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Abstract. Models of landscape evolution by river erosion are often either transport-limited (sediment is always available,

but may or may not be transportable) or detachment-limited (sediment must be detached from the bed, but is then always

transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited

behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution

over large spatial and temporal scales requires a model that can 1) transition freely between transport-limited and detachment-5

limited behavior, 2) simultaneously treat sediment transport and bedrock erosion, and 3) run in 2-D over large grids and be

coupled with other surface process models. We present SPACE (Stream Power with Alluvium Conservation and Entrainment)

1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass

both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing

the reality that many rivers (even those commonly defined as “bedrock” rivers) flow over a partially alluviated bed. SPACE10

improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than

relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-

language library used to create models of earth surface processes. Landlab allows efficient coupling between the SPACE model

and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes.

Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion15

formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-

state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted

behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution mod-

eling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for

simultaneously modeling 2-D sediment transport and bedrock erosion.20

1 Introduction

Rivers are the primary agents of land-surface lowering in non-glaciated landscapes (e.g., Whipple, 2004). Erosion and sediment

transport in rivers affect human river management (e.g., Graf et al., 2010), landscape mass balance (e.g., Armitage et al., 2011),

and global biogeochemical cycling (e.g., Hilton, 2017). Interest in the effects of river erosion on landscape change over all

spatial and temporal scales has led to the widespread proliferation of numerical models for channel evolution. Specifically25
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within the landscape evolution community, many models have emerged to address the problem of river incision into sediment

and bedrock over long timescales. River incision models fall between two end-members: transport-limited and detachment-

limited models. Transport-limited models (e.g., Willgoose et al., 1991) assume that erosion is limited by the capacity of a river

to transport sediment or rock, but that an infinite supply of readily transportable material is available. Transport-limited models

do not explicitly incorporate a formulation for the mechanics of bed erosion, but assume that elevation change in the channel is5

set by the divergence of sediment transport capacity (e.g., Paola and Voller, 2005). Detachment-limited models (e.g., Howard,

1994) assume that erosion is limited by a river’s ability to remove sediment or rock from the bed, but that all detached material

is transportable. As such, they include no statement of mass conservation (aside from the assumption that all eroded mass leaves

the model domain) because all detached mass is assumed to be transported downstream. Transport capacity in transport-limited

models and detachment rate in detachment-limited models are generally assumed to be some function of water quantity and10

slope (e.g., shear stress or stream power).

In this paper, we briefly discuss the problem of differentiating between these two end-member models, and how previous

workers have attempted model validation in the field. We review existing models that fall between the two end-members,

and argue that many models are limited by an inability to treat simultaneous sediment transport and bedrock erosion over

landscape evolution timescales. We then describe the SPACE 1.0 model, a new channel evolution model intended to simulate15

the long-term evolution of bedrock-alluvial channels at the landscape scale. SPACE calculates sediment transport and bedrock

erosion simultaneously by modeling the coupled evolution of an alluvial layer and a bedrock bed. We show that the SPACE

model transitions smoothly between transport-limited, detachment-limited, and mixed behavior, and that it matches analytical

solutions for channel slope, sediment layer thickness, and sediment flux. We use the example of topographic evolution in

response to unsteady rock uplift to show that as a component of the Landlab toolkit, SPACE may be coupled with other20

landscape evolution model components to explore landscape change over long timescales. Finally, we discuss the potential for

field validation of the SPACE model, the limitations of the model, and the similarities and differences between SPACE and

previous channel evolution models.

2 The problem of model differentiation and applicability

While the underlying assumptions of the transport-limited and detachment-limited end-member models differ, they produce25

identical steady-state longitudinal profiles (e.g., Whipple and Tucker, 2002; Lague et al., 2003). Further, as noted by Davy and

Lague (2009), the superiority of one model over the other, if superiority can be established in tests against real landscapes,

appears to depend on the characteristics of test sites and on the comparison methods (e.g., Snyder et al., 2003; Tomkin et al.,

2003; van der Beek and Bishop, 2003; Valla et al., 2010; Hobley et al., 2011). Such tests generally consist of using models to

match topographic variables such as erosion rate–channel steepness scaling (e.g., Snyder et al., 2003), matching steady-state30

model solutions to river profiles with evidence for steady-state behavior (e.g., Tomkin et al., 2003), using a well-constrained

initial condition and present-day topography to compare river profile evolution between models and the landscape (e.g., van

der Beek and Bishop, 2003; Valla et al., 2010), or combining fluvial erosion depths with field model calibration to find an
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optimal model form (e.g., Hobley et al., 2011). An example of the difficulty in evaluating transport-limited vs. detachment-

limited behavior in real landscapes is shown by the work of Valla et al. (2010) and Hobley et al. (2011). Both investigated

the carving of postglacial gorges (in the Alps and the Himalaya, respectively) and both used gorge incision depth and other

field measurements to validate transport-limited and detachment-limited incision models. Valla et al. (2010) concluded that

a transport-limited model was most appropriate for treating gorge incision at their study site, while Hobley et al. (2011)5

found that gorge evolution in the Himalaya was best replicated with a detachment-limited model. In addition to the difficulty

of distinguishing between models, no simple transport-limited or detachment-limited model has been shown to agree with

field data in a wide variety of natural settings, likely due in large part to the potential for both types of behavior to occur

simultaneously. This has motivated the development of a wide variety of more sophisticated channel evolution models that

exist in the space between the simplest transport-limited and detachment-limited models. Below we review some of these10

models, specifically focusing on those that treat both sediment transport and bedrock erosion.

3 Review of coupled sediment transport and bedrock erosion models

Over the past two decades, new efforts to advance modeling of river channel evolution have focused on four main topics. First,

the development of detachment-limited models with parameterizations describing how sediment flux influences bed erosion has

resulted in a class of sediment-flux-dependent detachment-limited models. Second, the dynamics of reach-scale sediment cover15

on a bedrock bed have been explored by a series of cover models that explicitly treat sediment erosion and deposition but do

not erode the bedrock bed. Third, models with mass conservation frameworks that incorporate both the bed and the sediment in

transport allow dynamic transitions between transport-limited and detachment-limited behavior for a single substrate material.

Finally, a recent family of models combines equations for sediment mass conservation on the bed and in the water column with

rules for bedrock erosion mechanics, thus allowing dual modeling of sediment morphodynamics and bedrock bed erosion.20

Substantial advances have also been made in modeling the hydrodynamics that drive channel evolution, but we do not review

that work here.

3.1 Sediment-flux-dependent bed cover and erosion models

Perhaps the simplest parameterization of the influence of sediment on bedrock erosion is found in sediment-flux-dependent

river incision models. Sediment-flux-dependent models form a class of detachment-limited model in which the interaction of25

sediment flux with sediment transport capacity enhances or inhibits bedrock erosion (e.g., Sklar and Dietrich, 1998; Whipple

and Tucker, 2002; Sklar and Dietrich, 2004; Gasparini et al., 2006, 2007; Turowski et al., 2007; Chatanantavet and Parker,

2009; Hobley et al., 2011). True detachment-limited sediment-flux-dependent incision models do not incorporate explicit mass

conservation of sediment, instead treating incision as a function of sediment flux relative to transport capacity. Depending on the

specific model formulation used, sediment may act as “cover,” inhibiting bedrock erosion, or as “tools,” accelerating bedrock30

erosion (see review in Hobley et al. (2011)). In most sediment-flux dependent models, erosion is influenced by a factor f (qs, qc)

ranging between 0 and 1, where qs is sediment flux (either volume or mass flux per unit width) and qc is sediment transport
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capacity. The value of f (qs, qc) for any particular qs and qc depends on the choice of function f ; proposed forms include

a linear decline (f (qs, qc) = 1− qs
qc

; Beaumont et al. (1992)), parabola (Sklar and Dietrich, 2004), near-parabola (Gasparini

et al., 2006), and other similar shapes (Turowski et al., 2007). Turowski et al. (2007) showed that the fraction of exposed

bed may decline exponentially with increasing qs/qc. Johnson (2014) made steady-state predictions for alluvial cover as a

function of qs/qc on a non-erodible bedrock bed, and showed that bedrock roughness relative to sediment size is an important5

control on setting the influence of qs/qc on bed cover (his model assumes a stationary bedrock bed, but could be accompanied

by a sediment-flux-dependent incision rule). The chief disadvantage of sediment-flux-dependent incision models that do not

also incorporate explicit sediment mass conservation is that using f (qs, qc) as a proxy for the sediment influence on bedrock

erosion precludes modeling of fully alluviated reaches (i.e., the river bed is simply vertically immobile when f (qs, qc) = 0).

Once the bed is fully covered, these models cannot adjust their slope in response to additional sediment inputs (because they10

cannot model deposition). Models of bed cover and sediment-flux-dependent incision therefore require additional sediment

mass conservation components to treat rivers that may periodically become fully alluviated, including most channels on Earth

when considered over sufficiently long timescales.

3.2 Reach-scale bed cover models with explicit sediment transport

Incorporating conservation of sediment mass precludes needing to rely on the simple ratio of sediment flux to transport capacity,15

and leads to process-based descriptions of sediment cover on bedrock channel beds. The models of Hodge and Hoey (2012),

Nelson and Seminara (2012), and Turowski and Hodge (2017) do not erode bedrock, but incorporate statements of sediment

mass conservation to explore cover dynamics on a stationary bedrock bed. Hodge and Hoey (2012) used a cellular automaton

model of alluvial cover evolution that allowed probabilistic entrainment and deposition of sediment on a non-eroding bedrock

bed. They found that either a linear or exponential decline in bedrock exposure with increasing qs/qc could occur if all grains20

had equal entrainment probability, with the exponential decline occurring at low entrainment probabilities and the linear decline

occurring at high entrainment probabilities. Additionally, they found that when isolated grains have a higher entrainment

probability than clustered grains, bedrock exposure declines sigmoidally with increasing qs/qc and runaway alluviation can

occur. Their results support the experimental results of Chatanantavet and Parker (2008) showing that both the linear decline

in exposure with increasing qs/qc and the abrupt shift from fully exposed to fully alluviated bed are possible, with the former25

occurring at low slopes and high bed roughness, and the latter occurring at high slopes and low bed roughness. Nelson and

Seminara (2012) coupled the 2-D quasi-steady St. Venant equations with a statement of sediment conservation to explore the

areal distribution of sediment cover on a bedrock bed, using a dependence of local transport on sediment concentration and not

distinguishing between sediment on the bed and sediment in transport. Turowski and Hodge (2017) explicitly tracked erosion

and deposition governing transfer of particles between two mass reservoirs: the stationary particles on a non-erodible bedrock30

bed and the mobile particles in the water column. They showed that the relationship between bedrock exposure and qs/qc can

take a wide range of forms depending on, among other factors, the probability of increasing bed cover for a given fraction of

exposed bed.
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3.3 Erosion-deposition channel evolution models

Outside of the bedrock cover literature, there exists a class of erosion-deposition models that conserve mass on the bed and

in the water column to treat simultaneous erosion and deposition of a single substrate (Beaumont et al., 1992; Braun and

Sambridge, 1997; Coulthard et al., 2002; Davy and Lague, 2009; Carretier et al., 2016). Erosion-deposition models may dy-

namically transition between transport-limited and detachment-limited behavior (see discussion in Davy and Lague (2009)).5

Davy and Lague (2009) present such a model based on the relative influence of erosion from the bed into the water column (ero-

sion flux) and deposition from the water column onto the bed (deposition flux). When the deposition flux is much smaller than

the erosion flux and the sediment transport length scale, which can be thought of as the average travel distance of a grain from

entrainment to re-deposition, is long, their model becomes equivalent to a basic detachment-limited model. When the deposi-

tion flux increases and the transport length scale is short, the model predicts transport-limited behavior in which sediment flux10

divergence controls the channel bed elevation. The erosion-deposition framework, validated for alluvial rivers by the laboratory

experiments of Lajeunesse et al. (2017), is capable of matching transient and steady-state longitudinal profile predictions made

by both detachment-limited and transport-limited models, and smoothly transitions between the two types of model behavior

(Davy and Lague, 2009). The model of Davy and Lague (2009) improved on previous erosion-deposition models (Beaumont

et al., 1992) by using a sediment transport length scale that increases with water discharge. Erosion-deposition-type models15

that transition between detachment-limited and transport-limited behavior allow the exploration of both types of models, and

intermediate cases, with simple parameter changes rather than changes to the model structure. The major limitation of erosion-

deposition models in their basic form is that they are derived for one material of constant erodibility, and thus are limited to

eroding a single substrate (i.e., sediment or bedrock, but not both) at any given position and time. While Carretier et al. (2016)

presented a model in which the erosion-deposition framework is applied to cases in which a layer of sediment overlies bedrock,20

their model requires that one or the other material fully occupy the surface of a cell at a given time. Without substantial modifi-

cation, erosion-deposition models are therefore unable to simultaneously treat sediment morphodynamics and bedrock erosion

in mixed bedrock-alluvial systems.

3.4 Mixed bedrock-alluvial channel evolution models

A small subset of existing channel evolution models combine sediment mass conservation with equations for bedrock incision25

to treat bedrock-alluvial channels. For example, Lague (2010) explicitly tracked a layer of alluvium of thickness Ts with median

grain size D50 overlying a bedrock bed. He tested both the linear and the exponential form of the decline in bed exposure with

increasing qs/qc, both expressed as a function of the ratio of Ts to D50 (his Fig. 3). The model of Lague (2010) partitions

stresses between the channel bed and banks (Flintham and Carling, 1988) to allow dynamic channel width variations, but does

not incorporate the tools effect of sediment on bedrock erosion. Fowler et al. (2007), following in the footsteps of Smith and30

Bretherton (1972), combined the St. Venant equations with an Exner equation for sediment mass conservation. Fowler et al.

(2007) incorporated an equation for bed abrasion by bedload, assuming that abrasion rates should scale with the velocity of

the bedload layer and should decline with increasing bedload layer thickness (yielding a form of the tools and cover effects).
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Several workers have adapted forms of the saltation-abrasion bedrock erosion model of Sklar and Dietrich (1998, 2004) in

conjunction with sediment mass conservation to incorporate both the tools and cover effects into models of bedrock-alluvial

river erosion (Turowski, 2009; Nelson and Seminara, 2011; Inoue et al., 2014, 2016, 2017). Turowski (2009) combined a

stochastic erosion-deposition model with a saltation-abrasion-style incision rule and explored the sensitivity of bed cover and

bedrock erosion rate to changes in sediment transport. Turowski (2009) showed an exponential decline in bed exposure with5

increasing numbers of sediment particles equivalent to the exponential decline in the deterministic model of Turowski et al.

(2007). Nelson and Seminara (2011) coupled the cross-section channel flow model of Kean and Smith (2004) with a simple

parameterization for the formation and destruction of an alluvial layer on the channel bed. The thickness and lateral extent of

the alluvial layer vary in response to the ratio of sediment flux to sediment transport capacity. Unlike most models described

here, Nelson and Seminara (2011) explicitly resolved the shear stresses on the channel bed and banks and applied the saltation-10

abrasion model of bedrock erosion to exposed portions of the channel margin. Their model allows dynamic channel width, but is

only solved at a single channel cross-section with a prescribed bed slope. This at-a-station approach precludes the development

of alluvial cover by sediment derived from bedrock erosion. Inoue et al. (2014) presented a 1-D model of the co-evolution

of an alluvial layer and a bedrock bed. They used a modified Exner equation for sediment mass conservation incorporating

both mobile bedload and an alluvial layer, and a saltation-abrasion-style bedrock incision rule (Sklar and Dietrich, 2004;15

Chatanantavet and Parker, 2009). Inoue et al. (2016, 2017) presented 2-D models using similar sediment conservation and

bedrock erosion formulations, allowing for spatial variability in alluvial thickness and bedrock erosion along both the channel

length and width. Inoue et al. (2017) advanced the model of Inoue et al. (2016) by incorporating a simple parameterization

for bedrock bank erosion to investigate meander bend migration. Zhang et al. (2015) presented a channel longitudinal profile

model coupling local sediment transport dynamics with the saltation-abrasion incision rule of Sklar and Dietrich (2004). The20

model of Zhang et al. (2015) can capture transience driven by changes in qs/qc, or downstream propagation of changes in

sediment supply. Their model tracks the thickness of a sediment layer compared to the macro-roughness of the bedrock surface

such that alluvial thickness less than the macro-roughness length-scale results in exposed bedrock. Their geometric approach is

similar to that of Lague (2010), but the Zhang et al. (2015) model incorporates both tools and cover effects due to its derivation

from the saltation-abrasion model (Sklar and Dietrich, 2004). While Zhang et al. (2015) note that their model could incorporate25

downstream variations in channel width, it does not do so in the form they presented.

3.5 Reach-scale vs. landscape-scale approaches

The models reviewed above differ in their intended spatial and temporal scales of application. For example, the cross-section

saltation-abrasion model of Nelson and Seminara (2011) resolves flow hydraulics and channel width variations with high

fidelity, but cannot be feasibly applied at the landscape scale. Similarly, the bed cover evolution models of Turowski (2009),30

Hodge and Hoey (2012), Nelson and Seminara (2012), Johnson (2014), and Turowski and Hodge (2017) focus specifically

on cover dynamics at the reach scale. While principles from these models could be incorporated into larger-scale landscape

evolution models, several of the models (Hodge and Hoey, 2012; Nelson and Seminara, 2012; Johnson, 2014; Turowski and

Hodge, 2017) do not evolve the bedrock bed, thus limiting their potential for application to problems of long-term landscape
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evolution. The 2-D mixed bedrock-alluvial models proposed by Inoue et al. (2016, 2017) could potentially be incorporated

into existing landscape evolution model frameworks, but the feasibility of such an integration is unclear as the models have

been tested over hourly to daily timescales, not geologic timescales. The models most suited to our stated goal of a landscape

evolution model treating simultaneous sediment and bedrock evolution are those of Fowler et al. (2007), Lague (2010), Inoue

et al. (2014), and Zhang et al. (2015). The Inoue et al. (2014) model realistically incorporates hydraulic roughness of both5

bedrock and alluvium, but is designed to handle a constant sediment supply rate, a constraint which is unlikely to be satisfied

in landscape evolution modeling applications. The model of Fowler et al. (2007) is not formulated for mixed bedrock and

alluvial cases, and thus assumes no supply limitation on sediment flux. The two existing models that most closely match our

goal of treating bedrock-alluvial channel dynamics over landscape evolution space and time scales are those of Lague (2010)

and Zhang et al. (2015). We advance on these models by moving beyond an Exner-type approach and incorporating explicit10

expressions for the entrainment and deposition of sediment as well as the erosion of bedrock.

3.6 The SPACE model

We present a new model for simultaneous sediment and bedrock evolution that extends from the approaches of Davy and

Lague (2009), Lague (2010), and Zhang et al. (2015), as well as from the foundation laid by the other models reviewed above.

The Stream Power with Alluvium Conservation and Entrainment (SPACE) model conserves sediment in two reservoirs, the15

bed and the water column, in the style of Davy and Lague (2009). It is therefore an erosion-deposition model in its treatment

of sediment. SPACE also calculates bedrock erosion, incorporating progressive bedrock exposure with thinning of an alluvial

layer in a similar way to Lague (2010) and Zhang et al. (2015) such that evolution of the alluvium and the bedrock may be

simultaneously calculated. SPACE is unique in that it employs local analytical solutions for sediment flux changes in space and

alluvium thickness changes in time. These local analytical solutions are derived by combining expressions for conservation of20

sediment in the water column (e.g., Davy and Lague, 2009), conservation of sediment on the channel bed, and conservation

of mass of bedrock. Our new model is a significant advance over sediment-flux-dependent bedrock incision models in which

sediment transport and storage are not treated explicitly, as well as over previous erosion-deposition models assumed to be

eroding a single substrate. The SPACE model is designed to run over large spatial and temporal scales in two dimensions, and

can be easily coupled to many other surface process models as part of the Landlab modeling toolkit.25

To maintain ease of model coupling and a relatively low level of complexity, we neglect some processes treated in previ-

ous models. Because sediment cover and transport are averaged across a model cell, we do not explicitly model the spatial

distribution of sediment cover within a cell, or the entrainment and deposition of individual sediment grains (e.g., Turowski,

2009; Hodge et al., 2011; Hodge and Hoey, 2012; Hodge, 2017). We do not employ dynamic channel width variations as in

the models of Davy and Lague (2009), Lague (2010), Nelson and Seminara (2011), and Coulthard et al. (2013), instead relying30

on empirical parameterizations of channel width as a function of drainage area or discharge. SPACE does not contain inde-

pendent descriptions of the roughness of bedrock and sediment, and does not distinguish between the case in which bedrock

is rougher than sediment and the one in which sediment is rougher than bedrock (e.g., Inoue et al., 2014; Johnson, 2014).

We also do not model the potential driving of bedrock erosion by bedload sediment (the tools effect), as used in Sklar and
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Dietrich (2004), Chatanantavet and Parker (2009), Turowski (2009), Inoue et al. (2014, 2016, 2017), Zhang et al. (2015), and

other saltation-abrasion type models. Both width dynamics and bedload abrasion could be incorporated without changing the

underlying model structure, but have been omitted in order to facilitate numerical model comparison to analytical solutions.

The SPACE model is intended to model river channel evolution over long timescales while honoring the reality that channels

may transition between alluviated, bedrock, and mixed bedrock-alluvial states over geologic time. Below we develop the5

SPACE model, verify our numerical solutions against analytical solutions, and show that SPACE can transition naturally

between transport-limited and detachment-limited behavior. We briefly describe the Landlab modeling toolkit, and show an

example landscape evolution model in which SPACE is coupled to other surface process models.

4 SPACE model development

The SPACE model, like other erosion-deposition models, arises from sediment mass conservation in the water column (e.g.,10

Davy and Lague, 2009) and on the channel bed. We consider a river bed that may vary dynamically in its relative proportion

of alluvial cover and exposed bedrock, with a bedrock surface of height R, bed sediment of mean thickness H (the channel

bed elevation η is therefore R+H), and water of mean flow depth h (Fig. 1). We use the term “SPACE model” to refer to the

model equations, and “SPACE 1.0 component” to refer specifically to the numerical implementation of the SPACE model as a

Landlab component.15

4.1 Conservation of sediment in the water column

Davy and Lague (2009) showed that the rate of change in the volume of sediment in the water column per unit area of river

bed ∂(csh)
∂t may be written as:

∂ (csh)

∂t
= Es−Ds−

∂ (Qs/w)

∂x
, (1)

where cs is the concentration of sediment in the water column calculated by Qs/Q (where Q is volumetric water discharge),20

Es is the volumetric erosion flux of sediment per unit bed area, Ds is the volumetric deposition flux of sediment per unit bed

area, Qs is sediment flux in units of L3/T , and w is channel width. Eq. (1) is sufficient when considering a channel bed on

which only a single material (i.e., sediment) is exposed. Yet many channels are partially alluviated, indicating that sediment

and bedrock may be eroded and entrained into the water column simultaneously. Such a scenario requires an addition to Eq. (1)

to account for entrainment of bedrock material into the water column:25

∂ (csh)

∂t
= Es + (1−Ff )Er −Ds−

∂ (Qs/w)

∂x
. (2)

Er is the volumetric erosion flux of bedrock per unit bed area. Ff is a unitless fraction of fine sediment. Ff represents the

volumetric fraction of bedrock that breaks into sediment small enough to be considered permanently in suspension, for which

no further treatment of bed–water column interactions is needed. For bedrock that breaks only into sand and gravel fractions,

Ff would be zero. Therefore, bed sediment thickness H and sediment flux Qs only include sediment coarse enough that30

8



it does not enter permanent suspension. Assuming that ∂(csh)∂t = 0 (an important model assumption that potentially restricts

applicability to hydrograph-scale modeling), the spatial gradient in sediment flux is a balance between sediment entrainment,

rock erosion, and sediment deposition:

d(Qs/w)

dx
= Es + (1−Ff )Er −Ds. (3)

4.2 Conservation of sediment and rock on the channel bed5

Change of channel bed elevation with time is the sum of changes in rock height and sediment thickness:

∂η

∂t
=
∂R

∂t
+
∂H

∂t
. (4)

Following Eq. (4) and Davy and Lague (2009), conservation of sediment on the channel bed with sediment thickness H may

be written as

∂H

∂t
=
Ds−Es

1−φ
, (5)10

where φ is the porosity of the bed sediment. Because there is no deposition of bedrock, the rate of change of bedrock elevation

R over time is

∂R

∂t
= U −Er (6)

where U is the rock uplift rate relative to baselevel. For simplicity we assume that the porosity of rock is zero, but rock porosity

could easily be added to Eq. (6). Steady sediment thickness requires equal erosion and deposition of sediment (Ds = Es) and15

steady bedrock elevation requires that erosion of rock is balanced by rock uplift relative to baselevel (U = Er). Figure 1 shows

a schematic of a model cell and defines relevant variables.

4.3 Erosion and entrainment of bed sediment and bedrock

As discussed in Davy and Lague (2009), any number of accepted expressions for entrainment of bed sediment and erosion of

bedrock could be used for Es and Er, respectively. We consider here the unit stream power formulation in which entrainment20

and erosion are functions of water flux and slope (Howard, 1994; Whipple and Tucker, 1999). We add to the unit stream

power model a means by which the flow may simultaneously entrain sediment and erode bedrock, and by which the bed may

smoothly transition from fully alluviated to bare bedrock. Consider that the volumetric entrainment rate per unit bed area of

bed sediment depends on unit stream power, but is also influenced by sediment thickness H relative to a reach-scale bedrock

roughness length scale H∗. At low H/H∗, the lower points on the bedrock bed are mantled with sediment, but high points on25

the bedrock surface are still exposed. At high H/H∗, all areas of the bed are covered with sediment. Further, Es must be zero

when H is zero and no sediment is available to be entrained, and Es must reach a maximum (for a given stream power) when

there is enough sediment to fully cover the bed (Fig. 2). This approach is conceptually similar to the models of Turowski et al.
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dx
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Qs
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Qs
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Ds

Qs

Er

U

Figure 1. Conceptual sketch of a single model cell and definition of variables. Rock surface elevation R is defined as the elevation of the

lowest point on the bedrock surface, and is also used as the lower boundary for the thickness H of the alluvial layer.

(2007), Lague (2010) (his exponential model), and Zhang et al. (2015), and similarly eliminates the need to explicitly track

bedrock exposure. Given the conceptual model described above, the entrainment rate of sediment Es may be written as:

Es = (KsqS
n−ωcs)

(
1− e−H/H∗

)
, (7)

where Ks is the sediment erodibility parameter, S is channel-bed slope, and n is a scaling exponent. q is water discharge per

unit channel width, and may be calculated by any number of methods, the simplest being q =Am where A is drainage area5

and m is a scaling exponent (generally ≈ 0.5) designed to reflect downstream width changes (Leopold and Maddock, 1953;

Wohl and David, 2008). Using q =Am results in Ks and rock erodibility parameter Kr having dimensions of
[
T−1

]
, but

dimensions vary based on which parameterization for q is used (in the general case of q being volumetric water flux per unit

width, Ks and Kr have dimensions of
[
L−1

]
). ωcs is a threshold stream power required for sediment entrainment. In very
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simple cases ωcs may be neglected, but the ability to include a threshold term is important in any river evolution model as

threshold effects have been shown to significantly alter model outcomes (Snyder et al., 2003; Tucker, 2004; Lague et al., 2005;

DiBiase and Whipple, 2011). While we employ a simple closure for channel width in which width scales as the square root of

water discharge (e.g., Leopold and Maddock, 1953; Wohl and David, 2008), it may be desirable for some applications to add

dynamic channel width adjustments to the model, as previous work has suggested that width trades off with slope in transient5

channels (e.g., Finnegan et al., 2005; Turowski et al., 2006; Wobus et al., 2006; Whittaker et al., 2007; Attal et al., 2008;

Lague, 2010; Yanites and Tucker, 2010). One option for incorporating dynamic width is to calculate or approximate shear-

stress distributions across channel cross-sections (e.g., Kean and Smith, 2004; Wobus et al., 2006, 2008; Turowski et al, 2009).

A simpler dynamic width rule can be obtained by partitioning erosive power between the bed and banks under a trapezoidal

channel assumption (Flintham and Carling, 1988) as detailed in Lague (2010). Different approaches have different numbers10

of parameters and computational costs, and further work will be necessary to elucidate which advances beyond the standard

empirical width closure are tractable within the SPACE landscape evolution model framework.

If sediment entrainment declines with decreasing sediment thickness as a result of increased bedrock exposure, bedrock

erosion should follow an inverse but conceptually similar pattern (Fig. 2). Assuming that increasing mean sediment thickness

leads to higher proportions of bedrock covered by sediment and that sediment cover inhibits erosion (e.g., Beaumont et al.,15

1992; Whipple and Tucker, 2002; Sklar and Dietrich, 2004; Gasparini et al., 2006, 2007; Turowski et al., 2007; Hobley et al.,

2011), the volumetric erosion rate of bedrock per unit bed area may be written as

Er = (KrqS
n−ωcr)e−H/H∗ . (8)

Here, Kr is the bedrock erodibility parameter, which is generally expected to be substantially lower than Ks. ωcr is the

threshold stream power for detachment of bedrock, which may vary significantly depending on the relative dominance of20

plucking or abrasion (e.g., Hancock et al., 1998; Whipple et al., 2000) as well as the weathered state of the bedrock (Hancock

et al., 2011; Johnson and Finnegan, 2015; Small et al., 2015; Murphy et al., 2016; Shobe et al., 2017). Howard (1998), Hancock

and Anderson (2002), Turowski et al. (2007), and Lague (2010) employed a similar exponential decline in rock erosion rate

with increasing sediment thickness. Eq. (8) falls into the category of “cover” models, which treat erosion reduction by sediment

shielding the bed without incorporating the potential erosive effects of mobile sediment (e.g., Beaumont et al., 1992; Lague,25

2010; Shobe et al., 2016). The smooth transitions between bare-bedrock, bedrock-alluvial, and fully alluviated channels given

by Eq. (7 and 8) are both more stable and more realistic than models in which the existence of any alluvium fully covers

the bedrock (implying a perfectly smooth, planar bedrock surface). Figure 2 shows the pattern of sediment entrainment and

bedrock erosion over different values of H/H∗. f (H/H∗) in Fig. 2 is the dimensionless exposure term that modifies stream

power entrainment and erosion in Eq. (7 and 8) (i.e., e−H/H∗ or
(
1− e−H/H∗

)
). Perhaps the most significant simplification in30

our model is that we do not include explicit treatment of the erosive effects of grains in transport (e.g., Sklar and Dietrich, 1998,

2001, 2004; Gasparini et al., 2006; Turowski et al., 2007; Lamb et al., 2008; Cook et al., 2013). Such an effect could enhance

sediment entrainment if grains in saltation hit resting grains and enabled their entrainment, and could enhance bedrock erosion

if sediment-rich water were flowing over well-exposed bedrock. The “tools effect” on bedrock erosion could be incorporated
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into the model by assuming that Er at a given H/H∗ increases with Qs until Qs reaches transport capacity (which is Qs when

Es +Er =Ds). Because increases in H/H∗ already account for the “cover effect,” the Er dependence on Qs need only be

positive and not decline with increasing Qs (e.g., Sklar and Dietrich, 2001; Gasparini et al., 2006; Turowski et al., 2007). We

assume for the purposes of model validation against analytical solutions that these effects are negligible relative to changes in

unit stream power and bed cover.5

The major advantages of the exponential entrainment and erosion approach outlined here are that 1) sediment and bedrock

may be simultaneously entrained/eroded into the water column, 2) the presence of sediment does not completely inhibit bedrock

erosion at low values ofH/H∗, which is supported by modeling and observations of mixed bedrock-alluvial channels (Johnson

et al., 2009; Johnson, 2014; Ferguson et al., 2017; Hodge, 2017) and 3) model stability is improved because sediment thickness

gradually approaches zero, preventing a sudden transition from sediment entrainment to bedrock erosion. Many different rules10

for sediment entrainment and bedrock erosion could be used in this model framework in place of stream-power type equations.

No matter how erosive power is calculated, the SPACE approach allows both erodibility and entrainment/detachment thresholds

to be chosen independently for sediment and bedrock, unlike in strict detachment/transport limited models or the basic form

of erosion-deposition models. This enables the treatment of systems with multiple erosion thresholds, such as a river for

which bedrock erosion requires both mobilization of an alluvial cover (described by ωcs) and the plucking of bedrock blocks15

(described by ωcr).

4.3.1 Optional smoothing of entrainment/erosion thresholds

The approach outlined above allows for the incorporation of an entrainment threshold for sediment and an erosion threshold

for bedrock such that entrainment/erosion is zero when stream power is below the chosen threshold(s). Erosion thresholds

representing a sharp transition between no erosion (below threshold) and erosion (above threshold) have a long history in20

fluvial erosion modeling (e.g., Snyder et al., 2003; Tucker, 2004; Lague et al., 2005; DiBiase and Whipple, 2011). With a

sharp or discontinuous erosion threshold, the transition from no erosion to erosion is abrupt. However, the sediment transport

literature suggests that sediment entrainment is often better-represented by a distribution of entrainment thresholds than a

single threshold value (Kirchner et al., 1990; Wilcock and McArdell, 1997; McEwan and Heald, 2001). Using a distribution

of entrainment thresholds helps to account for the observation that incipient sediment motion does not begin at the same25

threshold value for all particles (e.g., Buffington and Montgomery, 1997). Variability in the threshold for motion is thought

to be a function of grain size and shape variations (Kirchner et al., 1990; Wilcock and McArdell, 1997; Prancevic and Lamb,

2015), grain hiding and protrusion effects (Kirchner et al., 1990; Parker, 1990; Wilcock and McArdell, 1997; McEwan and

Heald, 2001), bed sorting (Nelson et al., 2009), sediment flux (Johnson, 2016), and flow history (Masteller and Finnegan,

2017). Similarly, the threshold for bedrock erosion can depend on sub-reach scale mineralogy, joint spacing and orientation,30

and the weathered state of the bedrock. Given that the SPACE model operates on too large a scale to treat such processes

explicitly, we develop a formulation for entrainment and erosion thresholds that reflects the variability in the threshold. If

a distribution of thresholds exists, erosion should decline to zero not exactly when available stream power drops below the

user-defined threshold as would be the case for a standard threshold model, but when available stream power is significantly

12



0.0 0.2 0.4 0.6 0.8 1.0
f
(
H/H ∗

)0

2

4

6

8

10

H
/H

∗

Rock erosion

Sediment entrainment

Figure 2. Dimensionless efficiency of erosion and deposition (f (H/H∗)) for different values of H/H∗. Erosive power is multiplied by

f (H/H∗) in the model to account for the relative exposure of sediment and bedrock. Such a formulation accounts for the fact that bedrock

beds are rough, and low points may become sediment-mantled while high points remain exposed (e.g., Johnson, 2014; Zhang et al., 2015).

H∗ is therefore a length scale representing reach-scale bedrock roughness. Sediment entrainment for a given stream power increases with

increasingH/H∗, while bedrock erosion declines as a response to sediment mantling of the bed. At values ofH/H∗ ≈ 6, all bed lowering is

driven by sediment entrainment and bedrock erosion is negligible. This heuristic representation of mixed alluvial-bedrock channel dynamics

is conceptually similar to the approaches taken by Lague (2010) and Zhang et al. (2015).

below the defined threshold. As available stream power becomes larger than the defined threshold, entrainment and erosion

should increase smoothly as a greater portion of the distribution of thresholds is exceeded. In the limit where available stream

power is many times greater than the user-defined threshold, available stream power should simply be reduced by the user-

defined threshold. An exponential function describing the increase in entrainment/erosion as available stream power increases

relative to threshold stream power satisfies these requirements without adding any model parameters. We include an optional5

exponential expression for threshold stream power such that entrainment/erosion does not go immediately to zero when stream

power ω equals the threshold value ωc, but declines exponentially as ω/ωc declines. The threshold stream power is expected to

be different for rock than for sediment, with ωcr likely being larger in most cases than ωcs. In this formulation, the expressions
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for sediment entrainment and bedrock erosion (Eq. (7 and 8)) become:

Es =
(
KsqS

n−ωcs
(

1− e−ω/ωcs

))(
1− e−H/H∗

)
(9)

and

Er =
(
KrqS

n−ωcr
(

1− e−ω/ωcr

))
e−H/H∗ . (10)

Inspection of Eq. (9 and 10) reveals that when ω� ωc, the threshold term approaches ωc, yielding behavior identical to single-5

value threshold models. When ω = ωc, approximately 63% (1− e−1) of available stream power is in excess of the threshold,

rather than 100% in the basic threshold approach. When ω� ωc, the threshold term approaches ω and the entrainment or

erosion rate approaches zero. We chose an exponential function because it allows for smoothing of entrainment and erosion

thresholds, and therefore honors the reality that such thresholds tend to be distributions of values rather than a single value,

without adding any model parameters. Evaluation of the full behavior of models using an exponentially declining threshold is10

beyond the scope of this paper, and the use of Eq. (9 and 10) is optional in the SPACE model.

4.4 Deposition of sediment

The flux of sediment from the water column onto the bed is the product of sediment concentration averaged over the depth of

the water column and effective sediment settling velocity V (Davy and Lague, 2009):

Ds = csV =
Qs
Q
V. (11)15

V is not the still-water particle settling velocity, but is the net effective settling velocity after accounting for the upward effects

of turbulence. V also incorporates the vertical gradient in sediment concentration through the water column (d∗ in Davy and

Lague (2009)). In an equivalent formulation, Davy and Lague (2009) treated the sediment deposition rate as Ds = d∗csV ,

where d∗ is a dimensionless number that relates sediment concentration near the bed to mean sediment concentration in the

water column. Eq. (11) assumes that sediment and water move at the same speed such that all changes in Qs

Q are driven by20

erosion and deposition.

4.5 Steady-state analytical solutions

We develop steady-state analytical solutions for sediment fluxQs, channel slope S, and bed sediment thicknessH , all of which

are steady when ∂(csh)
∂t = 0. We assume for the purposes of this derivation that there are no entrainment or erosion thresholds,

and that Ff and φ are both negligible, assumptions that are easily relaxed. We define steady state in this system as a state of25

time-invariant bedrock elevation and topographic elevation (which also implies time-invariant sediment thickness). This occurs

when two conditions are satisfied. First, rock uplift must be balanced by bedrock erosion such that

∂R

∂t
= 0 = U −KrqS

ne−H/H∗ . (12)
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Second, sediment entrainment and deposition must balance each other such that sediment thickness H is unchanging in time:

∂H

∂t
= 0 = V

Qs
Q
−KsqS

n
(

1− e−H/H∗
)
. (13)

At steady state, the volumetric sediment fluxQs at any point along the channel must balance the volume of newly uplifted rock

in the area draining to that point:

Qs = UA. (14)5

To find steady state channel slope, we begin by rearranging Eq. (13) and combining with Eq. (14):

KsqS
n
(

1− e−H/H∗
)

= V
UA

Q
. (15)

Recognizing that Q=Ar where r is a runoff rate per unit area:

KsqS
n
(

1− e−H/H∗
)

=
V U

r
. (16)

We rearrange Eq. (16) to isolate e−H/H∗ , substitute into Eq. (12) and solve for S to yield:10

S =

[
UV

Ksqr
+

U

Krq

]1/n
, (17)

or if q =Am as in the simple stream power formulation,

S =

[
UV

KsAmr
+

U

KrAm

]1/n
. (18)

When n= 1, the second term on the right-hand side is the slope predicted by a detachment-limited incision model in which

slope increases with faster rock uplift, lower rock erodibility, or less water discharge (or drainage area). The first term on the15

right-hand side describes the additional component of slope required to transport sediment. That component of slope must

increase with increasing settling velocity, lower sediment erodibility, and lower water discharge. Davy and Lague (2009)

derived a similar expression for slope-discharge scaling for their erosion-deposition model. The major difference between

our result and theirs is that their expression is for slope of a single bed material with a single bed erodibility when erosion

balances rock uplift, whereas Eq. (18) incorporates equilibrium in both sediment thickness and bedrock height. Eq. (18) may20

be rearranged to show that SPACE predicts a standard stream power slope-area relationship modulated by V
r as well as sediment

and bedrock erodibility:

S =

[
V

Ksr
+

1

Kr

]1/n
U1/nA−m/n. (19)

The ratio between the effective settling velocity V and the runoff rate r controls the relative importance of the bedrock and

alluvial components of the steady-state channel slope. In the simplified case ofKs =Kr, a ratio of Vr = 1 would indicate equal25

contributions from the two regimes. Quantifying V
r for natural systems could therefore give a valuable indication of process

dynamics in natural channels.
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Solving Eq. (16) for H gives steady state bed sediment thickness as a function of channel slope:

H =−H∗ ln

[
1− V U

rKsqSn

]
. (20)

To obtain a slope-independent solution for H , we can combine Eq. (18 and 20) and simplify:

H =−H∗ ln

[
1− V

Ksr
Kr

+V

]
. (21)

The SPACE model therefore predicts constant sediment thickness along the channel at steady state as long as all parameters5

in Eq. (21) are constant in space. As settling velocity becomes larger, V
Ksr
Kr

+V
approaches one and H becomes large. As Ks

increases and sediment is more easily entrained from the bed, V
Ksr
Kr

+V
and therefore H both approach zero. Increasing bedrock

erodibility Kr causes an increase in steady state H as more sediment is created from detached bedrock.

4.6 Dimensional analysis

We present a nondimensionalization of the model described above. For simplicity, we assume that sediment entrainment and10

bedrock erosion thresholds are negligible, though the model allows independent entrainment and erosion thresholds as shown

above. The model contains three independent variables, Qs, H , and R, the latter two of which are summed to give land surface

elevation. Each of these variables requires a scale for nondimensionalization. We begin by nondimensionalizing sediment flux:

Q′s =
QsV

Ksq2Sw
. (22)15

Sediment thickness H and bedrock elevation R may both be scaled by the sediment layer length-scale H∗:

H ′ =H/H∗ (23)

and

R′ =R/H∗, (24)

and downstream distance x by the length scale q/V (noted by Davy and Lague (2009) and found to govern the transition20

between detachment-limited and transport-limited behavior):

x′ = xV/q. (25)

Finally, time t is nondimensionalized by:

t′ = tV/H∗. (26)

Replacing the dimensionless variables into the governing equations yields the following equations for dimensionless sediment25

flux, sediment thickness, and rock elevation, which are applicable for negligible erosion thresholds:

dQ′s
dx′

= S
(

1− e−H
′
)

+ (1−Ff )

[
Kr

Ks

]
Se−H

′
−Q′s (27)
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∂H ′

∂t′
=

[
Ksq

V

](
Q′s−S

(
1− e−H

′
))

(28)

∂R′

∂t′
=

[
U

V

]
−
[
Kr

Ks

][
Ksq

V

]
Se−H

′
. (29)

Three dimensionless parameters appear in Eq. (27–29): a normalized rock uplift rate
[
U
V

]
, a ratio of erodibilities

[
Kr

Ks

]
, and5

a sediment entrainment ratio
[
Ksq
V

]
. The normalized rock uplift rate shows the relative importance of rock uplift and grain

settling velocity, with increases in both driving increased channel slope. The erodibility ratio reflects the relative ease of eroding

bedrock and entraining sediment, and is influenced in natural systems by bedrock and sediment lithology, grain size, and grain

sorting on the channel bed. The sediment entrainment ratio encompasses competition between sediment entrainment, which is

driven by high water discharge and high sediment erodibility, and sediment deposition, driven by high grain settling velocity.10

Notably, the sediment entrainment ratio contains the q/V length scale described by Davy and Lague (2009) as the average

travel distance of sediment grains from entrainment to re-deposition. The model predicts detachment-limited behavior when

q/V , and therefore our entrainment ratio, are large, and transport-limited behavior when they are small. Specifically, following

Davy and Lague (2009), we can define a dimensionless number V
r that governs the transition between detachment-limited

and transport-limited dynamics. In the sediment-only case (when H �H∗), or in the bedrock-only case (H = 0), Vr > 1 gives15

transport-limited behavior and V
r < 1 results in detachment-limited behavior (Davy and Lague, 2009). In cases where sediment

and bedrock are eroded simultaneously, especially if there is a significant erodibility contrast between the two, the behavior is

not so easily predicted and will generally contain contributions from both detachment and transport limitations.

5 Numerical implementation and local analytical solutions

In this section we describe the forward-time numerical solution of the SPACE model in two dimensions. The solution to the20

model equations in each timestep consists of three conceptual steps. First, sediment flux is calculated with a local analytical

solution, described below, at every node working in order from upstream to downstream. Second, sediment thickness is calcu-

lated at every node using a local analytical solution for H(t), which we develop below. Third, bedrock erosion is calculated for

each node.

5.1 Calculation of sediment flux25

As shown in Eq. (3), the x-directed rate of change in sediment flux depends on sediment entrainment, bedrock erosion, and

sediment deposition. The dependence of deposition rate on Qs

Q means that the deposition flux, and therefore the change in

sediment flux, at a given node depends on the sediment flux entering that node from upstream (Eq. 11). It is therefore critical

to order nodes in upstream to downstream order and calculate sediment flux iteratively from upstream to downstream. This

approach unfortunately precludes simultaneous calculation of sediment flux at all nodes. Landlab’s flow routing capabilities30
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order all nodes into a “stack” following the methodology of Braun and Willett (2013). Because our sediment flux calculations

must progress from upstream to downstream, we use their “inverted stack order” in which nodes are ordered from upstream

to downstream, allowing the SPACE algorithm to efficiently sum water and sediment fluxes at tributary junctions. In addition,

the downstream sediment flux calculation is written and compiled using the Cython library, giving it significant performance

improvements over the same loop in pure Python.5

Numerical integrations of sediment entrainment and deposition are often significant sources of model inaccuracy and insta-

bility due to the spatial extrapolation of linear entrainment and deposition equations. Consider a river reach of length dx with

clear water entering the reach at the upstream end. The initial sediment entrainment rate is Es =KsqS
n−ωcs and the initial

deposition rate is zero because Qs = 0. However, two natural processes make the linear extrapolation of these initial entrain-

ment and deposition rates over cell length dx inappropriate. First, sediment entrainment rate may decline over x as sediment10

thicknessH declines ifH is not much greater thanH∗. Second, as sediment is entrained over distance dx,Qs increases, which

drives a progressive increase in deposition rate. Simply numerically integrating Eq. (3) to calculate sediment flux does not

account for either the progressive decline in available sediment or the progressive saturation of the water column and increase

in deposition flux. We have therefore developed a local analytical solution to account for such effects. This approach prevents

severe overestimation of sediment entrainment into the water column, making SPACE more stable than models that do not ac-15

count for within-cell changes inQs. Our local analytical solution for sediment flux accounts for the fact that sediment flux from

upstream Qin
s and any net erosion (or deposition) in a model cell of area dx2 contribute to Qs, which drives deposition. Let

Qout
s represent the sum of sediment influx, erosion, and deposition such that Qout

s is the net erosion rate in the cell multiplied

by the cell area:

Qout
s =Qin

s + (1−φ)Esdx
2 + (1−Ff )Erdx

2−V Qs
rA

. (30)20

Because sediment deposition in a cell depends on both Qin
s from upstream and sediment entrained from the cell itself, we can

substitute Qout
s for Qs in the deposition term. Eq. (30) may then be solved to yield the local analytical solution for Qs within

a model cell:

Qout
s =

Qin
s + (1−φ)Esdx

2 + (1−Ff )Erdx
2

1 +V dx2/(rA)
. (31)

Eq. (31) breaks down where rA= 0, which is acceptable because Qs will always be zero where rA= 0. Figure 3 shows Qs25

as a function of some of the relevant variables in Eq. (31).

5.2 Calculation of sediment thickness

After calculation of Qs at every node, sediment thickness H(t) is calculated according to Eq. (5). Similar to the solution of the

sediment flux equation, solution of H(t) is subject to numerical inaccuracies and instabilities driven by the dependence of Es

on H . Extrapolating dH
dt over a full timestep using H0 (H at the beginning of the timestep) causes overestimation of sediment30

entrainment, especially at larger timesteps. We therefore develop a local analytical solution for H (t) for a small time interval

over which variations inH are important butDs,Ks q, and S (as well as any entrainment threshold) may be considered steady.
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Figure 3. Sediment flux Qs as a function of distance dx as calculated by the local analytical solution (Eq. (31)) at a given drainage area

(A= 105 m2). In each panel, one parameter is varied while all others are held constant. The sediment flux coming in from upstream is an

important control on Qs at short length scales, but declines in importance as dx approaches 1000 m. High values of settling velocity cause

low Qs and vice versa. High sediment entrainment rates lead to high Qs as do high runoff rates. Parameter values (except where changed in

the four panels) are: Qin
s = 50,000 m3/yr, V = 1.0 m/yr, Es = 1.0 m/yr, and r = 1.0 m/yr. Er = 0 and φ= 0 for simplicity in this case.

We find the analytical solution for H (t) by integrating Eq. (5) with respect to time with the knowledge that H has some initial

value H0 at the beginning of a timestep (t= 0):

H (t) =H∗ ln

[
1

(Ds/(1−φ))/Ês− 1

(
e(Ds/(1−φ)−Ês)t/H∗

((
(Ds/(1−φ))

Ês
− 1

)
eH0/H∗ + 1

)
− 1

)]
, (32)

where

Ês =KsqS
n−ωcs. (33)5
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Inspection of Eq. (32) reveals that H (t) may become undefined in two physically realistic situations. The first is where

(Ds/(1−φ))/Ês = 1 and the second is where Ês = 0. Eq. (32) is therefore only applied at nodes with Ds/(1−φ) 6= Ês

and Ês > 0. When Ds/(1−φ) = Ês, the change in alluvium thickness with time becomes dH
dt = e−H/H∗ . Integrating with

respect to time and applying H =H0 at t= 0 gives the solution for H (t) when Ds/(1−φ) = Ês:

H (t) =H∗ ln

[
KsqS

n−ωcs
H∗

t+ eH0/H∗

]
. (34)5

When Ês ≤ 0, no entrainment of sediment occurs and any changes in H (t) are driven by deposition. In this case, changes in

H are computed with a simple forward numerical solution:

H (t) =H0 +
Ds

1−φ
dt. (35)

In all cases, the relevant equation for H (t) is solved each timestep using t= dt where dt is the model timestep length. Unlike

for Qs, H may be simultaneously calculated at every node, allowing efficient solution of Eq. (32–35) over the entire model10

domain. Figure 4 shows H (t) as a function of some of the relevant variables in Eq. (32).

5.3 Calculation of change in bedrock height

Bedrock erosion is calculated by combining Eq. (6 and 8) and solving forward in time from a previous rock elevation R0:

R=R0 +
(
U − (KrqS

n−ωcr)e−H/H∗
)

dt. (36)

The simple forward numerical solution employed in Eq. (36) becomes inappropriate at very large timesteps, as H may change15

significantly, influencing channel slopes and therefore bedrock erosion. However, because bedrock erosion is generally a much

slower process than sediment entrainment in most cases, Eq. (36) is unlikely to introduce substantial instability.

6 Implementing SPACE in Landlab

6.1 Landlab modeling toolkit

Landlab is a flexible, open-source modeling framework written in Python that allows efficient model building and hypothesis20

testing across many subdisciplines in Earth system science (Hobley et al., 2017). Landlab is a plug-and-play environment in

which users can easily build two-dimensional numerical models consisting of any number of well-vetted components (e.g.,

Tucker et al., 2016; Adams et al., 2017) along with user-specific equations and functionality. The greatest advantages of using

Landlab are 1) its built-in gridding engine, which creates model grids, efficiently stores spatially distributed variables, and

handles boundary conditions, and 2) the ability to easily couple different components into a single model sharing a single grid.25

Landlab allows efficient coupling of components representing fluvial erosion, hillslope processes, basin hydrology (Adams

et al., 2017), geodynamics, vegetation, and many other processes into novel surface dynamics models.

Landlab’s gridding engine supports grids consisting of square and rectangular grids (“raster grids”), hexagonal grids, and

Voronoi–Delaunay interlocked meshes (Hobley et al., 2017). Every Landlab grid is made up of nodes, cells, and links. Nodes
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are points in (x,y) space. Cells are polygons surrounding all non-boundary (interior) nodes that may be rectangular, hexagonal,

or defined by Voronoi polygons depending on the chosen grid type. Links connect adjacent pairs of nodes and are directional.

Rectangular grids have four links per node, hexagonal grids have six, and Voronoi grids have a number of links per node

equivalent to the number of faces on each Voronoi polygon. Links have default directionality, but this directionality does

not determine the directions of fluxes in Landlab models, which are set by gradients along links. In this paper, we focus5

for simplicity on a square (∆x= ∆y) raster grid, which is currently the only grid type supported by the SPACE model. A

diagram of a generic raster grid is shown in Fig. 5. Nodes, cells, and links may all store model data in the form of NumPy

arrays associated with one of the three grid elements. Each data field is defined by a keyword in a dictionary data structure

attached to a certain grid element. The SPACE model, for example, tracks sediment depth at all grid nodes, a field that may

be accessed by any component (this field is called “soil depth” in Landlab to keep terminology standard between hillslope and10

fluvial components). An array of sediment depths at all grid nodes could be found by typing: grid.at_node[“soil__depth”]. The

treatment of boundary conditions in Landlab grids is described thoroughly by Hobley et al. (2017) and Adams et al. (2017).

In short, nodes may be set as “boundary” nodes and then defined as open, fixed-gradient, or closed boundaries. Non-boundary

nodes are set as “core” nodes.

7 Verification and evaluation: Comparison to analytical solutions for detachment-limited, transport-limited, and15

mixed cases

As discussed above, the SPACE model equations are capable of replicating both detachment-limited (when there is no sediment

and Ff = 1) and transport-limited (when H �H∗) model behavior. In this section we compare the behavior of the SPACE 1.0

Landlab component (the numerical implementation of the SPACE model equations presented above) to steady-state analytical

solutions for standard detachment-limited and transport-limited models to assess whether our numerical implementation of the20

SPACE algorithm can replicate these two end-member cases. In addition, we test the performance of the SPACE component

against steady-state analytical solutions for a mixed case where both bedrock erosion and sediment transport influence channel

evolution. For the three test cases we use a simple 20 x 20 node square raster grid with dx= 100 m, for a 2 km x 2 km model

domain. The initial topography of the domain is a plane tilted to the lower-left (southwest) corner with random microscale

roughness to force flow convergence. The lower-left corner is the only open boundary, and is therefore the basin outlet in all25

cases. Such a setup results in a model domain that drains to the single open boundary node, allowing predictable drainage

network development. The random seed is held constant so that all runs start from the same initial topography. For simplicity

in these test cases, there are no other surface process models (e.g., hillslope models) coupled to the SPACE component. While

the SPACE 1.0 component is stable at 10-year timesteps under most conditions, we use a timestep of 1 year here to maximize

numerical accuracy for comparison with analytical solutions. We run the model for 100,000 years for the detachment and30

transport limited comparisons, and 200,000 years for the mixed bedrock-alluvial comparison (see table 1). We define steady

state as having been achieved when every interior (non-boundary) node is lowering at the same rate as the baselevel node to

within 10−6 m/yr precision, but allow the model to run for the full imposed run time even after steady state has been achieved.
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7.1 Detachment-limited comparison

With no sediment (H = 0 and cs = 0) and Ff = 1 (all bedrock eroded becomes wash load and is not included in model

calculations), all changes in bed elevation are driven by changes in bedrock elevation:

∂η

∂t
=
∂R

∂t
(37)

where5

∂R

∂t
= U −KrqS

n−ωcr. (38)

When ωcr = 0, Eq. (38) is the simple stream power model (Whipple and Tucker, 1999). At topographic steady state when
∂R
∂t = 0 and U =KrqS

n, the slope at every point in the channel is

S =

(
U

Krq

)1/n

. (39)

Because we use a simple stream power formulation where q =Am for our test case, the slope-discharge relationship may be10

re-written to yield a slope-area relationship:

S =

(
U

KrAm

)1/n

. (40)

We test whether the SPACE component can replicate steady-state detachment-limited behavior by comparing slope-area rela-

tionships predicted by Eq. (40) with those calculated by the SPACE component. See table 1 for the parameter values used.

Figure 6 shows the results after the test model domain has achieved topographic steady state. The top panel of Fig. 6 shows15

the longitudinal profile of the longest drainage path in the model domain. As predicted by the theory described above, slope

and drainage area trade off such that the outcome is a concave-up longitudinal profile with constant concavity. The lower

panel of Fig. 6 compares the slope-area relationship predicted by Eq. (40) (gray dashed line) to the slope-area relationship

in the steady-state model landscape (black dots). All core nodes from the model domain are shown, and every node obeys

the predicted detachment-limited slope-area scaling. The slope of the slope-area power-law scaling relationship (Fig. 6) is the20

channel concavity, thus confirming that the channel concavity observed in the longitudinal profile is constant, and the SPACE

component agrees with theoretical predictions for detachment-limited rivers at steady state.

7.2 Transport-limited comparison

When sediment thickness H is large relative to H∗, changes in bed elevation are driven entirely by changes in sediment bed

elevation, which is set by the balance between sediment erosion, deposition, and rock uplift:25

∂η

∂t
=
∂H

∂t
= U +Ds−Es. (41)

At steady state, ∂η∂t = 0 and Es−Ds = U . Substituting in the equations derived above for sediment erosion and deposition and

assuming for simplicity that sediment porosity φ and the sediment erosion threshold ωcs are negligible,

Ksq
mSn−V Qs

Q
= U. (42)
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Table 1. Parameter values for SPACE model test cases.

Detachment Limited Transport Limited Mixed Coupled

Number of rows (-) 20 20 20 50

Number of columns (-) 20 20 20 50

Node spacing (m) 100 100 100 100

Timestep (yr) 1 1 1 1

Run time (kyr) 100 100 200 300

Initial H (m) 0 100 0 0

U (m/yr) 0.0001 0.0001 0.0001 see text

Kr (yr-1) 0.001 0.0001 0.005 0.0001

Ks (yr-1) 0.01 0.01 0.01 0.0005

m (-) 0.5 0.5 0.5 0.5

n (-) 1.0 1.0 1.0 1.0

ωcr (m/yr) 0 * 0 0

ωcs (m/yr) 0 0 0 0

H∗ (m) 1.0 1.0 1.0 1.0

φ (-) 0 0 0 0

Ff (-) 1 0 0 0

V (m/yr) 1.0 5.0 5.0 2.0

Not all parameters will influence the model outcome in all cases. For example, the value of V is irrelevant for the

detachment-limited case when all eroded bedrock passes out of the model domain as permanently suspended fine

sediment (Ff = 1).

Applying the steady-state mass conservation relationship Qs = UA, recalling that Q= rA, and solving for S gives an expres-

sion for steady state channel slope:

S =

[
UV

Ksqr
+

U

Ksq

]1/n
. (43)

If q =Am as in our test case, the resulting slope-area relationship is then:

S =

[
UV

KsAmr
+

U

KsAm

]1/n
. (44)5

Eq. (44) nicely distinguishes the contributions of sediment deposition (first term on the right side) and sediment entrainment

(second term on the right side) to steady state channel slope. If effective settling velocity is negligible, erosion is only limited

by the efficiency of sediment entrainment and Eq. (44) gives the detachment-limited steady state slope (though importantly the

bed is still entirely composed of sediment). If entrainment and deposition of sediment are rapid enough that erosion is limited

by transport capacity (i.e., the river has enough energy to erode more sediment but the water column is saturated), the system10

is transport-limited and the left hand term in Eq. (44) dominates in setting the steady state slope. Note the subtle difference
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between Eq. (44) and Eq. (18); when H >>H∗ and all surface lowering is accomplished by sediment entrainment, both terms

on the right hand side of Eq. (44) reflect erosion of sediment (i.e., Ks is used in both). This occurs because when H �H∗,

change in bedrock elevation over time is not zero as in true complete steady-state, but is equal to the uplift rate. Therefore, for

topographic steady state to be achieved, both the transport and detachment terms of Eq. (44) must be accomplished through

erosion of sediment. Eq. 44 may be re-written to show that it predicts a standard stream power slope-area relationship that is5

modified by the ratio of settling velocity to effective runoff:

S =

[
V

r
+ 1

]1/n [
U

Ks

]1/n
A−m/n. (45)

We compare the slope-area relationships predicted by Eq. (44) with those extracted from the SPACE model. In order to achieve

conditions in which the transport term in Eq. (44) dominates, we set initial soil depth to 100 m everywhere on our test grid so

that H �H∗. See Table 1 for all parameter values.10

Figure 7 shows the results of the transport-limited model experiment. The top panel shows the longitudinal profile of

the longest channel, and shows that the SPACE component produces concave-up longitudinal profiles at steady state under

transport-limited conditions. The appearance of constant concavity in the longitudinal profile is verified by the constant slope

in log-log space of the slope-area data shown in the middle panel of Fig. 7. The bottom panel compares the theoretical slope-

area relationship (Eq. (44), gray dashed line in Fig. 2) with data from the model run (black dots). All core nodes from the model15

domain are included, and all agree well with the theoretical prediction. In addition to matching the analytical prediction for

channel slope, the model also matches the expected steady-state sediment flux relationship, Qs = UA (Fig. 2, bottom panel).

This indicates that the SPACE component is successfully matching expected transport-limited model behavior for both slope

and sediment flux at steady state.

7.3 Mixed bedrock-alluvial comparison20

One major advantage of SPACE over many existing fluvial erosion models is its ability to simultaneously compute the evolution

of an alluvial layer and a bedrock surface. True steady state in the mixed bedrock-alluvial case occurs when the thickness of the

alluvial layer H and the bedrock height R are both unchanging in time (∂H∂t = 0 and ∂R
∂t = 0). In such a scenario, Es =Ds and

U = Er. As described in Sect. 4.5, steady-state analytical solutions exist for channel slope, sediment thickness, and sediment

flux (here again we use q =Am and keep φ= 0 and Ff = 0):25

S =

[
UV

KsAmr
+

U

KrAm

]1/n
, (46)

H =−H∗ ln

[
1− V

Ksr
Kr

+V

]
, (47)

and

Qs = UA. (48)30
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Running the SPACE component to complete steady state in a case where both sediment entrainment and bedrock erosion

contribute to setting channel slope should therefore result in a concave-up channel profile with a sediment layer of constant

thickness, and sediment flux equal to the product of the rock uplift rate and drainage area. We use the same tilted plane initial

model domain as described in Sect. 7 to test whether the model can replicate the expected behavior in the bedrock-alluvial

case. Matching the steady state analytical solutions requires both erosion of bedrock to generate the concave-up profile, and5

accumulation of sediment to a constant thickness over the landscape. We begin the numerical experiment with zero sediment

thickness at all nodes. Table 1 shows all parameter values used. The driver script used for this model experiment is included in

the code guide for this paper.

Figure 8 shows the evolution of the longitudinal bedrock profile and alluvial cover layer in the longest channel over several

model timeslices. Beginning from a low-slope tilted plane, the channel incises bedrock and begins to build up a layer of10

alluvium on the channel bed. As model time progresses, the channel profile increases in concavity and the layer of alluvium

thickens. Alluvial thickening progresses from downstream to upstream. By the final timeslice, the alluvial layer has reached its

equilibrium value, the channel profile has equilibrated to the imposed uplift rate, and the bedrock surface, alluvium thickness,

and topographic surface are all at steady state. Figure 9 shows the final channel profile (top panel) when the topographic

surface, sediment thickness, and bedrock height are all at steady state. The topographic surface (top of the sediment layer) is15

everywhere parallel to the bedrock surface, and the bed sediment layer is 1.25 m thick at every point along the channel profile.

Given V = 5 m/yr, Ks = 0.01 yr-1, and Kr = 0.005 yr-1, as used in the model, the steady state sediment thickness ofH = 1.25

m calculated by the model matches the analytical prediction of Eq. (21). The middle panel compares the theoretical prediction

for slope-area scaling given by Eq. (46) (gray dashed line) with the model results (black dots). As in the detachment-limited

and transport-limited cases, the model matches the analytical prediction. The bottom panel of Fig. 9 compares the theoretical20

steady state relationship between drainage area and sediment flux (Qs = UA) with modeled sediment flux, and shows that the

model shows the predicted linear increase in Qs with drainage area. The ability of the SPACE component to treat both the

detachment-limited and transport-limited end members of fluvial systems as well as the mixed bedrock-alluvial case confirms

that the model equations are being solved correctly, and importantly that our use of stabilizing, local analytical solutions does

not compromise the ability of the model to replicate expected behavior. Below, we show how the SPACE component may be25

efficiently coupled with other surface processes models in the Landlab modeling framework to provide insight into landscape

evolution.

8 Application to landscape evolution modeling: Coupling SPACE with hillslope diffusion to model topographic

growth and decay

One frequent application of landscape evolution modeling is the exploration of landscape response to tectonic perturbations.30

Understanding the growth and decay of topography has significant implications for interpretation of the stratigraphic record,

which is composed of sediment that is detached and transported from upland landscapes. In this section we show how the

SPACE component can be coupled with a hillslope diffusion model in the Landlab modeling toolkit to simulate landscape
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response to changing rock uplift rates. In addition to computing topographic change that incorporates both sediment and

bedrock surface evolution, we show the capability of the SPACE component to provide information about sediment fluxes

delivered from the model catchment over time.

8.1 Model setup

We use a Landlab raster model grid composed of 2500 nodes (50 x 50 grid). We use a node spacing (dx) of 100 m, resulting in5

a 25 km2 area grid. As with the model verification experiments described above, we close all model domain boundaries except

for a single open outlet in the lower-left (southwest) corner. The use of a single outlet means that the entire model domain

will be a single watershed draining to the outlet, and the sediment flux leaving the outlet is the integrated sediment flux from

the entire basin. Our landscape initial condition is a plane tilted slightly (initial regional slope of ≈ 1.4× 10−5) towards the

basin outlet. The tilted plane has initial, random sub-millimeter scale surface roughness to initiate the formation of drainage10

pathways.

For simplicity we use the simple stream power form of the SPACE model (m= 0.5, n= 1, q =Am) and keep φ= 0 and

Ff = 0. We do not incorporate sediment entrainment and bedrock erosion thresholds. See Table 1 for all SPACE parameter val-

ues used in this example. We couple this parameterization of the SPACE component with Landlab’s linear diffusion component,

which computes the topographic-gradient-driven movement of mass at every node by the equation15

∂η

∂t
= κ

∂2η

∂x2
(49)

where κ is a diffusivity in units of [L2/T] (we use κ= 0.005 m2/yr). Programmatically, we incorporate Eq. (49) simply by

running Landlab’s linear diffusion component immediately after running the SPACE component in each model timestep. One

simplification made by simple linear diffusion models is that the entire landscape is made of the same material (i.e., no dis-

tinction between rock and soil). To realistically couple linear diffusion with our fluvial erosion model that explicitly separates20

the dynamics of sediment and bedrock, we assume that any material diffused from one model node onto another is sediment.

Such an assumption is realistic given the purpose and limitations of the linear diffusion model, which has been shown to apply

primarily to soil-mantled hillslopes.

We ran our coupled model with a 1 year timestep for 300,000 years. Because our goal is to use SPACE and linear diffusion

to explore topographic growth and decay, we used a rock uplift rate U relative to baselevel that was unsteady in time. We25

simulated a “pulse” of rapid rock uplift preceded and followed by periods of slower rock uplift. U was set to 0.0001 m/yr

for the first 100 kyr, increased to 0.0005 m/yr for the second 100 kyr, and returned to 0.0001 m/yr for the final 100 kyr. Two

variables of broad interest that generally vary in response to changing rock uplift rates are topographic relief and total sediment

flux out of the model catchment. We predict under such a scenario that topographic relief and sediment flux will increase as

surface erosion responds to rock uplift for the first 200 kyr, and that relief and sediment flux will reach their maximum when the30

rock uplift rate is at its highest value. We then expect decays in relief and sediment flux as the high points in the landscape erode

and topographic gradients shrink in response to a return to the lower rock uplift rate. We recorded the topographic elevation at

all model nodes, along with relief and sediment flux from the domain, at 1 kyr intervals.
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8.2 Results of coupled model experiment

Figure 10 shows several timeslices of model topography showing the response to imposed rock uplift, and Fig. 11 shows

sediment depth over the model domain at the same timeslices. Over the first 100 kyr, bedrock incision into the initially non-

alluviated domain dominates adjustment to rock uplift. However, because the rock uplift rate is low and topographic gradients

are being lowered by fluvial erosion and hillslope diffusion, the landscape has < 10 m of relief after 100 kyr. Sediment is5

first produced on the hillslopes (the products of diffusion are considered to be sediment) but not stored in the channels for

the first 50 kyr as the channels incise into bedrock to accommodate the onset of rock uplift. By 100 kyr, the landscape is

nearly equilibrated to the rock uplift rate, and alluviation has occurred in the channels as sediment thickness approaches its

equilibrium value everywhere. Between 100 and 200 kyr, during which the rock uplift rate is five times its initial value, the

network progressively develops higher and higher relief (up to ≈ 50 m) until the rock uplift rate is reduced again at 20010

kyr. During this period, the channels initially strip their alluvial cover and incise bedrock to match the increased rock uplift

rate. However, as in the first 100 kyr, as the landscape begins to equilibrate to the new rock uplift rate by 200 kyr, alluvium

thickness again increases towards its equilibrium condition. Once the rock uplift rate is reduced, diffusion of material from

the hillslopes into the channels results in sediment mantling of the channels and significant reduction of the rate of bedrock

incision. By 300 kyr, the lowering of high points by diffusion, together with the inability of low-gradient, sediment-mantled15

rivers to effectively incise bedrock, has resulted in reductions in landscape relief such that the landscape at 300 kyr nearly

mirror the 100 kyr timeslice (≈ 10 m of relief). At this point, the reduction in topographic gradients has reduced sediment

delivery to the channels, which begin to strip their alluvial cover down to its equilibrium thickness.

The patterns observed in Fig. 10 and Fig. 11 are quantified in Fig. 12. Relief and sediment flux out of the model domain

increase initially as the landscape is adjusting, through bedrock incision, from its initial condition to become equilibrated20

with the imposed rock uplift rate. The rates of increase in both relief and sediment flux increase substantially as the rock

uplift rate quintuples at 100 kyr, and while neither reaches its equilibrium value (i.e., steady in time), both relief and sediment

flux begin to asymptote towards those equilibrium values. At 200 kyr when the rock uplift rate is reduced to its initial value,

diffusion rapidly reduces topographic gradients and alluviates channels, and channels become less erosive. Thus both relief

and sediment flux decline over the final 100 kyr of the experiment, again approaching, but not fully reaching, their steady state25

values. The simple experiment performed here shows that the SPACE component may be easily coupled with other models

of earth surface processes in Landlab to explore any number of questions relating to landscape evolution. While 1-D models

of river longitudinal profile evolution have proliferated widely over the past decades, 2-D models that explicitly incorporate

sediment morphodynamics and bedrock erosion simultaneously are rare, and those that are easily coupled with other models

are even rarer. The SPACE algorithm and component fill an important gap in the quantitative geomorphologists’s toolkit,30

and it is our hope that future users will apply it, potentially in conjunction with other Landlab components, to solve diverse

geomorphological problems.
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9 Discussion

In this section, we first explore the possibilities for testing the SPACE model against real and experimental landscapes. We then

summarize the limitations of the model, and compare SPACE with existing models of bedrock-alluvial channel evolution.

9.1 Potential for model validation against real landscapes

Models of river erosion are notoriously difficult to test against field data. Uncertainties in initial and boundary conditions,5

as well as spatial and temporal heterogeneity in rock type and sediment size, introduce substantial complexity into model

verification exercises. Nevertheless, studies exploiting natural experiments, or landscapes where initial conditions, boundary

conditions, and/or parameter values are particularly well-constrained (Tucker, 2009), have met with some success in validating

models (e.g., Stock and Montgomery, 1999; Tomkin et al., 2003; van der Beek and Bishop, 2003; Valla et al., 2010; Hobley

et al., 2011). The SPACE model makes predictions for steady-state channel slope and sediment thickness that could be validated10

by field or experimental studies. In addition, the co-evolution of the bedrock surface and sediment layer thickness could be

used to validate the SPACE model in transient cases.

Previous studies have addressed the validation of the detachment-limited and transport-limited end-members of fluvial ero-

sion models (e.g., Stock and Montgomery, 1999; Tomkin et al., 2003; van der Beek and Bishop, 2003; Valla et al., 2010;

Hobley et al., 2011), so we focus here on the potential for evaluating the predictions of SPACE for the mixed bedrock-alluvial15

case. The SPACE model predicts that both sediment entrainment and bedrock erosion will contribute to setting the steady-state

slope-area relationship (Eq. 46), and that the relative importance of the two components will be set by the ratio V
r and the

relative erodibility of sediment and bedrock. The steady-state sediment layer thickness (Eq. 47) is also governed by V
r and the

ratio of erodibilities. As V
r or Kr

Ks
increases, the channel slope is dominated by sediment erosion and the steady-state alluvial

layer thickness increases. If the SPACE model is valid for natural settings, it should be possible to find (or create in the labora-20

tory) steady-state channels with an alluvial layer with constant thickness along the channel. Further, across a gradient of rock

and/or sediment erodibilities (e.g., a sequence of changing metamorphic grade or a spatial gradient of grain sizes), both the

steady-state channel slope and steady-state alluvial thickness should show predictable changes as a function of Kr

Ks
. Finally, an

intriguing prediction of SPACE is that the steady-state alluvial thickness is independent of the rock uplift rate while the slope-

area relationship is not. Field investigations across a range of rock uplift rates with consistent lithology, climate, and sediment25

properties should show constant steady-state sediment thickness imposed on rock-uplift-dependent slope-area scaling.

In the transient case, the relationship between the longitudinal profile of the bed sediment surface and that of the bedrock

may be useful for validating SPACE model predictions. For example, Fig. 8 shows that for an uplifting landscape with zero

initial sediment thickness, SPACE predicts bottom-to-top alluviation of the channel profile. In this case, the sediment surface

does not reflect the steepened reach commonly associated with the propagation of transient signals up a river profile, while30

the bedrock beneath does. The prediction of SPACE is therefore that in a transient river profile with some amount of bed

sediment, the concavity of the sediment surface is not expected to match that of the bedrock surface. The difference in concavity

between the sediment surface and the bedrock surface should then decline as channels approach steady state, a prediction that
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is testable in a landscape where channels exist in different stages of transient adjustment. It is important to remember that the

sediment thickness predicted by SPACE is a spatial average within a model cell. Further, using realistic (i.e., time-varying)

flow distributions to force the model would result in temporal variability in sediment thickness (Lague et al., 2005; Lague,

2010), complicating the interpretation of sediment thickness values from a specific field campaign. While testing the steady-

state predictions of SPACE is likely feasible in well-constrained landscapes, the transient dynamics may be best explored in a5

laboratory setting.

9.2 Limitations of the SPACE model

The SPACE model is intended to provide a simple, extensible, easy-to-use tool to expand the set of questions that can be

addressed with numerical models of river channel evolution. We have consolidated recent advances in the treatment of sediment

erosion and deposition (Davy and Lague, 2009) as well as simultaneous evolution of sediment and bedrock layers (Lague, 2010;10

Zhang et al., 2015) into a single model that has the additional advantages of being effective for modeling over large grids on

landscape evolution timescales, easily accessible, and easily coupled to other surface processes models in the Landlab modeling

toolkit. As such, our model encompasses some of the same limitations as the previous work from which it is derived, including

a lack of dynamic channel width and a lack of treatment of the tools effect.

To allow efficient solution of the SPACE model over large model grids and timescales, we do not incorporate the hydro-15

dynamic calculations (i.e., explicit computation of stresses on the bed and banks) required to allow channel width to evolve

freely (e.g., Kean and Smith, 2004; Stark, 2006; Wobus et al., 2006; Davy and Lague, 2009; Turowski et al, 2009; Lague,

2010; Nelson and Seminara, 2011; Coulthard et al., 2013). Instead, we employ a common parameterization for channel width

as a function of drainage area or discharge. In the examples in this paper we used a width scaling of w =Q0.5, which results

in q =Q0.5 or q =A0.5 if drainage area is used as a surrogate for discharge. The width scaling exponent m, which we held20

equal to 0.5 in the examples discussed here, is a user-defined parameter. The use of an empirical width scaling means that

1) any given point along the channel occupies a single grid cell regardless of whether width is less than, equal to, or greater

than grid cell size, and 2) SPACE does not capture temporal channel width variations in response to rock uplift, sediment

flux, and discharge changes. In some cases, channel width may respond more significantly than channel slope to such forcings

(e.g., Amos and Burbank, 2007; Turowski, 2009). While our use of a downstream width relationship enables us to test the25

SPACE model against known analytical solutions and eliminates the need for hydrodynamic calculations, the future addition

of dynamic width would allow exploration of the relative importance of slope and width adjustment.

The SPACE model as presented here follows previous models in treating reduction of bedrock erosion by sediment cover

(e.g., Beaumont et al., 1992; Lague, 2010; Shobe et al., 2016), but does not include the enhancement of bedrock erosion by

the presence of mobile bedload tools (e.g., Sklar and Dietrich, 2004; Gasparini et al., 2006; Turowski et al., 2007; Zhang et al.,30

2015). Such a simplification keeps expected model behavior conceptually simple and allows comparison of model results to

known analytical solutions for the purposes of model validation. However, there is substantial field evidence indicating that

mobilized bedload can be an important erosive agent, especially where bedrock is too widely jointed to permit plucking of

bedrock blocks (Hancock et al., 1998; Cook et al., 2013; Beer et al., 2016). The major effect of excluding this effect from
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the SPACE model is that bedrock erosion will be underpredicted at low to moderate sediment fluxes, where there is enough

bedload to frequently abrade the bed, but not enough to form a deep layer of alluvial cover. Adding the tools effect to the

SPACE model could be accomplished by changing the form of the bedrock erosion function to increase with increasing Qs.

9.3 Comparison to previous channel evolution models

The SPACE model borrows and combines concepts from models for sediment-flux-dependent bedrock incision, bed cover evo-5

lution, sediment transport, and prior models of mixed bedrock-alluvial channels. Here we briefly highlight the similarities and

differences between our model and previous models. SPACE relaxes the traditional assumptions governing detachment-limited

and transport-limited erosion models by incorporating both mass conservation of sediment and an incision rule for bedrock.

Our model, like other recent models for bedrock-alluvial channels, explicitly incorporates sediment transport to move beyond

the assumption that bed exposure depends on the ratio of sediment flux to transport capacity used in sediment-flux-dependent10

bedrock incision models (e.g., Sklar and Dietrich, 2004; Gasparini et al., 2006; Turowski et al., 2007; Chatanantavet and Parker,

2009). In doing this, our model follows a substantial number of previous contributions. Specifically, Hodge and Hoey (2012),

Nelson and Seminara (2012), and Turowski and Hodge (2017) used explicit treatments of sediment morphodynamics to explore

spatial and temporal changes in bed cover on a non-erodible bedrock bed in response to different forcings. Turowski (2009)

used a stochastic sediment erosion and deposition framework in conjunction with the saltation-abrasion model for bedrock ero-15

sion to explore both cover variation and its influence on bedrock erosion rates. Their models are formulated at the reach scale

and focus on cover dynamics rather than landscape evolution. Unlike SPACE however, their models allow different forms for

the dependence of exposed bed fraction on sediment transport to arise dynamically, while we use a simple exponential decline

in bed exposure with increasing sediment thickness. Nelson and Seminara (2011) coupled sediment transport saltation-abrasion

rules in a model of channel cross-section evolution. Our model assumes a planar channel bed and parameterized channel width20

for application to landscape evolution problems, and does not dynamically evolve channel cross-section shape as in Nelson

and Seminara (2011). Sediment transport in the SPACE model is computed with the erosion-deposition framework, using an

approach almost exactly following Davy and Lague (2009). The major difference between SPACE and the models of Davy and

Lague (2009) and Carretier et al. (2016) is that SPACE applies the erosion-deposition framework to the simultaneous erosion

of sediment and bedrock. This allows the model to transition not only between transport-limited and detachment-limited be-25

havior, as in those models, but also between fully alluviated, mixed bedrock-alluvial, and pure bedrock states. This is also the

key difference between SPACE and the Fowler et al. (2007) model, which used Exner-based sediment conservation and bed

abrasion under an assumption of infinite sediment supply.

Inoue et al. (2014, 2016, 2017) formulated three insightful models for the evolution of mixed bedrock-alluvial channels.

There are several areas in which these models incorporate more physical realism in fluvial erosion processes than does SPACE.30

For example, Inoue et al. (2014) incorporated the roughness of both the bedrock surface and the alluvial layer; their model

is therefore able to treat both the case where the alluvial layer is rougher than the bedrock bed and vice versa. SPACE does

not currently have the ability to alter flow resistance based on the relative exposure of sediment and bedrock. While more

advanced representations of the roughness of both bedrock and alluvium are possible, they are not currently incorporated in
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our model. However, the erosion-deposition treatment of sediment dynamics in SPACE means that it can move beyond the

constant sediment supply assumption of Inoue et al. (2014). The models of Inoue et al. (2016) and Inoue et al. (2017) contain

substantially more reach-scale complexity than SPACE in that the flow and sediment transport equations are solved in 2-D,

resulting in their model being able to resolve changes to alluvial thickness and bedrock elevation in the downstream and cross-

stream directions. Inoue et al. (2017) also added a simple parameterization for bank erosion. The SPACE model treats bedrock5

elevation and alluvial thickness as cell-averaged quantities, and channel width is empirically parameterized and therefore may

at any point be smaller than, equal to, or greater than a cell width. As such, SPACE resolves downstream changes in sediment

thickness and bedrock elevation, but not cross-stream changes. On the other hand, the simplicity of treating the problem in

1-D allows SPACE to be applied to orogen-scale grids over landscape evolution timescales, whereas the models of Inoue et al.

(2014, 2016, 2017) have primarily been applied at the reach to kilometer scale.10

SPACE is most similar to, and most based upon, the models of Lague (2010) and Zhang et al. (2015), both of which model the

full transition between bedrock, bedrock-alluvial, and fully alluvial channels over full channel profile scales. All three models

contain similar treatments of the progressive exposure of bedrock with thinning of the alluvial layer. Lague (2010) compared

alluvial layer thickness to the median grain size, Zhang et al. (2015) compared alluvial thickness to the macro-roughness of

the bedrock surface, and SPACE similarly computes bedrock exposure based on the ratio of alluvial thickness to a bedrock15

roughness length scale. The three models differ primarily in that SPACE uses the erosion-deposition framework of Davy and

Lague (2009) to explicitly calculate sediment transport morphodynamics, while Lague (2010) and Zhang et al. (2015) use

Exner-based sediment conservation approaches. The other differences among the three models are driven by which processes

are included and which are neglected. The model of Lague (2010) incorporates dynamic channel width by partitioning shear

stresses between the bed and banks, while both the model of Zhang et al. (2015) and SPACE do not incorporate dynamic20

channel width, but use empirical width scaling parameterizations. Zhang et al. (2015) use a saltation-abrasion rule for bedrock

incision in their model such that they capture both the tools and cover effects. Both the model of Lague (2010) and the SPACE

model incorporate bed cover as a function of increasing alluvial layer thickness, but do not include a dependence of bedrock

erosion on sediment flux (the tools effect). Both dynamic width and the tools effect could be incorporated in future versions of

the SPACE model.25

10 Conclusions

We have developed and presented a new model for sediment transport and river incision into bedrock. The SPACE model

takes inspiration from sediment-flux-dependent bedrock incision models (e.g., Sklar and Dietrich, 2004; Gasparini et al., 2006;

Turowski et al., 2007), models of alluvial cover on bedrock beds (e.g., Turowski, 2009; Hodge and Hoey, 2012; Nelson and

Seminara, 2011, 2012; Turowski and Hodge, 2017), erosion-deposition sediment transport models (e.g., Beaumont et al., 1992;30

Davy and Lague, 2009), and existing models of bedrock-alluvial river evolution (e.g., Lague, 2010; Inoue et al., 2014; Zhang

et al., 2015; Inoue et al., 2016, 2017). SPACE incorporates explicit sediment erosion and deposition and simultaneously evolves
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a sediment layer and a bedrock bed, with the necessary simplifications (e.g., parameterized width) necessary to make solutions

tractable over landscape evolution spatial and temporal scales.

We developed steady-state analytical solutions for channel slope, sediment thickness, and sediment flux in Sect. 4.5 based

on the model governing equations. We then showed three experiments demonstrating that the numerical implementation of

SPACE, which uses local analytical solutions for stable calculation of sediment flux and sediment thickness, matches the5

analytical predictions at steady state in the detachment-limited, transport-limited, and mixed bedrock-alluvial cases.

The foremost advantage of SPACE over other similar models is its ease of use for modeling landscape evolution in two

dimensions. The SPACE 1.0 component is implemented in 2-D as part of the freely available Landlab modeling toolkit, and

may be readily coupled to other models of earth surface processes. We showed in an example application how the SPACE

component may be coupled to a linear diffusion hillslope evolution model to investigate the growth and decay of topography in10

response to temporally variable rock uplift. The unique ability of SPACE to separately evolve bedrock topography and sediment

thickness makes it well-suited to a suite of possible applications that are out of reach for simpler, single-substrate models. For

example, the SPACE component would be effective for modeling the depositional filling of flexural depressions, downthrown

fault blocks, and landslide-dammed rivers. In situations where temporal variability in sediment flux is a variable of interest, the

ability of SPACE to store sediment in the form of an alluvial layer could yield more realistic results than simple detachment- or15

transport-limited models. Finally, the SPACE modeling framework is flexible in that the stream-power based entrainment and

erosion equations (Eq. (7 and 8)) may be replaced with other formulations better tailored to individual model applications.

The SPACE 1.0 component enables 2-D calculation of sediment transport, bedrock erosion, and landscape evolution within

the Landlab modeling toolkit. The model’s ability to simultaneously transport sediment and erode bedrock opens up a wide

variety of potential landscape evolution applications beyond the limits of simpler models. SPACE may be easily coupled to20

other models in Landlab to address novel questions in geomorphology.

11 Code availability

The SPACE 1.0 Landlab component as well as all other Landlab components used in this paper are part of Landlab version

1.0.2. Source code for the Landlab project is housed on GitHub: http://github.com/landlab/landlab. Documentation, installation

instructions, and software dependencies for the entire Landlab project can be found at http://landlab.github.io/. A detailed user25

manual with an accompanying Jupyter notebook and a driver script for the mixed bedrock-alluvial example illustrated in

this paper can be found at https://github.com/cmshobe/pub_shobe_etal_GMD (Shobe, 2017, GitHub Repository). The Landlab

project is tested on recent-generation Mac, Linux, and Windows platforms using Python versions 2.7, 3.4, and 3.5. The Landlab

modeling framework is distributed under a MIT open-source license.

Author contributions. GET developed the algorithm with help from CMS. CMS implemented the algorithm, wrote the Landlab component30

with help from KRB, verified and evaluated the model solutions, and wrote the paper with contributions from GET and KRB.
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Figure 4. Bed sediment thicknessH as a function of time as calculated by our local analytical solution (general case forDs/(1−φ) 6= Ês).

In each panel, a single parameter (or set of parameters in the case of Ês/Ds) in Eq. (32) is varied while all others are held constant. H0,

the initial sediment thickness, sets the initial value of the function. The value of H approached over long timescales is set by competition

between the rates of sediment erosion and deposition, where higher sediment erosion rates drive bed sediment thickness down (upper left

panel) and higher deposition rates result in greater bed sediment thickness (upper right panel). Except in cases where Ds >Es, our local

analytical solution converges on a constant value as t→∞. When Ds >Es, the solution converges to a simple linear extrapolation of the

deposition rate over time. Note that the adjustment time changes with different values of Ês and Ds even when Ês/Ds remains constant.

Parameter values (except where changed in the four panels) are: H∗ = 1.0 m, Ds = 1.0 m/yr, Ês = 1.1 m/yr (resulting in Es = 0.95 m/yr

when H0/H∗ = 2), and H0 = 2.0 m/s. φ= 0 for simplicity in this case.
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Figure 5. Left: the Landlab structured raster model grid, with definitions for major grid elements. State variables such as sediment depth and

sediment flux are stored at grid nodes. While gradients such as topographic slope are calculated along links, the slope value representing the

steepest descent from a node to its flow receiving neighbor is stored on the node itself. Link direction is topological; the direction of fluxes

is set by gradients along links. Figure reproduced from Fig. 3 and 4 in Adams et al. (2017).
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Figure 6. Top: longitudinal profile of the longest channel in the model domain under detachment-limited conditions, showing that the channel

is in equilibrium with the imposed baselevel fall, and that the SPACE component yields concave-up longitudinal profiles at steady state.

Bottom: comparison between the SPACE component and Eq. (40) (steady-state slope-area relationship under detachment-limited conditions).

The numerical implementation of the SPACE component successfully replicates the predicted power-law slope-area relationship.
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Figure 7. Top: longitudinal profile of the longest channel in the model domain under transport-limited conditions, showing that the channel

is in equilibrium with the imposed baselevel fall, and that the SPACE component yields concave-up longitudinal profiles at steady state.

Middle: comparison between the SPACE component and Eq. (44) (steady-state slope-area relationship under transport-limited conditions).

The numerical implementation of the SPACE component successfully replicates the predicted power-law slope-area relationship. Bottom:

Sediment flux Qs as a function of drainage area. The model matches the predicted linear relationship Qs = UA.
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Figure 8. Time series of longitudinal profile evolution for the longest channel in the test model domain as the domain is uplifted relative

to baselevel. Profile distance lengthens over time as the original tilted ramp is incised; horizontal scale on all plots is the same. Initially (0

yr), the channel topographic surface is effectively flat with zero sediment thickness. By 1000 yr, a slightly concave-up bedrock profile has

developed, with a thin, downstream-thickening layer of bed sediment resulting in a surface profile that is less concave-up than the bedrock

profile. Over the following three timeslices, continued rock uplift relative to baselevel causes increased concavity in the bedrock profile, as

well as continued thickening of the sediment layer. The sediment layer thickness in a downstream to upstream progression. By 50,000 yr, the

sediment layer has uniform thickness, resulting in a surface profile of equal concavity to the bedrock profile, and the alluvial layer thickness,

topographic surface elevation, and bedrock surface elevation are all equilibrated to the imposed rock uplift rate and are therefore unchanging

in time. Vertical exaggeration ≈ 1100×.
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Figure 9. Top: longitudinal profile of the longest channel in the model domain after 200 kyr of model time during which the channel has

evolved from an initial condition of zero sediment thickness to a constant, steady sediment thickness. Both the topographic surface (top of

the sediment layer) and the bedrock surface are in equilibrium with the imposed baselevel fall, showing that the SPACE component yields

parallel, concave-up longitudinal profiles in sediment and bedrock at steady state. The sediment thickness H matches the predicted sediment

thickness for the parameters used in the model run. Middle: comparison between the SPACE component and Eq. (46) (steady-state slope-

area relationship under bedrock-alluvial conditions). The numerical implementation of the SPACE component successfully replicates the

predicted power-law slope-area relationship. Bottom: Sediment flux Qs as a function of drainage area. The model matches the predicted

linear relationship Qs = UA.
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Figure 10. Snapshots of topography at nine times throughout the coupled SPACE and linear diffusion model experiment simulating the

growth and decay of topography in response to changing rock uplift rates. The upper-left panel represents the model initial condition, a plane

with initial micro-scale roughness slightly tilted towards the basin outlet. The outlet is located at the lower-left (southwest) corner of the

model domain. The rock uplift rate is 0.0001 m/yr for the first 100 kyr, increases to 0.0005 m/yr for 100–200 kyr, then declines again to

0.0001 m/yr for 200-300 kyr. The model shows the growth of relief in response to rock uplift, with relief increasing slowly for the first 100

kyr and then more quickly for 100–200 kyr. After 200 kyr when the uplift rate declines to its initial value, relief declines as erosion of the

high points on the landscape, driven by both fluvial erosion and linear diffusion, outpaces rock uplift.
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Figure 11. Snapshots of sediment thickness at nine times throughout the coupled SPACE and linear diffusion model experiment simulating

the growth and decay of topography in response to changing rock uplift rates. The upper-left panel represents the model initial condition, a

plane with initial micro-scale roughness slightly tilted towards the basin outlet. The outlet is located at the lower-left (southwest) corner of

the model domain. The rock uplift rate is 0.0001 m/yr for the first 100 kyr, increases to 0.0005 m/yr for 100–200 kyr, then declines again

to 0.0001 m/yr for 200-300 kyr. During the first 100 kyr, sediment depth increases on the hillslopes (because diffused material is considered

sediment) but is absent in the channels as the channels incise into bedrock. By 100 kyr, the channels hold more sediment as incision and

sediment thickness equilibrate to the rock uplift rate. As the rock uplift rate increases between 100 and 200 kyr, the same pattern occurs where

sediment is evacuated from the channels during the initial response to rock uplift. The channels then re-alluviate as the landscape approaches

equilibrium at 200 kyr. After 200 ky, the decline in rock uplift causes initial alluviation in the channels as diffusion into the channels outpaces

sediment erosion. Finally, sediment thickness declines in the channels as the pace of diffusion slows in response to relief reduction.
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Figure 12. Time series of total relief in the model domain (top) and sediment flux out of the model domain (Qout

s , bottom) shown with the

imposed rock uplift rate U . Both relief and sediment flux increase slowly during the first 100 kyr in response to the imposed rock uplift rate

of 0.0001 m/yr. By the end of the first 100 kyr, the rates of increase for both relief and sediment flux become slower, indicating that the

landscape is approaching equilibrium with the rock uplift rate. Between 100 and 200 kyr, the rock uplift rate is increased by a factor of five

and both relief and sediment flux increase by approximately the same factor. By the end of the 100 kyr period of high rock uplift rate, relief

and sediment flux begin to equilibrate to the new, higher rock uplift rate. At 200 kyr, the rock uplift rate is reduced to its original value, and

relief and sediment flux decline in response as erosion of high points on the topography outpaces rock uplift.
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