
Reviewer #1: Joakim Kjellson.

The manuscript presents a new framework for a Lagrangian particle model, Parcels.
The new particle model is in a testing phase with only the most basic components
functional. The authors describe the current workings of the model, test its accuracy,
and present where they envision development going further. Overall, the manuscript
is well written. The main novelty lies in presenting the new framework to the particle-
modelling community and its possible future developments. However, there are very
few actual results. I recommend the paper for publication, but only after addressing
the comments below.

We thank Dr Kjellsson for these kind words, and have indeed addressed all his
comments, as detailed below

There is not much discussion about how exactly the new model will be more suited to
cope with petascale age computing. The authors spend some time talking about how
to optimise the loop over particles to improve performance, but with petascale
OGCMs, where velocity fields amount to hundreds or more terabytes, reading and
interpolating those fields into the particle model will be a huge bottleneck. Section 5.1
has a paragraph on how reading data from massive files could work, but there is no
demonstration. In the practical example, the data file is 6Gb, which is not very large. I
understand the authors have not focused on optimisation of PARCELS yet, but are
there any examples, not necessarily with particle codes, where spatial indexing has
given a performance improvement? I strongly recommend more discussion (in the
introduction, design, and discussion sections) about how all current particle codes,
e.g. CMS, Tracmass, Ariane, will hit this bottleneck in the peta-scale age, and more
details about how PARCELS will overcome it.

We agree that the future performance challenges have not been addressed in
sufficient detail and have made additions to the suggested sections 1 (p 2 of the track-
changed pdf, lines 9-12), 2.2 and the new 2.3 (p 6 of the track-changed pdf, lines 18-
32 and page 7 of the track-changed pdf, lines 1-4), 3.1 (p 8 of the track-changed pdf,
lines 5-8) and 5.1 (p 14 of the track-changed pdf, lines 1-20).
The overall rationale follows the argument that, as no “silver bullet” solution is as yet
known for the big-data challenges facing Lagrangian tracking applications with
petascale OGCMs, we see the primary limitations of existing codes in the lack of
flexibility and dynamic adaptability that is required to explore new optimisation
strategies. Throughout the listed sections we explore two potential solutions for
dealing with the vast volumes of field data required, for two different usage scenarios
of Lagrangian tracking models: a) Coupled execution with the host model to avoid the
bandwidth limitations of disk and file storage; and b) reducing the required data volume
by selectively prefetching field data based on known particle positions. We aim to
highlight throughout that both approaches have been considered during the design of
Parcels to enable efficient exploration of such schemes during future development.

Since PARCELS is very flexible, could it be extended to work for atmospheric
particles? Perhaps PARCELS should not be presented as a tool for Lagrangian ocean
analysis, but rather Lagrangian particle tracking in both atmosphere and oceans?

Presenting this kind of framework to the atmospheric modelling community as well
could be beneficial, but would mean changing the paper quite a bit. Even if the authors
decide to stick with presenting PARCELS as an ocean particle code, atmospheric
particle codes still need some mentioning (MetOffice NAME model, FLEXPART) in the
introduction.
This is an interesting suggestion. While our own development for now focusses on
oceanographic applications, the framework could indeed in principle also be used in
the atmosphere. We have now added some discussion of atmospheric particle
tracking codes in the introduction (p 2 of the track-changed pdf, lines 27-30).

Throughout the paper, the authors name the model "Parcels". However, more than
once I found that the name of the model could be confused with actual parcels. Why
not use PARCELS, as any other model (e.g. NEMO, CESM, IFS etc.) to avoid
confusion?
We thank the reviewer for this thoughtful suggestion, but we feel that the current
convention is more concise and in the spirit of the Python philosophy. The suggested
all-caps naming style is largely derived from Fortran90 coding conventions, where
routine and package names are often capitalised, while it is preferred in the Python
community to use lower-case module names (https://www.python.org/dev/peps/pep-
0008/#package-and-module-names). Since this is largely a matter of personal taste,
we feel that we must respectfully decline.

Page 1, Line 1: "petascale age" is rather unspecific. The sentence uses future tense,
suggesting we are not there yet, even though there are already > 1petaflops
computers. Please specify what is meant. OGCMs of a certain horizontal resolution,
e.g. global \equiv 1/50 or \equiv 1/100?
We have now clarified in the abstract that by petascale age we mean output of
OCGCM models exceeding the 1 petabyte storage space barrier (p 1 of the track-
changed pdf, lines 2-3). This would for example be the case for a global simulation at
1/50o run for 50 years and stored at daily intervals.

Page1, Line 19: Add reference for seawater parcels: Doos 1995, Blanke & Raynaud
1997.
We have now added references to Döös 1995 and Blanke & Raynaud 1997 to this
sentence (p 1 of the track-changed pdf, line 19)

Page 2, Line 16: How would it keep up? By being very efficient at reading in velocity
data?
We have now clarified that indeed we see scalability and efficiency in reading in
hydrodynamic data as key strategies to keep up with OGCM development (p 2 of the
track-changed pdf, lines 21).

Page 2, Line 18: I recommend replacing "functionality such as a myriad of behaviours
to the particles" for "active particle behaviours".
We have changed this phrasing following the reviewer's suggestion (p 2 of the track-
changed pdf, line 23)

Section 2.2: I found the section a bit confusing, and I think it needs some rewriting to
become clearer. As I understood it, these are two methods for interpolating data, e.g.
velocity, onto the particle position? I’m familiar with the interpolator from SciPy, but
what method does the JIT method use? Is that something the user can write
himself/herself? Is the SciPy interpolator restricted to nearest-neighbour or linear
interpolation methods? Also, what pre-defined macros are you referring to?
To make this clearer we have separate the details of the provided interpolation
routines from the overview of the execution loop and added a new subsection 2.3 (p
6/7 of the track-changed pdf, lines 23-4). This now clearly states the current
implementation details, its restrictions and potential for additional interpolation
schemes in the future.

Page 6, Line 11-13: Non-compatibility with non-regular grids excludes quite a few
OGCMs, which often use rotated pole, tri-polar or cubed-sphere grids. I think this is
one of the most important shortcomings of v0.9 that must be addressed soon by the
authors or the user community. The authors should say so.
We fully agree with the reviewer, and indeed extension to curvilinear grid is the next
major development goal for Parcels. We also agree that we should state this major
limitation more upfront, and have now mentioned it in the abstract too (p 1 of the track-
changed pdf, line 15).

Page 7, Line 5-7: This sentence does not read well with its two parenthesis. I would
split into two sentences
We have changed the phrasing following the reviewer's suggestion (p 8 of the track-
changed pdf, lines2-4).

Page 8, Line 13: 6Gb is actually not a very large file. Many laptops have 16Gb RAM
these days and could definitely cope with this while the user sips his/her coffee at
some hip cafe.
We have limited the data set here to 6GB in order to keep the downloading of the data
manageable, for users who want to run this experiment themselves. We thought some
users might find it problematic to be asked to download 100s of GB. This example is
meant to highlight the API, not per se to show the scalability of the code (which will be
optimised in future version of Parcels anyways). The 6 GB of data was hence a
compromise between `manageable' download volume and sufficient data to conduct
a meaningful experiment.

Section 3.5: Does PARCELS write CF 1.6 compliant data?
The output of Parcels is indeed CGF-1.6 compliant, following the guidelines at
http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html\#discrete-
sampling-geometries. We have now explicitly mentioned that at the beginning of
section 3.5 (p 10 of the track-changed pdf, lines 2-4).

Sections 4.2.1 - 4.2.7: The test cases need to be described a bit more. Are the fields
generated within PARCELS, or generated and stored as netCDF files and then read
into PARCELS? Also, please give Δx, Δy, Δt for all fields.
The reviewer was right that not all of the test cases provided sufficient information on
how the fields were generated, and at what resolution. We have now added that

information (p 11 of the track-changed pdf, lines 8-10, 12-15 and 23; p 12 of the track-
changed pdf, lines 8-9, 18-19 and 29; and p 13 of the track-changed pdf, line 12).

Page 10, Line 28: "steady-state"
We have fixed the type-o (p 12 of the track-changed pdf, line 15)

Section 5.1: Are there any tests that show that the optimisations they propose would
give some performance improvement? Optimising the reading of velocity fields from
very large files would be one of the main strengths of this model. See major comment
above.
Unfortunately, there is no hard evidence or citable publications for any of the proposed
methods yet, which is why further experimentation is required. The general concepts
of out-of-core streaming for large data-sets have been very skillfully addressed by a
combination of two prominent Python packages recently, namely xarray and dask.
This method significantly reduces the memory overhead of large files, and could
possibly be extended to incorporate particle-specific information to further optimise the
file reads, as outlined in the re-written parts of section 5.1 (page 14 of the track-
changed pdf). The flexible design structure and native compatibility with these Python
packages will allow for efficient exploration of such advanced methods in future work.

Reviewer #2: Yu Cheng

The authors introduce a new Lagrangian Ocean Analysis framework, Parcels that is
built with flexibility, scalability, and ease-of-use in mind. This manuscript serves well
as a proof-of-concept and demonstrates its user-friendly interfaces and the accuracy
of the codes. However, the claimed improvement of performance, scalability for large
datasets and ease to integrated with different OGCMs are yet to be seen.

The authors' effort to build Parcels following modern software engineering practice is
much appreciated. From my experience, none of the existing tools, although gradually
migrated to Github, use CI tools, making them difficult to be implemented to and tested
on different machines. This could be one of the reasons that each of community only
reaches a certain size. Positioning itself as a framework, together with its modular
design, Parcels has much more potentials than any existing tools to attract more users
from different fields. At its early stage of development, Parcels urgently needs the input
from a larger community, and this paper is a well-constructed invitation. I recommend
the paper to be published once some of following points are addressed. Also, some of
my questions and comments are also listed:

We thank Dr Cheng for these very kind words. Below we have listed our responses to
his comments

P.2 line 6-8: Is there a limit that you expect each of three codes will not be
computationally efficient anymore? From my own experience, instead of computation,
the bottle neck of CMS is in the "output to NetCDF" step. Opening a huge NetCDF file
and dumping particle information into it drain the system memory (32G/16core node)
and dragged down the whole machine.
This is a very good point. While it is beyond the scope of this paper to speculate when
the other code to not be computationally efficient anymore (that also depends on
development by their teams), we do agree that particle trajectory writing can be a
major bottleneck too. We have now highlighted this in the introduction (p 2 of the track-
changed pdf, lines 9).

P.2 line 28: It is not clear to me what "generic particle-mesh interaction computations."
is.
The sentence has been rewritten to make the intention clearer (p 3 of the track-
changed pdf, lines 3-4).

P.5 line 29: Is this limited to a particular JIT package? How much faster is using
JITParticle than using ScipyParticle? It’d be good to see a benchmark comparison. If
I want to use a new Interpolation scheme, how can I implement it into both modes?
The JIT components used by Parcels are tightly integrated into the code generation
engine and are internal to Parcels. The primary advantage of using code generation
and JIT processing is that the low-level interpolation routines can be tightly coupled
with the processing kernels via inlining, which is orders of magnitude faster than the
pure Python mode, due to the large overhead of calling native Python functions
repeatedly in tight loops. This is now explained in more detail in the newly added
section 2.3 (p 6 and 7 of the track-changed pdf, lines 23-4), and an “anecdotal”

performance benchmark has been added to illustrate the performance improvement
due to JIT mode.

P.8 line 15 and the codes. Please correct me if my understanding is incorrect: The
"snapshots" was defined in the code to load the data of initial three time steps. The
for-loop was so designed because the particles are back tracked. The pset.execute
uses the loaded filedset to advect particles in these three days (runtime) with time step
(5min) and output every one day, and then "fldset.advancetime" is called to replace
the last snapshot by concatenating the newly loaded snapshot to the front.
This is indeed correct; we have now further clarified the use of the advancetime
function in sections 3.1 and 3.4 (p 9 of the track-changed pdf, lines 19-21).

P.7 line 8, and P.8 line 15: It is confusing to me that ``Snapshots'' was first a list of
three members. Within the loop, it got updated to a single member list, which is the
condition to trigger advancetime. Also, it might be better to point out that the
“set_ofes_fieldset” is a user-defined function, not included in the Parcels package.
In the revised version of the manuscript, we now explicitly state that set_ofes_fieldset
is indeed a user-defined function (p 8 of the track-changed pdf, lines 9-11). We have
also clarified that this function accepts a list of any length.

Is there a particular reason that field.py uses the native Netcdf4 API to load in fields,
but uses Xarray to write to output files? Performance concerned?
The use of the native netCDF API is largely an overhead from earlier development
stages and will be addressed in future releases. The plan is to incorporate Xarray with
the scheduling library Dask to facilitate efficient out-of-core file reads that complement
the optimised particle computation. The primary work on this is planned for the
upcoming performance optimization and parallelization phases.

Section 4.2: How did you generate the idealized flow fields? It might be trivial, but the
grid-size information is missing for some cases.
The reviewer was right that not all of the test cases provided sufficient information on
how the fields were generated, and at what resolution. We have now added that
information (p 11 of the track-changed pdf, lines 8-10, 12-15 and 23; p 12 of the track-
changed pdf, lines 8-9, 18-19 and 29; and p 13 of the track-changed pdf, line 12).

Section 4.2.7: I am just curious why $K_{h}=100 m^{2}/s$? From my experience, this
value depends on resolution. Let’s say if I want to use Parcels with 1/10 deg OFES,
what value should I use? Is there a test case that I can tune this value against some
observations?
The Kh=100 m2/s here was purely chosen as an illustrative example. The reviewer
raises a very good question about appropriate values for Kh, but we feel that (or even
if Brownian motion is a good model of diffusion in the ocean anyway) is beyond the
scope of the paper here. We know that quite a few groups, including for example Arne
Biastoch's in Kiel, are actively investigating the question raised here.

P.12 line 16: Not exactly clear what "Spatial indexing methods" indicates. Also, this
sentence sounds not clear to me: How will something "impacted" become promising

in the future? How are you planning to do the "close integration of such scheduling
techniques with the particle loop?"
Section 5.1 has been reworded to explain potential performance optimizations in more
detail, including the use of spatial indexing methods to reduce the overall field data
volume. Additional references have also been added for background on geospatial
indexing (p 13 of the track-changed pd).

Section 5.1.1: How are you planning to proceed on this front? I know there is a "Parallel
NetCDF" project, but I don’t think its Python API will be available anytime soon. How
much of performance gain could be achieved once the second point is addressed in
version 1.0?
Various projects exist that improve on the current shortcomings of the netCDF Python
wrappers. The most popular and established package is probably Xarray, which
provides parallelisation (via Dask) and out-of-core computation, and could potentially
be used to implement grid parallelisation based on spatial decomposition methods.

Section 5.3: This is exciting! It would be wonderful to be able to couple Parcels to
many ocean models. However, to do so, Parcels need to work on their native grids. It
is possible to run a remapping layer in between, but I think that will significantly impact
the performance. Just curious, could you briefly suggest how to modify the field.py to
handle the non-regular grids, for example, the tri-polar grid in POP2, or the
unstructured triangular meshes in FESOM? What’s your current plan to support
multiple grids? Or will that be left to the users?
The newly added section 2.3 adds a few details about the current assumptions made
in the code about field interpolation, and its potential for future extensions (p 6 and 7
of the track-changed pdf, lines 23-24). The primary idea is that the current Field class
acts as an abstract base class for future field types with individual field-specific
interpolation routines provided as macros to the code-generation engine to include at
runtime. While this will require developer input and expertise, such additions would be
relatively concise and should not affect existing user models, allowing a relatively easy
transition between offline and online models.

Parcels v0.9: prototyping a Lagrangian Ocean Analysis framework
for the petascale age
Michael Lange

1

and Erik van Sebille

2,3

1

Grantham Institute & Department of Earth Science and Engineering, Imperial College London, UK

2

Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, Netherlands

3

Grantham Institute & Department of Physics, Imperial College London, UK

Correspondence to: Erik van Sebille (e.vansebille@uu.nl)

Abstract.

As Ocean General Circulation Models (OGCMs) move into the petascale age, where the output from global high-resolution

model runs can be of the order of hundreds of terabytes in size

:
of

::::::
single

:::::::::
simulations

:::::::
exceeds

::::::::
petabytes

::
of

:::::::
storage

:::::
space, tools

to analyse the output of these models will need to scale up too. Lagrangian Ocean Analysis, where virtual particles are tracked

through hydrodynamic fields, is an increasingly popular way to analyse OGCM output, by mapping pathways and connectivity5

of biotic and abiotic particulates. However, the current software stack of Lagrangian Ocean Analysis codes is not dynamic

enough to cope with the increasing complexity, scale and need for customisation of use-cases. Furthermore, most community

codes are developed for stand-alone use, making it a nontrivial task to integrate virtual particles at runtime of the OGCM.

Here, we introduce the new Parcels code, which was designed from the ground up to be sufficiently scalable to cope with

petascale computing. We highlight its API design that combines flexibility and customisation with the ability to optimise for10

HPC workflows, following the paradigm of domain-specific languages. Parcels is primarily written in Python, utilising the

wide range of tools available in the scientific Python ecosystem, while generating low-level C-code and using Just-In-Time

compilation for performance-critical computation. We show a worked-out example of its API, and validate the accuracy of

the code against seven idealised test cases. This version 0.9 of Parcels is focussed on laying out the API, with future work

concentrating on

::::::
support

:::
for

:::::::::
curvilinear

:::::
grids, optimisation, efficiency and at-runtime coupling with OGCMs.15

1 Introduction

Lagrangian Ocean Analysis, where virtual particles are tracked within the flow field of hydrodynamic models, has over the last

two decades increasingly been used by physical oceanographers and marine biologists alike (Van Sebille et al., submitted).The

particles can represent passive parcels of seawater

:::::::::::::::::::::::::::::::::::::
(e.g. Döös, 1995; Blanke and Raynaud, 1997) or its constituent tracers such

as nutrients (e.g. Jönsson et al., 2011; Qin et al., 2016), as well as particulate matter such as microbes (e.g. Hellweger et al.,20

2014; Doblin and van Sebille, 2016), larvae (e.g. Cowen et al., 2006; Paris et al., 2005; Teske et al., 2015; Cetina-Heredia et al.,

2015), pumice (e.g. Jutzeler et al., 2014), plastic litter (e.g. Lebreton et al., 2012), or icebergs (e.g. Marsh et al., 2015). The

trajectories of the virtual particles can be used to analyse the flow within Ocean General Circulation Models (OGCMs) and

other velocity fields for dispersion characteristics (e.g. Beron-Vera and LaCasce, 2016), Lagrangian Coherent Structures (e.g.

1

Haller, 2015), water mass pathways and transit times (e.g. Rühs et al., 2013), Lagrangian streamfunctions (e.g. Döös et al.,

2008) and biological connectivity between regions (e.g. Kool et al., 2013). See Van Sebille et al. (submitted) for an extensive

review on Lagrangian Ocean Analysis.

There are currently three main community codes available to calculate the trajectories of virtual particles in Ocean General

Circulation Models: Ariane (Blanke and Raynaud, 1997), TRACMASS (Döös et al., 2013; Döös et al., 2017), and the Connec-5

tivity Modeling System (CMS, Paris et al., 2013). These codes, being open-source and having excellent support teams, have

served the wider community very well over the past decades. However, it is not clear that these three codes will be able to

scale up easily to the petascale age of computing, where particle trajectory codes will need to be able to deal with potentially

petabytes of hydrodynamic field data .

:::
and

::::::::
gigabytes

:::
of

::::::
particle

:::::::::
trajectory

::::
data.

:::::::::
Exploring

::::::::
advanced

:::::::::::
optimization

::::::::
strategies

::
to

::::::::
overcome

:::::
these

:::::::
big-data

::::::::::
challenges,

::::
such

::
as

:::::::
coupled

:::::::
(online)

:::::::::
execution

::::
with

:::
the

::::
host

:::::::
OGCM

::
or

::::::::
reducing

:::
the

::::::
volume

:::
of10

::::::::::::
hydrodynamic

:::
data

:::
by

:::::::::
selectively

:::::::
filtering

:::
data

:::::::
regions

:::::
based

::
on

:::::::
particle

::::::::
locations,

::::
will

::::::
require

:
a

:::::::
flexible

::::::::
execution

:::::
model

::::
that

:::
can

::::::::::
dynamically

:::
be

::::::
adapted

::
to

:::::::::::
complement

:::
the

::::::::
respective

::::
data

:::
and

:::::::::
execution

::::::
formats

::
of

:::::::
various

::::
host

:::::::
OGCMs.

:

Furthermore, the current stack of codes is mostly built for the tracking of water parcels or passive particulates. While the

CMS and TRACMASS do support the addition of diffusive processes through Markovian stochastic models (e.g. Griffa, 1996),

it is non-trivial to incorporate ‘behaviour’ of particulates to these codes. Effortless incorporation of behaviour such as sinking,15

fragmentation, or even swimming to particulates would simplify exploration of the dynamics of particulates such as fish,

icebergs and marine debris.

Here, we describe a novel framework for computing Lagrangian particle trajectories, named Parcels (‘Probably A Really

Computationally Efficient Lagrangian Simulator’). Being developed from the ground up with scalability and performance

in mind, we hope that this Parcels framework will be able to keep up with OGCM development for the coming decades

:
,20

:::::::::
particularly

:::
by

:::::
being

:::::::
scalable

:::
and

:::::::
efficient

::
at

:::::::
reading

::
in

::::::::::::
hydrodynamic

::::
data. We have

::::::::::
furthermore focussed on flexibility and

customisability of the particle dispersion schemes, so that it is relatively straightforward to add new functionality such as a

myriad of behavioursto the particles

:::::
active

::::::
particle

:::::::::
behaviours.

We have decided to brand this version of Parcels as v0.9, signalling that while in principle it is feature-complete, the code

is not nearly as fast and efficient as we envision it to be in the future. Improving performance will be the main priority as we25

work towards v1.0. We invite all interested researchers to contribute to the development by starting to use the code.

:::::
While

:::::::::::
development

:::::
efforts

::
of

::::::
Parcels

:::::
focus

:::
on

::::::::::::
oceanographic

::::::::::
applications,

:::
the

::::::
Parcels

:::::::::
framework

::::::
should

::
in

::::::::
principle

:::
also

:::
be

::::::::
adaptable

::
to

::::::::::
atmospheric

::::::
particle

:::::::
tracking

::::::::::
simulations.

:::::::
Models

::::
such

::
as

::::::::::
FLEXPART

::::::::::::::::::::
(Stohl and James, 2005)

:::
and

:::
the

:::::::::
MetOffice

::::::
NAME

:::::
model

:::::::::::::::::
(Jones et al., 2007)

::
are

::::::::::::
state-of-the-art

::::
and

::::
have

::
an

::::::::
excellent

::::::::::
track-record

::
in

:::
the

:::::
field

::
of

::::::::::
atmospheric

:::::::::
dispersion

:::::::::
modelling,

:::
but

::::::
perhaps

:::::
some

::
of

:::
the

:::::
ideas

::::::::
presented

::::
here

:::::
could

::
be

:::::::::::
incorporated

::
or

::::
used

::
in

:::::
these

::::::
models

::::
too.30

This paper is structured as follows: in the next section, we will describe the philosophy behind the Parcels code. We then

present a worked-out example of an application of Parcels for an actual scientific experiment in Sect. 3. Following that, we

evaluate the accuracy of the code in Sect. 4, by comparison to analytical solutions in idealised test. We provide a future outlook

in Sect. 5, before concluding in Sect. 6.

2

2 Prototype design and philosophy

A key contribution of the new Parcels v0.9 framework is to define a set of interfaces and composable abstractions that en-

capsulate the various processes required for generic particle-mesh interaction computations

::
to

:::::
create

::::::::
dynamic

:::
and

:::::::::
extensible

:::::::::
Lagrangian

::::::
models

::::
that

::::::
feature

:::::
direct

:::::::::
interactions

::::::::
between

:::::::
particles

:::
and

::
an

:::::::::
associated

::::::
OGCM

::::
grid. The design follows modern

scientific software engineering practices, providing high levels of modularity and flexibility with a clear intent to further spe-5

cialize various sub-components at a later stage. The interfaces provided in Parcels are therefore intended to capture the general

domain-specific challenges posed by particle tracking for Lagrangian Ocean Analysis. The overall design philosophy, as well

as the structure of the code, are driven by three major design considerations:

– Extensibility – While the core algorithm of Lagrangian particle models is concerned with the advection and dispersion

of passive particles that constitute infinitely small point parcels, practical oceanographic applications often require more10

complex behaviour of the particles. Potential extensions towards individual-based modelling of particulates to simulate

biological species or marine debris will require extensions to particle data definitions and programmable behavioural

customisation at a per-particle level.

– Compatibility – Particle tracking in oceanography requires the close coupling of computational particles to velocity

data that defines the hydrodynamic flow field. Parcels aims to make as little assumptions about the nature and structure15

of the hydrodynamic fields as possible, so as to be compatible with various types of OGCMs and data formats. While

the focus in this v0.9 is on utilising offline data, this includes considerations for at-runtime coupling with OGCMs in the

future.

– Dynamic data – Particle data is sparse in nature and can, depending on application context, exhibit very dynamic data

access patterns where new particles are inserted and deleted from the active set at runtime. For this reason, structured20

compile-time performance optimisations and parallelisation strategies are insufficient, and Just-In-Time scheduling is

required to handle the amorphous data parallelism inherent in dynamic particle applications (Pingali et al., 2011).

The above list of requirements suggests that a static compile-time approach is likely to provide insufficient flexibility to

adjust to the various scientific contexts in which oceanographic particle tracking might be utilised. For this reason Parcels is

based on the domain-specific languages paradigm, which aims to decouple the problem definition as defined by the scientific25

modeller from the implementation that is ultimately executed on a particular hardware architecture. This approach is based

on automated code generation at runtime and creates a separation of concerns between domain scientists and computational

experts that allows hardware-specific performance optimisation and thus greater flexibility with respect to advances in high-

performance computing resources.

Since the prototype of the Parcels framework presented here provides a conceptual blueprint for future versions, we define a30

clear set of abstractions for the following three software layers:

– User-facing API – The primary objective of Parcels is to provide a user-friendly, clear and concise API for scientists to

perform oceanographic particle tracking experiments with very little effort, while leaving room for customisations that

3

go beyond traditional configuration files. For this reason Parcels provides a high-level Python API that enables users to

define a complete model in a small number of lines of code (see examples in Sect. 3). For more advanced models, the

API also provides enough scope to fully control the variable layout of particles in memory, as well as to define custom

behaviour via individual kernel operations.

– Execution layer – The transient nature of Lagrangian particles implies that many practical oceanographic applications5

rely on particle sets that may grow and shrink dynamically, while also relying on external hydrodynamic field data

that might be sampled at a timestep much different from the primary particle loop. This complex parameter variability

entails that the core loop that updates individual particle states needs to be highly dynamic and flexible, as well as highly

optimised for large-scale applications. Parcels aims to encapsulate the core parameters of the particle update loop so

as to establish an interface for integration with a variety of external host OGCMs, and leaves enough scope for more10

advanced performance optimisations in the future.

– Data layout – The two fundamental types of data involved in Lagrangian particle tracking algorithms constitute field data

provided by the external OGCM, as well as data on the particle state. Since the data layout for particle data might change

with future performance optimisations, and the memory layout of field data depends on the OGCM implementation,

Parcels provides high-level abstractions for both types of data, allowing the actual data layout in memory to change.15

The abstractions shown in Fig. 1 comprise the core functionalities provided by the framework. The primary input in the user

layer consists of generic definitions of the particle variables for individual types of particles, alongside an interface to define

the computation kernels. Parcels’ core execution loop uses this information to update particle data given external parameters,

such as timestepping constraints, and interpolated hydrodynamic field data. Thus, given a stable user-level API and a highly

modular code structure, it is possible to implement various applications and experiments without commiting to a particular20

implementation, while leaving enough scope for further development and future performance optimisation ‘under the hood’.

2.1 Programmable user interface

The prototype presented in this paper provides a highly flexible user API that allows users to define complete models via the

Python programming language. The user hereby manages creation, execution and customisation of individual sets of particles,

as well as combinations of computational kernels to update the particle state. In contrast to traditional configuration files, this25

approach provides the user with native compatability with the open-source libraries and tools available in the scientific Python

ecosystem.

The key components of Parcels’ overall class structure are depicted in Fig. 2. The definition of the variables that constitute

a single particle is hereby encapsulated in the Particle class, while container objects of type ParticleSet provide the

runtime handling and management of particle data. Python descriptor objects are used to generically define the compound data30

type underlying each type of particle, leaving allocation and memory layout choices to the particular implementation of the

data container structure.

4

The computational behaviour of particles is encapsulated through the Kernel. Parcels provides a set of pre-defined advec-

tion methods, as well as allowing users to define custom behaviour programmatically. Multiple kernels can be concatenated,

allowing users to incrementally build complex behaviour from individual components.

2.1.1 Advection algorithm

At its core, computing Lagrangian particle trajectories is equivalent to solving the following equation:5

X(t+�t) =X(t)+

t+�tZ

t

v(x,⌧)d⌧ +�Xb(t), (1)

where X is the three-dimensional position of a particle, v(x, t) is the three-dimensional velocity field at that location from an

OGCM, and�Xb(t) is a change in position due to ‘behaviour’. The latter can itself be an integration of a (three-dimensional)

velocity field, for example when a particle sinks downward because of a negative buoyancy force.

In Parcels, the trajectory equation (1) is by default time-stepped using a 4

th
order Runge-Kutta scheme, although schemes for10

Euler-Forward and adaptive Runge-Kutta-Fehlberg integration (RKF45, e.g. Alexander, 1990) are also provided. In principle,

the Parcels framework should be flexible enough to also implement integration using the discrete analytical streamtube method

(Blanke and Raynaud, 1997; Döös et al., 2017).

2.1.2 Custom kernels

Lagrangian particle tracking in the ocean often involves more complex displacement schemes than simple velocity-driven ad-15

vection. For example, in the presence of turbulence, a Random Walk kernel or Brownian motion is required, while ocean ecol-

ogy models often include active locomotion. Parcels therefore allows users to create generic kernel functions by providing na-

tive Python functions that adhere to the function signature KernelName(particle, fieldset, time, dt). Within

these kernel functions, users can access built-in particle state variables, such as particle.lat and particle.lon, or

user-defined ones. Access to field data from within kernels is provided through the fieldset object, which provides fields as20

named properties, for example fieldset.U for the zonal velocity. Interpolation of field data is implemented via overloaded

member access on the field object (square bracket notation), allowing user to express field sampling as fieldset.fieldname[time,

lon, lat, depth].

In addition to kernels that update the internal state of particles, Parcels’ execution engine also enables users to customize

the behaviour of particles under various error conditions. For this, a similar type of kernel function can be created and passed25

to the execution call, mapped to a particular error type that might be triggered during the main particle update, for example

OutOfBoundsError.

5

2.2 Execution and JIT compilation

The update of the internal state of particles is facilitated by a dynamic loop, which applies a user-defined combination of kernels

to each particle in a ParticleSet. The primary particle update loop can either be run with a forward timestepping, or in a

time-backward mode to enable inverse modelling. For this central update loop, Parcels provides two modes of execution:

– Scipy mode: A pure Python mode that utilises interpolator objects provided by the Scientific Python package5

(SciPy) to perform interpolation of field data. This mode is primarily intended as a debug option due to the performance

penalty of running kernels in the Python interpreter itself.

– JIT mode: Runtime code generation and Just-In-Time compilation (JIT) are utilised to generate low-level C code that

performs the particle state update

:::
and

::::
field

::::
data

:::::::::::
interpolation. The code generation engine hereby primarily translates a

restricted subset of the Python language into equivalent C code, while inlining pre-defined macros for interpolation of10

field data. A

:
a

:
set of utility modules provides auxiliary functionality such as random number generation or mathematical

utilities (math.h).

The execution mode of the particle update loop is determined by the type of the particle (ScipyParticle or JITParticle)

used to create the ParticleSet. Development of new features in the current Parcels prototype is strongly driven by the fact

that both modes are intended to be semantically equivalent. This means that new features can rapidly be developed using the15

full flexibility of the Python interpreter, providing a template implementation and test case for implementation in the computa-

tionally more efficient JIT mode.

::::::
Parcels’

::::::::
dynamic

::::::
update

::::
loop

::::
also

::::::::
provides

::
an

::::::::::
interval

:::::::
keyword

::
to

:::::::
impose

:
a

:::::::::
secondary

::::::::::::::
sub-timestepping

::::
that

::::::
allows

::
for

:::::
direct

::::::::
coupling

::::
with

::
a

::::
host

::::::
OGCM

::
in

:::
the

::::::
future.

::::
The

:::::::
dynamic

:::::::::::
composition

::
of

:::::::
multiple

:::::::::::
timestepping

::::::::
intervals

:::::
might

::::
also

::
be

::::
used

:::
for

:::::
future

::::
data

::::
and

::::::::::
performance

:::::::::::
optimisation

::::::::
strategies,

:::
for

::::::::
example

:::::::
directed

:::::::::
prefetching

:::
of

:::::::
regional

::::
field

::::
data.

:::::
Such20

::::::::
strategies,

::
as

:::::
well

::
as

:
a

::::::::::
potentially

:::::
more

:::::::
intricate

::::::::
execution

:::::::
engine,

::::
have

::
to

:::
be

::::::::
explored

:::::::
carefully

:::
to

::::::::::
successfully

::::::
tackle

:::
the

:::::::
big-data

::::::::
challenges

::::::
facing

::::::::::
Lagrangian

:::::::
tracking

:::::
codes

::
in

:::
the

::::::::
petascale

:::
age.

:

2.3
:::::::::::

Interpolation

:::
The

:::::::::
interaction

:::
of

:::::::
particles

::::
with

::::
their

:::::::::
enclosing

:::::
fields

:
is

::::::::
currently

:::::::
limited

::
to

:::::::::::
interpolating

::::
field

::::
data

::::
onto

:::
the

::::::
current

:::::::
particle

:::::::
position.

::
In

:::
the

::::::
SciPy

:::::
debug

:::::
mode

::::
this

:
is

:::::::::
facilitated

:::
by scipy.interpolate.RegularGridInterpolator

::::::
objects25

:::
and

:::::::
supports

:::::
linear

:::
and

:::::::::::::::
nearest-neighbour

::::::::::::
interpolation.

:::::::::
Equivalent

:::::::
low-level

::
C

:::::::
routines

:::
are

::::
also

:::::::
included

::
in

:::
the

::::::
Parcels

::::::
source

::::
code

::
as

::::::
macros

:::
that

::::
can

::
be

::::::
inlined

:::
into

:::
the

:::::::::
generated

:
C

::::::
kernel

::::
code

::
by

:::
the

::::
code

:::::::::
generation

::::::
engine.

:::::
More

::::::::
advanced

:::::::::::
interpolation

:::::::
methods,

::::
such

:::
as

::::::::
quadratic,

:::::
cubic

::
or

:::::
spline

:::::::::::
interpolation,

::::
may

:::::
easily

:::
be

:::::
added

::
in

:::::
future

:::::::
releases

::
if

:
a

::::
fast

:
C

:::::::::::::
implementation

::::
can

::
be

:::::::
provided

:::::
with

::::::
Parcels’

:::::::
internal

::::::
header

::::
files.

:

:::
One

:::
of

:::
key

:::::::::::
performance

::::::::::
advantages

::
of

:::::
using

:::::::
runtime

:::::
code

:::::::::
generation

::
is

:::
the

::::::
ability

::
to

::::::
inline

:::::::
bespoke

::::
grid

:::::::::::
interpolation30

:::::::
methods

::::
with

:::
the

::::::::::
user-defined

:::::::
kernels

::
in

::::::
Parcels

::
to

:::::
avoid

:::
the

::::::
Python

:::::::::
interpreter

::::::::
overhead

::
of

:::::::::
repeatedly

::::::
calling

:::::
native

:::::::
Python

::::::::::
interpolation

:::::::::
functions.

::::
This

:::::::
overhead

:::
can

:::
be

::::
quite

:::::::::
significant

:::
due

::
to

:::
the

::::
high

::::::::
frequency

::
at

::::::
which

::
the

:::::::::
associated

::::
field

::::
data

:::::
needs

6

::
to

::
be

::::::::
sampled.

::::
This

:::
can

::
be

:::::::::
illustrated

::::
using

:::
the

:::::::::::
“Steady-state

::::
flow

::::::
around

::
a

:::::::::
peninsula”

:::
test

::::
case

::::::::
discussed

::
in

::::
Sect.

:::::
4.2.4,

::::::
where

:::
100

:::::::
particles

:::
are

::::::::
advected

:::
for

:::
20

:::::
hours

::::
with

::
a

:::::::
timestep

::::
size

::
of

:::
30

:::::::
seconds.

::::::
While

:::
the

:::::::::
sequential

::::::::
execution

::::
time

::
of

::::
the

::::
pure

::::::
Python

:::::::::::::
implementation

::::
runs

::
in

::::::
305.92

:::::::
seconds,

:::
the

::::::::::::
auto-generated

:::
JIT

:::::::
kernels

:::
can

:::
run

:::
the

:::::
same

:::::::::
experiment

::
in

::::
1.74

:::::::
seconds,

::
a

:::::::
speedup

::
of

::::
over

:::::
150⇥.

:

2.4 External field data5

Parcels v0.9 supports external field data from NetCDF files, with a configurable interface to describe the input data and variable

structure. The data is encapsulated in individual Field objects, which are accessible from within particle kernels via provided

interpolation routines. Individual fields are stored in a FieldSet container class, which may also provide global meta-data

to the kernel execution engine at runtime.

Currently, only linear interpolation schemes are implemented in Parcels, both in space and in time. In space, Parcels can10

currently only work on regular grids (i.e. where the grid dimensions are functions of only longitude, only latitude or only

depth). However, support for unstructured grids is a priority for the next release of the code, Parcels v1.0.

3 A worked-out example: tracking virtual foraminifera in the Agulhas region

To highlight some of the prototype design and philosophies of the Parcels API, we here present a worked-out example code of

a previously-published scientific experiment. This example follows the experimental design of Van Sebille et al. (2015), where15

the goal was to investigate the temperatures that planktic foraminifera experience during their lifespan as they drift with the

currents in the upper ocean. In particular, that study looked at the variability of lifespan-averaged temperatures of foraminifera

that all end up on one single location on the ocean floor (e.g. Peeters et al., 2004; Katz et al., 2010).

Figure 1b of Van Sebille et al. (2015) depicted the origin of virtual planktic foraminifera that end up on a site just off the

coast of Cape Town (17.3

�
E, 34.7

�
S), at 2,440 meter water depth. The virtual particles were released at that site and then20

tracked in time-backward mode. There were two phases to the experiment: in the sinking phase, the foraminifera were tracked

back as they sunk at 200 meter per day to the ocean floor, while being advected by the (deep) ocean circulation. In the lifespan

phase, the particles were then tracked further backward in time as they were advected by the horizontal circulation at their 50m

dwelling depth. During this last phase, temperature along their trajectory was recorded at daily interval.

While the original experiment was computed with the Connectivity Modelling System (Paris et al., 2013), here we have25

re-coded it using the Parcels API. This experiment setup is a fitting one, as it combines a number of the API highlights of

Parcels: custom kernels, NetCDF I/O, and field sampling. The full Python code for this experiment in Parcels is available at

https://doi.org/10.5281/zenodo.823994. Below, we emphasise some of the key statements in the Python script.

3.1 Reading the FieldSet

The hydrodynamic fields that carry the foraminifera come from the OFES model (Masumoto et al., 2004) and can be ac-30

cessed from http://apdrc.soest.hawaii.edu/datadoc/ofes/ncep_0.1_global_3day.php. Three-dimensional velocities and temper-

7

https://doi.org/10.5281/zenodo.823994

ature are available on 1/10

�
horizontal resolution, on 54 vertical levels, and are stored as three-day averages. The bash script

get_ofesdata_agulhas.sh provided at https://doi.org/10.5281/zenodo.823994 can be

:::
was

:
used to download one year

(the year 2006, snapshot numbers 3165 to 3289) worth of this data ,

::::::::
covering

:::
the

::::
year

:::::
2006, in a subdomain around the core

site off Cape Town (note, the total file size is 6GB).

After the

:::::
While

:::
the

::::
6GB

:::
file

::::
size

::
for

::::
this

:::::::
example

::
is

:::
not

::::::::::
excessively

::::
large

:::
and

:::::
could

:::
in

:::::::
principle

:::
be

:::::
loaded

::::
into

:::::::
memory

:::
all5

:
at

:::::
once,

::::
this

:::
will

:::
not

:::
be

:::::::
possible

:::
for FieldSets

::::
with

:::::
larger

:::::::
regional

::::::::
domains

::
or

:::::
longer

::::
time

::::::
series.

::::::
Hence,

::::::
Parcels

::::::::
provides

:
a

::::::
system

:::
to

::::
read

::
in

::::::::::::
hydrodynamic

::::::
fields

::::::
during

::::::
particle

::::::::::
integration,

::
at

::::
any

::::
time

:::::::
storing

::::
only

:::::
three

::::::::::
consecutive

:::::::::
timeslices

::::::::::::::::::
(e.g. Paris et al., 2013)

:
.

:::
See

::::
also

::::::
Section

::::
3.4.

::::
After

:::
the

::::
first

:::::
three

::::
days

:::
of hydrodynamic fields are read in through a call to the

::::::::::
user-defined set_ofes_fieldset

function ,

:::
(see

:::
the

:
example_corefootprintparticles.py

::::
script

:::
for

:::
the

:::::
exact

::::::::::
formulation

:::
of

:::
this

::::::::
function,

::::::
which10

::::::
requires

:::
as

::::
input

:
a

:::
set

::::
with

:::::::::
filenames,

:::::::
provided

::
as

::
a

:::
list

::
of

:::::::
arbitrary

:::::::
length), three global constants are added to the FieldSet

fieldset.add_constant(’dwellingdepth ’, 50.)

fieldset.add_constant(’sinkspeed ’, 200./86400)

fieldset.add_constant(’maxage ’, 30.*86400)

These constants will be used later in the custom kernels controlling the movement of the particles.

3.2 Defining the ParticleSet

Apart from information on their location and time, the virtual foraminifera particles will need two extra Variables: the sea15

water temperature at their present location, and their age. Therefore, we define a new particle class, which inherits from the

standard JITParticle:

class ForamParticle(JITParticle):

temp = Variable(’temp’, dtype=np.float32 , initial=np.nan)

age = Variable(’age’, dtype=np.float32 , initial =0.)

And we then define a ParticleSet containing a single particle as

pset = ParticleSet(fieldset=fieldset , pclass=ForamParticle , lon =[17.3] , lat =[-34.7],

depth =[2440] , time=fieldset.U.time [-1])20

3.3 Defining the custom kernels

We need to define four custom kernels: one that causes the particle to sink after it dies, one that keeps track of its age and deletes

it once it reaches its maximum age, one that samples the temperature at its location, and one that deletes the particle when it

reaches a boundary of the domain (since we only have hydrodynamic data in a subset of the global OFES domain). Note that

while in principle the first three could be written in one Kernel, here we write three separate kernels and then concatenate these25

with the built-in AdvectionRK4_3D kernel.

The first kernel, controlling the sinking of the particle after it died (i.e. the first twelve days in our reverse-time experiment),

can be written as

8

https://doi.org/10.5281/zenodo.823994

def Sink(particle , fieldset , time , dt):

if particle.depth > fieldset.dwellingdepth:

particle.depth = particle.depth + fieldset.sinkspeed * dt

else:

particle.depth = fieldset.dwellingdepth

The second kernel, which keeps track of the age and deletes the particle when it reaches maxage, can be written as

def Age(particle , fieldset , time , dt):

if particle.depth <= fieldset.dwellingdepth:

particle.age = particle.age + math.fabs(dt)

if particle.age > fieldset.maxage:

particle.delete ()

The third kernel, which samples the temperature, can be written as

def SampleTemp(particle , fieldset , time , dt):

particle.temp = fieldset.temp[time , particle.lon , particle.lat , particle.depth]5

These three kernels are then concatenated with the AdvectionRK4_3D kernel as

kernels = pset.Kernel(AdvectionRK4_3D) + Sink + SampleTemp + Age

Where at least one of the kernels needs to be cast into a Kernel object for the overloading of the + operator as a kernel

concatenator to work.

Finally, the kernel that deletes a particle if it reaches one of the lateral boundaries and which will be invoked through the10

error recovery execution is

def DeleteParticle(particle , fieldset , time , dt):

particle.delete ()

3.4 Executing the particle set

The full three-dimensional hydrodynamic data for the Agulhas region for one year is 6.0 Gigabytes, too much to all read into

memory at once. ThereforeParticleSet
:::
can

::::
now

::
be

:::::::::
integrated

::::
with

:
a

::::
call

::
to

:
pset.execute()

:
.

::::
This

:::::::
method

:::::::
requires15

::
as

::::
input

:::
the

:::
list

:::
of

::::::
kernels,

:::
the

::::::::
starttime

::
of

:::
the

::::::::
execution

:::::
loop,

:::
the

:::::::
runtime

::
of

:::
the

::::::::
execution

:::::
loop,

:::
the

::::::
Runge

:::::
Kutta

:::::::::
integration

:::::::
timestep

::::
(here

:::::
taken

::
to

:::
be

:
5

::::::::
minutes),

:::
the

:::::::
interval

::
at

:::::
which

::::::
output

::
is

::::::
written

:::::
(here

::::
once

:::
per

:::::
day),

:::
and

:::
the

::::::::
recovery

:::::
kernel

::::
that

:::
gets

:::::
called

:::::
when

::
a

::::::
Particle

:::::::
crosses

:::
the

::::::::
boundary

::
of

:::
the

:::::::
regional

:::::::
domain.

::
As

:::::::::
mentioned

::
in

:::::::
section

:::
3.1, only three timeslices are held in memory at any one time, and the

:
.

:::
The

:
loading of new fields

is controlled by the fieldset.advancetime() method,

::::::
which

:::::::
replaces

:::
the

:::::
oldest

::::::::
timeslice

::::
with

:
a

::::
new

::::
one

::::
(held

::
in

::::
this20

:::
case

::
in

:
[snapshots[s]]). This also means that the executing of the ParticleSet has to be done within a loop:

for s in range(len(snapshots)-5, -1, -1):

pset.execute(kernels , starttime=pset [0].time , runtime=delta(days=3),

dt=delta(minutes =-5), interval=delta(days=-1),

recovery ={ ErrorCode.ErrorOutOfBounds: DeleteParticle })

fieldset.advancetime(set_ofes_fieldset ([snapshots[s]]))

There is another reason to run

:::
call

:
the pset.execute

::::::
method within a loop: it allows for a new particle to be released

every three days (the frequency with which hydrodynamic data is available). This happens within the for-loop through a call to

pset.add(ForamParticle(lon =[17.3] , lat =[-34.7], depth =[2440] , fieldset=fieldset))25

9

3.5 Saving and plotting the output

:::
The

:::::::
Parcels

:::::::::
framework

::::::
allows

:::
for

::::::
storing

:::
of

:::
the

::::::::
locations

::
of

:::
the

:::::::
particle

::
to

::::
disk

:::::::::
on-the-fly

::
in

::::::::
NetCDF

::::
files,

:::::::::
following

:::
the

:::::::
Discrete

::::::::
Sampling

:::::::::
Geometries

::::::
section

::
of

:
http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html\#discrete-sampling-geometries,

:::
and

::
is

:::::
hence

:::::::::::::::
CF-1.6-compliant.

:
Storing of the particle trajectories and properties such as age and along-track temperature hap-

pens in the for-loop through calls to5
pfile.write(pset , pset [0]. time)

Since particles are continually added to and deleted from the ParticleSet, the ParticleFile needs to be stored in ‘in-

dexed’ format, where for each variable all particle states are written in one long vector.

pfile = ParticleFile(outfile , pset , type="indexed")

These long vectors in Indexed format, however, are not very easy to work with, so Parcels provides the utility script10

convert_IndexedOutputToArray to convert an Indexed NetCDF file to array format.

The particle trajectories can then be plotted using the matplotlib and Basemap libraries, see Fig. 3. This figure shows

the temperature recorded on each day during the lifespan of all virtual particles. It highlights that foraminifera that end up on

the ocean floor off Cape Town travel hundreds to thousands of kilometers during their lifespan, and that while some originate

from the Agulhas Current as far north as 27

�
S, others originate from the much colder Southern Ocean south of 40

�
S.15

4 Model evaluation

Evaluation of a code-base’s accuracy and performance is a key component of its validation and roll-out. For this Parcels v0.9,

performance and speed are not a priority; these will be the focus for the v1.0 release (see also Sect. 5). Instead, while developing

Parcels v0.9 we have concentrated on accuracy.

4.1 Unit tests and continuous integration20

Following best practices in software engineering, we have incorporated Unit Testing and Continuous Integration into the

development cycle of Parcels. Every push of code changes to github automatically triggers a validation of the entire code base

(an important component of the Continuous Integration paradigm), through the travis-ci.org web service.

The validation of the code base is done through so-called unit tests; small snippets of code that test individual components of

the codebase. Parcels v0.9 has over 150 of these unit tests, which check the integrity and consistency of the codebase. Where25

relevant, these unit tests are run in both Scipy and JIT mode, to test both modes of executing the kernels.

The following Python snippet shows a typical example of a unit test for Parcels (as included in the test_particle_sets.py

file). It performs the test that Particles in a ParticleSet indeed get their assigned longitudes and latitudes. While this

may seem a trivial test, these kinds of unit tests can help prevent bugs.

10

travis-ci.org

@pytest.mark.parametrize(’mode’, [’scipy ’, ’jit’])

def test_pset_create_lon_lat(fieldset , mode , npart =100):

lon = np.linspace(0, 1, npart , dtype=np.float32)

lat = np.linspace(1, 0, npart , dtype=np.float32)

pset = ParticleSet(fieldset , lon=lon , lat=lat , pclass=ptype[mode])

assert np.allclose ([p.lon for p in pset], lon , rtol=1e-12)

assert np.allclose ([p.lat for p in pset], lat , rtol=1e-12)

Ideally, the full set of unit tests means that no change of the code can ever break another part of the code, since some of the

unit tests would then fail. Of course, in reality the completeness of the unit tests can never be guaranteed, but during Parcels

development we have attempted to provide unit tests for a broad spectrum of the Parcels functionality and code.

4.2 Idealised and analytic test cases5

Following the list of standard tests of particle tools, as described in Sec. 6 of Van Sebille et al. (submitted), we have validated

the accuracy of Parcels v0.9 against seven idealised and analytical test cases. In this section we will describe the results in

detail. All test cases are run with Runge-Kutta4 integration and in JIT mode.

:
In

::::
each

:::::
case,

:::
the

::::::::::::
hydrodynamic

:::::::::
velocities

:::
are

::::::::
generated

:::::
within

::::
the

::::::
Python

::::::
scripts

:::
and

:::::::::
converted

::::::
directly

::
to

::
a

:
FieldSet

:::
(i.e.

:::::::
without

:::
first

::::::
storing

:::::
these

:::::
fields

::
in

::::::::
NetCDF

::::::
format).The Python code for all testcases is available at https://doi.org/10.5281/zenodo.823994.10

4.2.1 Radial rotation with known period

The first test case is that of a simple counter-clockwise solid-body rotation with a period of 24 hours.

::::::::
Velocities

:::
are

:::::::
defined

::
on

::
a

::::::::
(20⇥ 20)

:::
km

::::::::
Arakawa

::::::
A-grid

::::::::
centered

::
at

:::
the

::::::
origin

::::
with

:
a

::::
100

::
m

:::::::::
horizontal

:::::::::
resolution.

::::::::::
Solid-body

:::::
radial

:::::::::
velocities

:::::::::::::::::::::::::::
(u,v) = (�!r sin(�),!r cos(�)),

::::
with

:
r

::::
and

:
�

:::
the

:::::
radius

:::
and

:::::
angle

::::
from

:::
the

:::::
origin

::::
and

:::::::::::::
! = 2⇡/86,400

:
s

:::
the

::::::
angular

:::::::::
frequency,

::
are

::::
then

:::::::::
computed

::
on

::::
that

::::
grid.15

Four particles are started at x= 0 km and y = (1000,2000,3000,4000) km and then advected for 24 hours, using an RK4

timestep of 5 minutes, and with particle positions stored every hour (Fig. 4a). All four particles indeed follow the flow for the

full circle. The maximum distance error after this 24 hours advection is less than 3mm, on path lengths of more than 5km.

4.2.2 Longitudinal shear flow

The second test case tests the ability of the Parcels code to convert between spherical longitude/latitude space and local flat20

Euclidian space. When defining a FieldSet on a spherical mesh, Parcels automatically performs this conversion under the

hood. To test its accuracy, an idealised flow on a sphere was

:
at

::
1

�
:::::::::
horizontal

::::::::
resolution

::
is

:
created, with a uniform zonal velocity

of 1 m/s and no meridional velocity. A total of 31 particles were

::
are

:
then released on a north-south line, with a meridional

spacing of 3

�
. These particles were

::
are

:
advected for 57 days, using an RK4 timestep of 5 minutes and output saved every day

(Fig. 4b). The main panel shows trajectories in planar projection, with the inset showing the same trajectories in orthographic25

projection.

11

https://doi.org/10.5281/zenodo.823994

At a speed of 1 m/s, the particles travel 4.9·106 m in the 57 days. At the equator, this amounts to almost 45

�
of longitude, but

because of the cosine-dependence of zonal distance with latitude, particles closer to the poles travel farther in degrees (main

panel in Fig. 4b). The inset of Fig. 4b, nevertheless, shows that in an orthographic projection, all particles travel the same

distance.

4.2.3 Advection due to a time-oscillating zonal flow5

The third test case tests the ability of Parcels to cope with simple time-varying flow. The flow in this case is a uniform meridional

flow of v =A= 0.1 m/s, and an oscillating zonal flow with u(t) =Acos(!t) where ! = 2⇡/T and the period is T = 1 day.

:::
The

::::
time

:::::::::
resolution

::
of

:::
the FieldSet

:
is

::
5

:::::::
minutes,

::::
and

::::
since

:::
the

::::
flow

::
is

:::::::
constant

::
in

:::::
space

::::
there

:::
are

::::
only

::::
two

:::
grid

:::::
cells

::
in

::::
each

::
of

:::
the

::::::::
horizontal

:::::::::
directions.

:
A total of 20 particles are then released on a zonal line at y = 0 km and advected for 4 days, using

an RK4 timestep of 5 minutes and storing output every 3 hours (Fig. 4c).10

The analytical flow for the paths of these particles is y(t) =At and x(t) = x0 +A/! sin(!t) where ! = 2⇡/T and x0 is

the zonal start location of the particle. Indeed, all particles follow these analytical pathways very closely (Fig. 4c), with largest

positional errors after 4 days being 6 cm in the zonal direction and 4 mm in the meridional direction.

4.2.4 Steady-state flow around a peninsula

The test case of stead-state

:::::::::
steady-state

:
flow around a peninsula follows a description by Ådlandsvik et al. (2009) and was also15

used as a validation test case in the article describing the Connectivity Modeling System (Paris et al., 2013). Starting from the

analytical expression for a streamfunction of a steady-state flow around a peninsula, analytical expressions of the zonal and

meridional component of velocity are solved on a (100x50) Arakawa A grid

:::::::::
(1

� ⇥ 0.5

�
)

::::::::
Arakawa

::::::
A-grid

::
at

::::::
1/100

�
:::::::::
horizontal

::::::::
resolution. A set of 20 particles is seeded just off the western edge of the domain, and then advected with the flow for 24

hours using an RK4 timestep of 5 minutes and particle positions stored every hour (Fig. 4d, where the brown semi-circle is the20

peninsula).

Since the particles should follow streamlines, a comparison of the interpolated streamfunction value at t= 24 hours to that

at t= 0 hours gives an estimate of the error. The largest error is 0.008 m

2
/s, which corresponds to a positional error of 10

�5

degrees, or 1 meter. Indeed, Fig. 4d shows that the particle trajectories closely follow the dashed streamlines.

4.2.5 Steady-state flow in a Stommel gyre and western boundary current25

The test case of the Stommel gyre follows a description in Fabbroni (2009), and provides an analytical solution to the

streamfunction field of a Stommel gyre and western boundary current. Here, we compute the meridional and zonal central

derivatives of this streamfunction field to generate zonal and meridional velocities, respectively, on a (200x200) Arakawa A

grid

::::::::::::::::
(10,000⇥ 10,000)

:::
km

:::::::
Arakawa

::::::
A-grid

::
at

:::
50

:::
km

::::::::
horizontal

:::::::::
resolution. A set of four particles is seeded on a line crossing

the western boundary, at y = 5,000 km, and then advected for 50 days with an RK4 timestep of 5 minutes and the particle30

positions stored every 24 hours (Fig. 4e).

12

Since the particles should follow streamlines, the deviation of particles from the streamlines is a measure of the accuracy

of the method. Fig. 4e shows that all three particles stay close to their streamline throughout the 50 day advection period. The

largest error is 0.05 m

2
/s, which corresponds to a positional error of less than 5 km.

4.2.6 Damped inertial oscillation on a geostrophic flow

The test case of a damped inertial oscillation on a geostrophic flow follows Fabbroni (2009) and Döös et al. (2013). In this5

test case, the velocity varies over the entire domain, following an analytical time-dependent equation. Here, we use a time

resolution of 5 minutes for the velocity field. A particle is then seeded at the origin and advected for four days, with a RK4

timestep of 5 minutes and output stored every hour (Fig. 4f). After four days of advection, the positional error of the particle,

as compared to the analytical solution, is less than 5 cm.

4.2.7 Brownian motion with uniform Kh10

The test case of Brownian motion with uniform Kh tests for the accuracy and implementation of the random number generator.

Here, a total of 100,000 particles are seeded at the origin

::
of

:
a

::::::::
(60⇥ 60)

:::
km

::::
grid

:::::::
centered

::::::
around

:::
the

:::::
origin

::::
with

::::
zero

::::::::
velocities,

and then diffused using a normal variate random number distribution with Kh = 100 m

2
/s. The particles are diffused for 1 day

with a timestep of 5 minutes (Fig. 4g). The two-dimensional normalised histogram agrees very well with the analytical solution

of this Brownian motion: a two-dimensional Gaussian with a mean at the origin and standard deviation of � =

p
2Kh�t= 4.1615

km.

5 Future outlook

As mentioned before, Parcels v0.9 is a prototype. The core contributions of this paper are both the API, as well as the design

philosophy which enables a wide range of valuable future improvements of the framework. Below, we discuss some of the

conceptual ideas for these planned improvements.20

5.1 Performance optimisation

The primary performance optimisation in version 0.9 of Parcels is the automated generation of C kernel code to allow inlining

of field evaluation routines. However, several future optimisations have been planned during the design of the code, based

around considerations for irregular data processing. Since dynamic addition and deletion of particles is a common feature

of many oceanographic use cases, no assumptions about data layout or iteration protocol have been made in the high-level25

API of particle sets, allowing more optimised implementations in the future. The use of dynamic code generation at runtime

also enables further automated specialisation of kernel code, while allowing us to define a clear initial interface for kernel

customisation.

In addition to optimising the execution of particle kernels, the extensive interaction with hydrodynamic field data constitutes

a considerable cost of the overall computation . For standalone models using file-based (offline) field data, explicit scheduling30

13

of the data transfer from file via spatial

:
-

::
a

::::
cost

:::
that

::
is

::::::
likely

::
to

::::::::
dominate

::::::
overall

:::::::::
execution

::
if

::::
large

::::
sets

::
of

:::::::::::::
hydrodynamic

::::
field

:::
data

:::
are

:::
to

::
be

::::
read

:::::
from

::::
files.

:::::::
Multiple

::::::::
potential

::::::::::
approaches

:::
can

::
be

::::::::::
considered

::
in

:::::
future

:::::::
versions

::
of

::::::::::
Lagrangian

:::::::
particle

:::::::
tracking

:::::
codes:

:

–
:::::::
Directly

:::::::
coupled

:::::::
(online)

::::
runs

::::::
within

:::
the

::::
host

:::::::
OGCM

:::
can

::::::::::
completely

:::::
avoid

:::
the

::::::::::
bandwidth

:::::::::
bottlenecks

::::::::
imposed

:::
by

::::::
reading

:::::
dense

::::
field

::::
data

::::
from

:::::
disk,

::
at

:::
the

:::::::
expense

::
of

::::::::
additional

:::::::::::
computation.

::::
For

:::::::::
simulations

::
at

:::::
local

:::::
scales

::::
with

::
a

::::
high5

::::::
particle

:::::::
density,

:::
this

:::::::
trade-off

::::::
might

:::::
prove

::::::::
beneficial,

:::
for

:::::::
example

:::
for

:::::::
regional

::::::
studies

:::
on

::::::
marine

:::::::
ecology.

:

–
:::
For

::::::::::
global-scale

::::::
models

:::
that

::::::
require

::::::
offline

::::::::::::
hydrodynamic

::::
field

:::
data

:::
but

::::::
feature

::
a

:::
low

::::::
particle

::::::
density

::::
with

::::
high

:::::::::::
localization,

::
the

:::::
total

::::::
volume

::
of

::::
data

::::
read

::::
from

::::
disk

::::::
might

::
be

:::::::::
drastically

:::::::
reduced

::
by

::::::::
explicitly

::::::::::
prefetching

::::
local

:::::::
subsets

::
of

::::
field

::::
data

:::::
based

::
on

:::::::
particle

::::::::
locations.

:::::
Such

::
a

::::::::::
mechanism

:::::
would

:::::::
require

:::
the

:::
use

::
of

:::::::::
additional

:::::::::
geospatial

:
indexing methods, for

example based on recursive octrees (Isaac et al., 2015), can yield significant performance improvements. Such spatial10

indexing measures will ultimately also be impacted by the unpredictable nature of particle movement in high-fidelity

ecosystem models, making close integration of such scheduling techniqueswith the particle loops a promising optimisation

for future versions of the framework

:::
via

::::::
octrees

::
or

::::::
r-trees

:::::::::::::::::::::::::::::::::
(Isaac et al., 2015; Schubert et al., 2013)

:
,

:::
that

::::::::::
decompose

:::
the

:::
grid

::::
into

:::::::::
individual

::::::::::
sub-regions

:::
and

:::::::
provide

::::
fast

:::::::
indexing

::::::::
methods.

::::::
Using

::::::
explicit

:::::::
prefetch

:::::::::
directives

::
in

:::
the

::::::::
dynamic

::::::::
execution

::::
loop

:::::
might

::::
also

::::::
enable

::::::::::
overlapping

::
of

:::::::::::
asynchronous

:::
file

:::::
reads

::::
with

::::::::
effective

::::::::::
computation

::
to

::::::
further

::::::::
amortize15

:::
file

:::
I/O

:::::::::
overheads.

:::
The

::::::::::
modularity

::
of

:::::::
Parcels’

:::::::
internal

:::::::::::
abstractions,

::
as

::::
well

:::
as

:::
the

::::::::::::
composability

::
of

:::::::
kernels

::::
and

:::
the

::::::::
flexibility

::::::::
provided

:::
by

::
the

::::::::
dynamic

:::::::::
execution

::::
loop

::::::
should

::::::::
facilitate

::::::::
extensive

::::::::::::::
experimentation

::::
and

::::::::::
exploration

::::
with

::::
such

:::::::::
advanced

:::::::::::
optimization

:::::::::
techniques,

:::::::
without

:::
the

::::
need

:::
for

:::::
users

::
to

:::::::
change

:::
any

:::::::::
high-level

::::::::::
algorithmic

:::::::::
definitions.

::::
The

::::
use

::
of

::::::::
advanced

::::
data

::::::::
handling

:::
and

:::::::::::::
task-scheduling

::::::::
libraries,

::::
such

::
as

:::::
Dask

::::::::::::::
(Rocklin, 2015)

::
or

::::::
Xarray

:::::::::::::::::::::::
(Hoyer and Hamman, 2017),

::::::
might

::::
also

::
be

:::::::
utilised

::
to20

::::::
quickly

::::::::
achieve

:::::::
efficient

:::::::::
out-of-core

::::
data

:::::::::::
management

::
in

::::::
Parcels.

5.1.1 Towards parallellisation

The current version of Parcels is not in itself parallel due to two restrictions:

– The primary input format of field data in the v0.9 prototype is NetCDF-based field data, so that parallellisation requires an

explicit domain decomposition and a parallel file reader. The current version of the netcdf

::::::::
netcdf Python package does25

not provide these features.

:::::::::
Alternative

::::::::::::::
implementations

::
of

:::
the

:::::::
NetCDF

:::
file

:::::::
format,

::::
such

::
as

:::::::
Xarray,

:::::
might

::
be

:::::::::
leveraged

::
in

:::::
future

:::::::
versions

::
of

::::::
Parcels

::
to

:::::::
provide

:::::::
parallel

:::
data

::::::::::::
management.

– Exchanging particle information between parallel processors is currently not supported, although it is deemed a critical

feature for the next release (v1.0).

14

5.2 Community building and kernel sharing

One of the key ideas between the development of Parcels is for it to be a flexible and extendable codebase, where particle

behaviour can easily be customised. The worked out example in Sect. 3 shows that many types of behaviour (sinking, aging,

etc) can be coded in a few lines of Python code.

The customisability of Parcels enables a multitude of oceanographic modelling, from water parcels to plankton to plastic5

litter to fish. We therefore envision an active community of Parcels users who share and discuss kernel development. We

encourage anyone who wishes to share their custom kernels to upload them onto github, and we will provide a properly

referenced library of user-contributed kernels for others to reuse on oceanparcels.org.

5.3 Towards runtime integration with OGCMs

Although the current version of Parcels primarily uses off-line field data, the overall design of the particle exectuion engine10

is designed to be compatible with a variety of OGCMs for directly coupled (at-runtime) simulations. In particular, the current

Field interface can easily be extended to provide interpolation routines for various types of field data, for example based on

unstrctured meshes, while the primary particle update loop provides a mechanism for host models to dictate a model timestep

size that varies from that of the particle update. Moreover, the explicit generation of C code allows Parcels kernel code to

be easily injected into existing ocean modelling frameworks, while the provision of error-recovery kernels can guarantee15

progression of the coupled model.

6 Conclusions

Here, we have introduced a new framework for Lagrangian ocean analysis that focusses on customisability, flexibility and

ease-of-use. This v0.9 of Parcels is very much a prototype, providing a proof-of-concept of the API and showcasing how

it can be used to create high-level Python code for full-fledged scientific experiments. We also assess the accuracy of the20

current implementation, with the idea to provide a benchmark for future versions. Future development will focus on increasing

efficiency of the framework, and also towards providing easy tools to port the generated C-code of Parcels experiments to

at-runtime integration within OGCMs.

7 Code availability

The code for Parcels is licensed under the MIT license and is available through github at github.com/OceanParcels/parcels.25

The version 0.9 described here is archived at Zenodo at https://doi.org/10.5281/zenodo.823562. More information is available

on the project webpage at oceanparcels.org.

Author contributions. ML and EvS developed the code and wrote the manuscript jointly.

15

oceanparcels.org
github.com/OceanParcels/parcels
https://doi.org/10.5281/zenodo.823562
oceanparcels.org

Competing interests. The authors declare no competing interests

Acknowledgements. The initial ideas for the Parcels framework were the result of very fruitful discussions with the attendees of the “Future of

Lagrangian Ocean Modelling” workshop, held at Imperial College London, UK, in September 2015. Funding for this workshop was provided

through an EPSRC Institutional Sponsorship grant to EvS under reference number EP/N50869X/1. EvS is supported through funding from

the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No5

715386). The OFES simulation was conducted on the Earth Simulator under the support of JAMSTEC. We thank Joe Scutt-Phillips, Ronan

McAdam, Joel Kronberg, Thomas Stokes, Nathaniel Tarshish, Michael Hart-Davis, Birgit Sutzl, Ben Snowball, Samuel Wetherell and David

Ham for their support in testing and developing aspects of the Parcels code.

16

References

Ådlandsvik, B., Bartsch, J., Brickman, D., Browman, H. I., Edwards, K., Fiksen, Ø., Gallego, A., Hermann, A. J., Hinckley, S., Houde, E.,

Huret, M., Irisson, J.-O., Lacroix, G., Leis, J. M., McCloghrie, P., Megrey, B. A., Miller, T., Van der Molen, J., Mullon, C., North, E. W.,

Parada, C., Paris, C. B., Pepin, P., Petitgas, P., Rose, K., Thygesen, U. H., and Werner, C.: Manual of recommended practices for modelling

physical – biological interactions during fish early life, Tech. rep., 2009.5

Alexander, R.: Solving ordinary differential equations I: Nonstiff problems (E. Hairer, SP Norsett, and G. Wanner), SIAM Review, 32, 485,

1990.

Beron-Vera, F. J. and LaCasce, J. H.: Statistics of Simulated and Observed Pair Separations in the Gulf of Mexico, Journal of Physical

Oceanography, 46, 2183–2199, 2016.

Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian approach from GCM results,10

Journal of Physical Oceanography, 27, 1038–1053, 1997.

Cetina-Heredia, P., Roughan, M., van Sebille, E., Feng, M., and Coleman, M. A.: Strengthened currents override the effect of warming on

lobster larval dispersal & survival, Global Change Biology, 21, 4377–4386, 2015.

Cowen, R. K., Paris, C. B., and Srinivasan, A.: Scaling of connectivity in marine populations, Science, 311, 522–527, 2006.

Doblin, M. A. and van Sebille, E.: Drift in ocean currents impacts intergenerational microbial exposure to temperature, Proceedings of the15

National Academy of Sciences, pp. 201521 093–11, 2016.

:
D

:
ö

:
ö

:
s,

:::
K.:

::::::::
Interocean

::::::::
Exchange

:
of

:::::
Water

::::::
Masses,

::::::
Journal

::
of

::::::::::
Geophysical

:::::::
Research:

::::::
Oceans,

::::
100,

:::::::::::
13 499–13 514,

:::::
1995.

Döös, K., Nycander, J., and Coward, A. C.: Lagrangian decomposition of the Deacon Cell, J. Geophys. Res. Ocean., 113, C07 028,

doi:10.1029/2007JC004351, http://dx.doi.org/10.1029/2007JC004351, 2008.

Döös, K., Kjellsson, J., and Jonsson, B. F.: TRACMASS—A Lagrangian Trajectory Model, in: Preventive Methods for Coastal Protection,20

pp. 225–249, Springer International Publishing, Heidelberg, 2013.

Döös, K., Jönsson, B., and Kjellsson, J.: Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0,

Geoscientific Model Development, 10, 1733–1749, doi:10.5194/gmd-10-1733-2017, http://www.geosci-model-dev.net/10/1733/2017/,

2017.

Fabbroni, N.: Numerical simulations of passive tracers dispersion in the sea, Ph.D. thesis, Universita di Bologna, 2009.25

Griffa, A.: Applications of stochastic particle models to oceanographic problems, in: Stochastic modelling in physical oceanography, pp.

113–140, Springer, 1996.

Haller, G.: Lagrangian Coherent Structures, Annual Review of Fluid Mechanics, 47, 137–162, doi:10.1146/annurev-fluid-010313-141322,

2015.

Hellweger, F. L., van Sebille, E., and Fredrick, N. D.: Biogeographic patterns in ocean microbes emerge in a neutral agent-based model,30

Science, 345, 1346–1349, 2014.

:::::
Hoyer,

::
S.

::::
and

::::::::
Hamman,

:::
J.:

::::::
xarray:

::::
N-D

::::::
labeled

::::::
Arrays

::::
and

:::::::
Datasets

::
in

::::::
Python

:
,

::::::
Journal

:::
of

::::
Open

::::::::
Research

::::::::
Software,

::::
5(1),

::::
10,

doi:10.5334/jors.148,

:
http://doi.org/10.5334/jors.148,

:::::
2017.

Isaac, T., Burstedde, C., Wilcox, L. C., and Ghattas, O.: Recursive Algorithms for Distributed Forests of Octrees, SIAM Journal on Scientific

Computing, 37, C497–C531, doi:10.1137/140970963, https://doi.org/10.1137/140970963, 2015.35

17

http://dx.doi.org/10.1029/2007JC004351
http://dx.doi.org/10.1029/2007JC004351
http://dx.doi.org/10.5194/gmd-10-1733-2017
http://www.geosci-model-dev.net/10/1733/2017/
http://dx.doi.org/10.1146/annurev-fluid-010313-141322
http://dx.doi.org/10.5334/jors.148
http://doi.org/10.5334/jors.148
http://dx.doi.org/10.1137/140970963
https://doi.org/10.1137/140970963

::::
Jones,

:::
A.,

::::::::
Thomson,

:::
D.,

::::
Hort,

:::
M.,

:::
and

::::::::
Devenish,

:::
B.:

:::
The

::::
U.K.

:::
Met

:::::::
Office’s

::::::::::::
Next-Generation

::::::::::
Atmospheric

::::::::
Dispersion

::::::
Model,

::::::
NAME

::
III

:
,

::
in:

:::
Air

:::::::
Pollution

:::::::
Modeling

:::
and

:::
Its

:::::::::
Application

::::
XVII,

:::::
edited

::
by

:::::::
Borrego,

::
C.

:::
and

:::::::
Norman,

:::::
A.-L.,

:::
pp.

:::::::
580–589,

:::::::
Springer

:::
US,

::::::
Boston,

::::
MA,

::::
2007.

:

Jönsson, B. F., Salisbury, J. E., and Mahadevan, A.: Large variability in continental shelf production of phytoplankton carbon revealed by

satellite, Biogeosciences, 8, 1213–1223, doi:10.5194/bg-8-1213-2011, http://www.biogeosciences.net/8/1213/2011/, 2011.5

Jutzeler, M., Marsh, R., Carey, R. J., White, J. D. L., Talling, P. J., and Karlstrom, L.: On the fate of pumice rafts formed during the 2012

Havre submarine eruption, Nature Communications, 5, 3660, 2014.

Katz, M. E., Cramer, B. S., Franzese, A. M., Hoenisch, B., Miller, K. G., Rosenthal, Y., and Wright, J. D.: Traditional and emerging

geochemical proxies in foraminifera, Journal of Foraminiferal Research, 40, 165–192, 2010.

Kool, J. T., Moilanen, A., and Treml, E. A.: Population connectivity: recent advances and new perspectives, Landscape Ecology, 28, 165–185,10

doi:10.1007/s10980-012-9819-z, http://dx.doi.org/10.1007/s10980-012-9819-z, 2013.

Lebreton, L. C. M., Greer, S. D., and Borerro, J. C.: Numerical modelling of floating debris in the world’s oceans, Marine Pollution Bulletin,

64, 653–661, 2012.

Marsh, R., Ivchenko, V. O., Skliris, N., Alderson, S., Bigg, G. R., Madec, G., Blaker, A. T., Aksenov, Y., Sinha, B., Coward, A. C., Le Sommer,

J., Merino, N., and Zalesny, V. B.: NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-15

permitting resolution, Geoscientific Model Development, 8, 1547–1562, 2015.

Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma,

H., and Yamagata, T.: A fifty-year eddy-resolving simulation of the world ocean - Preliminary outcomes of OFES (OGCM for the Earth

Simulator), Journal of the Earth Simulator, 1, 2004.

Paris, C. B., Cowen, R. K., Claro, R., and Lindeman, K. C.: Larval transport pathways from Cuban snapper (Lutjanidae) spawning aggrega-20

tions based on biophysical modeling, Marine Ecology-Progress Series, 296, 93–106, 2005.

Paris, C. B., Helgers, J., van Sebille, E., and Srinivasan, A.: Connectivity Modeling System: A probabilistic modeling tool for the multi-scale

tracking of biotic and abiotic variability in the ocean, Environmental Modelling & Software, 42, 47–54, 2013.

Peeters, F. J. C., Acheson, R., Brummer, G.-J. A., de Ruijter, W. P. M., Schneider, R. R., Ganssen, G. M., Ufkes, E., and Kroon, D.: Vigorous

exchange between the Indian and Atlantic oceans at the end of the past five glacial periods, Nature, 430, 661–665, 2004.25

Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M. A., Kaleem, R., Lee, T.-H., Lenharth, A., Manevich, R., Méndez-Lojo,

M., Prountzos, D., and Sui, X.: The Tao of Parallelism in Algorithms, SIGPLAN Not., 46, 12–25, doi:10.1145/1993316.1993501, http:

//doi.acm.org/10.1145/1993316.1993501, 2011.

Qin, X., Menviel, L., Sen Gupta, A., and van Sebille, E.: Iron sources and pathways into the Pacific Equatorial Undercurrent, Geophysical

Research Letters, pp. n/a–n/a, doi:10.1002/2016GL070501, 2016GL070501, 2016.30

::::::
Rocklin,

:::
M.:

:::::
Dask:

::::::
Parallel

::::::::::
Computation

::::
with

:::::::
Blocked

::::::::
algorithms

::::
and

::::
Task

:::::::::
Scheduling,

::
in:

::::::::::
Proceedings

::
of

:::
the

::::
14th

:::::
Python

::
in

:::::::
Science

:::::::::
Conference,

:::::
edited

::
by

::::
Huff,

::
K.

:::
and

:::::::
Bergstra,

::
J.,

:::
pp.

:::
130

::
–

:::
136,

:::::
2015.

Rühs, S., Durgadoo, J. V., Behrens, E., and Biastoch, A.: Advective timescales and pathways of Agulhas leakage, Geophysical Research

Letters, 40, 3997–4000, doi:10.1002/grl.50782, http://doi.wiley.com/10.1002/grl.50782, 2013.

:::::::
Schubert,

::
E.,

::::::
Zimek,

:::
A.,

:::
and

::::::
Kriegel,

:::::
H.-P.:

:::::::
Geodetic

:::::::
Distance

::::::
Queries

:::
on

::::::
R-Trees

:::
for

::::::
Indexing

:::::::::
Geographic

:::::
Data,

:::
pp.

:::::::
146–164,

:::::::
Springer35

::::
Berlin

:::::::::
Heidelberg,

::::::
Berlin,

:::::::::
Heidelberg, doi:10.1007/978-3-642-40235-7_9

:
, https://doi.org/10.1007/978-3-642-40235-7_9

:
,

::::
2013.

:

::::
Stohl,

:::
A.

:::
and

:::::
James,

:::
P.:

:
A

:::::::::
Lagrangian

:::::::
analysis

::
of

::
the

::::::::::
atmospheric

:::::
branch

::
of

:::
the

:::::
global

:::::
water

:::::
cycle.

:::
Part

::
II:

:::::::
Moisture

::::::::
transports

:::::::
between

:::::
earth’s

::::
ocean

:::::
basins

:::
and

::::
river

:::::::::
catchments,

::::::
Journal

::
of

::::::::::::::
Hydrometeorology,

::
6,

:::::::
961–984,

:::::
2005.

18

http://dx.doi.org/10.5194/bg-8-1213-2011
http://www.biogeosciences.net/8/1213/2011/
http://dx.doi.org/10.1007/s10980-012-9819-z
http://dx.doi.org/10.1007/s10980-012-9819-z
http://dx.doi.org/10.1145/1993316.1993501
http://doi.acm.org/10.1145/1993316.1993501
http://doi.acm.org/10.1145/1993316.1993501
http://doi.acm.org/10.1145/1993316.1993501
http://dx.doi.org/10.1002/2016GL070501
http://dx.doi.org/10.1002/grl.50782
http://doi.wiley.com/10.1002/grl.50782
http://dx.doi.org/10.1007/978-3-642-40235-7_9
https://doi.org/10.1007/978-3-642-40235-7_9

Teske, P. R., Sandoval-Castillo, J., van Sebille, E., Waters, J., and Beheregaray, L. B.: On-shelf larval retention limits population connectivity

in a coastal broadcast spawner, Marine Ecology-Progress Series, 532, 1–12, 2015.

Van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J. C., Biastoch, A., Weijer, W., Turney, C. S. M., Paris, C. B., and Zahn, R.: Ocean

currents generate large footprints in marine palaeoclimate proxies, Nature Communications, 6, 6521, 2015.

Van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,5

Deleersnijder, E., Doöös, K., Drake, H., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,

MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S.,

Shah, S. H. A. M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: fundamentals and

practices, Ocean Modeling, submitted.

19

User
Particle

Define variables

Kernel

Define computation
Visualization

Execution
Particle Loop

Update particles
External OGCM

Data
Particle Data

File I/O

Field Data

Interpolation
External data

Figure 1. Conceptual abstractions (dark) and functionalities encapsulated in the Parcels prototype in relation to external components (light).

20

Field
Field objects	hold	the	
data	of	the	hydrodynamic	
fields,	stored	as	4-
dimensional	(lon,	lat,	
depth,	time)	numpy
arrays.

FieldSet
FieldSet objects	are	
collections	of	Fields.	At	
least	a	U	and	V	Field are	
required	for	Parcels	to	
work.

Particle
Particle objects	contain	
the	position	and	other	
variables	of	each	particle	
in	the	ParticleSet.

ParticleSet
ParticleSet objects	are	
the	main	objects	in	
Parcels.	They	contain	a	
FieldSet and	a	list	of	
Particles.	
The	.from_list,	
.execute and	.show are	
the	most	important	
methods	defined	on	
ParticleSets.

Kernel
Kernels are	little	
snippets	of	code	that	get	
run	when	a	ParticleSet
is	executed.	Parcels	comes	
with	some	build-in	kernels	
like	4th order	Runge-Kutta
advection,	but	it	is	very	
easy	to	create	custom	
kernels.	Multiple	kernels	
can	be	concatenated	with	
the	+ operator.

.show()
ParticleSet.show
is	the	method	used	to	plot	
particle	positions,	
optionally	overlayed on	a	
Field.

.execute()
ParticleSet.execute
is	the	method	used	to	
actually	compute	the	
evolution	of	particles	by	
executing	Kernel objects.	

.from_netcdf()
FieldSet.from_netcdf
is	the	method	used	to	
read	hydrodynamic	fields	
in	NetCDF data	using	info	
of	Fields in	dictionaries.

.from_list()
ParticleSet.from_list
is	one	of	the	methods	
used	to	define	the	starting	
positions	of	Particles.

Figure 2. Class diagram of the Parcels v0.9 prototype implementation. Classes are depicted in blue, methods in green. Note that not all

methods and classes are shown in this diagram.

21

Figure 3. Footprints of virtual foraminifera ending up on the ocean floor just off Cape Town in the Agulhas region. This experiment is a

Parcels implementation of the study described in Van Sebille et al. (2015), and this figure can be compared to Fig. 1b in that paper. The

magenta dot is the location of the sediment core, from which virtual particles are first tracked back until they reach their 50m dwelling depth

(black dots), and then further tracked back for their 30-day lifespan. Temperatures (in degrees Celcius) are recorded each day throughout

their lifespan and shown as colours. The code for this experiment and plotting is available at https://doi.org/10.5281/zenodo.823994.

22

https://doi.org/10.5281/zenodo.823994.

Figure 4. Evaluation of trajectory accuracy in Parcels v0.9, following the seven idealised and analytical test case described in in Sect. 6 of

Van Sebille et al. (submitted): (a) radial rotation with known period; (b) longitudinal shear flow; (c) advection due to a time-oscillating zonal

flow; (d) steady-state flow around a peninsula; (e) steady-state flow in a Stommel gyre and western boundary current; (f) damped inertial

oscillation on a geostrophic flow; and (g) Brownian motion with a uniform Kh. In the upper six panels, the coloured lines are the particle

trajectories and the black dashed lines are the analytical solutions. In panel (g), the colouring shows the density of particles, and the contours

show the probability density function of the equivalent analytical solution (a two-dimensional Gaussian).

23

