
Answer to referee 1

Thank you very much for your informative and detailed comments.

General comments

"This study proposes a probabilistic forecast recalibration scheme designed specifically to address the issues associated with
decadal climate forecasts. Polynomial forms are estimated for the dependence of unconditional bias, conditional bias and5
ensemble spread on lead-time. The parameters of the polynomial forms are allowed to depend linearly on forecast-time, in order
to account for any discrepancy between the long- term trends in the observations and the forecasts. The resulting recalibration is
shown to outperform raw forecasts of surface temperature, and forecasts corrected only for lead-time dependent unconditional
bias. The extension of lead-time dependent bias correction to the conditional bias and ensemble spread of parametric probability
forecasts represents a valuable contribution to the decadal forecasting literature. Overall, the paper is clear and well written.10
The conclusions regarding the performance of the proposed recalibration are broadly justified by the results shown."

Specific comments

1. "The review of existing recalibration methods is rather brief and would benefit from expansion, although it does cover
the most relevant references. Other closely related methods for seasonal-to-decadal forecast recalibration include Eade et
al. (2014, doi:10.1002/2014GL061146), Sansom et al. (2016, doi:10.1175/JCLI-D-15-0868.1) and references therein."15

Answer: Thank you for that advice. An extended review of existing (decadal) recalibration approaches will be added to
the manuscript.

2. "The DeFoReSt method addresses lead-time dependent unconditional and conditional biases in the ensemble mean, and
unconditional bias in the ensemble spread. The authors cite the study by Fučkar et al. (2014) as a method specifically
tailored to decadal forecasts. That study addressed corrections based on observed conditions at the time of forecast20
initialisation. Can the authors comment on the relevance of such corrections and why they chose to prioritise the biases
addressed in DeFoReSt?"

Answer: The approach of Fučkar et al. (2014) is highly relevant as the model bias and forecast skill depend on the initial
conditions. This approach seems to outperform the bias correction approach based on a linear start year dependency.
But the success of this approach may be dependent on the analyzed variable and region. Thus, in this first description25
of DeFoReSt we have decided for the less sophisticated approach proposed by Kharin et al. (2012) and Krusche et al.
(2015) which assumes a linear start year dependency. However, combining the approach of Fučkar et al. (2014) with our
approach is definitely an interesting idea for further studies.

-Fučkar, N. S., Volpi, D., Guemas, V., and Doblas-Reyes, F. J.: A posteriori adjustment of near-term climate predictions:
Accounting for the drift dependence on the initial conditions, Geophysical Research Letters, 41, 5200–5207, 2014.30

-Kharin, V. V., Boer, G. J., Merryfield, W. J., Scinocca, J. F., and Lee, W.-S.: Statistical adjustment of decadal predictions
in a changing climate, Geophysical Research Letters, 39, 2012.

-Kruschke, T., Rust, H. W., Kadow, C., Müller, W. A., Pohlmann, H., Leckebusch, G. C., and Ulbrich, U.: Probabilistic
evaluation of decadal prediction skill regarding Northern Hemisphere winter storms, Meteor. Z, 01, 2015

3. "The orders of the polynomial forms used to capture lead-time dependence are fixed a priori. The authors acknowledge35
the need for a systematic method of selecting the order of the polynomial forms. However, it would be useful if they
could provide some insight or justification for the choices they made?"

Answer: For the proposed first version of DeFoReSt we follow the suggestion of Gangstø et al. (2013) and use a
third order polynomial addressing the unconditional and conditional bias and a second order addressing the ensemble
dispersion. With an increasing order of the polynomial the flexibility of the fitted curve increases, while the parameter40
uncertainty also increases. Here, Gangstø et al. (2013) suggested that a third order polynomial is a good compromise
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between flexibility and parameter uncertainty. For the correction of the ensemble dispersion we assumed that a higher
flexibility may not be necessary, because the MSE – which influences the dispersion – is already addressed by a third
order polynomial of unconditional and conditional bias. Without any systematic model selection approach (which is to
be developed) an answer to this question cannot be made more objective.

-Gangstø, R., A.P. Weigel, M.A. Liniger, C. Appenzeller, 2013: Methodological aspects of the validation of decadal5
predictions. – Climate Res. 55, 181–200, DOI: 10.3354/cr01135.

4. "A bootstrapping method is used to assess the uncertainty in the skill of the recalibrated forecasts. Can the authors clarify
how the bootstrapping was performed?"

Answer: The scores have been calculated for a period from 1961 to 2005. For bootstrapping we draw a new pair of
dummy time series with replacement from the original validation period and calculate these scores again. Here, this10
procedure has been repeated 1000 times. An explanation will be added in the manuscript.

5. "In Section 5.2, the authors state that “After applying DeFoReSt, [...] the ensemble spread is fairly constant for all lead
times”. This statement is broadly supported by the results in Figures 8 and 9, but runs contrary to the intuition that our
uncertainty about the future climate should increase with lead-time. Can the authors comment on this surprising result?"

Answer: Maybe, the declaration "fairly constant" is misleading and s.th. like "basically constant" is more appropriate. In15
Fig. 5b and 7b the ensemble spread appears to be constant for all lead years, but Fig. 6c and 8c show that the ensemble
spread of the recalibrated forecast increases from lead year 1 to lead year 10. We admit that the ensemble spread of lead
years 3-7 or 3-5 show an unexpected behavior by decreasing with lead years. Here, the ESS shows that the ensemble
spread of the recalibrated forecast should be higher.

Technical corrections20

1. Several examples: choose Var(x) or var(x), there are examples of both

Answer: Will be corrected

2. Several examples: E[x]→ E(x) for consistency with var(x) and general bracket conventions

Answer: Will be corrected

3. Several examples: e.g.→ e.g.,25

Answer: Will be corrected

4. Several examples: i.e.→ i.e.,

Answer: Will be corrected

5. Page 12, Lines 4 15: yields to

Answer: Will be corrected30

6. Page 10, Line 26; Page 12, Line 6; Page 13, Line 23: yielding to

Answer: Will be corrected

7. Page 2, Line 31: verification calibration→ verification and calibration

Answer: Will be corrected

8. Page 3, Line 23: verification→ observations35

Answer: Will be corrected
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9. Page 3, Line 26: calibration→ recalibration

Answer: Will be corrected

10. Page 6, Line 11: the approach (9)→ the second term in (9)

Answer: Will be corrected

11. Page 6, Line 13: It might be worth explaining in words that the dependence on lead-time is cubic, while the correction5
for errors in time trends is only linear.

Answer: A short explanation will be given

12. Page 6, Line 19: Additionally,→ In addition

Answer: Will be corrected

13. Page 6, Line 26: These assumption→ These assumptions10

Answer: Will be corrected

14. Page 6, Line 27: order selection will be topic of→ order selection will be a topic of

Answer: Will be corrected

15. Page 7, Line 13: ensured→ guaranteed

Answer: Will be corrected15

16. Page 7, Line 21: this observations→ these observations

Answer: Will be corrected

17. Page 8, Line 04: µx and εx→ The processes µx and εx
Answer: Will be corrected

18. Page 8, Line 13: concrete→ specific or exact20

Answer: Will be corrected

19. Page 8, Line 13: this variability→ state which variability exactly

Answer: Will be corrected

20. Page 8, Line 14: As for the recalibration strategy→ For recalibration,

Answer: Will be corrected25

21. Page 8, Line 15: we use...→ This sentence doesn’t make sense.

Answer: We will revise that sentence in the manuscript.

22. Page 8, Line 21: In general, ensemble mean and ensemble variance both can dependent on lead time τ and start time t.
→ In general, the ensemble mean and variance can both depend on lead time τ and start time t.

Answer: Will be corrected30

23. Equation 21: It would be helpful to explain the motivation for non-linear form chosen here and the restriction in line 26.

Answer: The motivation is that both conditional bias and µx generally can depend on lead time and start time. The
restriction is necessary to avoid negative values of the ensemble variance in Eq. 22. An explanation will be given in the
manuscript.
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24. Page 9, Lines 4-8: I understand from this paragraph that a trend is included in only the observations or the forecasts, but
I am not clear on which. This needs to be clarified and possible linked explicitly to Eqn. 17 and Page 8, Lines 13-15.

Answer: A linear trend will be imposed on the pseudo-forecast due to the unconditional bias. Indeed, this needs to be
clarified in the manuscript.

25. Page 9, Line 26: 10 lead years τ 1,...,10→ 10 lead years (τ = 1,...,10)5

Answer: Will be corrected

26. Page 10, Line 24: which ESS values are lower one→ whose ESS values are less than one

Answer: Will be corrected

27. Page 10, Line 25: The reduced performance...→ The lower performance

Answer: Will be corrected10

28. Page 11, Lines 25: model data with a low potential predictability

Answer: Will be corrected

29. Page 12, Line 01: the worse MSE performance→ the lower MSE performance

Answer: Will be corrected

30. Page 12, Line 03: On the contrary→ In contrast15

Answer: Will be corrected

31. Page 12, Line 08: bias within the→ bias in the

Answer: Will be corrected

32. Page 12, Line 09: w.r.t.→ compared to

Answer: Will be corrected20

33. Page 12, Line 28: applied on surface→ applied to surface

Answer: Will be corrected

34. Page 12, Line 27: global mean and a spatial mean

Answer: Will be corrected

35. Page 13, Line 11: On the contrary, the raw model’s→ The raw model’s25

Answer: Will be corrected

36. Page 13, Line 26: is small than→ is less than

Answer: Will be corrected

37. Page 13, Line 27: DeFoReSt slightly performs better→ DeFoReSt performs slightly better

Answer: Will be corrected30

38. Page 13, Line 32: with the corresponding→ and the corresponding

Answer: Will be corrected

39. Page 14, Line 10: is constant→ is almost constant

Answer: Will be corrected
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40. Page 14, Line 13: perform equally→ perform similarly

Answer: Will be corrected

41. Page 14, Line 20: also outperforming→ also outperform

Answer: Will be corrected

42. Page 14, Line 21: climatology is solely not significant→ climatology is not significant5

Answer: Will be corrected

43. Page 15, Line 05: Analog to→ Following

Answer: Will be corrected

44. Page 15, Line 13: impose→ imposed

Answer: Will be corrected10

45. Page 15, Line 14: conditional bias and ensemble spread dispersion→ conditional bias or ensemble spread

Answer: Will be corrected

Answer to referee 2

Thank you very much for your informative and detailed comments.

General comments15

"This paper presents what may be a very important work in the study of decadal cli- mate prediction. The authors presented
the methodologically oriented post-processing model "Parametric Decadal Climate Forecast Recalibration (DeFoReSt)," to
correct decadal climate prediction. The method uses earlier published approaches, and extend it to the long-term prediction by
allowing the forecast errors to depend on forecast lead time. The performance of the presented approach is well established
using different assessment measures."20

Specific comments

1. "It is mentioned in section 3.3 on lines 1-2 that the parameters are estimated by minimizing the average CRPS over the
training period. Does this mean only the portion (the training) of the data was used for estimating the parameters? if yes,
why the whole data was not used? it is expected that a training-validation grouping of data for checking the performance
of DeFoReSt. But a parameter within DeFoReSt has to be primarily estimated from the whole data."25

Answer: In case of a validation/comparison with a reference data set (e.g., climatology or raw model) the training
data set is only a portion of the whole available data set, while the remaining data is used for validation. We aim at
estimating a forecast error for a setting comparable to the operational forecast situation where no observations for the
forecast period is available. DeFoReSt parameters can only be estimated from the available observataion period but the
re-calibration is carried out on the forecast period, i.e. outside the period used for parameter estimation. Hence using the30
full hindcast period for estimating parameters and obtain a “forecast error” for hindcast from the same period would lead
to overestimation of skill. Parameter estimation using the full available data set could be used once we use DeFoReSt for
re-calibration decadal forecasts, for e.g. 2018-2027.

2. "DeFoReSt was defined based on ensemble mean and variance functions (by my reading on the paper), where 15 ensem-
ble members were selected. However, sys- tematic errors vary widely between ensemble members, a simple ensemble35
averaging limits the relevance of DeFoReSt for long-term prediction. Arisido et al (2017) and Tebaldi et al (2005), see
below, demonstrated that the common ensemble averaging method where each ensemble member has the same weight
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poses serious issues. I encourage the authors to discuss this issue supporting their argument with these pa- pers and take
into account the advisories in their revision.

- Arisido, M.W., Gaetan, C., Zanchettin, D. et al. Stoch Environ Res Risk Assess (2017). https://doi.org/10.1007/s00477-
017-1383-2 - Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncertainty in projec- tions of regional
climate change: A Bayesian approach to the analysis of multimodel ensembles. Journal of Climate 18:1524-1540"5

Answer: It is true that the ensemble members of a multi-model ensemble cannot be treated equally because every
corresponding model has different systematic errors. However, in this study we apply DeFoReSt to a single model
ensemble with 15 members generated by lagged-day-initialization from MPI-ESM-LR; i.e., we do not expect that the
single ensemble members have different systematic errors (due to the model). Nonetheless, for a recalibration of a
multimodel ensemble DeFoReSt needs to be adapted. Which would be a topic of further research.10

3. "How are the orders chosen for the polynomials used in equations such as (9) and (10). Without some cross-validation
study it is not clear how a third order polynomial suffices for the drift along lead time. A sensitivity analysis for different
order scenar- ios should guide for closer to the optimal choice needed for capturing the underlying features in a data."

Answer: We agree that there is need for a transparent model selection strategy! As already mentioned in section 6, this
will be topic for future studies. For the first version of DeFoReSt we follow the suggestion of Gangstø et al. (2013)15
and use a third order polynomial addressing the unconditional and conditional bias and a second order addressing the
ensemble dispersion. With an increasing order of the polynomial the flexibility of the fitted curve increases, while the
parameter uncertainty also increases. Here, Gangstø et al. (2013) suggested that a third order polynomial is a good
compromise between flexibility and parameter uncertainty. For the correction of the ensemble dispersion we assumed
that a higher flexibility may not be necessary, because the MSE -which influences the dispersion- is addressed by a third20
order polynomial of unconditional and conditional bias.

-Gangstø, R., A.P. Weigel, M.A. Liniger, C. Appenzeller, 2013: Methodological aspects of the validation of decadal
predictions. – Climate Res. 55, 181–200, DOI: 10.3354/cr01135.

Technical corrections

1. "line 19 page 2, the acronym "PDF" should be defined on the first use"25

Answer: Will be corrected

2. "line 1 Page 15, "..to change polynomially.." Remove "polynomially", then it is clear that the conditional bias and the
ensemble dispersion change with lead time, while they change linearly with start time."

Answer: Will be corrected

3. "υ5 in (A9) page 17, the coefficient of τ2, is typos error?"30

Answer: Indeed, it should be b5 instead of υ5.
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List of relevant changes made in the manuscript

1. Page 2, Lines 19 – 24: Added an extended review of existing recalibration approaches

2. Page 6, Lines 9 – 10: Added an explanation why we have decided for a thir order polynomial approach.

3. Page 6, Lines 16 – 17: Added a statement for choosing an linear approach for start year dependency of the bias.

4. Page 7, Lines 2 – 3: Added an explanation for using a second order polynomial approach to account for ensemble5
dispersion.

5. Page 9, Lines 4 – 5: Motivation for the restriction of σ2
εf

(t,τ) added.

6. Page 9, Lines 12 – 13: Clarified that linear trend is included in the pseudo-forecasts.

7. Page 13, Lines 7 – 9: Added an detailed description of the applied bootstrapping approach.

8. Page 16, Lines 22 – 25: Added a statement that DeFoReSt needs to be modified if it should be applied to multimodel10
predictions.

Minor changes (e.g., typing errors, etc.) are not listed here.
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Parametric Decadal Climate Forecast Recalibration
(DeFoReSt 1.0)
Alexander Pasternack1, Jonas Bhend2, Mark A. Liniger2, Henning W. Rust1, Wolfgang A. Müller3, and
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Abstract. Near-term climate predictions such as decadal climate forecasts are increasingly being used to guide adaptation mea-

sures. For near-term probabilistic predictions to be useful, systematic errors of the forecasting systems have to be corrected.

While methods for the calibration of probabilistic forecasts are readily available, these have to be adapted to the specifics

of decadal climate forecasts including the long time horizon of decadal climate forecasts, lead time dependent systematic

errors (drift), and the errors in the representation of long-term changes and variability. These features are compounded by5

small ensemble sizes to describe forecast uncertainty and a relatively short period for which typically pairs of re-forecasts

and observations are available to estimate calibration parameters. We introduce the Decadal Climate Forecast Recalibration

Strategy (DeFoReSt), a parametric approach to recalibrate decadal ensemble forecasts that takes the above specifics into ac-

count. DeFoReSt optimizes forecast quality as measured by the continuous ranked probability score (CRPS). Using a toy

model to generate synthetic forecast observation pairs, we demonstrate the positive effect on forecast quality in situations with10

pronounced and limited predictability. Finally, we apply DeFoReSt to decadal surface temperature forecasts from the MiKlip

Prototype system and find consistent and sometimes considerable improvements in forecast quality compared with a simple

calibration of the lead time dependent systematic errors.

1 Introduction

Decadal climate predictions aim to characterize climatic conditions over the coming years. Recent advances in model devel-15

opment, data assimilation and climate observing systems together with the need for up-to-date and reliable information on

near-term climate for adaptation planning have lead to considerable progress in decadal climate predictions. In this context,

international and national projects like the German initiative Mittelfristige Klimaprognosen (MiKlip) have developed model

systems to produce a skillful decadal climate prediction (Pohlmann et al., 2013a; Marotzke et al., 2016).

Despite the progress being made in decadal climate forecasting, such forecasts still suffer from considerable systematic20

biases. In particular, decadal climate forecasts are affected by lead time dependent biases (drift) and exhibit long-term trends

that differ from the observed changes. To correct these biases in the expected mean climate, bias correction methods tailored to

the specifics of decadal climate forecasts have been developed (Kharin et al., 2012; Fučkar et al., 2014; Kruschke et al., 2015).
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Given the inherent uncertainties due to imperfectly known initial conditions and model errors, weather and climate predic-

tions are framed probabilistically (Palmer et al., 2006). Such probabilistic forecasts are often affected by biases in forecast

uncertainty (ensemble spread), i.e., they are not reliable. Forecasts are reliable if the forecast probability of a specific event

equals the observed occurence frequency on average (Palmer et al., 2008). Briefly said, if some event is declared with a certain

probability, say 80%, it should also occur on average 80% of all times such a forecast is issued. Probabilistic forecasts, however,5

are often found to be underdispersive/overconfident (Hamill and Colucci, 1997; Eckel and Walters, 1998), i.e.
:
, the ensemble

spread underestimates forecast uncertainty and events with a forecast probability of 80% occur on average less often.

Statistical post processing (Gneiting and Raftery, 2005) can be used to optimize – or recalibrate – the forecast, e.g., reducing

systematic errors, such as bias and conditional bias, as well as adjusting ensemble spread. The goal of recalibrating probabilistic

forecasts is to maximize sharpness without sacrificing reliability (Gneiting et al., 2003). A forecast is sharp if its distribution10

differs from the climatological distribution. For example, a constant climatological probability forecast is perfectly reliable, but

exhibits small sharpness. Recalibration methods, have been developed for medium-range to seasonal forecasting; it is unclear

to what extent lead time dependent biases (also called drift) and long-term trends of decadal climate forecasts can effectively be

corrected. Here, we aim at adapting existing recalibration methods to deal with the specific problems found in decadal climate

forecasting: lead time and start time dependent biases, conditional biases and inadequate ensemble spread.15

The most prominent recalibration methods proposed in the context of medium-range weather forecasting are Bayesian model

averaging (BMA, Raftery et al., 2005; Sloughter et al., 2007) and non-homogeneous Gaussian regression (NGR, Gneiting

et al., 2005). In seasonal forecasting, the climate conserving recalibration (CCR, Doblas-Reyes et al., 2005; Weigel et al.,

2009) is often applied
:
,
::::::
which

::
is

:::::
based

:::
on

:
a
::::::

scalar
::::::::::
conditional

:::::::::
adjustment

:::
of

::::::::
ensemble

:::::
mean

::::
and

::::::::
ensemble

::::::
spread.

:::::
Here,

::::
Eade

::
et

:::
al.

::::::
(2014)

::::::
applied

::::
this

:::::::
concept

::::
also

::
to

:::::::
decadal

::::::::::
predictions. BMA assigns a

:::::::::
probability

::::::
density

:::::::
function

::::::
(PDF)PDF20

to every individual ensemble member and generates a weighted average of these densities where the weights represent the

forecasting skill of the corresponding ensemble member. NGR extends traditional model output statistics
::::::
(MOS,

:::::
Glahn

::::
and

::::::
Lowry,

:::::
1972)(MOS) by allowing the predictive uncertainty to depend on the ensemble spread.

:
A

::::::
further

:::::::::
extension,

::::::::
proposed

::
by

:::::::
Sansom

::
et

::
al.

:::::
2016,

::::
also

::::::::
accounts

::
for

::
a
:::::
linear

::::::::::::::
time-dependency

::
of

:::
the

:::::
mean

::::
bias. However, CCR is closely related to NGR

in that the forecast mean error and forecast spread are jointly corrected to satisfy the necessary criterion for reliability that the25

time mean ensemble spread equals the forecast root mean square error.

We expand on NGR and CCR by introducing a parametric dependence of the forecast errors on forecast lead time and

long-term time trends hereafter named decadal climate forecast recalibration strategy (DeFoReSt). To better understand the

properties of DeFoReSt, we conduct experiments using a toy model to produce synthetic forecast observation pairs with known

properties. We compare the decadal recalibration with the drift correction proposed by Kruschke et al. (2015) to illustrate its30

benefits and limitations.

The remainder of the paper is organized as follows. In Sec. 2 we introduce the MiKlip decadal climate prediction system

and the corresponding reference data used. Moreover, we discuss how forecast quality of probabilistic forecasts is assessed. In

Sec. 3, we motivate the extension of the NGR method named DeFoReSt and illustrate how verification
:::
and calibration can be

linked by the way the calibration parameters are estimated. The toy model used to study DeFoReSt is introduced and assessed in35
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Sec. 4.2. In the following section, we apply the drift correction and DeFoReSt to decadal surface temperature predictions from

the MiKlip system (Sec. 5). We assess global mean surface temperature and temperature over the North Atlantic subpolar gyre

region (60°-10°W, 50°-65°N). The investigated North Atlantic region has been identified as a key region for decadal climate

predictions with forecast skill for different parameters (e.g., Pohlmann et al., 2009; van Oldenborgh et al., 2010; Matei et al.,

2012; Mueller et al., 2012). The paper closes with a discussion in Sec. 6.5

2 Data and methods

2.1 Decadal climate forecasts

In this study we use retrospective forecasts (hereafter call hindcast) of surface temperature performed with the Max-Planck-

Institute Earth System Model in a low-resolution configuration (MPI-ESM-LR). The atmospheric component of the coupled

model is ECHAM6 run at a horizontal resolution of T63 with 47 vertical levels up to 0.1 hPa (Stevens et al., 2013). The ocean10

component is MPIOM with a nominal resolution of 1.58 and 40 vertical levels (Jungclaus et al., 2013).

We investigate one set of decadal hindcasts, namely from the MiKlip Prototype system, which consists 41 hindcasts, each

with 15 ensemble members, yearly initialized at January 1st between 1961 and 2000 and then integrated for 10 years. The

initialization of the atmospheric part was realized by full field initialization from fields of Era40 (Uppala et al., 2005) and

Era-Interim (Dee et al., 2011), while the oceanic part was initialized with full fields from GECCO2 reanalysis (Köhl, 2015).15

Here, the full field initialization nudges the atmospheric or oceanic fields from the corresponding reanalysis to the MPI-ESM

as full fields and not as anomalies. A detailed description of the Prototype system is given in Kröger et al. (2017, submitted).

2.2 Validation data

This study uses the 20th Century Reanalysis (20CR, Compo et al., 2011) for evaluation of the hindcasts. The reanalysis has

been built by solely assimilating surface pressure observations, whereas the lower boundary forcing is given from HadISST1.120

sea surface temperatures and sea ice (Rayner et al., 2003). Moreover, 20CR is based on Ensemble-Kalman-filtering with 56

members and therefore also addresses observation and assimilation uncertainties. Additionally, 20CR covers the whole period

of the investigated decadal hindcasts, which is a major benefit over other common reanalysis data sets.

2.3 Assessing reliability and sharpness

Calibration or reliability refers to the statistical consistency between the forecast PDFs and the verifying observations. Hence, it25

is a joint property of the predictions and the
::::::::::
observationsverification. A forecast is reliable if forecast probabilities correspond

to observed frequencies on average. Alternatively, a necessary condition for forecasts to be reliable is given if the time mean

intra-ensemble variance equals the mean squared error (MSE) between ensemble mean and observation (Palmer et al., 2006).

A common tool to evaluate the reliability and therefore the effect of a
::
recalibration is the rank histogram or Talagrand

diagram which were separately proposed by Anderson (1996); Talagrand et al. (1997); Hamill and Colucci (1997). For a30
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detailed understanding, the rank histogram has to be evaluated by visual inspection. Here, we have chosen to use the Ensemble

Spread Score (ESS) as a summarizing measure. The ESS is the ratio between the time mean intra-ensemble variance σ̄2 and

the mean squared error between ensemble mean and observation, MSE(µ,y) (Palmer et al., 2006; Keller and Hense, 2011):

ESS =
σ̄2

MSE(µ,y)
, (1)

with5

σ̄2 =
1

k

k∑
j=1

σ2
j , (2)

and

MSE(µ,y) =
1

k

k∑
j=1

(yj −µj)2. (3)

Here, σ2
j ,µj and yj are the ensemble variance, the ensemble mean and the corresponding observation at time step j, with

j = 1, ...,k, where k is the number time steps.10

Following Palmer et al. (2006), ESS = 1 indicates perfect reliability. The forecast is overconfident when ESS < 1, i.e.
:
, the

ensemble spread underestimates forecast error. If the ensemble spread is greater than the model error (ESS > 1), the forecast

is overdispersive and the forecast spread overestimates forecast error. To better understand the components of the ESS, we

also analyze the mean squared error MSE of the forecast separately.

Sharpness, on the other hand, refers to the concentration or spread of a probabilistic forecast and is a property of the15

forecast only. A forecast is sharp, when it is taking a risk, i.e.
:
, when it is frequently different from the climatology. The

smaller the forecast spread, the sharper the forecast. Sharpness is indicative of forecast performance for calibrated and thus

reliable forecasts, as forecast uncertainty reduces with increasing sharpness (subject to calibration). To assess sharpness, we

use properties of the width of prediction intervals as in Gneiting and Raftery (2007). In this study the time mean intra-ensemble

variance σ̄2 is used to asses the prediction width.20

Scoring rules, finally, assign numerical scores to probabilistic forecasts and form attractive summary measures of predictive

performance, since they address reliability and sharpness simultaneously (Gneiting et al., 2005; Gneiting and Raftery, 2007;

Gneiting and Katzfusss, 2014). These scores are generally taken as penalties, thus the forecasters seek to minimize them. A

scoring rule is called proper, if its expected value is minimized when the observation is drawn from the same distribution as the

predictive distribution. If a scoring rule is not proper, it is possible to minimize its expected value by predicting an unrealistic25

probability of occurrence. In simple terms, a forecaster would be rewarded for not being honest. Moreover a proper scoring

rule is called strictly proper if the minimum is unique. In this regard, the Continuous Ranked Probability Score (CRPS) is a

suitable, strictly proper scoring rule for ensemble forecasts.

Given, F is the predictive cumulative distribution function (CDF) and o is the verifying observation, the CRPS is defined as

CRPS(F,o) =

∞∫
−∞

(F (y)−F0(y))2dy, (4)30

4



where F0(y) is the Heaviside function and takes the values 0 or 1 if y is less than or greater equal than the observed value

o. Under the assumption that the predictive CDF is a normal distribution with mean µ and variance σ2 Gneiting et al. (2005)

showed that (4) can be written as

CRPS(N (µ,σ2),o) =

σ

{
o−µ
σ

[2Φ

(
o−µ
σ

)
− 1] + 2ϕ

(
o−µ
σ

)
− 1√

π

}
,

(5)

where Φ(·) and ϕ(·) denote the CDF and the PDF, respectively, of the standard normal distribution.5

The CRPS is negatively oriented. A lower CRPS indicates more accurate forecasts; a CRPS of zero denotes a perfect

(deterministic) forecast. Moreover, the average score over k pairs of forecasts Fj and observations yj

CRPS =
1

k

k∑
j=1

CRPS(Fj ,yj) (6)

reduces to the Mean Absolute Error (MAE = 1
k

k∑
j=1

|yj−µj |) for deterministic forecasts (Gneiting and Raftery, 2004), i.e., Fi

in Eq. 6 would also be a step function. The CRPS can therefore be interpreted as a distance measure between the probabilistic10

forecast and the verifying observation (Siegert et al., 2015).

The Continuous Ranked Probability Skill Score (CRPSS) is, as the name implies, the corresponding skill score. A skill

score relates the accuracy of the prediction system to the accuracy of a reference prediction (e.g.
:
, climatology). Thus, with a

given CRPSF for the hindcast distribution and a given CRPSR for the reference distribution the CRPSS can be defined as:

CRPSS = 1− CRPSF
CRPSR

. (7)15

Positive values of the CRPSS imply that the prediction system outperforms the reference prediction. Furthermore, this skill

score is unbounded for negative values (because hindcasts can be arbitrarily bad) but bounded by 1 for a perfect forecast.

3 DeFoReSt: Decadal Climate Forecast Recalibration Strategy

In the following paragraphs we discuss the decadal climate forecast recalibration strategy (DeFoReSt) and illustrate how fore-

cast quality is used to estimate the parameters of the recalibration method.20

We assume that the recalibrated predictive PDF fCal(X|t,τ) for random variableX is a normal PDF with mean and variance

being functions of ensemble mean µ(t,τ) and variance σ2(t,τ), as well as start time t and lead year τ

fCal(X|t,τ)∼N (α(t,τ) +β(t,τ)µ(t,τ),γ(t,τ)2σ2(t,τ)). (8)

The term α(t,τ) accounts for the mean or unconditional bias depending on lead year (i.e., the drift). Analogously β(t,τ)

accounts for the conditional bias. Thus, the expectation
:::::::::::::::::::::::::
E(X) = α(t,τ) +β(t,τ)µ(t,τ)E[X] = α(t,τ) +β(t,τ)µ(t,τ) could25

be a conditional and unconditional bias and drift adjusted deterministic forecast (we call a deterministic forecast a forecast
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without specifying uncertainty). For now, we assume that the ensemble spread σ(t,τ) is sufficiently well related to forecast

uncertainty such that it can be adjusted simply by a multiplicative term γ(t,τ)2. We thus refrain from using the additive term

suggested for NGR by Gneiting et al. (2005) to not end up with a too complex model, as the additive term should consequently

be also a function of start time t and lead time τ ; this term might be included in a future variant.

In the following, we motivate and develop linear parametric functions for α(t,τ), β(t,τ) and γ(t,τ).5

3.1 Addressing bias and drift: α(t,τ )

For bias and drift correction, we start with a parametric approach based on the studies of Kharin et al. (2012) and Kruschke

et al. (2015). In their study, a third order polynomial captures the drift along lead time τ (Gangstø et al., 2013; Kruschke

et al., 2015)
:
.;

::::
Here,

::::::::
Gangstø

::
et

::
al.

::::::
(2013)

:::::::::
suggested

:::
that

::
a
::::
third

:::::
order

::::::::::
polynomial

::
is

:
a
:::::
good

::::::::::
compromise

:::::::
between

:::::::::
flexibility

:::
and

:::::::::
parameter

::::::::::
uncertainty.

:
Tthe drift corrected forecasts

::::
Ĥt,τ,iĤh,τ,i is approximated with a linear function of the forecast10

:::::
Ht,τ,iHh,τ,i as

Ĥt,τ,i =Ht,τ,i− (a0 + a1t)− (a2 + a3t)τ − (a4 + a5t)τ
2− (a6 + a7t)τ

3. (9)

Here, Ht,τ,i, is the raw, i.e., uncorrected, hindcast for the start time t, ensemble member i and lead year τ . In case the obser-

vations and model climatology have different climate trends, the bias between model and observations is non-stationary. Thus,

::
the

:::::::
second

::::
term

::
inthe approach (9) also accounts for the dependency of the bias on the start year and therefore corrects errors15

in time trends.
:::::
Here,

::
as

::::::::
suggested

:::
by

::::::
Kharin

::
et

:::
al.

::::::
(2012)

:::
the

::::::::::
dependency

::
on

::::
start

::::
time

::
is
::::
only

::::::
linear

::
to

:::::
avoid

:
a
:::
too

::::::::
complex

::::::
model. The parameters a0, ...,a7 are estimated by standard least-squares using the differences between the ensemble mean of

all available hindcasts and the reanalysis, corresponding to the given start and lead time (Kruschke et al., 2015).

This motivates the following functional form for α(t,τ) analogously to Eq. (9)

α(t,τ) =

3∑
l=0

(a2l + a(2l+1)t)τ
l . (10)20

In principle arbitrary orders are possible for t and τ as long as there is sufficient data to estimate the parameters.

3.2 Addressing conditional bias and ensemble spread:

β(t,τ ) and γ(t,τ )

::
In

:::::::
additionAdditionally to adjusting the unconditional lead year dependent bias, DeFoReSt aims at simultaneously adjusting

conditional bias and ensemble spread. As a first approach, we take the same functional form for β(t,τ) and γ(t,τ):25

β(t,τ) =

3∑
l=0

(b2l + b(2l+1)t)τ
l , (11)

γ(t,τ) = log(

2∑
l=0

(c2l + c(2l+1)t)τ
l) . (12)
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The ensemble inflation γ(t,τ) is, however, assumed to be quadratic at most and constrained to be greater zero by using a static

logarithmic link function.
:::
We

:::::::
assumed

::::
that

:
a
::::::
higher

::::::::
flexibility

::::
may

:::
not

::
be

:::::::::
necessary,

:::::::
because

:::
the

::::
MSE

::
–

:::::
which

:::::::::
influences

:::
the

::::::::
dispersion

::
–

::
is

::::::
already

::::::::
addressed

:::
by

:
a
::::
third

:::::
order

::::::::::
polynomial

::
of

:::::::::::
unconditional

::::
and

:::::::::
conditional

:::::
bias.

These assumptions on model complexity are supported only by our experience; however, they remain subjective. A more

transparent order selection will be
:
a topic of future work.5

3.3 Parameter estimation

The coefficients α(t,τ),β(t,τ) and γ(t,τ) are now expressed as parametric functions of t and τ . The parameters are estimated

by minimizing the average CRPS over the training period (Gneiting et al., 2005). The associated score function is

Γ(N (α(t,τ) +β(t,τ)µ,γ(t,τ)2σ2),o) = CRPS =

1

k

k∑
j=1

√
γ(t,τ)2σ2

j

{
Zj [2Φ(Zj)− 1] + 2ϕ(Zj)−

1√
π

}
,

(13)

where10

Zj =
Oj − (α(t,τ) +β(t,τ)µj)√

γ(t,τ)2σ2
j

(14)

is the standardized forecast error for the jth forecast in the training data set. In the present study, optimization is carried out

using the algorithm of Nelder and Mead (1965) as implemented in R (R Core Team, 2016).

The initial guesses for optimization need to be carefully chosen to avoid local minima. Here, we obtain the ai and bj from

linearly modelling the observations o with the forecast ensemble mean µ, t and τ15

o∼
A∑
l=0

(a2l + a(2l+1)t)τ
l +

B∑
l=0

(b2l + b(2l+1)t)τ
lµ, (15)

using the notation for linear models from McCullagh and Nelder (1989); c0, c1, c2 are set to zero which yields unity inflation

(exp(γ(t,τ)) = 1). However, convergence to a global minimum cannot be
:::::::::
guaranteedensured.

4 Calibrating a toy model for decadal climate predictions

In this section, we apply DeFoReSt to a stochastic toy model, which is motivated from Weigel et al. (2009), but has been20

significantly altered to suit the needs of this study. Here, a detailed description of the toy models construction is given in the

following subsection. Subsequently, we assess DeFoReSt for two exemplary toy model setups.

4.1 Toy model construction

The toy model consists of two parts which are detailed in the following two subsections: a) Pseudo-observations, the part

generating a substitute x(t+ τ) for the observations, and b) Pseudo-forecasts, the second part deriving an associated ensemble25

prediction f(t,τ) from
::::
thesethis observations. The third subsection motivates the choice of parameters for the toy model.
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4.1.1 Pseudo-observations

We construct a toy model setup simulating ensemble predictions for the decadal time scale and associated pseudo-observations.

Both are based on an arbitrary but predictable signal µx. The pseudo-observations x (e.g., annual means of surface temperature

over a given area) is the sum of this predictable signal µx and an unpredictable noise term εx,

x(t+ τ) = µx(t+ τ) + εx(t+ τ) . (16)5

Following Kharin et al. (2012) µx can be interpreted as the atmospheric response to slowly varying and predictable boundary

conditions, while εx represents the unpredictable chaotic components of the observed dynamical system.
:::
The

::::::::
processes µx and

εx are assumed to be stochastic Gaussian processes

µx(t+ τ)∼N (0,σ2
µx

) with σ2
µx

= η2 ≤ 1 (17)

and10

εx(t+ τ)∼N (0,σ2
εx) with σ2

εx = 1− η2. (18)

The variation of µx around a slowly varying climate signal can be interpreted as the predictable part of decadal variability, its

amplitude is given by the variance
::::::::::::::::::
Var(µx(t+ τ)) = σ2

µx
var(µx(t+ τ)) = σ2

µx
. The total variance of the pseudo-observations

is thus

uparrowoperatornameV ar(x) = σ2
x = σ2

µx
+σ2

εx . Here, the relation of the latter two is uniquely controlled by the parameter15

η ∈ [0,1], which can be interpreted as potential predictability (η2 = σ2
µx
/σ2

x).

In this toy model setup, the
::::::
specificconcrete form of

::
thethis variability

::
of

:::
µx :::

and
:::
εx is not considered and thus taken

as random. A potential climate trend could be superimposed as a time varying mean
::::::::::::
µ(t) = E(x(t)µ(t) = E[x(t)].

:::
For

::::::::::
recalibrationAs for the recalibration strategy only a difference in trends is important

:
.,

::::
Here, we use µ(t) = 0 and α(t,τ)

addressing this difference in trends of forecast and observations.20

4.1.2 Pseudo-forecasts

We now specify a model giving a potential ensemble forecast with ensemble members fi(t,τ) for observations x(t+ τ):

fi(t,τ) = µens(t,τ) + εi(t,τ) , (19)

where µens(t,τ) is the ensemble mean and

εi(t,τ)∼N (0,σ2
ens(t,τ)) (20)25

is the deviation of ensemble member i from the ensemble mean; σ2
ens is the ensemble variance. In general, ensemble mean

and ensemble variance both can
:::
both dependent on lead time τ and start time t. We relate the ensemble mean µens(t,τ) to

the predictable signal in the observations µx(t,τ) by assuming a) a systematic deviation characterized by an unconditional
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bias χ(t,τ) (accounting also for a drift and difference in climate trends), a conditional bias ψ(t,τ) and b) a random deviation

ε(t,τ):

µens(t,τ) = χ(t,τ) +ψ(t,τ)(µx(t,τ) + εf (t,τ)) , (21)

with εf (t,τ))∼N (0,σεf (t,τ)) being a random forecast error with variance σ2
εf

(t,τ)< σ2
εx :

in
:::::
order

::
to

:::::
avoid

:::::::
negative

::::::
values

::
of

:::
the

::::::::
ensemble

:::::::
variance

::::
σ2
ens. Although the variance of the random forecast error can in principle be dependent on lead time5

τ and start time t, we assume for simplicity a constant variance σ2
εf

(t,τ) = σ2
εf

.

We further assume an ensemble dispersion related to the variability of the unpredictable noise term εx with an inflation factor

ω(t,τ)

σ2
ens(t,τ) = ω2(t,τ)(σ2

εx −σ
2
εf

) . (22)

According to Eq. 21 the forecast ensemble mean µens is simply a function of the predictable signal µx. In this toy model10

formulation, an explicit formulation of µx is not required, hence a random signal might be used for simplicity and it would

be legitimate to assume
::::::::::::::::::
E(µx) = µ(t+ τ) = 0E[µx] = µ(t+ τ) = 0 without restricting generality. Here, we propose a linear

trend in time E[µx] = µ(t+ τ) =m0 +m1 t :
to

:::
the

:::::::
pseudo

:::::::
forecasts to emphasize a typical problem encountered in decadal

climate prediction: different trends in observations and predictions (Kruschke et al., 2015).

4.1.3 Choosing the toy models’ parameters15

This toy model setup is controlled by four parameters: The first parameter η determines the ratio between the variances of the

predictable signal and the unpredictable noise term (and thus characterizes potential predictability, see Sec. 4.1.2). Here, we

investigate two cases: one with low (η = 0.2) and one with high potential predictability (η = 0.8).

The remaining three parameters are χ(t,τ), ψ(t,τ) and ω(t,τ), which control the unconditional and the conditional bias and

the dispersion of the ensemble spread. To have a toy model experiment related to observations, χ(t,τ) and ψ(t,τ) are based20

on the correction parameters obtained from calibrating the MiKlip Prototype ensemble surface temperature over the North

Atlantic against NCEP 20CR reanalyses; χ(t,τ) and ψ(t,τ) are based on ratios of polynomials up to 3rd order (in lead years),

Eqs. A1 and A2) with coefficients varying with start years (see Figs. 1a and 1b).

The ensemble inflation factor ω(t,τ) is chosen such that the forecast is overconfident for the first lead years and becoming

underconfident later; this effect intensifies with start years, see Fig. 1c. A more detailed explanation and numerical values used25

for the construction of χ(t,τ), ψ(t,τ) and ω(t,τ) are given in Appendix A.

Given this setup, a choice of χ(t,τ)≡ 0, ψ(t,τ)≡ 1 and ω(t,τ)≡ 1 would yield a perfectly calibrated ensemble forecast:

f perf(t,τ)∼N (µx(t,τ),σ2
εx(t,τ)). (23)

The ensemble mean µx(t,τ) of f perf(t,τ) is equal to the predictable signal of the pseudo-observations. The ensemble variance

σ2
εx(t,τ) is equal to the variance of the unpredictable noise term representing the error between the ensemble mean of f perf(t,τ)30

and the pseudo-observations. Hence, f perf(t,τ) is perfectly reliable.
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Analogous to the MiKlip experiment, the toy model uses 50 start years (t= 0, . . . ,49), each with 10 lead years
::::::::::::
(τ = 1, . . . ,10)

τ = 1, . . . ,10, and 15 ensemble members (i= 1, . . . ,15). The corresponding pseudo-observations x(t+ τ) run over a period of

59 years in order to cover lead year 10 of start year 50.

4.2 Toy model verification

To assess DeFoReSt we consider two extreme toy model setups. The two setups are designed such that the predictable signal5

is stronger than the unpredictable noise for higher potential predictability (setup 1) and vice versa (setup 2, cf. Sec. 4.1). For

each toy model setup we calculated the ESS, the MSE, time mean intra-ensemble variance and the CRPSS with respect to

climatology for the corresponding recalibrated toy model.

In addition to the recalibrated pseudo-forecast, we compare

– a raw pseudo-forecast (no correction of unconditional, conditional bias and spread),10

– a drift-corrected pseudo-forecast (no correction of conditional bias and spread), and

– a perfect pseudo-forecast (Eq.23, available only in this toy model setup)

All scores have been calculated using cross-validation with a yearly moving calibration window with a width of 10 years. A

detailed description of this procedure is given in appendix B.

TheCRPSS and reliability values of the perfect forecast could be interpreted as optimum performance within the associated15

toy model setup, due to the missing bias and ensemble dispersion. For instance, the perfect model’s CRPSS with respect to

climatology would be 1 for a toy model setup with perfect potential predictability (η = 1) and zero for a setup with no potential

predictability (η = 0). Hence, the climatology could not be outperformed by any prediction model when no predictable signal

is existing.

4.2.1 A toy model setup with high potential predictability20

Figures 2a and 2c show the temporal evolution of the toy model data before and after recalibration with DeFoReSt together

with the corresponding pseudo-observations. Before recalibration, the pseudo-forecast apparently exhibits the characteristic

problems of a decadal ensemble prediction: unconditional bias (drift), conditional bias and underdispersion, which are lead and

start time dependent. Additionally, the pseudo-observations and the pseudo-forecast have different trends. After recalibration,

the lead and start time dependent biases are corrected, such that the temporal evolution of the pseudo-observations is mostly25

represented by the pseudo-forecast.

Moreover, the pseudo-forecast is almost perfectly reliable after recalibration (not underdispersive), which could be shown

with the ESS (Fig. 3a). Here, the recalibrated model is nearly identical to the perfect model for all lead years with reliability

values close to 1.

The recalibrated forecast outperforms the raw model output and the drift corrected forecast, ¸replacedwhosewhich ESS30

values are lower one and thus underdispersive. The
:::::
lowerreduced performance of the raw models and the drift correction is
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a result of the toy model design,
::::::
leadingyielding to a higher ensemble mean variance combined with a decreased ensemble

spread. In addition, the increased variance of the ensemble mean also results in an increased influence of the conditional bias.

The problem is, the raw model forecast and the drift correction could not account for that conditional bias, because neither

the ensemble mean nor the ensemble spread were corrected by these forecasts. Therefore, the influence of the conditional bias

also becomes noticeable for the reliability of the raw model and the drift corrected forecast; one can see that the minimum and5

maximum of the conditional bias (see Fig. 1) is reproduced by the reliability values of these forecasts.

Regarding the differences between raw model and the drift corrected forecast, it is visible that the latter outperforms the raw

model. The explanation is that the drift correction accounts for the unconditional bias, while the raw model does not correct

this type of error. Here, one can see the impact of the unconditional bias on the raw model. Nonetheless, the influence of the

unconditional bias is rather small, compared to the conditional bias.10

The effect of unconditional and conditional bias is illustrated in Fig. 3b), which shows the MSE of the different forecasts

to the pseudo observations. Here, the drift corrected forecast outperforms the raw model. These forecasts are outperformed by

the recalibrated forecast, which simultaneously corrects the unconditional and conditional bias. In this regard, both biases are

corrected properly because the MSE of the recalibrated forecast is almost equal to the perfect models MSE.

The sharpness of the different forecasts are compared by calculating the time mean intra-ensemble variance (see Fig. 3c).15

For all lead years, the raw model and the drift corrected forecast exhibit the same sharpness, because the ensemble spread is

unmodified for both forecasts.

Another notable aspect is that the raw and drift corrected forecast have a higher sharpness (i.e., lower ensemble variance)

than the perfect model for lead years 1 to 4 and vice versa for lead years 5 to 10. This is due to the toy models incorporated

underdispersion for the first lead years and an overdispersion for later lead years. Therefore the sharpness of the perfect model20

could be interpreted as the maximum sharpness of the model without being unreliable.

The sharpness of the recalibrated forecast is very similar to the sharpness of the perfect model for all lead years. The

recalibration therefore performs well in correcting under- and overdispersion in the toy model forecasts.

A joint measure for sharpness and reliability is theCRPS and consequently theCRPSS with respect to climatology, where

the latter is shown in Fig. 3d. The relatively low CRPSS values of the raw and drift corrected forecast are mainly affected by25

their reliability; i.e.
:
, the unconditional and conditional bias influences are also noticeable for this skill score. Thus, both models

exhibit a maximum at lead year 2 and a minimum at lead year 7, where the drift corrected forecast performs better. However,

the raw model and the drift corrected forecast are inferior to climatology (the CRPSS is below zero) for all lead years.

In contrast, the recalibrated forecast approaches CRPSS values around 0.5 for all lead years and performs nearly identical

to the perfect model. This illustrates that the unconditional bias, conditional bias and ensemble dispersion can be corrected30

with this method.

4.2.2 A toy model setup with low potential predictability

Figures 2b and 2d show the temporal evolution of the toy model data with a low potential predictability before and after

recalibration with DeFoReSt together with the corresponding pseudo-observations. Before recalibration, the pseudo-forecast
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is underdispersive for the first lead years, whereas the ensemble spread increases for later lead years. Moreover, the pseudo-

forecast exhibits lead and start time dependent (unconditional) bias (drift) and conditional bias.

After recalibration, the lead and start time dependent biases are corrected, such that the recalibrated forecast mostly describes

the trend of the pseudo-observations.

The recalibrated forecast is also reliable (Fig. 4a); it performs as well as the the perfect model. Here, the value of the ESS5

is close to one for both forecasts. Thus, comparing the reliability of the setups with low and high potential predictability, no

differences are recognizable. The reason is, the ratio between MSE and ensemble variance, characterizing the ESS, does not

change much; the
::::
lowerworse MSE performance of the recalibrated forecast (Fig. 4b) is compensated with a higher ensemble

variance (Fig. 4c).

::
In

::::::
contrastOn the contrary, one can see a general improvement of the raw and drift corrected forecasts’ reliability compared10

to the model setup with high potential predictability. The reason is, that the low potential predictability η of this toy model

setup
::::
leadsyields to smaller variance of the ensemble mean, i.e., the conditional bias has a minor effect. Another aspect for

the comparatively good performance of the raw model, is the increased ensemble spread,
::::::
leadingyielding to an enhanced

representation of the unconditional bias.

The minor effect of the conditional bias
:
inwithin the low potential predictability setup is also represented by the MSE15

(Fig. 4b). Here, the difference between drift corrected and recalibrated forecast has decreased
::::::::
compared

::
tow.r.t. the high

potential predictability setup. Comparing both toy model setups, it is also apparent that, for a setup with η = 0.2, the MSE

generally has increased for all forecasts. The reason is, that the predictable signal decreases for a lower η. Therefore, even the

perfect models MSE has increased.

Figure 4c shows the time mean intra-ensemble variance for the toy model setup with low potential predictability. It is notable20

that the ensemble variance for this low potential predictability setup is generally greater than for a high η (Fig. 3c). This is due

to the fact that the total variance in the toy model is constrained to one and a lower η therefore
::::
leadsyields to a greater ensemble

spread.

Nonetheless, the raw model and drift corrected forecast also still have a higher sharpness (i.e., lower ensemble variance) than

the perfect model for lead years 1 to 4 and vice versa for lead years 5 to 10. Here, the reason for this is again the construction25

of the toy model, with an underdispersion for the first lead years and an overdispersion for later lead years.

The recalibrated forecast reproduces the perfect models sharpness also quite well for the potential predictability setup.

Figure 4d shows the CRPSS with respect to climatology. Firstly, it is apparent that the weak predictable signal of this toy

model setup shifted the CRPSS of all models closer to zero or the climatological skill. Nevertheless, please note that the

recalibrated forecast is almost as good as the perfect model and that it is slightly superior to the drift corrected forecast. We30

conclude that the recalibration works well also in situations with limited predictability.
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5 Calibrating decadal climate surface temperature forecasts

While in Sec. 4.2 DeFoReSt was applied to toy model data, in this section DeFoReSt will be applied
:
toon surface temperature

of MiKlip Prototype runs with MPI-ESM-LR. Here, global mean and a spatial mean values over the North Atlantic subpolar

gyre (60°-10°W, 50°-65°N) region will be analyzed.

Analogous to the previous section we compute the ESS, the MSE the intra-ensemble variance and the CRPSS with5

respect to climatology.
:::
The

::::::
scores

::::
have

:::::
been

:::::::::
calculated

:::
for

:
a
::::::
period

:::::
from

::::
1961

:::
to

:::::
2005. In this section, a 95% confidence

interval was additionally calculated for these metrics using a bootstrapping approach with 1000 replicates.
:::
For

::::::::::::
bootstrapping

::
we

:::::
draw

::
a

::::
new

:::
pair

:::
of

:::::::
dummy

::::
time

:::::
series

::::
with

:::::::::::
replacement

::::
from

:::
the

:::::::
original

:::::::::
validation

::::::
period

:::
and

::::::::
calculate

:::::
these

::::::
scores

:::::
again.

::::
This

::::::::
procedure

::::
has

::::
been

:::::::
repeated

:::::
1000

:::::
times. Furthermore, all scores have been calculated using cross-validation with

a yearly moving calibration window with a width of 10 years (see appendix B).10

5.1 North Atlantic mean surface temperature

Figures 5a and 5b show the temporal evolution of North Atlantic mean surface temperature before and after recalibration with

the corresponding NCEP 20CR reference. Before recalibration, the MiKlip Prototype hindcasts exhibit a lead time dependent

bias (drift) and a lead time dependent ensemble spread. Here, lead time dependent bias of Prototype is a consequence of an

initialization shock due to a full-field initialization (Meehl et al., 2014; Kruschke et al., 2015; Kröger et al., 2017, submitted).15

After recalibration with DeFoReSt the drift of the MiKlip Prototype was corrected and the ensemble spread is also modified.

Regarding the reliability, Fig. 6a shows the ESS. The recalibrated forecast is almost perfectly reliable for all lead years

because all ESS values of this model are close to one. Moreover, the recalibrated forecast is more skillful than the drift

corrected forecast for years 3 to 10, where the improvement is only significant for lead year 4 to 8. It is also apparent that the

drift corrected forecast is significantly overdispersive for lead years 3 to 10. For lead years 1 and 2 both post processing methods20

perform equally well.
:::
TheOn the contrary, the raw model’s reliability is obviously inferior to the post processed models and

significantly underdispersive for all lead years. This implies that the unconditional bias induces most of the systematic error of

the MiKlip Prototype runs.

Regarding the MSE, one can see that the recalibrated forecast outperforms the drift corrected forecast for lead years 1 and

2 and 8 to 10 (Fig. 6b). Although this improvement of the recalibrated forecast is not significant, it may be still attributed to25

its correction of the conditional bias. Here, the raw model performs obviously worse compared to the post processed models,

because neither the unconditional nor the conditional bias were corrected.

Figure 6c shows the spread as measured by the time mean intra-ensemble variance for the North Atlantic mean surface

temperature. The ensemble variance of the raw model and the drift corrected forecast is equal, since the ensemble spread of

the drift corrected forecast was not corrected. Here, the ensemble variance of both models is increasing with lead times. The30

ensemble variance of the recalibrated forecast is lower than the variance of the raw and drift corrected forecast for the first lead

years 2 to 10, i.e., the recalibrated forecast has a higher sharpness than the other two forecasts. The combination of increasing
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ensemble variance and almost constant MSE
::::::
leadingyielding to the identified increasing underconfidence (see Fig. 6a) of the

drift corrected forecast for that period.

Figure 6d shows that in terms of CRPSS both the drift corrected forecast and the recalibrated forecast outperform the raw

model. Here, the CRPSS of the raw model is
:::
lesssmaller than -1 for all lead year, thus the corresponding graph lies below

the plotted range. DeFoReSt slightly performs
::::::
slightly better (but not significantly better) than the drift corrected forecast5

for almost all lead years, except lead year 3 and 4. Additionally, the CRPSS with respect to climatology shows that the

recalibrated forecast outperforms a constant climatological forecast for all lead times and is significantly better for lead years

1 and 3 to 10.

5.2 Global mean surface temperature

Figures 7a and 7b show the temporal evolution of global mean surface temperature before (see equation 19) and after recalibra-10

tion
:::
andwith the corresponding NCEP 20CR reference. Before recalibration with DeFoReSt, the MiKlip Prototype hindcasts

exhibit a lead time dependent bias (drift) and a lead time dependent ensemble spread. The drift of the global mean surface

temperature is even stronger than the North Atlantic counterpart. After applying DeFoReSt, the drift of the MiKlip Prototype

was corrected and the ensemble spread is
::::::::
basicallyfairly constant for all lead times.

The ESS for a global mean surface temperature is shown in Fig. 8a. It can be seen that the recalibrated forecast is also15

perfectly reliable for the global mean surface temperature. Here, all ESS values are near one. Additionally, the recalibrated

forecast is more skillful than the drift corrected forecast for all lead years. Here, only lead year 1 and 10 are significant. The

reliability values of the drift corrected forecast indicate a significantly overconfidence for almost every lead year. As for the

North Atlantic mean, the raw model’s reliability for a global mean temperature is inferior to the post processed models.

Figure 8b shows the MSE. It is apparent that the recalibrated forecast outperforms the drift corrected forecast for all lead20

years, where the improvement for lead years 5 to 6 and 8 to 10 is significant. Moreover, theMSE of the drift corrected forecast

increases with lead years, while the MSE of the recalibrated forecast is
:::::
almost constant. Thus, this increasing difference

between these forecasts is an effect of a lead year dependency of the conditional bias.

Figure 8c shows the time mean intra-ensemble variance for the global mean surface temperature. Regarding sharpness, the

drift corrected and the recalibrated forecast perform
:::::::
similarlyequally for lead years 2 and 3. Hence, the improved reliability of25

the recalibrated forecast could not attributed to a modified ensemble spread. The explanation is that the recalibration method

also accounts for conditional and unconditional bias, while the drift correction method only addresses to the unconditional

bias. Thus, the error between observation and ensemble mean of the recalibrated forecast is lower than the error of the drift

corrected forecast (see Fig. 8b). Consequently, the drift corrected forecast is overconfident for this period (see Fig. 8a), due to

a greater error combined with an equal sharpness.30

Regarding the CRPSS, Fig. 8d shows that DeFoReSt performs significantly better than the drift corrected forecast for lead

years 1, and 8 to 10. Furthermore, the CRPSS shows that these forecasts also outperforming the climatology, where the

improvement of the drift corrected forecast against climatology is solely not significant for lead years 8 to 9. The CRPSS of

the raw model is smaller than -1 for all lead years and therefore out of the shown range.
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All in all, the better CRPSS performance of DeFoReSt model could be explained due to a superior reliability for all lead

years (see Fig. 8a).

6 Summary and conclusions

There are many studies describing recalibration methods for weather and seasonal forecasts (e.g., Gneiting et al., 2005; Weigel

et al., 2009). Regarding decadal climate forecasts, those methods cannot be applied easily, because decadal climate prediction5

systems on that time scale exhibit characteristic problems including model drift (lead time dependent unconditional bias) and

climate trends which could differ from observations. In this regard Kruschke et al. (2015); Kharin et al. (2012) proposed

methods to account for lead and start time dependent unconditional biases of decadal climate predictions.

In addition to unconditional biases, probabilistic forecasts could show lead and start year dependent conditional biases and

under- or overdispersion. Therefore, we proposed the post processing method DeFoReSt which accounts for the three above10

mentioned issues. Following the suggestion for the unconditional bias (Kruschke et al., 2015), we allow for the conditional

bias and the ensemble dispersion to change polynomially with lead time and linearly with start time. Two advantages of a

polynomial fit over the common exponential fit (e.g., as proposed by Kharin et al. (2012)) are stated by Gangstø et al. (2013):

First, for a small sample size (this is given for decadal climate predictions) the fit of an exponential with offset is relatively

difficult and unreliable. Second, a polynomial approach can capture a local maximum/minimum of the above mentioned errors15

at a specific lead time; the evolution of these errors may be non-monotonous.
::::::::
FollowingAnalog to Kruschke et al. (2015), we

chose a third order polynomial approach for the correction parameter of the unconditional bias and the conditional bias. A

second order polynomial approach is chosen for the correction parameter of the ensemble dispersion. Note that these choices

might influence the resulting forecast skill. It might be worth using a transparent model selection strategy, this is topic of

future research. The associated DeFoReSt parameters are estimated by minimization of the CRPS (Gneiting et al., 2005). The20

CRPSS, the ESS, the time mean intra-ensemble variance (as measure for sharpness) and the MSE assess the performance

of DeFoReSt. All scores were calculated with 10 year block-wise cross-validation.

We investigated DeFoReSt using toy model simulations with high (η = 0.8) and low potential predictability (η = 0.2). Errors

based on the same polynomial structure as used for the recalibration method were impose
:
d. DeFoReSt is compared to a

conventional drift correction and a perfect toy model without unconditional bias, conditional bias
::
orand ensemble spread25

dispersion was used as a benchmark. Here, the recalibration and drift correction benefits from the fact that the structure of errors

imposed is known. Although the model for the error structure is flexible, the gain in skill is an upper limit to other applications

where the structure of errors is unknown. Conclusions on the relative advantage of DeFoReSt over the drift correction for

different potential predictability setups, however, should be largely unaffected by the choice of toy model errors.

A recalibrated forecast shows (almost) perfect reliability (ESS = 1). Sharpness can be improved due to the correction30

of conditional and unconditional biases. Thus, given a high potential predictability (η = 0.8), recalibration leads to major

improvements in skill (CRPSS) over a climatological forecast. Forecasts with low potential predictability (η = 0.2) improve

also but the gain in skill (CRPSS) over a climatological forecast is limited. In both cases, reliability, sharpness and thus

15



CRPSS of the recalibrated model are almost equal to the perfect model. DeFoReSt outperforms the drift corrected forecast

with respect toCRPSS, reliability andMSE, due to additional correction of the conditional bias and the ensemble dispersion.

The differences between these two post processed forecasts are, however, smaller for the low potential predictability setup.

We also applied DeFoReSt to surface temperature data of the MiKlip Prototype decadal climate forecasts, spatially averaged

over the North Atlantic subpolar gyre region and a global mean. Pronounced predictability for these cases has been identified by5

previous studies (e.g., Pohlmann et al., 2009; van Oldenborgh et al., 2010; Matei et al., 2012; Mueller et al., 2012). Nonetheless,

both regions are also affected by model drift (Kröger et al., 2017, submitted). The North Atlantic region shows an overconfident

forecasts for all lead years for the raw model output. The drift corrected forecast is underconfident for lead years 8 to 10. The

recalibrated forecast is almost perfectly reliable for all lead years (ESS = 1) and outperforms the drift correction method

with respect to CRPSS for lead years 1 and 2 and 5 to 10. For the global mean surface temperature DeFoReSt significantly10

outperforms the drift corrected forecast for several lead years with respect to CRPSS. The CRPSS in for the global case

is generally higher than for the North Atlantic region. The recalibrated global forecast is perfectly reliable; the drift corrected

forecast, however, tends to be overconfident for all lead years. This is in accordance to other studies suggesting that ensemble

forecasts typically underestimate the true uncertainty and tend to be overconfident (Weigel et al., 2009; Hamill and Colucci,

1997; Eckel and Walters, 1998). DeFoReSt thus accounts for both, underdispersive and overdispersive forecasts.15

DeFoReSt with third/second order polynomials is quite successful. However, it is worthwhile investigating the use of order

selection strategies, such as LASSO (Tibshirani, 1996) or information criteria. Furthermore parameter uncertainty due to a

small training size may result in forecast that are still underdispersive after recalibration. For the seasonal scale, this has been

discussed by Siegert et al. (2015). However, for decadal climate forecasts, this aspect should be further considered in future

studies. Recalibration based on CRPS-minimization is computationally expensive which might become problematic if not20

regional means but individual grid points are considered. As an alternative to CRPS-minimization Vector Generalized Linear

Model (VGLM, Yee, 2008) might be considered which have been implemented in an efficient way.
:::
We

::::::::
proposed

:::::::::
DeFoReSt

::
to

:::::::::
recalibrate

::::::::
ensemble

:::::::::
predictions

:::
of

:
a
::::::
single

::::::
model.

::::::::
However,

:::::::::
DeFoReSt

:::::
needs

::
to

:::
be

:::::::
modified

::
if
::
it
::::::
should

::
be

:::::::
applied

::
to

::
a

:::::::::
multimodel

::::::::::
prediction.

::::
This

::
is

::::::::
necessary

:::::::
because

::::::
single

::::::::
ensemble

::::::::
members

::
of

::
a
::::::::::
multimodel

::::
may

:::::
differ

::
in

:::::
their

:::::::::
systematic

:::::
errors

:::::::
(Tebaldi

::
et

:::::::
al,2005;

:::::::
Arisodo

::
et

::
al.

::::::
2017).25

Based on simulations from a toy model and the MiKlip decadal climate forecast system we could show that DeFoReSt is a

consistent recalibration strategy for decadal forecast leading to reliable forecast with increased sharpness due to simultaneous

adjustment of conditional and unconditional biases depending no lead-time.

Code and data availability. The NCEP 20CR reanalysis used in this study are freely accessible through NCAR (National Center for Atmo-

spheric Research) after a sim- ple registration process. The MiKlip Prototype data used for this paper are from the BMBF-funded project30

MiKlip and are available on request. The post-processing, toy model and cross-validation algorithms are implemented using GNU licensed

free software from the R Project for Statistical Computing (http: //www.r-project.org).Our implementations are available on request.
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Appendix A: Construction of the toy model’s free parameters

For this toy model setup, χ(t,τ) and ψ(t,τ) are obtained from α(t,τ) and β(t,τ) as follows:

χ(t,τ) =−α(t,τ)

β(t,τ)
(A1)

ψ(t,τ) =
1

β(t,τ)
(A2)

ω(t,τ) =
1

γ(t,τ)
. (A3)5

The parameters χ(t,τ), ψ(t,τ) and ω(t,τ) are defined such that a perfectly recalibrated toy model forecast fCal would have

the following form:

fCal
i (t,τ) = α(t,τ) +β(t,τ)µens(t,τ) + γ(t,τ)εi, (A4)

where εi is the deviation of each ensemble member i from the ensemble mean µens(t,τ). Here, σ2
ens is the ensemble variance.

Writing (A4) as Gaussian distribution and applying the definitions of µens (Eq. 21) and σens (Eq. 22) leads to10

fCali (t,τ)∼N (α(t,τ) +β(t,τ)(χ(t,τ) +ψ(t,τ)µx(t,τ)),γ(t,τ)ω(t,τ)σ2
εx(t,τ)), (A5)

and applying the definitions of χ(t,τ), ψ(t,τ) and ω(t,τ) (Eqs. A1-A3) to (A5) would further lead to:

fCali (t,τ)∼N (α(t,τ)−β(t,τ)
α(t,τ)

β(t,τ)
+
β(t,τ)

β(t,τ)
µx(t,τ),

γ(t,τ)

γ(t,τ)
σ2
εx(t,τ)), (A6)

This shows that fCal is equal to the perfect toy model fPerf(t,τ) (Eq. 23):

fCal(t,τ)∼N (µx(t,τ),σ2
εx(t,τ)). (A7)15

This setting has the advantage that the perfect estimation of α(t,τ), β(t,τ) and γ(t,τ) is already known prior to calibration

with CRPS-minimization.

Following the suggestion of Kruschke et al. (2015), a third order polynomial approach was chosen for unconditional α(t,τ)

and conditional bias β(t,τ) as well as for the inflation factor ω(t,τ), yielding

α(t,τ) = (a0 + a1t) + (a2 + a3t)τ + (a4 + a5t)τ
2 + (a6 + a7t)τ

3 , (A8)20

β(t,τ) = (b0 + b1t) + (b2 + b3t)τ + (b4 + bv5t)τ
2 + (b6 + b7t)τ

3 and (A9)

ω(t,τ) = (w0 +w1t) + (w2 +w3t)τ + (w4 +w5t)τ
2 + (w6 +w7t)τ

3 . (A10)

For the current toy model experiment, we exemplarily specify values for ui and vi as obtained from calibrating the ensemble

mean of MiKlip Prototype GECCO2 (f̄Prot) surface temperature over the North Atlantic against NCEP 20CR reanalyses

(Tobs):25

E(Tobs)
::::::

E[Tobs]∼(a0 + a1t) + (a2 + a3t)τ + (a4 + a5t)τ
2 + (a6 + a7t)τ

3+

((b0 + b1t) + (b2 + b3t)τ + (b4 + b5t)τ
2 + (b6 + b7t)τ

3)f̄Prot. (A11)
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The values of the coefficients are given in Tab. A1 (upper and middle row). The last row of Tab. A1 gives the values of wi, i.e.
:
,

the series expansion of the inflation factor ω(t,τ). These are chosen such that the forecast is overconfident for the first lead

years and becoming underconfident for later lead years (see Fig. 1c).

Appendix B: Cross-validation procedure for for decadal climate predictions

We propose a cross-validation setting for decadal climate predictions to ensure fair conditions for assessing the benefit of a post5

processing method over a raw model without any post processing. All scores are calculated with a yearly moving validation

period with a length of 10 years. This means that one start year including 10 lead years was left out for validation. The

remaining start years and the corresponding lead years were used for estimating the correction parameters for the prediction

within the validation period; start years within the validation period were not taken into account. This procedure was repeated

for a start year wise shifted validation period.10

This setting is illustrated in Fig. A1 for an exemplary validation period from 1964 to 1973, i.e.
:
, the correction parameters

are estimated for all hindcasts which are initialized outside the validation period (1962; 1963; 1974; 1975,...).
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a) Unconditional bias χ(t,τ) b) Conditional bias ψ(t,τ)
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Figure 1. Unconditional bias (a, χ(t,τ)), conditional bias (b, ψ(t,τ)), and dispersion of the ensemble spread (c, ω(t,τ)) as a function of

lead year τ with respect to different start years t.
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a) Raw toy model with η = 0.8 b) Raw toy model with η = 0.2

c) Recalibrated η = 0.8 d) Recalibrated η = 0.2

Figure 2. Temporal evolution of the raw (a, b) and with DeFoReSt recalibrated (c, d) pseudo-forecast for different start years (colored lines)

with potential predictability η = 0.8 (a, c) and η = 0.2 (b, d). Each pseudo-forecast runs over 10 lead years. The black line represents the

associated pseudo-observation.
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a) Reliability η = 0.8 b) MSE η = 0.8
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c) Ensemble Variance η = 0.8 b) CRPSS η = 0.8
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Figure 3. Reliability (a), MSE (b), Ensemble Variance (c) and CRPSS (d) of the raw toy model (black line), the drift corrected toy model

forecast (red line), recalibrated (DeFoReSt) toy model forecast (blue line) and the perfect toy model (green line) for η = 0.8. The drift

correction method does not account for the ensemble spread, thus the ensemble variance of the raw model and the drift corrected forecast are

equal. For reasons of clarity the raw models CRPSS with values between -5 and -9 are not shown here.
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a) Reliability η = 0.2 b) MSE η = 0.2
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c) Ensemble Variance η = 0.2 b) CRPSS η = 0.2
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Figure 4. Reliability (a), MSE (b), Ensemble Variance (c) and CRPSS (d) of the raw toy model (black line), the drift corrected toy model

(red line), recalibrated (DeFoReSt) toy model (blue line) and the perfect toy model (green line) for η = 0.2. The drift correction method does

not account for the ensemble spread, thus the ensemble variance of the raw model and the drift corrected forecast are equal. For reasons of

clarity the raw models CRPSS with values between -3 and -9 are not shown here.
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a) Raw North Atlantic mean surface temperature

b) Recalibrated North Atlantic mean surface temperature

Figure 5. Temporal evolution of North Atlantic yearly mean surface temperature from MiKlip Prototype before (a) and (b) after recalibration

with DeFoReSt. Shown are different start years with 5 year intervals (colored lines). The black line represents the surface temperature

anomalies of NCEP 20CR. Units are in Kelvin [K].
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a) Reliability b) MSE
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c) Ensemble Variance d) CRPSS
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Figure 6. Reliability (a), MSE (b), Ensemble Variance (c), and CRPSS (d) of surface temperature over the North Atlantic without any

correction (black line), after drift correction (red line) and recalibration with DeFoReSt (blue line). The CRPSS for the raw forecasts (black

line) is smaller than -1 and therefore not shown. As the drift correction method does not account for the ensemble spread, the ensemble

variance of the raw model and the drift corrected forecast are equal. The vertical bars show the 95% confidence interval due 1000-wise

bootstrapping.
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a) Raw global mean surface temperature

b) Recalibrated global mean surface temperature

Figure 7. Temporal evolution of global yearly mean surface temperature from MiKlip Prototype (a) before and (b) after recalibration with

DeFoReSt. Shown are different start years with 5 year intervals (colored lines). The black line represents the surface temperature anomalies

of NCEP 20CR. Units are in Kelvin [K].
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a) Reliability b) MSE
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c) Ensemble Variance d) CRPSS
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Figure 8. Reliability (a), MSE (b), Ensemble Variance (c), and CRPSS (d) of global mean surface temperature without any correction (black

line), after drift correction (red line) and recalibration with DeFoReSt (blue line). The CRPSS for the raw forecasts (black line) is smaller

than -1 and therefore not shown. As the drift correction method does not account for the ensemble spread, the ensemble variance of the raw

model and the drift corrected forecast are equal. The vertical bars show the 95% confidence interval due 1000-wise bootstrapping.
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l=0 l=1 l=2 l=3 l=4 l=5 l=6 l=7

al -0.61 0.0025 0.29 -0.00046 -0.11 0.0011 0.021 -0.00029

bl 0.13 0.006 0.23 -0.0027 -0.12 0.00097 0.025 -0.000197

wl 0.3 0 0.1 0.0014 0.01 0.0001 0 0
Table A1. Overview of the values coefficients al, bl and wl.
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Figure A1. Schematic overview of the applied cross-validation procedure for a decadal climate prediction, initialized in 1964 (red dotted

line). All hindcasts which are initialized outside the prediction period are used as training data (black dotted lines). A hindcast which is

initialized inside the prediction period is not used for training (gray dotted lines).
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