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Abstract.

Understanding natural and anthropogenic climate change processes involves using computational models that represent the

main components of the Earth system: the atmosphere, ocean, sea-ice and land surface. These models have become increas-

ingly computationally expensive as resolution is increased and more complex process representations are included. However,

to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty,5

it is often required to use either or both of ensemble approaches and very long integrations. For this reason, more computa-

tionally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models

based around the coupled general circulation model HadCM3. This model was developed at the UK Met Office and has been

heavily used during the last 15 years for a range of future (and past) climate change studies but has now been largely super-

seded for many scientific studies by more recently developed models. However, it continues to be extensively used by various10

institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the

University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that

the original documentation is not entirely representative, and several other relatively undocumented configurations are in use.

We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together

make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we15

have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B),
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the coupled model with a low resolution ocean (HadCM3BL), the high resolution atmosphere only model (HadAM3BH), and

the regional model (HadRM3B). These also include three versions of the land surface scheme. By comparing with observa-

tional datasets, we show that these models produce a good representation of many aspects of the climate system, including the

land and sea surface temperatures, precipitation, ocean circulation and vegetation. This evaluation, combined with the relatively

fast computational speed (up to 1000× faster than some CMIP6 models), motivates continued development and scientific use5

of the HadCM3B family of coupled climate models, predominantly for quantifying uncertainty and for long multi-millennial

scale simulations.

1 Introduction

This paper describes the variants of the HadCM3 family of climate models (all of which can be classed as General Circulation

Models, GCMs), produced by the UK Hadley Centre/Met Office, and which remain in regular use by a number of research10

groups including the Bristol Research Initiative for the Dynamic Global Environment group (BRIDGE, http://www.bristol.ac.

uk/geography/research/bridge). HadCM3 originated in the late 1990s with developments to the atmosphere model, HadAM3

(Pope et al., 2000). Together with improvements to the ocean GCM, this enabled the development of HadCM3 (Gordon et al.,

2000), which was one of the first coupled atmosphere-ocean GCMs that did not require flux correction to maintain a reasonable

present-day climate, i.e., the artificial adjustments of water, heat and momentum in order to maintain a stable climate. It has15

been extensively used for scientific studies of future climate change (e.g., Stott et al., 2000; Johns et al., 2003; Smith et al.,

2007; Stott and Kettleborough, 2002) and is heavily cited, including in the 2007 IPCC report (Solomon et al., 2007) and was

still included in the 2013 report. The family of models have the advantage of now being very well-known in terms of their

strengths and weaknesses, as numerous studies have shown and classified model biases and forecast skill at representing the

mean climate state as well as variability (e.g., Toniazzo et al., 2007; Spencer et al., 2007). The model family has now been20

superseded by the HadGEM2 (HadGEM2 Development Team, 2011) and HadGEM3 (Williams et al., 2015) families of models.

Compared to more recent models, HadCM3 is relatively low resolution but continues to perform reasonably well, at least

with respect to its mean climate (Flato et al., 2013; Reichler and Kim, 2008). It also has the great benefit of computational speed,

being more than 1000× faster than some of the most recent and complex versions of the UK Met Office Unified Model (UM).

This computational speed is particularly valuable for long-term simulations (necessary for many palaeoclimate simulations,25

studies which investigate the carbon cycle and the evolution of ice sheets) and for large ensembles (necessary for investigating

the model’s sensitivity to multiple parameters and quantifying the uncertainty in the model’s response to forcing). Long model

runs are also crucial for understanding unforced variability in the climate system (e.g., Collins et al., 2001).

Palaeoclimate simulations typically need many hundreds of model years to reach near-equilibrium in the surface and in-

termediate ocean and many thousands of years to reach equilibrium in the deep ocean. Moreover, there recently has been an30

increasing need to be able to consider the transient behaviour of past climate change. This has previously been tackled us-

ing the HadCM3 family of models by using either multiple “snapshot” simulations (e.g., Hewitt et al., 2001; Singarayer and
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Valdes, 2010; Lunt et al., 2016; Marzocchi et al., 2015b) or by performing fully transient simulations for multi-centennial or

-millennial time scales (e.g., Tett et al., 2006; Hopcroft et al., 2014).

Faster models are also invaluable for investigating the sensitivity and robustness of results to changes in the initial conditions

of the model and changes in boundary conditions such as topography as numerous simulations can be performed (Roberts and

Valdes, 2017). Additionally, they are ideal for investigating anthropogenic changes on long timescales (Gregory et al., 2004;5

Ridley et al., 2005), and for performing perturbed parameter ensembles to rigorously calculate the probability density functions

of either the mean or extreme climates (e.g., using HadCM3 variants, Murphy et al., 2007; Booth et al., 2012; Jackson and

Vellinga, 2013; Schaller et al., 2016; Davies-Barnard et al., 2014; Armstrong et al., 2016; Stainforth et al., 2005). Computational

speed also aids more speculative studies. For instance, many early geoengineering simulations were run using variants of the

HadCM3 family of models (such as Ridgwell et al., 2009; Singarayer et al., 2009; Lunt et al., 2008; Irvine et al., 2010).10

In response to the need for fast models, Earth System Models of Intermediate Complexity (EMICs) (Claussen et al., 2002)

have been developed. These models frequently achieve their speed by heavily parameterising the atmospheric response, even

though atmospheric processes transport two-thirds of the total heat from equator to pole and play a vital role in the hydrological

cycle. It is, therefore, also important to have a class of fast models that is equivalent to full atmosphere-ocean General Circu-

lation Models (GCMs). Some EMICS do represent the dynamics of the atmosphere, for instance LOVECLIM (Goosse et al.,15

2010) uses a 3-level quasi-geostrophic atmosphere. Similarly, FAMOUS (part of the HadCM3 family) includes a full primitive

equation atmosphere but at low resolution (Jones et al., 2005; Smith et al., 2008; Smith, 2012). Hence the division between

EMICs and full complexity models is becoming increasingly blurred and we consider that the HadCM3 family provides a

further bridge in the spectrum of models between intermediate complexity models and full complexity, state-of-the art models.

Since its introduction, HadCM3 (and related models) has undergone a number of changes, bug fixes and adaptations. The20

original model described in Pope et al. (2000) and Gordon et al. (2000), i.e., HadCM3 with MOSES1, is still used but now

many other versions exist. Some groups have largely stuck to the standard release of the model (e.g., Stainforth et al., 2005).

Other groups have incorporated a variety of bug fixes and scientific changes, in particular, many papers have used a revised

land surface scheme, MOSES2.1 (e.g., Dolan et al., 2015) but this is relatively poorly documented.

Therefore in this paper, we aim to rectify this for the wide range of HadCM3 variants currently in use within the BRIDGE25

modelling group. Our implementations of the models have diverged from other versions and so here we aim to provide clear

documentation of our version of each model. In order to do this more clearly, we use the nomenclature HadCM3B, in order

to differentiate model variants that have undergone development at Bristol to those originally developed at the Met Office. We

have followed a specific modelling philosophy in which we attempt to minimise the differences between model configurations,

particularly when changing resolution. For instance, previously published descriptions of HadRM3 (Jones et al., 1995) and30

HadAM3H (Hudson and Jones, 2002), Arnell et al. (2003) use slightly improved physics to HadCM3 but we choose to keep

the same physics (except for specific changes related to resolution).

We include detailed descriptions of each module of the models, differences between variants and comparison with observa-

tions across a range of metrics. This will increase transparency, traceability, and scientific openness. By detailing the changes

and variations of these models, and providing an extensive comparison to observational data, we hope to show that these
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models remain useful tools for climate simulation and are suitable for further scientific use. Furthermore, we shall show that

despite their relative simplicity, the models simulate the modern climate with comparable accuracy to many of the latest CMIP5

models.

To this end, we first describe the “base” model, which we term HadCM3B-M1. This is essentially almost identical to that5

of Gordon et al. (2000) but with some minor modifications made by BRIDGE detailed in Sect. 2.1), to which all the other

models will be compared (Sect. 2). As such, because it is largely simply bug fixes, it could be argued that HadCM3B-M1 is

not a different model to the original but we include it for completeness. We then subsequently discuss different land surface

schemes (Sect. 3), followed by model variants with different ocean or atmospheric resolutions (Sect. 4). Finally, we evaluate

the models’ performance when compared to observations and CMIP5 models, to show that they recreate many key aspects of10

the climate system, and show which models are more suitable for certain applications (Sect. 5).

1.1 Overview of HadCM3@Bristol

The family of models has at its core HadCM3. From this core, variants are derived according to resolution, land-surface

scheme, and components. In order to distinguish variants that have undergone further development at Bristol to those originally

developed at the Met office, we include the letter B for Bristol in the model acronym. As discussed in the text, the changes15

between the Bristol and Met Office variants are small in some cases, however we believe they warrant documentation to

remove ambiguity. The model family is then split into groups: HadCM3B, HadCM3BL (HadCM3B but lower ocean resolution),

HadAM3B (HadCM3B but atmosphere-only), HadAM3BH (HadAM3B but higher resolution), HadRM3B (HadAM3B but

regional), and FAMOUS (HadCM3L but lower atmosphere resolution).

FAMOUS is a low resolution model derived from HadCM3, sharing much of the same physics, but with some numerical20

modifications suitable for the low resolution and which give quicker run times. It is well documented elsewhere (Jones, 2003;

Smith et al., 2008) and will not be described again in detail here, although some comparisons with FAMOUS are included for

completeness.

Run times for M1 model versions are compared in table 3 for typical configurations. This demonstrates the efficiency of

FAMOUS-M1 at around several modelled centuries per day on just 8 cores, and the relatively high computational cost of the25

two high resolution model versions (HadAM3BH and HadRM3B). This compares with 1.87 model years per day on 1152

cores for the higher resolution version of HadGEM3-GC2 (Williams et al., 2015).

The nomenclature adopted for the HadCM3@Bristol model variants is Had〈Com〉M3B〈Res〉-〈Land〉〈Veg〉, where:

〈Com〉 (components) is one of:

A – atmosphere-only model30

C – coupled model

R – regional model

〈Res〉 (resolution) is one of:
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L – lower than standard resolution ocean

H – higher than standard resolution atmosphere

blank – standard resolution5

〈Land〉 (land surface scheme) is one of:

M1 – MOSES1 land surface exchange scheme

M2.1 – MOSES2.1 land surface exchange scheme

M2.2 – MOSES2.2 land surface exchange scheme

〈Veg〉 (vegetation) is one of:10

blank or N – no change to vegetation (i.e., static vegetation distribution)

E – vegetation predicted using TRIFFID, but in “equilibrium” mode

D – same as E above, but fully dynamic model

As such, the original “base” model described in Gordon et al. (2000) which has undergone some minor modifications (see

Sect. 2) is named HadCM3B-M1.15

2 HadCM3B-M1

This section describes the “core” model, HadCM3B-M1, to which all other variants will be compared in this paper. This variant

of the family was originally the most commonly used, and is still used for studies where the vegetation is known, and as such

can be prescribed, where relatively short simulations are sufficient for the science questions being addressed, and where the

ocean plays a critical role and as such high resolution is desirable (e.g., Bragg et al., 2012).20

This model is a three dimensional, fully dynamic, coupled atmosphere-ocean global climate model without flux adjustment.

Our version of the model is very similar to that described by Gordon et al. (2000). Our aim is to provide a full description of

how our version differs from that in Gordon et al. (2000) followed by a brief description of the core model. A full descrip-

tion of the Gordon et al. (2000) version can be found in the UK Met Office technical notes http://cms.ncas.ac.uk/wiki/Docs/

MetOfficeDocs; the base model code is currently available to view at http://cms.ncas.ac.uk/code_browsers/UM4.5/UMbrowser/25

index.html, but it should be noted that additional modifications are required for the full scientific definition of the model as

described here (see Sect. 7).

2.1 Modifications for the Bristol Version of HadCM3B-M1 and HadAM3B

We have benchmarked the standard version of HadCM3-M1 supplied by the UM Met office against existing model results

from the published Hadley centre version of Gordon et al. (2000) and confirmed that we could reproduce the results within the

normal statistical variability of the model. Subsequently a few relatively minor changes have been made. These include:
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Table 1. Summary of the key differences between model variants. For further details of these differences and description of the features

common to all variants, see the relevant sections of the text. Note that HadAM3B is identical to the atmosphere of HadCM3B.

Item HadCM3B HadCM3BL FAMOUS HadAMB3 HadAM3BH HadRM3B

Atmosphere

Horizontal Resolution (n) 96×73 96×73 48×37 96×73 288×217 Varies with selected

region

Horizontal Resolution (deg) 3.75◦×2.5◦ 3.75◦×2.5◦ 7.5◦×5◦ 3.75◦×2.5◦ 1.25◦×0.83◦ 0.4425◦×0.4425◦

or 0.22◦×0.22◦

Vertical Resolution 19 levels 19 levels 11 levels 19 levels 30 levels 19 levels

Timestep (mins) 30 30 60 30 10 5 or 2

Dynamics sweeps/physics timestep 1 1 1 or 2 1 2 1

Max wind test for half timestep

dynamics (m s−1)

— — — — 240 —

Convective precipitation grid box

fraction (conv_eps)

0.3 0.3 0.3 0.3 0.3 0.65 or 1.0

Large scale precipitation grid box

fraction (ls_eps)

1.0 1.0 1.0 1.0 1.0 0.75 or 1.0

Boundary layer top and number of levels

(eta/level)

0.835 / 5 0.835 / 5 0.9 / 3 0.835 / 5 0.8 / 6 0.835 / 5

Cloud levels (eta/level) 0.02 / 18 0.02 / 18 0.125 / 10 0.02 / 18 0.02 / 29 0.02 / 18

Pure pressure level start (eta/level) 0.04 / 17 0.04 / 17 0.06 / 11 0.04 / 17 0.04 / 28 0.04 / 17

Gravity wave drag start (eta/level) 0.956 / 3 0.956 / 3 0.9 / 3 0.956 / 3 0.956 / 3 0.956 / 3

Surface gravity wave constant (m) 2.0×104 2.0×104 2.0×104 2.0×104 1.6×104 2.0×104

Trapped lee wave constant (m−3/2) 3.0×105 3.0×105 3.0×105 3.0×105 2.4×105 3.0×105

Filtering safety multiplying factor 0.01 0.01 0.011 0.01 0.1 —

Filtering wave numbers checked every 1 timestep 1 timestep 1 timestep 1 timestep 6 hours —

Steep slope horizontal diffusion off until

pressure level (kPa)

20 20 20 20 20 50

Diffusion coefficient (m6 s−1) * 5.47×108 5.47×108 4.19×109 5.47×108 4.0×107 1.7×107

Diffusion power (dimensionless) * 6 6 8 6 4 4

Humidity diffusion coefficient (m6 s−1 /

m4 s−1) *
5.47×108

1.5×108
5.47×108

1.5×108
2.4×108 5.47×108

1.5×108
2.0×107

4.0×107
1.7×107

Humidity diffusion power

(dimensionless) *
6

4

6

4

4 6

4

4 4

RHcrit * 0.95

0.7

0.95

0.7

0.91

0.687

0.95

0.7

0.95

0.8

0.91

0.84

0.95

Ocean

Horizontal Resolution (n) 288×144 96×73 96×73 — — —

Horizontal Resolution (deg) 1.25◦×1.25◦ 3.75◦×2.5◦ 3.75◦×2.5◦

Vertical Resolution 20 levels to 5500 m 20 levels to 5500 m 20 levels to 5500 m — — —

North Atlantic Bathymetry Standard Met.

Office

No Iceland No Iceland — — —

Vertical Tracer Diffusivity Richardson Number

dependence

Constant

background value

Constant

background value

— — —

Coefficient for Solar Penetration (ratio) 0 3.8×10−1 3.8×10−1 — — —

Horizontal Momentum Diffusion

Coefficient (m2 s−1)

3×103 1.5×105 1.5×105 — — —

Isopycnal Diffusion Coefficients

(m2 s−1)

Visbeck et al.

(1997) latitudinally

varying scheme

Constant values Constant values — — —

Sea Ice Diffusion (m2 s−1) 6.7×102 2.0×103 2.0×103 — — —

* Level dependent parameters (where multiple values are given, this indicates the range from surface to top-of-atmosphere (TOA))

2.1.1 HadCM3B-M1

– Correction of a small bug in the Visbeck horizontal eddy mixing scheme (Visbeck et al., 1997) which was originally

included in the standard configuration of the model to ensure compatibility with previous versions.
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Table 2. Availability of alternative land surface schemes.

Item HadCM3B HadCM3BL FAMOUS HadAM3B HadAM3BH HadRM3B

MOSES1 HadCM3B-M1 HadCM3BL-M1 FAMOUS-M1 HadAM3B-M1 HadAM3BH-M1 HadRM3B-M1

MOSES2.1 HadCM3B-M2.1 HadCM3BL-M2.1 — HadAM3B-M2.1 HadAM3BH-M2.1 *

MOSES2.1 TRIFFID (D and E) HadCM3B-M2.1 HadCM3BL-M2.1 — HadAM3B-M2.1 HadAM3BH-M2.1 *

MOSES2.2 HadCM3B-M2.2 HadCM3BL-M2.2 FAMOUS-M2.2 * * *

MOSES2.2 TRIFFID (D and E) HadCM3B-M2.2 HadCM3BL-M2.2 FAMOUS-M2.2 * * *

* Variant currently does not exist but there is no barrier to creation

Table 3. Computational performance of M1 configurations.

HadCM3B-M1 HadCM3BL-M1 FAMOUS-M1 HadAM3B-M1 HadAM3BH-M1 HadRM3B-M1

Cores 16 16 8 16 64 16

Speed (model years/day) 47 85 450 109 5 6

Cost (model years/day/core) 3.0 5.3 56.3 6.8 0.07 0.4

– Use of versions of the radiation and primary field advection schemes that are scientifically identical to the standard5

version and which make the model faster but are not bit reproducible.

2.1.2 HadAM3B

– Fixes to a few array bounds errors (which may or may not have an impact on the scientific results).

– Multiple other bug fixes which did not change the science but corrected problems with some aspects of the code and

diagnostic outputs.10

– There were two small bugs in the conservation of atmospheric mass, and the computation of vertical velocity, fixes to

which are not included in the standard release version of HadAM3 but are included in HadCM3B. We include these

bug-fixes in all versions of the code so that our atmosphere model (HadAM3B) is 100 % identical to the atmosphere

component of our version of HadCM3B.

– There is also another important code fix (Steenman-Clark, pers. comm) which is vital to include. If this is not included,15

then some compilers will lead to a large (e.g., 0.75 ◦C bias in global mean surface air temperature) error in mean climate.

These modifications are included in the supplementary information. The overall impact of these changes on the climate

simulation is very small.

2.2 Atmosphere (HadAM3B)

The atmosphere component of HadCM3B is almost identical to the atmosphere component of HadAM3B, which is the20

atmosphere-only variant with fixed sea surface temperatures (SST). The modifications made at Bristol are highlighted in Sect.

2.1, beyond which the model is the same as that described by Pope et al. (2000). HadAM3B has a Cartesian grid with a hor-

izontal resolution of 96×73 grid points (3.75◦ longitude×2.5◦ latitude) with 19 hybrid levels (sigma levels near the surface,
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changing smoothly to pressure levels near the top of the atmosphere) in the vertical (Simmons and Strüfing, 1983) and uses a

30-minute timestep. HadAM3B solves the primitive equation set of White and Bromley (1995) which includes certain terms5

necessary to conserve both energy and angular momentum. Equations are solved through the use of a grid-point scheme, specif-

ically the Arakawa staggered B-grid (Arakawa and Lamb, 1977), on a regular latitude-longitude grid in the horizontal. At high

latitudes, Fourier filtering of higher wave-number dynamics is used to remove subgrid-scale variability. A split-explicit time

scheme conserves mass, mass weighted potential temperature, moisture and angular momentum, and ensures the reliability for

solving equations on long time scales, which is particularly important for climate modelling (Van der Wal, 1998).10

As with any climate model, a number of parameterisation schemes are needed within HadAM3B to represent certain physical

processes which occur on sub-grid scales:

– Precipitation is dealt with in two schemes: i) the large-scale precipitation scheme, and ii) the convection scheme. The

large-scale precipitation scheme removes cloud water resolved on the grid-scale, i.e., frontal precipitation. This is done

via a simple bulk parameterisation scheme converting water content into precipitation (Wilson, 1998). The convection15

scheme (Gregory et al., 1997) uses a mass-flux scheme with the addition of convective downdrafts.

– A first order scheme for turbulent vertical mixing of momentum and thermodynamic quantities is used within the bound-

ary layer, which can occupy up to the first five layers of the model. Sub-gridscale gravity wave and orographic drag

parameterisations include the impact of orographic variance anisotropy (Gregory et al., 1998). The scheme comprises

four elements: i) “Triggering” which determines whether the physical conditions within the grid-box constitute con-20

vection taking place; ii) “Cloudbase closure” controlling the intensity of convection which is determined by the mass

transported through the cloudbase; iii) a transport model where temperature, moisture, wind fields and thus precipitation,

are determined and iv) “Convective cloud scheme” where cloud fractions derived from convection are calculated which

will be used by the radiation scheme (Grant, 1998).

– In the real world, clouds are formed on scales far below that of the coarse grid used in HadAM3B, therefore there is the25

need for a statistical parameterisation of this variable. Probability Density Functions are used on the total water content

over the grid-box mean to parameterise cloud amount/distribution and longevity (Bushell, 1998). Clouds are modelled

as either water, ice or mixed-phase when the temperature in the model level is between 0 ◦C and −9 ◦C. Clouds form

when the mean plus the standard deviation of the grid-cell moisture content exceeds a threshold of relative humidity (see

RHCrit in Table 1 for numerical values). This cloud water content can then be used to produce a cloud fraction for each30

grid-box (Bushell, 1998). The threshold of total water content for precipitation to occur varies between land and ocean

cells to account for the different levels of available cloud condensation nuclei. The scheme uses temperature through the

vertical levels to determine the ice and water phases to determine cloud water content.

– Radiation is represented using the radiation scheme of Edwards and Slingo (1996). This scheme has six short wave

and eight long wave bands and represents the effects of water vapour, carbon dioxide, ozone and minor trace gases.

A background aerosol climatology following Cusack et al. (1998) increases the atmospheric absorption of short wave
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radiation relative to previous versions representing a significant improvement. The long wave and short wave spectral5

scheme used (“3A” of Ingram et al., 1997) is an improvement over the previous versions as it allows the freedom of

choices of cloud parameterisation, gases and aerosols to be included through spectral input files (Edwards, 1998).

– Horizontal diffusion takes the form k∇N where both k and N can vary with vertical levels and with variable. The standard

resolution of the model uses a formulation k1∇6 where k1 = 5.47×108 m6 s−1 corresponding to a e-folding time scale

for the two-grid wave of approximately 12 hours. The top most level in the model uses a stronger diffusion of the form10

k2∇2 where k2 = 4.0×106 m2 s−1. Moisture also has stronger diffusion in the five levels below the top (approximately

from 150 hPa) corresponding to km∇4 where km = 1.5× 108 m4 s−1. The functional form and strength of diffusion for

other resolutions is summarised in Table 1.

Boundary conditions for the model include the land sea mask, orography and its subgrid scale variability (originally de-

rived from the US Navy updates 10’ dataset), and a range of soil and vegetation parameters (originally derived from data in15

Wilson and Henderson-Sellers (1985). The model also needs to be initialised with soil moisture and snow cover (based on

Willmott et al., 1985), and deep soil temperatures (empirically derived using Warrilow et al. (1986). When the model is run

in atmosphere-only mode, i.e., HadAM3B, sea surface temperature and sea ice (concentration and depth) are required to be

prescribed. These can be derived from observational data or from coupled model simulations.

2.3 Ocean20

The ocean component has a horizontal resolution of 288×144 grid points (1.25◦×1.25◦) (Gordon et al., 2000) and, as with the

atmosphere, also uses Fourier filtering at high latitudes. The higher resolution means that six ocean grid cells correspond to

each atmosphere grid cell. In order to simplify the coupling of the atmosphere and ocean models, the land-sea mask is defined

at the atmosphere resolution; therefore, the ocean model’s coastlines appear relatively coarse. In the vertical there are 20 depth

levels with finer definition at the ocean surface, with the top-most model layer being 10 m thick and the bottom-most 616 m25

thick. The ocean timestep is one hour. The ocean and atmosphere modules are coupled once a day with no flux adjustment

necessary.

The ocean model is based on the model of Cox (1984) and is a full primitive equation, three dimensional model of the ocean.

A second order numerical scheme is used along with centred advection to remove non linear instabilities. The Arakawa B-grid

is used for staggering of tracer and velocity variables, allowing for more accurate numerical calculations of geostrophically30

balanced motion. It uses a rigid lid which eliminates fast external mode gravity waves found in the real ocean, thus allowing

for longer timesteps, and with the result that there is no variation in the volume of the ocean. The barotropic solver requires the

pre-specification of “islands” around which the barotropic circulation may occur (see Sect. 4.1.5).

As with the atmosphere, the ocean model also requires a number of parameterisations:

– The ocean mixed layer is represented by the Kraus and Turner (1967) model which assigns 15 % of gravitational potential

energy and 70 % of wind-stress energy to turbulent kinetic energy, which is mixed out exponentially with depth. At all5

depths, five iterations of convective mixing are carried out at each timestep. Tracer and momentum mixing is modelled
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using the K-Theory scheme. Within the mixed layer a simplified version of the Large et al. (1994) scheme is employed:

below this the Pacanowski and Philander (1981) K-Theory parameterisation is used.

– Momentum mixing is approximated using diffusion that is governed by a coefficient that consists of two terms: a constant

background value and a term dependent on the local Richardson number. For tracers, diffusion increases with depth as10

detailed in Table A of Gordon et al. (2000).

– Horizontal eddy mixing of tracers is carried out using the isopycnal parameterisation of Gent and McWilliams (1990),

with thickness diffusion coefficients modified following the method of Visbeck et al. (1997). Isopycnal mixing uses the

Griffies et al. (1998) implementation of the Griffies et al. (1982) scheme. The along-isopycnal diffusion coefficient is

1000 m2 s−1. Horizontal mixing of momentum is performed using a latitudinally varying formulation which, coupled15

with the finer resolution of the ocean grid, enables western boundary currents to be resolved.

– There is no dynamic connection between the Mediterranean Sea and Atlantic Ocean so it is modelled as a “diffusive

pipe” by completely mixing the easternmost point of the Atlantic with the westernmost point of the Mediterranean.

Mixing occurs over the top 13 layers, to a depth of 1200 m, on the assumption that Mediterranean water will sink to at

least this depth. A similar parameterisation is applied in the outflow of the Hudson Bay.20

– Ice sheets are not modelled dynamically, therefore the snow accumulation on surface land ice points and over isolated

water bodies must be balanced by loss through a notional iceberg calving that is represented as a time-invariant freshwater

flux (which, because of the rigid lid, is converted to a virtual salinity flux). This is distributed around the edge of the

ice sheets and polar oceans. The virtual salinity flux is calculated using a globally constant reference salinity, which can

distort the local response to the surface water forcing. River runoff is instantaneously transferred to the ocean using a25

prescribed runoff map.

The modern bathymetry for the model is derived from the ETOPO5 reconstruction (Edwards, 1989) using a simple smooth-

ing algorithm. The geometry of some significant channels is modified from the resulting coarse interpolation to ensure a more

realistic model performance (Gordon et al., 2000). For example, the Greenland–Scotland ridge and Denmark Strait have sig-

nificant sub-gridscale channels which are lost in the smoothing and so have been re-created by deepening channels (single30

cell width) in three locations along the ridge to reproduce the mean outflow to match observations, and the bathymetry around

Indonesia is modified to ensure that flow occurs between Indonesia and Papua New Guinea but not between Indonesia and the

mainland of Asia.

2.4 Sea ice

Sea ice is calculated as a zero layer model on top of the ocean grid. Partial cell coverage of sea ice is possible up to 0.995 in the

Arctic and 0.98 in the Antarctic. This is based on the parameterisation of sea ice concentration from Hibler (1979). Ice forms

primarily by freezing in leads, although ice can also form from snow falling on existing ice. It is assumed to freeze at the base5

of the sea ice at the freezing point of −1.8 ◦C. A constant salinity is assumed for ice, with the excess salt on melting/formation
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added as a flux into the ocean. Sea ice dynamics are simply parameterised: the surface wind stress over sea ice is applied to the

ocean beneath the ice, and the ice thickness, concentration and accumulated snow then drift following the ocean currents in the

top model layer (Gordon et al., 2000). The maximum depth that sea ice can reach due to convergence from drift is limited to

4 m in depth, although it may subsequently thicken further due to freezing. The albedo of sea ice is set at 0.8 for temperatures10

below −10 ◦C and 0.5 for temperatures above 0 ◦C, with a linear variation between these values.

2.5 Land Surface Scheme: MOSES1

The land surface scheme MOSES (Met Office Surface Exchange Scheme) is built upon the previous Met Office land surface

scheme (UKMO) (Warrilow and Buckley, 1989). In the Gordon et al. (2000) version of HadCM3, MOSES Version 1 MOSES1,

is used. A technical overview of MOSES1, a comparison to its predecessor (UKMO) and its climatological impact is provided15

by Cox et al. (1999).

In addition to calculating the fluxes of water and energy, MOSES1 incorporates the physiological impact of atmospheric

carbon dioxide, water vapour and temperature on photosynthesis and stomatal conductance. It accounts for the effects of

freezing and melting of soil moisture in four soil layers, the proportion of frozen soil moisture being a function of the soil

heat capacity and conductivity of the grid cell. Both vegetated and non-vegetated land surface types are characterised by a set20

of surface properties that are not updated during the model run. The canopy scheme is based on that used in Warrilow et al.

(1986).

MOSES1 has two sets of prescribed land surface property attributes, which are input into the model via two external files. The

soil attributes are volumetric soil moisture concentration at the wilting point, critical point, field capacity, and saturation, the

saturated hydrological soil conductivity, the Clapp–Hornberger B exponent, the thermal capacity of soil, thermal conductivity25

of soil, and the saturated soil water suction. (The Clapp–Hornberger exponent is a measure of the pore volume distribution and

the formulation was originally devised in Brooks and Corey (1964)).The vegetation attributes are root depth, snow free albedo,

stomatal resistance to evaporation, surface roughness, canopy water capacity, infiltration enhancement rate, deep snow albedo,

leaf area index and canopy height of vegetation fraction. All of these attributes are derived from the Wilson and Henderson-

Sellers (1985) data set.30

3 Alternative Land Surface Schemes

Section 2.5 describes the MOSES1 land-surface scheme which is used in the standard version of HadCM3. Here we describe

two other versions, MOSES2.1 and MOSES2.2, as well as the vegetation component TRIFFID.

3.1 MOSES2

MOSES1 requires maps of vegetation properties, such as root depth and leaf area index, to be prescribed (normally in a set

of external files). As such, it is not very suitable for an interactive vegetation model. As part of the process of developing a5

dynamic vegetation module for HadCM3, an upgraded land surface scheme, MOSES2, was also developed. The first version
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of this scheme, MOSES2.1, is the original scheme used in early work with dynamic vegetation (Cox et al., 2000). This ver-

sion was originally coupled to HadCM3LC (Cox et al., 2000), which is a flux-corrected low resolution version of HadCM3

which includes a carbon cycle. MOSES2.1 was further developed for use in HadCM3 as part of the Paleoclimate Modelling

Intercomparison Project Phase II (PMIP2) (Braconnot et al., 2007). Subsequently, a second version of MOSES2 was devel-10

oped, MOSES2.2 (Essery et al., 2001, 2003) which was similar scientifically to MOSES2.1 but had improved code structure.

This has become the initial core of the land surface model JULES (Best et al., 2011; Clark et al., 2011). At the University of

Bristol, we have mainly used MOSES2.1, with MOSES2.2 only being used in a few specific contexts such as for investigating

changes in atmospheric chemistry (Valdes et al., 2005; Beerling et al., 2011) because it can include additional parameterisa-

tions of isoprene emissions. MOSES2.2 can also be used in FAMOUS (Williams et al., 2013) though the majority of FAMOUS15

publications have used MOSES1.

A detailed discussion of the upgrades between MOSES1 and MOSES2.2 is provided in Essery et al. (2003) and a full and

complete technical overview of MOSES2.2 in Essery et al. (2001). But so far there have been no clear comparisons as to how

MOSES2.2 differs scientifically or technically from MOSES2.1, despite MOSES2.1 being the core version used at Bristol.

The following sections aim to rectify this and clarify the differences between MOSES2.2 and MOSES2.1. First we outline how20

MOSES2.2 differs from MOSES1.

3.1.1 Differences between MOSES2.2 and MOSES1

Compared to MOSES1, MOSES2.2 has major upgrades to all aspects of the land surface exchange and the surface radiation

scheme Essery et al. (2003). The surface radiation scheme has an updated coupling between the land surface and atmosphere,

including the calculation of surface net radiation and surface heat and moisture fluxes. MOSES2.2 allows fractional coverage of25

different surface types on a sub-grid scale. There are nine land-surface types explicitly modelled at a sub-grid scale, each with

a set of characteristic parameters. MOSES2.2 can be fully coupled to the dynamic vegetation model TRIFFID (see Sect. 3.2)

via the five plant functional types (PFTs): broadleaf trees, needleleaf trees, shrubs, C3 (temperate) grasses and C4 (tropical)

grasses. The remaining four are non-vegetated surface types; urban, inland water, bare soil, and ice. Excluding ice type, each

land-surface grid box can be made up of any mixture of the other eight surface types. Land ice must have fractional cover of30

0 or 1 only. The fractional coverage for each surface type is specified for each grid point from an external file. In addition,

another file is supplied specifying the necessary parameters for the five vegetation types at each gridpoint: leaf area index

(LAI), canopy height and canopy conductance (not PFT dependent). The vegetation fractions and parameters will be updated

by TRIFFID if it is being used. Other PFT dependent parameters, including root depth and values of albedo under a variety of

conditions, are hard-wired into the code.

In MOSES1, the surface energy and moisture fluxes are calculated based on grid box average values of parameters (such as

roughness length etc.). In MOSES2.2, the surface energy balance is explicitly solved for each surface type, and then weighted

by the fractional area of the surface types within the grid box. This produces the grid box average surface temperature and soil

moisture and fluxes of long wave, short wave, sensible, latent and ground heat. Above the surface, air temperature, humidity and5

wind speed on atmospheric levels are treated as homogeneous across the grid box. Similarly, soil temperatures and moisture
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contents are also treated as homogeneous. The aerodynamic surface roughness lengths are calculated explicitly according to

the canopy height and the rate of change of roughness length with canopy height for each tile. This roughness length is used

to calculate surface-atmosphere fluxes of heat, water, momentum and CO2. The surface albedo determines the amount of

downward short wave heat flux that is reflected at the surface. The surface albedo for fractional covered vegetated surface types10

(unweighted) is described by the snow-free and cold deep snow albedos. The soil albedo is defined according to colour and

moisture content. LAI is also used in determining the surface albedo for surfaces covered by vegetation.

The hydrological cycle in MOSES2.2 is similar to MOSES1 with small changes for the interactions with vegetation. How-

ever, it continues to treat each tile separately so extraction of water from the soil is calculated for each tile and then weighted

summed to give the grid box average. Precipitation is partitioned into interception (via the canopy), throughfall, run-off and15

infiltration into the ground. Different parameters apply to each vegetation type. Canopy water refers to the precipitation inter-

cepted by plant leaves available for free evaporation. MOSES 2 uses the same four soil layers as MOSES1, with thicknesses

from the surface downwards set to 0.1 m, 0.25 m, 0.65 m and 2 m. Moisture content of the upper soil layer (0.1 m) is increased

via snow melt and throughfall and decreased according to evaporation from the soil layer, flow of water into lower layers and

draw up of water via plant roots. The extraction of water from any particular soil layer is proportional to the water lost by20

evapotranspiration reflecting the vertical distribution of roots. The five PFTs have different root depths, such that trees are able

to access moisture from soil layers at deeper depths compared with grasses and shrubs. The soil moisture content and soil water

phase changes and the associated latent heat describe the thermal characteristics of soil that determine, via discretised form

of the heat diffusion equation, the subsurface temperatures. Subsurface soil temperatures are determined by the diffusive heat

fluxes into and out of a soil layer and the heat flux advected from the layer by the moisture flux.25

MOSES2 requires similar soil parameter inputs to MOSES1 although it additionally requires bare soil albedo and soil

carbon content of the soils. However, the vegetation properties are very different. MOSES1 required inputs of grid box average

LAI, root depth, etc., whereas MOSES2 requires prescribed inputs of the fractional types of each surface type, the LAI and

canopy height of each vegetated PFT, and the overall canopy conductance. It also includes a disturbance fraction that represents

agriculture. If using dynamic vegetation (TRIFFID), then these fields (except for disturbance) are only used for initialisation30

and the model will dynamically update them.

3.1.2 Differences between MOSES2.2 and MOSES2.1

There are a number of key differences between MOSES2.1 and MOSES2.2, and a number of smaller modifications between

the versions. These major changes include:

– MOSES2.2 uses a spectral albedo scheme to calculate separately the diffuse and direct-beam surface albedos. This

scheme is not used in MOSES2.1, although modifications can be added to include it.5

– MOSES2.2 uses a spectral snow albedo model that includes a prognostic grain size that characterises the ageing of snow

and its impact on snow albedo. This is not present in MOSES2.1.
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– MOSES2.2 also introduces a new calculation of evapotranspiration from soil moisture stores, as well as a different

parameterisation of bare soil evaporation

– Supersaturation in the soil layer is treated differently in the two versions of MOSES2. In MOSES2.2, supersaturation10

results in an increase in surface run-off. In contrast, supersaturation in MOSES1 and MOSES2.1 is managed via an

increase in downward flow into the deeper soil layers and so is removed via subsurface runoff.

Tests carried out in which MOSES2.1 is gradually changed to MOSES2.2 show that the first two changes affect surface

temperature whereas the third difference substantially alters soil moisture. Supersaturation changes impact the partitioning of

runoff between surface and sub-surface and also influence the soil moisture, to a lesser extent to the evapotranspiration changes.15

There are also a number of smaller changes (such as using an implicit soil moisture scheme in MOSES2.2 compared to an

explicit scheme in MOSES2.1 and MOSES1) but these do not result in a major change to the climate. MOSES2.2 also had

some major restructuring of the Fortran code.

Additionally, in the default version of MOSES2.1 (used until recently), the rate of respiration increases almost exponentially

with temperature (Tindall, pers.comm.). As a result, in some conditions such as during the Amazon dry season, respiration20

excessively increases and this decreases soil moisture which consequently inhibits tree growth. In MOSES2.2, the impact of

temperature on respiration rate declines at high temperatures. This revised respiration rate reduces drying and dieback of trees.

This has relatively limited impact on the simulation of vegetation for the pre-industrial (the broadleaf tree fraction is slightly

increased in the Amazon) but does have a bigger effect on very warm climates such as the early Eocene. This has now become

the default for the Bristol variant and will be referred to as HadCM3B-M2.1a.25

3.2 TRIFFID

MOSES2.1 and MOSES2.2 both have the capacity to be run in coupled mode with a dynamic vegetation and terrestrial carbon

cycle scheme, TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics) (Cox et al., 1998;

Cox, 2001). TRIFFID predicts the distribution and properties of global vegetation based on plant functional types using a

competitive, hierarchical formulation. The performance and sensitivity of TRIFFID has been compared with a variety of other30

dynamic vegetation models (Sitch et al., 2008) and an updated version of TRIFFID is used in both the latest Coupled Model

Intercomparison Project (CMIP5) model HadGEM2-ES (Collins et al., 2011) and in JULES (Clark et al., 2011).

In the model configurations presented here, TRIFFID is normally only used with MOSES2.1 because of a dry bias in

MOSES2.2 which is manifested by an overly dry surface climate over the Eurasian continent in summer. This results in loss

of vegetation if used with dynamic vegetation. The cause of this drying is unclear but is partially linked to the changes in

evaporation and evaptranspiration parameterisations discussed above.

TRIFFID updates the five vegetation PFTs and the bare soil fraction, all of which can change dynamically. TRIFFID can be

run in two different modes:5
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– Equilibrium mode, where TRIFFID runs for 50 years of TRIFFID for each 5 years of the climate model run. The fluxes

between the land and the atmosphere are calculated and averaged over 5 years. This is particularly valuable for quick

spin-up of the vegetation and soil carbon.

– Dynamic mode, where TRIFFID is run every 10 days. Fluxes are averaged over 10 days; as such high frequency vari-

ability is accounted for. This mode is the standard for full runs of the coupled model.10

MOSES2 passes the averaged fluxes of carbon to TRIFFID which calculates the growth and expansion of the existing

vegetation, and updates the land surface parameters based on the new vegetation distribution and structure. TRIFFID calculates

areal coverage, leaf area index (LAI) and canopy height for five defined plant functional types (PFTs): broadleaf tree, needleleaf

tree, C3 grass, C4 grass and shrub. These PFTs respond differently to climate and CO2 forcing (e.g., C3 and C4 grasses use

different photosynthetic pathways), and also impact differently on the physical properties of the land surface, i.e., possessing15

different aerodynamic roughness lengths and albedo properties. Broad and Needleleaf trees and C3 and C4 grasses react

independently within the model due to their unique parameter sets. C4 plants use water more efficiently than C3 plants,

requiring less water to produce the same amount of biomass. Overall, C4 plants have the highest critical humidity deficit and

temperature range, meaning that in high temperature, low moisture environments they will do better than other PFTs, even

though the competition model would normally favour trees.20

All PFTs can co-exist within the same grid box, each possessing a fractional coverage that is equivalent to the population

size. The fractional coverage co-existence approach allows smooth transitions to occur when the vegetation distribution changes

rather than the sudden discontinuities that would occur in a “dominant” PFT only approach (Svirezhev, 2000). However, the

Lotka–Volterra equations used in TRIFFID mean that each grid cell in the model tends to converge on one dominant plant

functional type (Hughes et al., 2006). Competition is essentially based on a height hierarchy of trees > shrubs > grasses. Each25

terrestrial grid square has a small minimum content of each plant functional type, regardless of location and competition, as

a “seeding” fraction (Cox, 2001). This ensures that no PFT can become extinct and can regenerate when conditions become

appropriate. TRIFFID can specify areas of agricultural crops as C3 and C4 grasses, without competing land types (Cox, 2001).

The terrestrial Net Primary Productivity (NPP) is calculated by a coupled photosynthesis-stomatal conductance model (Cox

et al., 1998). Factors affecting the rate of photosynthesis are the humidity deficit, the photochemically active radiation, soil30

moisture and LAI. The maximum rate of photosynthesis is directly related to the leaf temperature and the upper and lower

temperatures for photosynthesis (defined individually for each PFT). Carbon is stored in the vegetation and soil stores.

The predicted vegetation in each grid box feeds back into the climate system in a number of ways, principally through

evapotranspiration from the canopy, alteration of surface albedo, and through alteration of mixing at the boundary layer between

the surface and the atmosphere (due to changes in roughness length).
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4 Variants with Differing Resolution

4.1 HadCM3BL

HadCM3BL comprises the same model components as HadCM3B, but with a lower resolution ocean which matches the stan-5

dard atmosphere resolution of 96×73 grid points (3.75◦×2.5◦) (Cox et al., 2000). Note that the Bristol version, HadCM3BL,

is very different from the Met Office version. The Met Office version was mainly used for the early carbon cycle work (Cox

et al., 2000) but required significant flux corrections to ensure that the Atlantic surface climate was reasonable. Our version

does not require flux correction because of changes in bathymetry described below. It can be run with all versions of MOSES,

with or without TRIFFID, in the same manner as HadCM3B. We tend to use HadCM3BL when long simulations are required.10

For instance, when the land-sea mask and/or bathymetry are substantially changed from those of modern, it can take many

thousand years of integration to get the deep ocean into equilibrium. As such, HadCM3BL has been used extensively for our

pre-Quaternary climate modelling work (e.g., Marzocchi et al., 2015b; Bradshaw et al., 2015; Kennedy et al., 2015; Loptson

et al., 2014).

The implementation of the atmosphere and land surface schemes is identical to HadCM3B. There are some differences in the15

ocean due to its lower resolution, some of which are substantive differences required either to maintain stability or to reproduce

the present-day climate without the need for the flux corrections used in earlier versions of the model, and some of which are

simple scalings of parameters to give the same scientific behaviour as HadCM3B at the lower resolution. These differences

between HadCM3B and HadCM3BL, which are described below, are generally consistent with work done to optimise the

FAMOUS model (Jones, 2003), which has the same ocean resolution as HadCM3BL.20

4.1.1 North Atlantic Bathymetry: “No Iceland”

As described in Sect. 2.3, care was taken when developing HadCM3 to define the bathymetry of the North Atlantic in order

to ensure that the appropriate flow through the Denmark Straits was captured. This flow is lost when the ocean resolution

is reduced in HadCM3BL as the channel between Iceland and Greenland becomes less than a single grid-cell wide (on the

velocity grid) and thus no flow is permitted. Jones (2003) investigated potential modifications to allow increased heat transport25

through this region, thus alleviating the unrealistic build-up of sea ice in the Nordic Sea, and concluded that the removal

of Iceland was the preferred solution. With this modification, the improved meridional overturning circulation leads to more

realistic heat transports in the coupled system and alleviates the need for flux correction.

This change also has a knock on effect on the land surface (and ultimately the atmosphere) in that the two cells that define

Iceland have been removed.30

4.1.2 Ocean Vertical Diffusion

In HadCM3BL, the Richardson Number dependence of the vertical tracer diffusivity is replaced with a constant background

rate, as it is in FAMOUS. Jones (2003) describes problems encountered with FAMOUS in the interaction between the mixed
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layer and deep vertical diffusion schemes, but was found to have little impact on the solution because of the relatively low

resolution.

For the calculation of vertical diffusion, HadCM3BL uses a different calculation for the density of seawater from HadCM3B.5

HadCM3B calculates all densities relative to a reference level at the surface using the updated equation of state for seawater

of UNESCO (1981). This can result in negative density gradients in the deep ocean and hence a negative Richardson Number,

which in turn can produce very high diffusivities at depth which Pacanowski and Philander (1981) was never intended to handle

(Rickard, 1999). HadCM3BL instead derives Bryan and Cox (1972) third order polynomials for each 250 m depth span of the

ocean (Foreman, 2005) to fit the Knudsen–Ekman equation for the density of seawater and does not produce negative density10

gradients (Rickard, 1999), but the range of salinities covered may be insufficient for some applications. This choice of diffusion

scheme is consistent with that used in FAMOUS.

4.1.3 Ocean Isopycnal diffusion

HadCM3BL uses different coefficients for a number of aspects of the diffusion formulation, as described in Table 1. All of

these values are consistent with those used in FAMOUS. In addition, the Visbeck et al. (1997) scheme for the calculation of15

isopycnal thickness diffusion coefficients, introduced in HadCM3B to improve resolution of currents such as Western boundary

currents on the 1.25◦ grid, is not used in HadCM3BL. Instead, fixed values of the coefficients for surface ocean diffusion, deep

ocean diffusion and scale depth are specified, as in FAMOUS.

4.1.4 Solar Penetrative Radiation

In HadCM3 the penetration of solar radiation is represented by a double exponential decay with depth, with coefficients20

determined from observations. The ratio between the shallower decay and deeper decay exponential is controlled by a parameter

called RSOL. This is set to 0.0 in HadCM3B and is set to 3.8×10−1 in HadCM3BL, as it is in FAMOUS.

4.1.5 Islands

HadCM3B defines 6 islands in the barotropic solution, around which non-zero depth-integrated flow is permitted: Antarctica,

Australia, New Zealand, the Caribbean, Madagascar and Iceland. In HadCM3BL, there is no island for Iceland as this is entirely25

absent from HadCM3BL and Madagascar is also not defined as an island due to its proximity to Africa.

4.2 HadAM3BH

HadAM3BH is a higher resolution version of the atmosphere-only variant, HadAM3B. This model is different to that used

by the Met Office (e.g., Hudson and Jones, 2002; Arnell et al., 2003) which keeps to 19 levels in the vertical but has some

changes to the parameterisations, particularly in the boundary layer. It is used for studies in which the atmospheric circulation30

is critical, and as such is best represented at high resolution. Its horizontal resolution is three times greater than HadAM3B both

latitudinally and longitudinally, i.e., 288×217 grid points (1.25◦×0.83◦). The number of vertical levels is increased from 19 to
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Figure 1. Land/sea mask and orography (sea coloured grey, land height in meters) for four configurations of HadRM3B. (a) Shows the

standard European domain at 0.44◦ resolution, (b) shows the equivalent domain for E. Asia, (c) shows a configuration for the Arctic and

Svalbard at 0.22◦ (as used in Day et al., 2012), and (d) a N. America/European configuration for the early Cretaceous at 0.44◦ resolution (as

used in Haywood et al., 2004)

30, with the extra levels being concentrated close to the Earth’s surface and the upper levels remaining similar to HadAM3B.

The higher spatial resolution requires a smaller timestep of 10 minutes. It may be used with either the MOSES1 or MOSES2.1

land surface scheme, and can be used with TRIFFID, though this has rarely been done. The time stepping algorithm is slightly

different, in that the dynamics can be updated multiple times between the full physics timesteps. In HadAM3BH, we use two5

dynamic per physics time step to allow for improved numerical stability of the model. Various diffusion coefficients, critical

relative humidity and parameters for the gravity wave drag scheme have been retuned to account for the change in resolution,

as documented in Table 1. Otherwise the model has identical physics to HadAM3B and has had no further changes.

4.3 HadRM3B

HadRM3B is the regional climate model (RCM) version of HadAM3B which has been used when representation of high10

resolution atmospheric processes is important, such as around orography or studying extreme events. It can be configured for

any domain size and location has commonly been used for studies over Europe (Jones et al., 1995), the Arctic (Day et al.,
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2013) and Svalbard (Day et al., 2012), and the East Asian Monsoon region (Bhaskaran et al., 1996). It has also been used to

model deep time (Haywood et al., 2004).

The BRIDGE version is based on the same fundamental physics and model structure as the Met Office HadAM3, and

currently is only available with the MOSES1 land surface scheme. We again do not make any substantial changes to the

physical parameterisations so the model is largely identical to HadAM3 except for parameters sensitive to resolution.

Regional climate models require either fixed or time evolving data on the large scale and global atmospheric and ocean5

response to climate forcings to be provided to them at their lateral (atmospheric) and sea surface boundaries, such as potential

temperature and specific humidity. The common experiment set-up, used here, is a one-way nested approach, where no infor-

mation is fed back into the GCM simulation, but the large scale atmospheric circulation patterns, such as the location of the jet

streams, are fed in through the Lateral Boundary Conditions (LBCs). For a RCM to have a “parent” GCM is rare, offering a

unique opportunity to investigate the effects of dynamical downscaling without modification (or contradiction) of the physics10

between the driving GCM and the RCM at the lateral boundaries. LBCs are updated every 6 hours and linearly interpolated

for timesteps in between. A 4-grid smoothing is applied to global model data entering the regional model domain. Therefore

typically, HadRM3B has been run here using HadAM3B or HadCM3B to produce the lateral boundary conditions, sea surface

temperature, and sea ice concentration data, although there have been experiments using SSTs from HadISST and HadGEM,

as well as other models in the CMIP5 experiment to analyse the sensitivity of the model to its boundary conditions.15

HadRM3B is run on a standard lat-long grid with the pole rotated so that the centre of the domain of interest lies across the

equator within the RCM’s grid from of reference (see Fig. 1) to reduce variation in the areas of the grid cells. The timestep of

the model is five minutes to maintain numerical stability with the increase in spatial resolution which is commonly 0.44◦×0.44◦

(∼ 50 km×50 km) but has also been run at 0.22◦×0.22◦ (∼ 25 km×25 km). Lateral boundary conditions are typically provided

every 6 hours and linearly interpolated to each timestep. The main difference between HadRM3B and HadCM3B/HadAM3B20

in terms of atmospheric dynamics is in the sub grid scale diffusion applied to the horizontal wind component to prevent the

accumulation of energy at the smallest scales and noise (see Table 1). In addition, the parameters which control the proportion

of a grid box over which convective and large scale precipitation are assumed to fall, as well as diffusion parameters, vary

compared to HadAM3B (see Table 1, variables conv_eps and ls_eps).

Simulations using the regional climate models have enabled improved spatial representation of temperature and precipita-25

tion patterns and response to climate forcings, particularly around mountains and coastlines. The increase in resolution also

improves the simulated temporal variability, including simulation of extremes (Durman et al., 2001).

5 Comparison with data

The aim of this section is to qualitatively and quantitatively evaluate the suite of HadCM3@Bristol models in terms of their

ability to recreate key aspects of the climate system relative to observations, and other models within the CMIP5 family. In30

the following subsections, a selection of observational datasets are compared to multiple modelled climatic variables. Details

on the datasets used for each variable are briefly outlined in each subsection. This is not intended to be a complete model
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evaluation; however, it will highlight that some variants do a more realistic job than others at representing various environmental

processes. Where appropriate, stronger or weaker models will be highlighted, and some other CMIP5 models will be shown for

comparison. Because much of our work at Bristol involves carrying out palaeoclimate or idealised simulations, our standard

control simulations are static pre-industrial simulations, similar to the CMIP5 DECK pre-industrial simulation (Eyring et al.,

2016a). However, most observational datasets are of the instrumental record, typically the last few decades. This is to be

considered when interpreting our evaluation, although it is likely that differences between pre-industrial and the instrumental5

period are generally small relative to the model biases.

A quantitative evaluation (global RMSE analysis) of the four base state BRIDGE models, namely HadCM3B with the

MOSES1 land surface scheme, HadCM3B with MOSES2.1a, HadCM3BL with MOSES2.1a and FAMOUS with MOSES1,

is performed against reanalysis and/or observational data and shown alongside new and predecessor models from the CMIP5

database (Fig. 2; BRIDGE models highlighted in red). Here we make use of the ESMValTool(v1.0); a community diagnostic

and performance tool (Eyring et al., 2016b) to assess and compare the magnitude of known systematic biases inherent in all

climate models. Better understanding of these biases is instrumental in diagnosing their origin and a models ability to repro-

duce observed spatial and temporal variability and trends in various atmospheric (e.g., Large-scale circulation) and oceanic

phenomena (e.g., ENSO). CMIP5 model data is provided from http://www.ceda.ac.uk, while observational (obs4MIPs; Ferraro

et al., 2015) and re-analysis (ana4MIPs; Ferraro et al., 2015) data are provided from https://www.earthsystemcog.org, all con-5

forming to the CMIP5 format. Here the BRIDGE models have also been standardised to the CMIP5 format. Further, models

and observations are re-gridded to the coarsest resolution within the ESMValTool framework for evaluation. Table 4 details

the different metrics used for the evaluation of the historical model simulations in Fig. 2. The BRIDGE models are only pre-

industrial climatologies (30-year) without any year-on-year historical forcing, however this is not expected to be detrimental

for the evaluation. The results in Fig. 2 demonstrate that the BRIDGE suite of models, with the exception of FAMOUS-M1H,10

accurately reproduces observed global spatio-temporal patterns. Indeed, HadCM3B-M1, HadCM3B-M2.1a and in most re-

spects HadCM3BL-M2.1a, outperform many of the higher fidelity CMIP5 models with lower RMSE when compared to the

observations, particularly in respect to global air temperature (at 850 hPa and 200 hPa), U-wind (at 850 hPa and 200 hPa) and

1.5 m surface temperature. It is likely that the course resolution of FAMOUS has a detrimental impact on its performance. The

following sections provide a more detailed evaluation of various atmosphere, ocean and land surface variables in the BRIDGE5

model suite.

5.1 Atmosphere

5.1.1 Surface temperature patterns

We compare the modelled temperature and precipitation to observational data provided by the University of East Anglia high

resolution climatology for 1960–1990 (CRU CL v2.0) (New et al., 2002). This record is based on a range of weather stations10

totalling more than 10 thousand stations for temperature and more than 25 thousand stations for precipitation, with the best

spatial coverage over North America, Europe and India and the sparsest spatial coverage over the interiors of South America
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Table 4. Observational and reanalysis datasets used for the evaluation in Fig. 2

Performance metric Obs. dataset Re-analysis

dataset

Year(s) for

comparison

TOA outgoing All-sky Short wave radiation

(rsut_Glob)

CERES-EBAF — 2001–2012

TOA outgoing All-sky Long wave radiation

(rlut_Glob)

CERES-EBAF — 2001–2012

Precipitation

(pr_Glob)

GPCP-SG — 1979–2005

Near-surface temperature

(tas_Glob)

— ERA-Interim

NCEP

1979–2005

1979–2005

Specific humidity (400 hPa)

(hus_Glob-400)

—

AIRS

ERA-Interim

—

1979–2005

2003–2010

Geopoential height (500 hPa)

(zg_Glob-500)

— ERA-Interim

NCEP

1979–2005

1979–2005

V-wind height (200 hPa)

(va_Glob-200)

— ERA-Interim

NCEP

1979–2005

1979–2005

V-wind height (850 hPa)

(va_Glob-850)

— ERA-Interim

NCEP

1979–2005

1979–2005

U-wind height (200 hPa)

(ua_Glob-200)

— ERA-Interim

NCEP

1979–2005

1979–2005

U-wind height (850 hPa)

(ua_Glob-850)

— ERA-Interim

NCEP

1979–2005

1979–2005

Temperature (200 hPa)

(ta_Glob-200)

— ERA-Interim

NCEP

1979–2005

1979–2005

Temperature (850 hPa)

(ta_Glob-850)

— ERA-Interim

NCEP

1979–2005

1979–2005

and Africa and Antarctica. Modelled SAT fields were masked to model land points only and differences to observations were

done at the same resolution as the relevant model, as shown in Fig. 3.
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Figure 2. Relative error measure of the CMIP5 models (21 in total; in black) and the BRIDGE models (four in total; in red) performance.

Error measure is calculated from a time-space root-mean square error (RMSE) of contemporary and predecessor CMIP5 model historical

climatological (1980–2005) seasonal cycle simulations and BRIDGE pre-industrial seasonal-cycle climatologies against observations (1980–

2005) for a set of nine different atmospheric variables. Error for each individual variable is characterised as a relative error by normalising

the result of the median error of all model results (Gleckler et al., 2008), the BRIDGE models are not included in the mean/median error.

For instance, a value of 0.20 indicates that a model’s RMSE is 20 % larger than the median CMIP5 error for that variable, whereas a value

of −0.20 means the error is 20 % smaller than the median error. The diagonal split grid square shows the relative error for the reference

observed/reanalysis dataset (lower right triangle) and the alternative dataset (top left triangle). White triangles/boxes indicate where no

data was available. Evaluated global atmospheric variables are TOA outgoing All-sky short wave radiation (rsut_Glob), TOA outgoing All-

sky outgoing long wave radiation (rlut_Glob), precipitation (pr_Glob), near-surface temperature (tas_Glob), specific humidity at 400 hPa

(hus_Glob-400), geopotential at 500 hPa (zg_Glob-500), V-wind at 200 hPa (va_Glob-200), V-wind at 850 hPa (va_Glob-850), U-wind at

200 hPa (ua_Glob-200), U-wind at 850 hPa (ua_Glob-850), temperature at 200 hPa (ta_Glob-200), temperature at 850 hPa (ta_Glob-850).

It should be noted that the comparison between the versions of the HadCM3B family and the observed CRU CL v2.0 data15

is not a “clean” comparison. The observed data is for 1960–1990 whereas all model simulations are for the pre-industrial

period. In the case of HadAMB3 simulations, the SSTs used are the 1870–1900 means of HadISST. To evaluate the impact

of this effect, we examined the CMIP5 historical experiment of HadCM3-M1 done at the Hadley Centre ((Smith et al., 2007,

2010)). The differences between the 1960–1990 climate means compared to the 1860–1890 climate means were generally

small compared to the model biases, with the overall mean warming between the two periods being 0.6 ◦C. Similarly, the four20

CMIP5 simulations are averages from 1860–1890 of the historical runs (using one ensemble member only, r1i1p1) and so the

comparisons to the HadCM3B family are not perfectly clean.
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(a) HadCM3B-M1 − Obs UEA 21601080 (b) HadCM3B-M2.1aN − Obs UEA 21601080 (c) HadCM3B-M2.2N − Obs UEA 21601080 (d) HadCM3BL-M2.1aN − Obs UEA 21601080

(e) HadAM3B-M2.1aN − Obs UEA 21601080 (f) HadAM3BH-M2.1aN − Obs UEA 21601080 (g) FAMOUSM1 − Obs UEA 21601080 (h) FAMOUSM2.2N − Obs UEA 21601080

(i) ACCESS10 hist r1 − Obs UEA 21601080 (j) CCSM4 hist r1 − Obs UEA 21601080 (k) GISSE2H hist r1 − Obs UEA 21601080 (l) IPSLCM5ALR hist r1 − Obs UEA 21601080

Figure 3. (a) The difference between the annual mean surface air temperature (in ◦C) of HadCM3B-M1 and the CRU CL v2.0 for the period

1960–1990 regridded onto the HadCM3B-M1 grid, (b) As (a) for the HadCM3B-M2.1a version, (c) As (a) but for HadCM3B-M2.2, (d) As

(a) but for the HadCM3BL-M2.1aN version, (e) As (a) but for HadAM3B-M2.1a, (f) As (a) but for HadAM3BH-M2.1a, (g) As (a) but for

FAMOUS-M1, and (h) As (a) but for FAMOUS-M2.2. (i), (j), (k) and (l) show comparable results for four CMIP5 models, ACCESS1-0,

CCSM4, GISS-E2-H and IPSL-CM5A-LR respectively. These were chosen to represent two models which were above the CMIP5 average

in terms of their RMSE with respect to surface air temperature, and two models which were below average. All differences are calculated by

regridding the CRU data onto the corresponding model grid, using simple bi-linear interpolation.

HadCM3B-M1 (Fig. 3a) generally has a small cold bias compared to the data, with most regions experiencing colder tem-

peratures by 2 ◦C to 3 ◦C. The area weighted root mean square differences (RMSE) is 2.8 ◦C, but with smaller errors in the

tropics and a small warm bias in South America. There is also a small warm bias over Greenland but this should be treated25

with some caution since there are issues about elevation effects and the data is relatively sparse in this region. The results for

Fig. 3a, are largely identical to those calculated using the CMIP5 HadCM3-M1 archived data (run by the UK Hadley Centre)

for the historical run averaged between 1860–1899 inclusive (not shown). The differences are mostly less than 0.5 ◦C and

never exceed 1 ◦C, with an RMSE of 0.5 ◦C. Differences between the 1860–1889 average and the 1960–1989 average for

the CMIP5 historical run are small, verifying that the model biases greatly exceed any differences between pre-industrial and30

modern temperatures. However, the small warming that does occur between 1860–1889 and 1960–1989 does reduce the cold

bias marginally (RMSE decreased by 0.1 ◦C).
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Using MOSES 2, HadCM3B-M2.1a (Fig. 3b) shows a significant reduction in the cold bias, resulting in a RMSE of 2.1 ◦C.

The cold bias has reduced but still remains over northern Russia and Scandinavia, while over South America (Amazon) and

Greenland the warm anomalies have intensified. Over the Amazon this is likely due to the difficulties in the vegetation model35

(see Sect. 5.3.1), while difficulties with Greenland were mentioned above. Elsewhere, the general cool bias seen in Fig. 3a

has gone, replaced by anomalies of ±2 ◦C to 5 ◦C, with few widespread regional anomalies. Similarly, HadCM3B-M2.2N

(Fig. 3c) also shows a reduced cold bias, with an RMSE of 2.1 ◦C. This model variant shows a slight reduction in the warm

anomaly observed over the Amazon compared to Fig. 3b, but has a more extensive warm bias of 1 ◦C to 2 ◦C at higher northern

latitudes, e.g., over North America.5

HadCM3BL-M2.1a (Fig. 3d) has a RMSE of 2.6 ◦C and a comparable cold bias to HadCM3B-M1. As with the HadCM3B

model variants, using MOSES2 with HadCM3BL reduces the cold bias and RMSE compared to using MOSES1, with HadCM3BL-

M1 having a much higher RMSE (not shown). Once again, the high northern latitudes (particularly over Russia and Scandi-

navia) are too cold, which is the result of an exaggerated seasonal cycle due to an overly cold winter. This is also the case

for other HadCM3B model variants, but it is most pronounced for the HadCM3BL variants. Similarly to the other simulations10

using MOSES 2, the Amazon remains slightly warmer than the observations with slightly reduced broadleaf forest cover (see

Sect. 5.3.1).

The atmosphere-only models vary significantly depending on their resolution. At standard resolution, HadAM3B-M2.1a

(Fig. 3e) shows similar spatial anomalies and RMSE to Figs. 3a–d, but greater warm biases over North America and Greenland

of up to 5 ◦C and cool biases over Africa and southern Asia of 2 ◦C to 5 ◦C. However, it has the smallest anomaly over the15

Amazon compared to the other standard resolution model variants, and a comparable RMSE (2.3 ◦C). HadAM3BH-M2.1a

(Fig. 3f) on the other hand shows a markedly different spatial pattern in its temperature biases to the model versions already

described. It is the only simulation not to show a global cold bias. This is due to warmer than observed temperatures of 2 ◦C to

5 ◦C over the majority of land surfaces north of 30◦ N (with the exception of the southern tip of Greenland and mountainous

regions). It has a slight cold bias of 1 ◦C to 2 ◦C over areas south of 30◦ N (with the exception of some regions in South20

America). Although these biases are extensive spatially, they are not of greater magnitude than the regional biases found in

other model variants or CMIP5 models and the RMSE of the HadAM3BH-M2.1a simulation is 2.2 ◦C.

The FAMOUS model variants (Figs. 3g and 3h) have larger RMSE values than the higher resolution model variants and the

other CMIP5 models. FAMOUS-M2.2 (Fig. 3h) is the worse of the two, with a RMSE of 4.1 ◦C and extreme cold biases over

Northern Hemisphere continents, which exceed 10 ◦C around Scandinavia. The cold bias in Fig. 3g is less extreme, but instead25

has a warm bias in South America of up to 5 ◦C to 10 ◦C and up to 2 ◦C to 5 ◦C over India and Australia. There is some

improvement in the RMSE for FAMOUS-M1, but it is still much higher (3.3 ◦C) than the higher resolution model variants.

Some of the differences between the mean annual temperature biases in the models are due to changes in the models

themselves. For instance, the improvement generally seen between models with MOSES1 and MOSES2.1 are primarily due

to the better representation of the land surface, particularly the snow cover, as discussed above. It’s also notable that the lower30

resolution ocean models tend to be cooler in the higher latitudes, as the lower resolution ocean makes it more difficult to move

heat away from the equator.
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(a) HadCM3B-M1 − Obs UEA 21601080 (b) HadCM3B-M2.1aN − Obs UEA 21601080 (c) HadCM3B-M2.2N − Obs UEA 21601080 (d) HadCM3BL-M2.1aN − Obs UEA 21601080

(e) HadAM3B-M2.1aN − Obs UEA 21601080 (f) HadAM3BH-M2.1aN − Obs UEA 21601080 (g) FAMOUSM1 − Obs UEA 21601080 (h) FAMOUSM2.2N − Obs UEA 21601080

(i) ACCESS10 hist r1 − Obs UEA 21601080 (j) CCSM4 hist r1 − Obs UEA 21601080 (k) GISSE2H hist r1 − Obs UEA 21601080 (l) IPSLCM5ALR hist r1 − Obs UEA 21601080

Figure 4. As for Fig.3 except showing the difference in mean annual precipitation, expressed as a % difference to the CRU CL v2.0

observations.

For comparison, we show the SAT fields from four CMIP5 models (Figs. 3i–l), selected based on the results of the IPCC

AR5 WG1 model evaluation (Chapter 9). We selected two models which were above average for their simulation of SAT

(ACCESS1-0 and CCSM4) and two models which were below average (GISS-E2-H and IPSL-CM5A-LR). In all cases these

models are not the best or worst extremes, but represent the typical range of model skill. Again, the observations have been

interpolated onto the appropriate resolution of the model from which the RMSE was calculated. As can be seen, the general

picture that emerges is that most of the varieties of HadCM3B (except perhaps for FAMOUS) are well within the skill of the

CMIP5 ensemble. The CMIP5 models all show large regional biases of up to ±5 ◦C (with little consistency on the sign of the5

anomaly between them) and the RMSE scores range from 2.3 ◦C to 3.3 ◦C, which are similar to the varieties of the HadCM3B

model. Indeed HadCM3B-M2.1aN and HadCM3B-M2.2 have the smallest RMSE values of the models sampled.

5.1.2 Precipitation

Figure 2 shows that the BRIDGE models with the exception of FAMOUS produce annual precipitation amounts comparable

to other CMIP5 models suggesting that our models are capturing the general synoptic scale features (frontal, convective and10

mesoscale).
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While global annual RMSE for the BRIDGE models compare favourably it is also key to investigate the mean spatial patterns

of precipitation to ascertain whether the models are reproducing these patterns in accordance with the observations. We assess

annual climatological precipitation for the BRIDGE model suite against CRU CL v2.0 (New et al., 2002), a high resolution

(0.5◦×0.5◦) global land surface product (excluding Antarctica). The resolution is transformed (bi-linear interpolation) to the15

appropriate grid in the model. We are again comparing our pre-industrial simulations with 1960–1990 observations, but the

model biases are generally much larger than any trends.

Figure 4 shows the regional biases in mean annual precipitation, expressed as a % error compared to the CRU CL data. For

consistency with the previous figure, we also include the same four CMIP5 models. Regionally, spatial patterns in precipitation

bias are generally consistent between the different BRIDGE models and broadly comparable to their CMIP5 models.5

The BRIDGE simulations have a similar problem to many CMIP5 models whereby they overestimate precipitation in regions

of topography. This is particularly noticeable around the Himalayas and Tibet but is also visible on the upstream side of the

Rockies and Andes. This may be due to poor representation of moisture gradients and regional dynamics. However, the apparent

discrepancy with observations can be amplified by a known negative bias in gauge stations (Adam et al., 2006). Gauge stations

also underestimate precipitation leeward of mountain ranges (e.g., Himalayas and Andes), as well as over arid regions, which10

can contribute to model-data discrepancy in these regions also.

Monsoonal regions of south-east Asia, Austral-Asia, southern South America, West and central Africa, overestimate pre-

cipitation by 0.5 mm day−1 to 2 mm day−1 while underestimate precipitation in the Indian and northern arm of the South

American region by ∼ 1 mm day−1 to 4 mm day−1. There are however some exceptions with HadAM3B-M2.1a (Fig. 4), an

atmosphere-only GCM using observed SST (HadISST 1870–1900) producing a more reasonable precipitation signal compared15

to the observations suggesting the importance in the accuracy of SST/local ocean circulation dependency (this is also seen in

Australia). There is still a problem with the ITCZ location over South-America being too far South giving this north-south

dipole in negative/positive anomalies.

It is also noted that an increase in resolution does not produce a noticeable improvement on spatial annual precipitation bias

in certain monsoon regions in the BRIDGE models (Fig. 4f compared to 4j) again suggesting the importance of accuracy in

SST and ocean circulation, with the exception of South America where there is improvement. Spatially, increased resolution

does not affect the sign of anomaly nor the spatial patterns of precipitation regionally (with the exception of South America)

throughout the BRIDGE suite of models however the magnitude of the precipitation bias does progressively decrease.5

5.1.3 Horizontal heat transports

There is broad agreement between the observed and simulated total northward heat transport. Similarly, the partitioning be-

tween the ocean and atmosphere is qualitatively similar to that estimated by Trenberth and Fasullo (2013). We find that all

versions of the model simulate heat transport that are consistent with CMIP5 models (see grey lines in Fig. 5). However, in

common with almost all other climate models we find that on the equator, although the total heat transport is northward, in10

agreement with the observations, the atmospheric heat transport is also northward, contrary to the observed southward transport

(Loeb et al., 2016). The cause of this in any of the models in which it is a feature is unclear. The three versions of HadCM3B
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Figure 5. The annual mean northward heat transport in total, the atmosphere and the ocean. Black line shows the observational estimate,

blue: HadCM3B-M2.1a, green: HadCM3BL-M2.1a and red: FAMOUS-M2.2, grey lines show transports for a selection of CMIP5 models.

These transports are calculated as the implied heat transports from the TOA and surface energy fluxes (see Trenberth and Fasullo (2013) for

details). Observational estimates for the total transport are derived from the CERES data.

show remarkably similar amounts of total heat transport, the major difference is FAMOUS which underestimates the south-

ward heat transport in the Southern Hemisphere subtropics rather more than HadCM3B and HadCM3BL. This is due to the

smaller amount of ocean heat transport in this region in FAMOUS. This discrepancy is not due to the coarse resolution of the15

FAMOUS ocean because, interestingly, in this region the ocean heat transport in HadCM3BL is very similar to HadCM3B

whose ocean resolution is quite different. Therefore it is more likely that the difference arises from the atmospheric forcing of

the surface ocean. In the Northern Hemisphere the HadCM3BL ocean heat transport is more similar to FAMOUS, suggesting

that the ocean resolution is more important here. This is likely due to the processes that determine the ocean’s overturning

circulation being simulated rather differently in the higher and lower resolution models.20

5.2 Ocean

5.2.1 Sea Surface Temperature

The BRIDGE suite of models is capable of reproducing the broad global latitudinal patterns and gradients in SST (Fig. 6).

Nonetheless, some cold and warm biases of over 8 ◦C are present especially where sharp fronts and boundary currents are not

resolved. Other biases of similar magnitude also appear in the upwelling regions (e.g., west of Africa and of South America),25

and again these are likely associated with processes that are not fully resolved by the model. Colder SSTs in the sub-polar

North Atlantic for all models are not uncommon and likely due to the coarse resolution (e.g., Marzocchi et al., 2015a). This

can be seen by comparing HadCM3B and HadCM3BL, which are models that differ most in their ocean resolution. Cold biases

in the Northern Hemisphere are more extensive in HadCM3BL than in HadCM3B. Warmer SSTs of up to 8 ◦C are present in

the Southern Hemisphere, especially in the Southern Ocean, both in HadCM3B and HadCM3BL. FAMOUS is characterised30

by colder than observed SSTs in the Northern Hemisphere, in common with HadCM3B and HadCM3BL, and warmer SSTs by

up to 8 ◦C almost everywhere in the Southern Hemisphere despite the bias in ocean heat transport. HadCM3B and HadCM3BL
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(a) HadCM3B-M1 − Levitus (b) HadCM3B-M2.1aN − Levitus (c) HadCM3B-M2.2N − Levitus (d) HadCM3BL-M2.1aN − Levitus

(e) FAMOUSM1 − Levitus (f) FAMOUSM2.2N − Levitus

(g) ACCESS10 hist r1 − Levitus (h) CCSM4 hist r1 − Levitus (i) GISSE2H hist r1 − Levitus (j) IPSLCM5ALR hist r1 − Levitus

Figure 6. Annual mean sea surface temperature differences (in ◦C) for a range of coupled model simulations, and also for the same four

CMIP5 models used in Figs. 3 and 4. The observational dataset is the Levitus World Ocean Atlas (2009) (Locarnini et al., 2010). The

figure shows the difference in SST between model and observations for (a) HadCM3B-M1, (b) HadCM3B-M2.1a, (c) HadCM3B-M2.2, (d)

HadCM3BL-M2.1a, (e) FAMOUS-M1, (f) FAMOUS-M2.2, (g) ACCESS1.0, (h) CCSM4, (i) GISS-E2-H, and (j) IPSL-CM5A-LR. Model

output is regridded to the same resolution of the observations.

do not show any notably larger biases when compared to typical CMIP5 models. All of the HadCM3B models, including

FAMOUS, show smaller temperature biases in the Southern Ocean than GISS-E2-H, and the biases in the North Pacific are of

a similar magnitude to those in IPSL-CM5A-LR.

5.2.2 Sea Surface Salinity5

The broad global latitudinal patterns of sea surface salinity are realistically reproduced by the suite of BRIDGE simulations

(Fig. 7). However in the global average, the models show a fresh bias of about 0.5 g kg−1, as we shall show in the following

section this is likely related to the rather different vertical structure of the ocean in the model than in the observations. In

all models, substantial differences from the observations are found in the Arctic Ocean, exhibiting higher salinities (up to

10 g kg−1) in the Kara Sea and generally north of Russia. Generally lower salinities (of up to 5 g kg−1) are found in the10

Chukchi and Beaufort seas. The largest differences are found in enclosed or semi-enclosed basins, such as the Mediterranean
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(a) HadCM3B-M1 − Levitus (b) HadCM3B-M2.1aN − Levitus (c) HadCM3B-M2.2N − Levitus (d) HadCM3BL-M2.1aN − Levitus

(e) FAMOUSM1 − Levitus (f) FAMOUSM2.2N − Levitus

(g) GISSE2H hist r1 − Levitus (h) IPSLCM5ALR hist r1 − Levitus

Figure 7. As Fig. 6 but showing the differences in sea surface salinity (in g kg−1) between models and observations. (a) HadCM3B-M1,

(b) HadCM3B-M2.1a, (c) HadCM3B-M2.2, (d) HadCM3BL-M2.1a, (e) FAMOUS-M1, (f) FAMOUS-M2.2, (g) GISS-E2-H, and (h) IPSL-

CM5A-LR. The observational dataset is the Levitus World Ocean Atlas (2009) (Antonov et al., 2010). Model output is regridded to the same

resolution of the observations.

Sea, where it is more saline, or the Black Sea, Caspian Sea and Hudson Bay where it is markedly fresher. In all versions of the

model the subtropical North Atlantic tends to be more saline than the observations.

Substantial differences from the observations can also be found in CMIP5 models (Figs. 7g–h) with magnitudes comparable

to the BRIDGE models. We note that some of the differences at high latitudes could be due to biases in the simulation of sea

ice concentration and distribution.

5.2.3 The Atlantic Meridional Overturning Circulation

Figure 8 shows the mean strength of the Atlantic Meridional Overturning Circulation (AMOC) for the three main model

families (HadCM3B, HadCM3BL and FAMOUS). Values are shown as zonally integrated depth profiles measured in terms of5

the northward flow of water at 26.25◦ N. The modelled AMOC is compared to observations from the Rapid Climate Change-

Meridional Overturning Circulation and Heatflux Array (RAPID-MOCHA) at 26.5◦N (Smeed et al., 2015), which have been

calculated from daily data spanning the 2nd April 2004 to the 30th March 2015.
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Figure 8. Annual depth profiles of the Atlantic meridional overturning circulation (AMOC) at 26.25◦ N showing range of values for variants

of HadCM3B, HadCM3BL and FAMOUS. Annual data from the RAPID array at 26.5◦ N is highlighted in grey. The depth at which the

AMOC reaches its maximum is indicated with a point.

The strength of the AMOC varies on an annual basis so a range of values is shown for both the models and observations,

with the depth at which the AMOC peaks highlighted with a point. The peak flow of the North Atlantic Deep Water (NADW)10

cell identified by the RAPID-MOCHA array lies at around 1000 m and varies from year to year between 14 Sv and 19 Sv.

All three models do a reasonable job at modelling the NADW cell in terms of the magnitude of maximum flow. However,

maximum overturning is too shallow for all model variants, peaking at approximately 800 m. HadCM3BL shows larger year

to year variability than the observations: approximately twice as large as that in the observations. This results in years with a

lower minimum volume transport than are seen in the observations. FAMOUS model variants tend to underestimate the year15

to year variation by approximately 50 %, although this is in contrast to the study of Sarojini et al. (2011) who showed that

FAMOUS exhibited greater short-term variability than the RAPID-MOCHA array. HadCM3B variants have a realistic year to

year variability at least in the upper 1500 m of the ocean.

All of the models do a poor job at representing the flow of the NADW cell below 2000 m depth. McCarthy et al. (2012)

showed that at this latitude, approximately 60 % of the southward return flow is comprised of upper NADW (between 1100 m

and 3000 m) and 40 % of the lower NADW (between 3000 m and 5000 m). The modelled stream functions show that the return

flow is shifted to shallower depths, indicating a shallower overturning in all of the model variants.

The CMIP5 models exhibit a wide spread in the mean strength of the AMOC, ranging from 13 Sv to 31 Sv and peaking at

latitudes between 20◦N and 60◦ N (e.g., Zhang and Wang, 2013). It was not possible to include the CMIP5 models in Fig. 8,5

however, the studies of Roberts et al. (2013) and Msadek et al. (2013) produced similar plots of AMOC zonally integrated depth

profiles for a range of models compared to observations (their Figures 1 and 3 respectively). The HadCM3B and FAMOUS

variants are shown to have very similar stream function profiles to GFDL Climate Model 2.1, NCAR CCSM4 models and the

MPI models, and more accurately simulate the maximum overturning than the NorESM1 model variants. A similar pattern of

biases is apparent in the vertical structure for these models, i.e., a too shallow overturning cell, however the point of maximum10

overturning is shallower in the HadCM3B and FAMOUS variants.
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(a) R&F 1999 Data (b) HadCM3B-M2.1aD

(c) HadCM3BL-M2.1aD (d) HadAM3B-M2.1aD

Figure 9. Maps of the dominant plant functional type for observations (a) and model simulations of the pre-industrial. The models shown

are (b) HadCM3B-M2.1aD (c) HadCM3BL-M2.1aD and (d) HadAM3B-M2.1aD. The observed dataset for comparison is Ramankutty and

Foley (1999).

This bias in the vertical structure has been attributed in some studies to inaccurate transport in the Nordic Sea overflows,

which in the case of HadCM3B includes a greater than observed overflow across the Denmark Strait, in addition to subgrid

scale processes (see Legg et al., 2009; Roberts et al., 2013). An additional cause of the shallow overturning may be the excessive

surface salinity in the North Atlantic in all model versions, particularly around the subtropics as shown in Fig. 7. The study of15

Pardaens et al. (2003) investigated the freshwater budget in HadCM3B, concluding that in the North Atlantic saline conditions

are primarily a result of excessive evaporation. Other components, such as insufficient subtropical runoff from the west coast,

may also have an influence. This results in the Atlantic being too stratified and consequently too stable which may reduce the

depth of overturning.

A further consequence of this is a net northward transport of fresh water into the Atlantic (Liu et al., 2014), which may20

result in a monostable stability regime of the AMOC in HadCM3B instead of a bistable regime (Weaver et al., 2012; Liu et al.,

2014). In contrast, Hawkins et al. (2011) have demonstrated a bistable regime in FAMOUS. Approximately 60 % of the CMIP5

models have been shown to exhibit monostability (Weaver et al., 2012). However this is contrary to what is indicated in the

palaeorecord and inferred from the measurements of diagnostic indicators in the present-day ocean; that there is a net export of

freshwater from the Atlantic and consequently the AMOC may be in a bistable regime. This indicates that the AMOC may be25

artificially stable in the HadCM3B and FAMOUS model variants in addition to a range of other CMIP5 models. There remains

uncertainty over this hypothesis however, with Sijp (2012) concluding that freshwater export may not be a reliable indicator of

AMOC stability.
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5.3 Land

5.3.1 Vegetation Distribution30

These models have a simple representation of terrestrial vegetation, with five plant functional types that each covers a large

climatic range. Comparing the dominant PFT in the model to a reconstruction of pre-industrial vegetation (Ramankutty and

Foley, 1999), we can see the model captures the overall correct pattern (Fig. 9), with slight errors of extent and/or exact location.

Previous studies (Betts et al., 2004) which compared TRIFFID PFT distributions to the IGBP-DIS land cover dataset (which

represents the modern distribution of vegetation as derived from satellite image interpretation, Loveland and Belward (1997)

found much of the same patterns.

The broadleaf trees in the tropics tend to extend too far, especially in the Southern Hemisphere, as can be seen in Figs. 9b–d.

The southern mid-latitudes are difficult to capture accurately, for a variety of reasons, including the challenge of precipitation5

patterns in this region. The HadCM3BL model is significantly worse than either HadCM3B or HadAM3B in this regard. This

is because of its decreased ocean resolution, which affects the sea surface temperature and therefore the water transport to the

Amazon region.

A feature which appears in the HadCM3 and HadCM3 models is a tendency for the Amazon broadleaf forest extent to be

underestimated at the mouth of the River Amazon, even at relatively low carbon dioxide concentrations (Figs. 9b–d compared10

to Fig. 9a). At higher carbon dioxide levels, this is a known feature of the model (Malhi et al., 2009; Betts et al., 2004)

caused by ocean circulation resulting in insufficient precipitation to sustain the forest. The tendency of the coupled models to

underestimate precipitation in this area is apparent in Fig. 4 and is particularly notable in HadCM3. This leads to TRIFFID

modelling the presence of C4 grasses instead of broadleaf trees.

Grasses tend to be globally slightly underestimated with the position of vegetation in the Sahara desert and other arid regions15

well reproduced, but the density is modelled to be too sparse, particularly in south-west Africa, central and south-west Asia,

south-west North America and Australia.

The shrub PFT is overestimated at high latitudes, perhaps as a result of the high latitude cold bias in the model. We can

see this in these simulations (Figs. 9b–d compared to observations Fig. 9a). The models simulate less needleleaf trees than

observations for Ramankutty and Foley (1999), instead simulating shrubs. The models also understimate the amount of grasses

and bare soil.5

The observational dataset is re-gridded from the original to the nine surface types in our models, which introduces more

uncertainty. In particular, the dominant PFT obviously is a difficult metric to consider precisely, as it does not represent mixed

vegetation systems such as Savannah, well. Some difficulties mainly originate in how areas such as tundra are allocated – to

bare soil or to C3 grasses. Because of the limited number of PFTs in the model, C3 grass represents a large range of low-lying

vegetation types, arguably also encompassing mosses and lichen and very sparse tundra vegetation.10

There are also some uncertainties associated with the Ramankutty and Foley (1999) dataset, which is a reconstruction of

pre-industrial vegetation. Other model-observations discrepancies have been suggested to be a combination of orographic
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Figure 10. The latitudinal average NPP in gC m−2 year−1. CMIP5 models without dynamic vegetation plotted here are: CCSM4 and IPSL-

CM5A-LR. CMIP5 models with dynamic vegetation plotted here are: MIROC-ESM and MPI-ESM.

representation leading to underestimation of precipitation and the inadequate treatment of natural disturbance mechanisms

such as fire (Betts et al., 2004).

Though not shown, the Equilibrium (run for 50 years every five years) simulations are very similar to the Dynamic (run15

ever ten days) ones, especially in the tree PFTs. That the Equilibrium and Dynamic simulations from the same model are very

closely related suggests that although the inter-annual variability does have some influence on the vegetation, in general the

mean climate is more important.

5.3.2 Net Primary Productivity

The Net Primary Productivity (NPP) of the models, compared to MODIS 2001 NPP observations, is good at capturing the20

global latitudinal patterns, with higher NPP in the tropics and lower in other regions (see Fig. 10). One notable exception is

the failure of the model to capture sub-tropical spikes in productivity, especially at around 20◦ N, which is also underestimated

in the CMIP5 models analysed here (shown by grey lines). The HadCM3B productivity peak over the Amazon tropical area is

lower in the model than observations. Overall, the NPP performance of our models compares favourably with that of CMIP5

models. The large range of NPP values of these CMIP5 models encompasses our models at nearly all latitudes.25

The Amazon forest extends a little too far south in all the models, but this is a key area of difference as well, with HadAM3B

models better capturing the observed distribution, and the lower resolution ocean of HadCM3BL suffering the most from

excess tropical forest. However, HadCM3BL models do better in the Southern Hemisphere, and better than HadCM3B in other
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parts of the tropics. As in the case of the PFT distribution (upon which the NPP is based) there is a close relationship between

the equilibrium (not shown) and dynamic simulations of NPP.30

6 Summary and Future Directions

This paper provides an overview of a variety of versions of the HadCM3 family of coupled climate models used in BRIDGE at

the University of Bristol. In this study we have termed the BRIDGE variants HadCM3B, in order to distinguish our ver-

sions from those originally developed at the Met Office. We provide updated documentation of these variants, including

atmosphere-only, low-resolution ocean, and high-resolution atmosphere-only models, and including three alternative versions5

of the MOSES land surface scheme. Using an up-to-date set of observational benchmarks we show through detailed compar-

isons, that the models provide a good representation of large-scale features of the climate system, both over land and for the

ocean. We additionally show that they remain comparable to most CMIP5 models.

The speed and relative complexity of HadCM3B and its variants creates opportunities for tackling a range of problems. Large

ensembles are possible because of the relatively small number of processors required. Ensembles can explore probabilistic ap-10

proaches to climate change quantification, model parametric uncertainty or boundary condition uncertainty. Long integrations

of many millennia are also possible, so that longer term climate changes, for example covering the last deglaciation, can be

investigated.

Several versions of the model are under continued development and improvement. For example, FAMOUS has been coupled

to an interactive ice-sheet model (Gregory et al., 2012) to allow predictions of sea-level and land ice on longer timescales.15

Further developments in this approach will allow more detailed investigation of climate – sea-level interactions for a variety of

times in the past (e.g., Roberts et al., 2014). FAMOUS also now includes a marine carbon cycle (HadOCC) (Williams et al.,

2013) and an oceanic oxygen cycle (Williams et al., 2014), allowing direct comparisons to biogeochemical cycles.

Currently a very high-resolution version of HadAM3BH is finalising development in Bristol. This uses a resolution of

0.625◦×0.4166◦ (576×433 grid points, N288) as this has been suggested as a minimum resolution for realistic simulation of the20

hydrological cycle (Demory et al., 2014). The model appears to be significantly computationally more efficient (approximately

10× faster) than a similar resolution version of the more recent UK Met Office HadGEM3 model (Walters et al., 2014), because

of the lower model top, simplified aerosol physics and major differences in the underlying atmospheric dynamical core.

This paper motivates the continued development and scientific application of the HadCM3B family of coupled climate

models. Future updates will cover new developments to the presented model version, bug corrections and enhancements.25

7 Code Availability

The UK Met Office made available the source code of HadCM3 via the Ported Unified Model release (http://www.metoffice.

gov.uk/research/collaboration/um-partnership). Enquiries regarding the use of HadCM3 should be directed in the first instance

to the UM Partnership team, who can be contacted at UM_collaboration@metoffice.gov.uk.
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The main repository for the Met Office Unified Model (UM) version corresponding to the model presented here can be

viewed at http://cms.ncas.ac.uk/code_browsers/UM4.5/UMbrowser/index.html.

The code detailing the advances described in this paper is completely contained within the files available as a Supplement5

to this paper. These files are known as code modification files or “mod” files and should be applied to the original code of the

model. This is protected under UK Crown Copyright, as is the base code linked above.

The UM basis files for the simulations described in this paper can be found on the puma.nerc.ac.uk facility (please contact

Andy Heaps for access, andy.heaps@ncas.ac.uk). The simulation names are:

– tcsyf: HadCM3B-M110

– tcywd: HadCM3B-M2.1aN

– tcyxc: HadCM3B-M2.2N

– tdbad: HadCM3BL-M2.1aN

– tdekd: HadAM3B-M2.1aN

– tdewb: HadAM3BH-M2.1aN15

– tdexb: FAMOUS-M1

– tdeyb: FAMOUS-M2.2N

– tdkym: HadCM3B-M2.1aD

– tdkyn: HadCM3BL-M2.1aD

– tdkyo: HadAM3B-M2.1aD20

8 Data Availability

– The CERES data were obtained from the NASA Langley Research Center CERES ordering tool at (http://ceres.larc.

nasa.gov/).

– We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible

for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP

the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating

support and led development of software infrastructure in partnership with the Global Organization for Earth System

Science Portals.

– We acknowledge the MODIS/TERRA project for the NPP data, acquired from: http://neo.sci.gsfc.nasa.gov/view.php?5

datasetId=MOD17A2_M_PSN&year=2001.
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– Data from the RAPID-WATCH MOC monitoring project are funded by the Natural Environment Research Council and

are freely available from: http://www.rapid.ac.uk/rapidmoc
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