the shuffled complex evolution (SCE-UA, Duan et al., 1992; 1993), the 

shuffled complex evolution metropolis algorithm (SCEM-UA, Vrugt et al., 2003) and WinBUGS 

(Gilks et al., 1994). This method requires an appropriate algorithm dependent on the model form and a 20 
choice of distributional structure appropriate to represent the stochastic terms (Stow et al., 2007). A 

poor choice of the proposed distribution of parameters will result in slow convergence of the Markov 

Chain (Vrugt et al., 2003). 

 

Random Monte Carlo simulation, as adopted in our study, has the advantage of being easily 25 
incorporated into model code and programming, and can also include adequate consideration of 

“equifinality” of water quality models with large sets of parameters, without the need for the user to 

make assumptions regarding parameter distributions (as a simple uniform parameter distribution within 

the defined range is used). However, the success of parameter value selection is closely related to the 

user-defined upper and lower ranges of key parameters, and the number of iterations performed. The 30 
number of simulations should be sufficiently large to reliably estimate the probability distribution of 

the output variables. Although a lot of hard disk space is required for saving stochastically produced 

parameter files, this is a progressively lesser concern due to the increased availability and reduced cost 

of storage space. An approach for reducing required hard drive space is to conduct a comparison 

between model outputs and measurements in terms of pre-defined statistical parameters for error 35 
evaluation after each model run, then sort all the iteration errors and save the parameter files with 

which the errors between simulations and observations are smaller than an arbitrarily-chosen threshold 

value of error. Sensitivity analysis might be an alternative option for reduction of required space for 

parameter file storage and to achieve an increase in model run-time speeds, since only the most 

sensitive parameters will be considered to change in the model auto-calibration process.  40 
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Auto-calibration tools have been widely used in watershed-runoff models but have had limited 

application to water quality models. This paper has detailed our prototype for an auto-calibration tool 

for the widely used DYRESM-CAEDYM model. The success of its application is strongly dependent 

on prior knowledge about parameter value ranges, the number of iterations performed which is closely 5 
related to the computer’s performance capability and the accuracy of observations, but it has great 

potential to reduce the repetitive model iterations that are required using traditional trial-and-error 

calibration. Sub-modules for analysis of parameter sensitivity and model uncertainty could be included 

in further developments of the auto-calibration approach in order to decide the most appropriate model 

parameters (on a case-by-case basis) to be used during calibration and thereby increase performance 10 
and reduce computation consumption.  

 

5.  Conclusions 

1.  MCS is an effective method for calibration of a dynamic water quality model with a massive 

number of parameters and equifinality to find an optimized parameter set in a complex environmental 15 
system although it requires robust hardware. 

2. For most of model users, the auto-calibration software of DYRESM-CAEDYM developed in this 

paper is substantially less time-consuming and more efficient in parameter optimisation than 

conventional manual calibration procedure which has been the standard tool practiced for similar 

complex water quality models.  20 
 

Code and/or data availability 

The code for the automatic calibration of DYRESM-CAEDYM is available at the supplements. The 

DYRESM-CAEDYM model is available from (http://www.hydronumerics.com.au/software/aquatic-

ecosystem-model-3d).  25 
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Table captions 

 
Tab. 1  Selected physical parameters used in DYRESM based on autocalibration from 10,000 iterations. 

 

Tab. 2  Statistical results (RMSE, Nr and r value) between simulations and observations of water 5 
temperature at different depths from 0.5 m to 20.5 m at intervals of 2 m. The sample number is 436 for 

the bottom layer (depth 20.5 m) and 510 for all other layers. 

 

Tab. 3  Values of key parameters for DO production and consumption in DYRESM-CAEDYM, chosen 

through auto-calibration. 10 
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Tab. 1 Autocalibration-chosen physical parameters used in DYRESM with 10,000 iterations. 

 

Parameter	 Value	

Bulk aerodynamic momentum transport coefficient	 0.00135	

Albedo of water	 0.084	

Emissivity of water surface	 0.94	

Critical wind speed (m s-1)	 6.5	

Shear production efficiency	 0.084	

Potential energy mixing efficiency	 0.29	

Wind stirring efficiency	 0.29	

Effective surface area coefficient	 1.27 x 107	

BBL dissipation coefficient	 0.0	

Vertical mixing coefficient	 305.5	
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Tab. 2  Statistical results (RMSE, Nr and r value) between simulations and observations of water 

temperature at different depths from 0.5 m to 20.5 m at intervals of 2 m. The sample number is 436 for 

the bottom layer (depth 20.5 m) and 510 for all other layers.  

 
Depth (m)	 RMSE	 Nr	 r	

0.5	 0.529	 0.985	 0.994	

2.5	 0.462	 0.989	 0.995	

4.5	 0.510	 0.986	 0.995	

6.5	 0.435	 0.990	 0.995	

8.5	 0.471	 0.988	 0.995	

10.5	 0.555	 0.983	 0.994	

12.5	 0.610	 0.979	 0.992	

14.5	 0.529	 0.983	 0.992	

16.5	 0.553	 0.981	 0.991	

18.5	 0.606	 0.977	 0.989	

20.5	 0.703	 0.966	 0.984	
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Tab. 3   Values of key parameters related to DO production and consumption in DYRESM-CAEDYM, 

chosen through auto-calibration. 

 

Parameter	 Value	

Static sediment oxygen demand (SOD, g m-2 d-1)	  8.08	

Half-saturation constant for sediment DO flux (mg O L-1)	  3.38	

Denitrification rate coefficient (day-1)	  0.588	

Nitrification rate coefficient (day-1)	  0.0144	

Maximum potential growth rate of cyanobacteria (day-1)	  0.588	

Maximum potential growth rate of diatoms  (day-1)	  1.194	

Respiration, mortality and excretion parameter for cyanobacteria (day-1)	  0.0788	

Respiration mortality and excretion parameter for diatoms (day-1)	  0.138	
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Figure captions  

 

Fig. 1   Schematic of dissolved oxygen dynamics in CAEDYM.  

 

Fig. 2  Comparison of observed (top) and simulated (bottom) water column temperature based on daily 5 
data from 13 Jul. 2007–13 Jan. 2009. 

 

Fig. 3 Model auto-calibration with comparison of daily bottom DO between simulations (grey dots) 

and observations (black dots) for depth of 20.5 m from 13 Jul. 2007–13 Jan. 2009 (551 days). The X-

axis represents time in the format of mm/dd/yy and the Y-axis represents DO concentrations (unit: mg 10 
L-1). 

 

Fig. 4  Model verification with comparison of daily bottom DO between simulations (grey dots) and 

observations (black dots) at depth of 20.5 m from 15 Jan. 2009–8 Jun. 2011 (875 days). The X-axis 

represents time in the format of mm/dd/yy and the Y-axis represents DO concentrations (unit: mg L-1). 15 
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