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Abstract. Previous research has shown that Land Surface Models (LSMs) are performing poorly when compared with rela-

tively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appears to provide

information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available

in the meteorological forcing data that is used by LSMs for predicting land surface fluxes, by interrogating Fluxnet data, and

extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement5

is possible for empirical models using meteorological data alone, thus setting lower bounds on a priori expectations on LSM

performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble

of empirical benchmarks that are simple to reproduce, and provide a range of behaviours and predictive performance, acting as

a baseline benchmark set for future studies. We re-analyse previously published LSM simulations, and show that there is more

diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much10

worse than simple empirical models.

1 Introduction

Land Surface Models (LSMs) represent the land surface within climate models, which underlie most projections of future

climate, and inform a range of impacts, adaptation and policy decisions. Recently, Best et al. (2015) (PLUMBER hereafter)

conducted a multi-model benchmarking experiment, comparing a broad set of current LSMs to a handful of simple empirical15

models, at multiple sites, and for multiple fluxes. PLUMBER showed that current LSMs are not performing well relative to

simple empirical models trained out-of-sample: an instantaneous simple linear regression on incoming shortwave was able to

out-perform all LSMs for sensible heat prediction, and a three variable cluster-plus-regression model was able to out-perform

all LSMs for all fluxes. A follow-up study (Haughton et al., 2016) ruled out a number of potential methodological and data-

based causes for this result, and it remains unclear why LSMs are unable to out-perform simple empirical models.20

Many of the processes involved in LSMs demonstrate non-linear interactions with other processes. It is also rarely (if ever)

possible to capture enough observationally-based information about a single process, in isolation from other processes, to de-

fine clear physical relationships from empirical data for the wide range of circumstances in which we expect a climate model

to perform. This problem is an example of confirmation holism, discussed in-depth in a broader climate modelling context in

Lenhard and Winsberg (2010). On top of this uncertainty about how the system operates in a general sense, there are often25

1

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-153
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 12 July 2017
c� Author(s) 2017. CC BY 4.0 License.

Sentence is unclear: imporvement using meteorlogical data alone. 
Does it mean that models are better using metor. data compared to surface data or that the added information from weather data improves the model

they can be also used in off line mode for hydrology or fluxes for isntance, please modify sentence

I think there are some clear explanations related to non-consistent land-atmosphere interaction behavior 

maybe mention model complexity



significant problems with obtaining reliable observational data of measurable processes (e.g. lack of energy closure, Wilson

et al., 2002; or inconsistencies between different soil heat flux measurement equipment, Sauer et al., 2003). Consequently, pro-

cess representations will always contain a mix of both aleatory uncertainty - unknowable uncertainty, such as non-systematic

measurement error, or irreducible noise from chaotic dynamics; and epistemic uncertainty - uncertainty related to our lack of

knowledge of the system, including systematic measurement biases, unaccounted-for variables, or misunderstood or neglected5

processes (Gong et al., 2013; Nearing et al., 2016).

In the past, model evaluations have largely consisted of intercomparisons (Pitman et al., 1999; Dirmeyer et al., 2006; Guo

et al., 2006), where each model’s output is evaluated relative to observations, and then its performance is compared to other

models’ performance (perhaps including previous versions of the same model), using visual and statistical comparisons. While

this might indicate when one model is better than another, it doesn’t show whether one, both or neither model is using the10

information provided to it well - it provides no indication of how much more improvement can be made. Crucially, this method

fails to separate aleatory and epistemic uncertainty. For example, an LSM might appear to perform well under a given set of

metrics in a particular environment, and relatively poorly in a second environment, but this difference may be due to differences

in the predictability of the environments. If the second environment is harder to predict (higher aleatory uncertainty), then it

is possible that there is more scope for improving the model in the first environment (where epistemic uncertainty might be15

dominant). Generally, it is difficult to know how well our models are working in an absolute sense, because we don’t know how

predictable the system is. We don’t know how much of the errors that we see in our models are due to poor model performance,

or due to fundamental unpredictability in the system itself (this problem is described well in Figure 1 of Best et al., 2015).

One of the most important aspects of Best et al. (2015) was the clear distinction between benchmarking and direct intercom-

parison based evaluation. The benchmarking methodology allows performance assessment of each LSM in an absolute sense,20

independent of the relative performance of other LSMs. More importantly, these benchmarks provide strong a priori expecta-

tions of performance for LSMs, effectively putting a lower bound on the epistemic uncertainty, by giving a minimum estimate

(assuming no over-fitting) of the amount of information available in the predictor variables (e.g. meteorological forcings, site

characteristic data) that is of value for predicting the response variables (in this case land surface fluxes). The simple empirical

models used in Best et al. (2015) have been used for decades, and come with an understanding of their power and limitations.25

This approach to benchmarking provides considerably more objectivity in assessing actual LSM performance than traditional

methods of model evaluation (e.g. direct analysis, or model intercomparison, see Best et al., 2015).

However, the selection of empirical models used as benchmarks in Best et al. (2015) was somewhat ad-hoc. In this paper

we attempt to create a framework for assessing the over-all predictability of land surface fluxes, by providing a more thorough

exploration of the predictive power of empirical models using only meteorological forcing data as inputs. We aim to provide a30

hierarchy of empirical models that each describe a priori estimates of how predictable land surface fluxes are, by providing a

lower bound on best possible performance for a given set of driving variables. These models are able to be used as benchmarks

for evaluation of LSMs. We also aim for this set of empirical models to exhibit a diversity of error patterns under different

conditions, such that LSM evaluation might narrowed down to specific failures under particular environmental circumstances

(for example, poor performance during drought periods, or at a particular time of day).35
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2 Methodology

To select our benchmark ensemble, we used Fluxnet data spanning multiple vegetation types and most continents. Using these

data, we began by selecting potential input variables, according to their relevance as flux predictors. We then selected an

appropriate model structure, and generated simulations for all combinations of the selected variables. Once model simulations

were generated, we selected a small ensemble such that range of performance and diversity of error types were maximised.5

The details of each step are described below.

We used the 20 Fluxnet sites used in Best et al. (2015), plus an additional 41 high-quality sites, including 20 from the La

Thuile Fluxnet release (Fluxdata.org, 2017) via The Protocol for the Analysis of Land Surface models (PALS), and another 21

from the OzFlux network (See Table 1). All data used in this study has a 30 minute resolution.

We were interested in obtaining estimates for three land-atmosphere fluxes that are important for climate and weather pre-10

diction in a global model: Latent heat (Qle), sensible heat (Qh), and net ecosystem exchange (NEE). While there are other

fluxes that are relevant for climate modelling (runoff, for example), these are less well constrained by data. For the sake of fair

comparison with LSMs, we corrected for energy budget closure at all sites where net radiation (Rnet) was available (all but 6

sites), by scaling Qh and Qle values by the average Qh+Qle
Rnet over each site record.

We aimed to make use of all of the meteorological forcing variables that LSMs routinely use, including shortwave down (S),15

longwave down (L), air temperature (T), wind speed (W), rainfall (R), specific humidity (Q), and relative humidity (H). For

the purposes of model training, we only used the high quality periods of data, according to the quality control flags provided in

the La Thuile release, plus some quality control from the PALS project (detailed in section 2a of Best et al., 2015). These flags

remove periods of data that are clearly incorrect, or synthesized. An overview of how much data is considered high quality for

each variable across all sites is provided in Figure 1. All quality controlled data was used for training, so that data from sites20

with no high-quality data for longwave down, for example, were excluded from the training of models that include longwave

down as a driver. However, all models still had substantial training data after low-quality data was excluded.

Although site characteristic data (for instance, soil and vegetation properties) are also likely to have significant effects on

fluxes at a specific site, collection of these data at the site level is less standardised (for example, soil heat plate design and

implementation differ substantially between different sites, see Sauer et al., 2003). Remotely sensed estimates are typically on25

much larger spatial scales than a flux tower’s fetch (Chen et al., 2009) and have considerably larger uncertainties than in-situ

measurements. The data are also often discretised (e.g. by plant functional type), and so can not be used as a real-valued input

to empirical models, effectively forcing models to provide separate parameterisations for each soil/vegetation combination.

By ignoring site characteristic data, and using meteorological variables only, we can set a lower bound on site predictability.

Adding in accurate site characteristic data to empirical models should, conceptually at least, allow for improved empirical30

model performance, but as Best et al. (2015) and Haughton et al. (2016) showed, LSMs that already use these data do not

perform better than simple empirical models based on meteorological data only.

The empirical benchmark models used in PLUMBER used only instantaneous meteorological driving data. However, the

land surface has various storage pools for energy, water, and carbon. These storage pools effectively modulate the effect of
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Figure 1. Histograms of percentage of high-quality data for each variable aggregated across all sites. The bottom right panels show the

percentage of time steps that are high-quality for the intersection of all of the variables at a each site, and the intersection of all variables

except L.

meteorological forcing, modifying flux responses according to past meteorological information. While it would be possible

to add state variables to an empirical model to represent these pools, without adding constraints there would be a high risk

of numerical instability. Such constraints would either have to come from conceptually-based theory (making the models no

longer purely empirical), or would have to be empirically calibrated, an extremely difficult task given the aforementioned

numerical instability. An alternative approach is to assume that the historical record of a forcing variable has some impact,5

and leave it to the empirical model to decide how to include that impact. We implemented this by calculating lagged averages

of each variable, at varying time lags, and then used the variable selection process described below to pinpoint individually

relevant lags.

The PLUMBER benchmarks had extremely simple structures. There are many potential empirical model structures that

could be used to estimate an unknown functional relationship. While polynomial models, neural networks, and Gaussian10

process models can all fit arbitrary functions, these approaches often require either convoluted fitting processes (and so are less

desirable for broad scale application to LSM benchmarking) and/or likely to over-fit data for inexperienced users.

Best et al. (2015) used a cluster-plus-regression approach for the most complex of their models (3km27, a K-Means clustering

(k=27) with a linear regression at each cluster). This approach, originally from Abramowitz et al. (2010), is conceptually simple

yet able to fit arbitrary functions simply by increasing the number of clusters. It is also computationally efficient, aside from15

the initial K-means clustering (which can be made more efficient via a number of optimisations). It does potentially have the

problem of a prediction surface that is discontinuous at the edges of clusters (where several linear regressions meet), but we did

not find this to be problematic. The K-means clustering is also somewhat dependent on it’s random cluster centre initialisation,
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which means that repeated k-means based empirical models using the same training data result in slightly different outputs, but

in our testing this variance only rarely affected ranks (see Supplementary material for more details). In Best et al. (2015), the

3km27 model out-performed all LSMs for all fluxes when averaged across metrics and sites. We chose to continue to use this

model structure here.

Following Best et al. (2015), all empirical models were tested out of sample only. They were trained using a leave-one-out5

strategy: for each site, they were trained on all of the other 60 sites, and then given the meteorological data to run at the site in

question. They were then evaluated using that site’s flux measurements, which were not included in its training.

For all of our models, we use the Best et al. (2015) 3km27 (re-implemented, and from here on labelled STH_km27, see

naming scheme in Table 3) as a base-line from which to add complexity. The criterion for model selection in the final ensemble

was simple - additional complexity must add predictive value to the model. Additional complexity can potentially degrade10

performance out-of-sample, due to increased risks of over-fitting (more parameters) or equifinality (essentially, getting the right

answer for the wrong reason, see Medlyn et al., 2005). Where additional complexity did not substantially improve performance,

we took an Ockham’s Razor approach and used the simpler model.

Other than choice of model structure, there are a number of ways that a model’s complexity can increase. Firstly, using the

same input and output variables, a model’s internal structural complexity can be increased. In the case of cluster-plus-regression15

models, which are effectively a non-continuous piece-wise linear surface with one plane per cluster, this corresponds to using

more clusters. Since the number of clusters defines the number of gradient discontinuities in the model, and hence it’s ability

to fit more complex functions, we refer to this as the model’s “articulation”. The input data is not inherently strongly clustered

and so the number of clusters chosen is largely subjective. The Best et al. (2015) STH_km27 model was designed such that

it could potentially divide the input space of three variables into 3 distinct regions in each dimension (hence k = 33). In this20

study, we chose to continue this conceptual approach and look at models with k = 243, 729 and 2187 (35,36 and 37, for 5, 6

and 7 input variables, respectively). This design continues to allow sufficient articulation in each variable dimension as more

variables are added, i.e. for 243 clusters, 5 input variable domains could each be split into 3 bins, independent of the other

variables. In practice however, the clusters are not distinct in each individual variable domain - they each generally have some

overlap. The articulation over one variable conditional on other variables may therefore be higher or lower. It is also worth25

noting that a model with more input variables effectively has less articulation per variable than a model with fewer variables

but the same number of clusters.

Another obvious method of increasing complexity is to add extra predictor variables. Starting from STH_km27, we can

add in any of the remaining variables (L, W, R; see Table 3). We also noted that Gentine et al. (2016) identified two key

meteorological variable transformations as highly predictive for heat fluxes, namely change in T since dawn (delta T), and30

change in Q since the previous sunrise (delta Q). We included both of these transformations as additional predictors, using the

first time step with � 5Wm�2 S as our “dawn” reference point.

For each predictor variable not included in the original PLUMBER study, we generated variants of the original STH_km27

that included each variable, one at a time, for k=27 and 243 (e.g. STHL_km27, STHL_km243). These were compared to the

results from the original PLUMBER models (S_lin, ST_lin, STH_km27) as well as an increased-articulation variant with only35
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the original three PLUMBER variables (STH_243), to ensure that each new variable was actually adding predictive power.

Since adding in extra variables increases the dimensionality of the input space, we might expect increased articulation to have

more impact.

Thirdly, we can add in some historical variant of any of the input variables. For each variable, we used varying time periods,

and calculated the average of the preceding period for each time-step (excluding the time-step itself, e.g. since all data was5

half-hourly, for the 2 hour lagged average we calculated the average of the previous 4 timesteps). The averages we used were

30 minutes, 1, 2, 6, 12 hours, 1, 2, 7, 10, 30, 60, 90, and 180 days. We then compared the set of models with added lagged

averages for a given variable to each other, as well as the original 3 Best et al. (2015) benchmarks. This allowed us to identify

which variants of the lagged variables were adding the most value. Lagged correlation plots are shown for each variable in the

supplementary material, and give an a priori indication of which lags for different variables might add additional information10

to an empirical model.

Variables also have interacting responses, for example, two variables might have a multiplicative flux response. It is theoret-

ically possible to generate models that cover all the possible interactions between variables. However, even if we only included

a handful of instantaneous variables and a handful of possible interactions, the set of models to run would quickly become

impossibly large. Fortunately, the articulation that the cluster-plus-regression model structure allows for can approximately fit15

any such interaction without the need to actually include the interaction terms in the regressions.

To ensure that any variables identified as providing additional predictive power did not interact in problematic ways (e.g

collinearity), we investigated the pairwise correlations between each variable. Given that the system has significant non-

linearities, this is not a perfect method of ensuring lack of collinearity. However, as a first approximation, it allows us to

remove any obviously pairwise-correlated variables.20

Once we had identified the key variables that provided substantial performance increases, we generated an small hier-

archically defined ensemble of models using these variables. The ensemble is designed to be a conceptually simple set of

benchmarks that can be used by other researchers in model evaluation and development. The ensemble includes the original

three PLUMBER benchmarks, and several other models of gradually increasing in complexity. We use this model ensemble to

re-analyse the LSM results from the original PLUMBER experiment.25

3 Results

As a first step, we investigated how much value additional articulation would add to the STH_km27 model, by comparing it to

models with the same inputs and structure, but using 243, 729 and 2187 clusters (Figure 2). This and subsequent figures use

the same methodology as figures 4, 5 and 6 in Best et al. (2015). They show the performance rank of each model, relative to

other models in the plot, for each flux variable averaged over the 61 Fluxnet sites and over 10 different performance metrics30

(listed in Table 2). In this and following similar plots, a lower rank average is better and should be interpreted as a model

performing better than a higher model more often than not. The larger the difference, the more often the lower ranked model

wins. The differences in the y-values in these plots do not necessarily indicate how much better a model performs than other

6
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models, although analysis in Haughton et al. (2016) indicates that ranks do tend to approximate relative performance values

when assessed in aggregate.

In Figure 2, the three panels show the rank average results for each of the models over the three flux variables relative to each

other. The first column of each panel represents the averages across all sites and all metrics, the second column averages only

over the common metrics, and third column only over the extremes metrics, and the fourth column only the distribution-related5

metrics (see figure caption for details). At the most general level, with performance averaged over all metrics (first column

of each panel), the STH_km243 model (yellow) provides substantial improvement over STH_km27 for Qle and NEE. There

does not appear to be any improvement for Qh. STH_km729 appears to provide a slight further improvement for all three

fluxes. STH_km2187 provides minor and probably negligible improvement over STH_km729 for all fluxes, with the possible

exception of extremes and distribution metrics for Qh and Qle. Examining the results separately over the different metric sets10

used in Best et al. (2015) (columns 2, 3, and 4 in each panel), the models with more articulation substantially improve the

performance of the prediction of extremes for NEE, and both extremes and distributions for Qh and Qle. Articulation beyond

729 clusters offers no additional benefit for the common metrics. Interestingly, the linear models (S_lin, ST_lin) out-perform

the other models in most cases for NEE under the distribution metrics, and ST_lin does exceptionally well for Qh prediction

under the extremes. We note that this is the most volatile category due to the sensitivity of empirical models to outliers affecting15

the extremes, and because this group only contains two metrics. Increased articulation is more likely to provide more benefit

with more input variables, but using more variables also increases the likelihood of both incomplete timesteps (as any given

variable might have a low-quality data point), and of the clustering algorithm failing to converge (e.g. some clusters may not

be assigned a value, causing the model to crash). We did some further testing of 2187-cluster in later parts of the study, but

since these models crashed more frequently, and did not obviously add further performance improvement, we excluded them20

from the remainder of the paper.

Next, we tested which of the additional available meteorological forcing variables added value to the models. We tested L,

W, R (we omitted Q, as this information is already largely contained in the T and H variables), as well as delta Q and delta T.

For each variable we created km27 and km243 variants, and compared them to the original PLUMBER benchmarks (S_lin,

ST_lin, STH_km27), plus STH_km243.25

Figure 3 shows that instantaneous W provides substantial benefits for model prediction for all fluxes, at both 27 and 243

clusters. Instantaneous L appears to provide substantial benefit for Qle prediction, but does not clearly improve the performance

of Qh or NEE fluxes. Instantaneous R appears to slightly degrade performance across all fluxes at both resolutions. Delta Q

provides substantial improvement for Qle prediction, and some improvement for Qh, but the impact on NEE performance is

a negligible degradation of performance. Delta T also provides some improvement for Qle and NEE, and does not clearly30

improve Qh prediction.

Even if the additional variables do not add substantially to the performance of the models, lagged averages of those variables

might. We additionally tested model variants with lagged averages of each meteorological variable. Figure 4 shows that despite

instantaneous S, T and H already being in the reference models, lagged averages of these variables appear to offer additional

predictive ability. Longer lags of S and H help the prediction of Qle, perhaps because these variables act as proxies for soil35
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Figure 2. Rank-average plots of empirical models using the same inputs as STH_km27, with an increasing number of clusters. Metrics (Table

2) are calculated for each flux variable for each model simulation, at each of the 61 Fluxnet sites, and in each case models are ranked. The

first column of values in each panel represents the rank average over all sites and all 10 metrics, the second column all sites and “common”

metrics (NME, MBE, SD_diff, correlation), the third all site and the two extremes metrics (extreme_5, extreme_95), and the fourth all sites

and the distribution-related metrics (skewness, kurtosis, overlap). Lower values indicate better overall performance, and lines only serve to

visually connect data points (gradients are irrelevant).

moisture and possibly ground heat storage. Both 2 and 6 hour lags of T appear to provide a performance improvement, but

these lags likely also correlate highly with instantaneous T (see Supplementary Material). Models with lagged averages of L

and W do not appear to provide any benefit over the instantaneous variables and appear to degrade performance substantially

for longer lags. Short lags of R appear to substantially decrease the performance of models for all fluxes, however longer lags

appear to provide some benefit, especially for Qle (10-90 days).5

From the above investigations, we determined that there were 8 key variables in addition to the three already used in the

PLUMBER benchmark models. The entire set of relevant variables is: Instantaneous S, T, H, and wind; delta T; delta Q; and

lagged average variants of T (6 hours), S (30 days), R (30 days), and H (10 days). To ensure minimal likelihood of problems

with collinearity of forcing variables, we calculated the pair-wise correlations between each pair of potential forcing variables

and the fluxes. For this investigation, we removed all low quality data, across all selected variables, which resulted in the10

AdelaideRiver site being remove due to having no controlled rainfall data. This left over 1.6 million timesteps of data.
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Figure 3. Models with a single additional variable. As per Figure 2, except that each column includes four base-line benchmark models

(S_lin, ST_lin, STH_km27, and STH_km243), plus STHX_km27 and STHX_km243, versions of STH_km27 and STH_km243 with an

extra instantaneous meteorological or derived variable included as an input (variables are listed along the x-axis, models with added variables

are in blue shades).

Figure 5 shows that the three fluxes are fairly highly correlated with one another and with S. This was already indicated

by the good performance of the 1lin benchmark in PLUMBER. Of the other individual driving variables, T, H, and delta T

have the next highest correlations with the fluxes. The first two of these were also indicated by the performance of 3km27 in

PLUMBER. Delta T also has high correlations with S, T, and H. However, a multiple linear regression on these three variables

only has an R-squared value of 0.66 indicating that there is still substantial independent information in this variable that may be5

of use to empirical models. There are also very high correlations between the 30-day lagged average of S, instantaneous T, and

the 6 hour lagged average T. In particular, the regression of 6 hours lagged average T on instantaneous T has an slope coefficient

of 0.9992, and an R-squared value > 0.999. This is because the lagged average still contains all of the annual cycle information

and all of the daily cycle information (albeit out of phase by 3 hours). However, the lagged average does not contain any of

the high-frequency information, and because of the lag it effectively gives the model a time-of-day proxy. To overcome the10

correlation problem we added a lagged-average-minus-instantaneous variant (last row/column in Figure 5), which avoided the

high correlation with 30-day averaged S and instantaneous T. This variable has a relative high correlation with instantaneous

S, but still contains substantial independent information (R-squared of 0.41 for a regression on S).
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Figure 4. Models with a single additional lagged average meteorological variable input. The five leftmost models (columns) in each panel

are for reference, other models represent STH_lxxx_km243, where xxx is the time average over the lag period (specified on the horizontal

axis) of the variable shown in each panel (e.g. S for the top left panel). Vertical axes show the average rank average of each of the models

(on the x-axis) against all other models in the panel.

Next, we combined our approach to generate a set of models that uses the informative variables identified above. To create a

set of models that spans a range of performance and behaviours, we generated all combinations of model with a selected set of

input variables, according to the results of previous sections. In addition to the three variables used in the original PLUMBER

empirical models (S, T, and H) these variables were: instantaneous wind, delta T, delta Q, and lagged average variants of S (30

days), R (30 days), and H (10 days), and T (6 hours, with instantaneous values subtracted). Each variable was chosen for its5

ability to improve the performance of the models substantially for at least two of the three fluxes. Initially, we also included

L in the models, but we found that this appeared to substantially decrease performance of models (in some cases so much

that these models were outperformed by S_lin). This may be due to the general low-quality of L in the datasets (see Figure 1)

which would minimise the data available both for training, as well as for evaluation. Therefore, we decided to remove L as a

candidate driving variable. In the case of the lagged variables, there was the added concern that long lags (>~30 days) would10
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Figure 5. Pair-wise correlations between forcing variables and fluxes.
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decrease the performance over shorter datasets (the models use the long term average when not enough data is available to

calculate the lags), and that short lags (<1-2 days) would have a high correlation with instantaneous variables (only relevant

when the instantaneous variables were also included).

In an effort to generate a objectively “best” ensemble that maximised behavioural diversity and spanned the range of per-

formance in each variable we initially attempted a pseudo-optimisation based ensemble generation approach. This consisted5

of first generating models for all possible combinations of the seven variables identified above at 243- and 729-cluster counts.

Then, starting with the three PLUMBER benchmarks and the best performing of these model for each flux, we sequentially

added in the models that were most independent from the existing models in the ensemble by selecting the models with the

lowest average error correlation with the models already selected. This resulted in ensembles quite similar in performance to

the ensemble described below, but with less well defined conceptual structure. Therefore, we decided to manually create an10

ensemble from a conceptual classification of the input variables.

Of the newly identified variables there are three clear groupings: firstly, W is the only instantaneous variable that adds

substantially to the performance of models. The second group is the three variables that only include short-term information:

delta T, delta Q, and the 6-hour lagged average of T. These variables likely provide proxies for short time scale states in the

system (e.g. within-canopy heat, and surface water). The last group is the three variables that include long-term information:15

the 30-day averages for S and R, and the 10 day average for H. These variables provide information about long time scale states

in the system, such as ground heat, soil moisture, and perhaps leaf-area index.

We decided to create models that gradually increased in complexity by first adding further articulation to the PLUMBER

models, and then gradually adding in these variable groupings. In doing so, we noted that the 243-cluster variants more often

out-performed the 729-cluster variants in the common metrics, while the 729 variants tended to perform better in the extremes20

and distribution metrics. As such, we decided to include models starting with the three PLUMBER benchmarks, then a model

with further articulation, then a model with the relevant instantaneous variable (wind), then a model with the short-term infor-

mation, and then a model the long term information. We also added both the 243- and 729-cluster variants of the most complex

model. This model is most likely to benefit from a higher cluster count because it has more driving variables. The two variants

display quite different behaviour. This left us with a this final ensemble (short names in parentheses):25

– S_lin

– ST_lin

– STH_km27

– STH_km243

– STHW_km24330

– STHWdTdQ_lT6hM_km243 (short_term243)

– STHWdTdQ_lT6hM_lS30d_lR30d_lH10d_km243 (long_term243)
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– STHWdTdQ_lT6hM_lS30d_lR30d_lH10d_km729 (long_term243)

The selected set spans a broad range of performance in each of the three fluxes and includes multiple modes of increased

complexity (increasing articulation, added variables, lagged variables). The relative performance of these models is show in

Figure 6. The three original empirical models in PLUMBER are consistently out-performed across variables and the more

complex models tend to out-perform less complex models. There are some notable exceptions to this. The performance in the5

most complex models is reduced under the common metrics, especially for Qh. The performance of the increased articulation

model (STH_km243, yellow) is also reduced relative to the simpler model with the same inputs (STH_km27, orange) under

the common metrics for Qh, and the distribution and extremes metrics for Qle. As in Figure 2, the two-variable linear model

performs well against the next most complex models for NEE under the distribution metrics and relatively well for the Qh

extremes metrics.10

Figure 6. Rank-average plot of the 8 models in the final ensemble.

This data is shown again in Figure 7, this time with more emphasis on individual metrics, and how they change as models

become more complex. In many cases, there is a clear graduation from the simplest model performing worst (blue), to the most

complex model performing best (red; e.g. the pdf overlap metric for all fluxes). Some metrics, however, clearly degrade with

complexity, such as Skewness for NEE where performance appears to degrade further as more variables are added. Some of

the less consistently improving metrics (e.g. MBE, SD_diff, Corr, and Extreme95 for Qh) are due to the fact that these metrics15

only change by about 5% between the worst and best models (<1% for Corr), and so noise in the metric results may dominate

any trend. In general, however, there is a consistent gradation of performances across the model ensemble.
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Figure 7. Metric values, averages over all sites. All models are compared to STH_km27 as a baseline (grey), better models are shown in red,

and worse models in blue, where dark red/blue indicates the best/worst model in ensemble, for each metric independently.
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There is inevitable subjectivity in choosing an ensemble such as this, given the theoretically infinite number of possible model

structures. This ensemble strikes a balance between selecting a diverse range of performance and behaviours and maintaining

a clear conceptual hierarchy. The three forcing variable groupings (instantaneous, short-term, and long-term) also potentially

provide a way to understand how much performance improvement different model state variables should provide, and so help

to identify which model process representations might require improvement.5

Having explored Fluxnet datasets for key forcing variables relevant for flux prediction, as well as the longer-term information

contained in those variables, and having created a conceptually coherent benchmark ensemble, we now put the ensemble to

use in an LSM intercomparison.

3.1 Land Surface model evaluation

We compare the ensemble selected above with the LSM simulations used in Best et al. (2015), continuing the work from10

Haughton et al. (2016). Figure 8 shows a re-creation of the key figures from Best et al. (2015) using our empirical benchmarks.

NEE is omitted from this figure for ease of comparison with the original Best et al. (2015) figures (see figure caption) and

because NEE is only included in the output of 4 of the 13 LSMs.

In the second row, we still see the pattern shown by Best et al. (2015) for Qh, that the LSMs are all consistently beaten by

even the simplest empirical models. However, in our version, for Qle, the LSMs appear to be doing relatively better, beating15

STH_km27 consistently. This is for a number of reasons: firstly, the empirical models in this study are trained on more sites

than the Best et al. (2015) empirical models, and this may cause some differences, particularly with the cluster-and-regression

model variants, which are sensitive to initialisation of the k-means clusters (see Supplementary Material). Secondly, all site

data used in this version of the figure is energy-closure corrected which improves LSM rankings in some cases. This is similar

to figure 8 in Haughton et al. (2016), but the closure is dealt with differently. The analyses undertaken here also only use the20

quality controlled data for each site in contrast with Best et al. (2015) and Haughton et al. (2016) which used all data. Thirdly,

if the empirical models tend to cluster around certain values for a particular metric, then it is more likely that if an LSM beats

STH_km27 it will beat many of the empirical models, and therefore skew the over-all rank average towards a lower value.

This is the case for SD_diff in particular as can be seen for Qle in Figure 10. This is perhaps to be expected as the empirical

benchmarks are smoothers, only adding variance from the meteorological forcings (this was also shown figure 4 in Haughton25

et al., 2016). This effect is potentially even more pronounced in the absence of the physical benchmarks used in Best et al.

(2015) and Haughton et al. (2016). Despite this effect, we still see the LSMs generally falling in the middle of the range of

empirical models for Qle under the common metrics. This indicates that our newer and more complex benchmarks are adding

substantial performance improvements over the PLUMBER benchmarks.

In the third row of Figure 8, aside from a few cases (in particular COLASSiB2), the LSMs generally perform better under the30

extremes metrics. Indeed many of the LSMs beat all of the empirical models for Qle and at least fall in the middle of the range

of performances for Qh. This is quite similar to the results shown in figure 5 in Best et al. (2015) where the LSMs generally

performed similarly to the most complex 3km27 benchmark. Under the distribution metrics (fourth row), the LSMs generally
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perform better than all but the most complex of the empirical models. This corresponds reasonably well with figure 6 in Best

et al. (2015).

Figure 8. Comparison of the final ensemble to the PLUMBER LSMs. Each panel compares a single LSM (in black, different in each column)

with all 7 empirical benchmarks (coloured as per Figure 6), and each column within the panels represents a single flux variable, similar to

the design of the plots in Best et al. (2015). The first row shows the average rank over all 10 metrics listed in Table 2. The second, third, and

fourth rows show the metric groups used in e.g. Figure 6. The second, third, and fourth rows correspond to figures 4, 5 and 6 in Best et al.

(2015).

We also examine the performance of the mean of the 13 LSMs in PLUMBER (Figure 9) against our new empirical model

ensemble (similar to figure 12 in Haughton et al., 2016). In the first panel, we see that the mean performs substantially better

under all metrics for Qle than nearly all individual models, but substantially worse for Qh (first row in Figure 8). The LSM5

mean is competitive with the most complex empirical benchmarks for Qle under all four metrics sets, out-performing all of the

benchmarks under all metrics and the extremes metrics. NEE performance of the mean falls toward the middle of the range of

the benchmarks under all four metric sets. That the LSM mean performs substantially worse than most benchmarks Qh, except

under the distribution metrics, where it out-performs all benchmark models.

It is also instructive to examine these data through other lenses. The original PLUMBER results compared LSMs averaged10

over sites and metrics for multiple variables at once. One could alternatively compare LSMs over only a single variable at once,

as per earlier figures in this paper. Figure 10 compares models over a single variable in each major column, and over a single

metric in each row, with each point representing the relative rank over all 20 sites. While it represents the same data shown
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Figure 9. Rank-average plots, including the PLUMBER LSM ensemble mean by metric group: In this plot, the black line represents the

unweighted mean of all 13 PLUMBER model simulations at a given site and variable. Note that the NEE results are the mean of only the 4

models that included NEE in their output.

in Figure 8 it is perhaps a more straightforward intercomparison between LSMs than the original Best et al. (2015) figures. In

particular, it becomes clear under which metrics the models are collectively performing poorly for Qh (RMSE, NME, Corr,

extreme_95), and that performances for Qle are perhaps more heterogeneous than might be interpreted from Figure 8. It also

highlights that some models stand out as poor performers in particular circumstances (e.g. Mosaic for RMSE, Noah 3.2 for

MBE, and COLASSiB for extreme_5). It is difficult to assess the relative performances of the LSMs for NEE due to the small5

group size. However, it is clear that the CABLE variants out-perform JULES and ORCHIDEE for RMSE, NME, SD_diff, and

the extremes metrics.

4 Discussion

We have shown that empirical model performance can be improved substantially over the benchmarks used in PLUMBER. This

is true for all three fluxes under investigation and across multiple sets of performance metrics. Although we used models capable10

of fitting arbitrary function surfaces, it is probable that more information could be extracted from the Fluxnet meteorological

forcings and allow even higher predictability given enough training data. For example, there may be better ways to include
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Figure 10. PLUMBER LSMs by metric: This figure shows the average ranks of models over all 20 sites, and allows easier side-by-site

comparison between LSMs. Each row contains only a single metric, and each column of plots a single flux variable, with LSMs on the

x-axis. Flux values for the empirical benchmarks are identical along the x axis for each panel, but ranks change due to relative differences

between LSMs.
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information from the historical time series of each forcing variable than just using lagged averages. However, the Pareto

principle would suggest that further gains would likely be less substantial and require more effort.

There is also no doubt that performance could be further increased using similar models with additional site characteristic

data. This is a much more complex problem as noted in the introduction. While we ruled out a number of meteorological

variables and derived variants in our models, it is possible - should suitable site data be made available during model training -5

that these variables might be more relevant if they have dependent interactions with those site variables.

This current empirical model ensemble provides a set of a priori lower bounds on the information available in the meteoro-

logical forcings for predicting fluxes. The ensemble also provides a number of intermediate complexity estimates for instances

where less data is available or of interest. In particular, the values in Figure 7 can be used as a benchmark for LSMs in other

studies and the hierarchy of model complexity can give an idea of the spread of metrics that might be expected. It could also10

predict how much a metric should be expected to improve as a model is supplied with more information. We hope that this

ensemble might be used among the land surface modelling community as a common reference point, and that it might pave the

way to the creation of a benchmarking standard. As such, we have provided the code required to reproduce the benchmarks on

appropriate data (with slight variation, as noted in the Supplementary material).

If conceptually simple empirical models are already comprehensively out-performing physically-informed LSMs, and can15

presumably be improved upon with additional site characteristic data, then the question arises “why bother with physically

based models?” One argument is that empirical models will only predict well in environments that are similar to their training

environments. For example, they may not predict well in a world with raised CO2 levels. However, we now have tower based

measurements of a broad spectrum of environments - much broader than the change at any particular location expected over the

next century (Pitman and Abramowitz, 2005) - so it is not unreasonable to expect empirical models to perform reasonably well20

for some range outside the norm. It is worth noting that empirical models of complex systems are necessarily simplifications,

and as a consequence, even when they may adequately model the aggregate behaviour, they are likely to miss important be-

haviours that arise from the complex interactions within the system (Batty and Torrens, 2001). On the other hand, LSMs report

a range of other variables aside from fluxes that are key to coupled modelling systems (e.g. runoff) and impacts assessments

(e.g. soil moisture and temperature). They also have one major benefit over empirical models: their parameters have a physical25

meaning and can be manipulated to learn about changes in the behaviour of the system. However, this is only true if those

parameters are representative of something real, that they are constrained adequately by data, and that the model’s compo-

nents interact realistically. A hybrid approach of empirical model components constrained by available data and conservation

principles remains a possibility for future work.

In general, numerical LSMs have become increasingly complex over the last 5 decades, expanding from basic bucket30

schemes to models that include tens or even hundreds of processes involving multiple components of the soil, biosphere,

and within-canopy atmosphere. Model components may have been added on to existing models without adequate constraint on

component parameters (Abramowitz, 2013), or without adequate system closure (Batty and Torrens, 2001). New component

parameters may be calibrated against existing model components, leading to problems of equifinality (Medlyn et al., 2005),

non-identifiability (Kavetski and Clark, 2011), and epistemological holism (Lenhard and Winsberg, 2010). These problems can35
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often only be overcome by ensuring that each component is itself well constrained by data and numerically stable (Kavetski

and Clark, 2011). As noted earlier, these conditions rarely exist for any given component.

While appropriate use of available data is a prerequisite to model generation, it is not sufficient by itself. Over-reliance on

data could lead to underestimation of uncertainty, where systematic errors in the data are not accounted for. Data can be used

to inform model development, but it should not be used alone to drive model development: “Data is a valuable adviser but5

a tyrannical master” (Bowles, 2016). Over-reliance on data could lead to poor decision making when expertise is ignored in

favour of data-driven approaches that ignore aspects of the environment outside of the scope of the dataset. Even assuming

no systematic errors in the data, and an appropriate model structure, model results must still be interpreted. This requires

significant experience on the part of the researcher. However, as long as they are not over-fitted, we can use naive empirical

models as benchmarks, as prior distributions for the prediction performance of LSMs (as demonstrated by Nearing and Gupta,10

2015), wherever adequate data exists.

The empirical model ensemble outlined in this paper is relatively easy to reproduce on any land surface data. It may be

used by LSM developers as a tool for identifying situations in which their model is performing inadequately. For example, if

empirical models are performing significantly better than an LSM at a particular subset of sites, or at a particular time of year

or day, this difference could be used to help identify environments in which the LSM could improve. The diversity of models15

in the ensemble could also help highlight which components of an LSM might be targeted for improvement. For example, if

the models with W included as a driving variable are performing substantially better than the models without W in a particular

situation, that may indicate that there are problems with the LSM’s handling of surface evaporation. Alternatively, if the model

with lagged R is performing better than other models over a dry period, that may indicate that soil moisture might be a key

factor in behaviour of the fluxes over that period.20

5 Conclusion

We have attempted to set lower bounds on the predictability of surface fluxes, and have shown that using only meteorological

driving data, empirical model performance in previous studies can be improved by adding further complexity. This study

used only meteorological data to predict fluxes, and as such, does not attempt to quantify the relevance of various important

site-characteristic variables, including soil, vegetation, or orography. As records of these types of variables become more25

standardised, the methodology used here may be extended to include them.

This study provides an ensemble of empirical models spanning a broad range of performance and behaviour that can be

used as a standard set of benchmarks for LSM evaluation. The conceptual structure of the ensemble also illustrated the degree

to which predictability is derived from instantaneous, short-term or long-term information. The ensemble is relatively easy

to reproduce and may be used by LSM developers as a tool for identifying situations in which their model is performing30

inadequately.

We have also shown that LSMs, while still clearly performing less well that we might hope, are performing substantially

less homogeneously than might have been expected from Best et al. (2015) or Haughton et al. (2016). Actually attributing poor

20

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-153
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 12 July 2017
c� Author(s) 2017. CC BY 4.0 License.

yes should have been in the discussion



LSM performance to particular aspects of those models remains elusive, but we hope that the benchmark ensemble presented

here will allow for more nuanced evaluation of LSMs in the near future.

6 Tables

Table 1: Fluxnet sites used in this study.

Site Fluxnet code Years Lat Lon IGBP vegetation type

AdelaideRiver AU-Ade 1 -13.077 131.118 Savanna

Amplero IT-Amp 4 41.904 13.605 Croplands

Audubon US-Aud 3 31.591 -110.509 Open Shrublands

Blodgett US-Blo 7 38.895 -120.633 Evergreen Needleleaf Forest

Bondv US-Bo1 10 40.006 -88.290 Croplands

Boreas CA-Man 7 55.880 -98.481 Evergreen Needleleaf Forest

Brooking US-Bkg 2 44.345 -96.836 Croplands

Bugac HU-Bug 4 46.691 19.601 Croplands

Cabauw NL-Ca1 4 51.971 4.927 Cropland/Natural Vegetation Mosaic

Calperum AU-Cpr 4 -34.002 140.589 Closed Shrubland

CapeTribulation AU-Ctr 2 -16.103 145.447 Evergreen Broadleaf

Castel IT-Cpz 6 41.705 12.376 Evergreen Needleleaf Forest

CowBay Au-Cow 6 -16.238 145.427 Evergreen Broadleaf

CumberlandPlains AU-Cum 2 -33.613 150.722 Woody Savanna

DalyPasture AU-DaP 5 -14.063 131.318 Savanna

DalyUncleared AU-DaS 7 -14.159 131.388 Woody Savanna

Degero SE-Deg 5 64.182 19.557 Evergreen Needleleaf Forest

DryRiver AU-Dry 6 -15.259 132.371 Savanna

ElSaler ES-ES1 2 39.346 -0.319 Permanent Wetlands

ElSaler2 ES-ES2 8 39.276 -0.315 Croplands

Emerald AU-Emr 2 -23.859 148.475 Crop

Espirra PT-Esp 4 38.639 -8.602 Woody Savannas

FortPeck US-FPe 7 48.308 -105.102 Grasslands

Gingin AU-Gin 3 -31.375 115.650 Woody Savanna

Goodwin US-Goo 3 34.255 -89.874 Cropland/Natural Vegetation Mosaic

GreatWesternWoodlands AU-GWW 2 -30.191 120.654 Woody Savanna

Harvard US-Ha1 8 42.538 -72.171 Mixed Forests
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Site Fluxnet code Years Lat Lon IGBP vegetation type

Hesse FR-Hes 6 48.674 7.066 Deciduous Broadleaf Forest

Howard AU-How 4 -12.495 131.150 Savannas

Howlandm US-Ho1 9 45.204 -68.740 Mixed Forests

Hyytiala FI-Hyy 4 61.847 24.295 Evergreen Needleleaf Forest

Kaamanen FI-Kaa 2 69.141 27.295 Woody Savannas

Kruger ZA-Kru 2 -25.020 31.497 Savannas

Loobos NL-Loo 10 52.167 5.744 Evergreen Needleleaf Forest

Majadas ES-LMa 3 39.941 -5.773 Closed Shrublands

Matra HU-Mat 1 47.847 19.726 Croplands

Merbleue CA-Mer 7 45.409 -75.519 Permanent Wetlands

MitraE PT-Mi1 1 38.541 -8.000 Savannas

Mopane BW-Ma1 3 -19.916 23.560 Savannas

Otway AU-Otw 2 -38.532 142.817 Grassland

Palang ID-Pag 2 -2.345 114.036 Evergreen Broadleaf Forest

Quebecc CA-Qcu 5 49.267 -74.037 Evergreen Needleleaf Forest

Quebecf CA-Qfo 3 49.692 -74.342 Evergreen Needleleaf Forest

RedDirtMelonFarm AU-RDF 1 -14.560 132.480 Cropland

RiggsCreek AU-Rig 4 -36.656 145.576 Cropland

Rocca1 IT-Ro1 5 42.408 11.930 Cropland/Natural Vegetation Mosaic

Rocca2 IT-Ro2 3 42.390 11.921 Cropland/Natural Vegetation Mosaic

Samford AU-Sam 4 -27.388 152.878 Grassland

Sodan FI-Sod 4 67.362 26.638 Evergreen Needleleaf Forest

SturtPlains AU-Stp 6 -17.151 133.350 Grassland

Sylvania US-Syv 4 46.242 -89.348 Mixed Forests

Tharandt DE-Tha 8 50.964 13.567 Evergreen Needleleaf Forest

Tonzi US-Ton 5 38.432 -120.966 Woody Savannas

Tumba AU-Tum 4 -35.657 148.152 Evergreen Broadleaf Forest

UniMich US-UMB 5 45.560 -84.714 Deciduous Broadleaf Forest

Vaira US-Var 6 38.407 -120.951 Woody Savannas

Wallaby AU-Wac 1 -37.429 145.187 Evergreen Broadleaf Forest

Whroo AU-Whr 3 -36.673 145.029 Woody Savanna

Willow US-WCr 8 45.806 -90.080 Deciduous Broadleaf Forest

WombatStateForest AU-Wom 4 -37.422 144.094 Evergreen Broadleaf Forest
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Site Fluxnet code Years Lat Lon IGBP vegetation type

Yanco AU-Ync 2 -34.988 146.292 Grassland

Table 2: Metrics used for performance assessment of model simulations. x indicates simulation values, o indicates observed

values.

Metric Meaning Formulation Set

rmse Root Mean Squared Error

rP
(oi�xi)2

n

nme Normalised Mean Error

P
|oi�xi|P
|oi� ō|

common

mbe Mean Bias Error

X
(xi� oi)/n

common

sd_diff Difference in standard deviations

|1� �X

�O
|

common

corr Correlation coefficient (inverted)

1� corr(O,X)

common

extreme_5 Difference in 5th percentile value

|P5(X)�P5(O)|

extremes
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Metric Meaning Formulation Set

extreme_95 Difference in 95th percentile value

|P95(X)�P95(o)|

extremes

skewness Difference in skewness

|1� skew(X)
skew(O)

|

distribution

kurtosis Difference in kurtosis

|1� kurtosis(X)
kurtosis(O)

|

distribution

overlap Intersection of histograms (bins=100)

X
(min(binX,k, binO,k))

distribution

Table 3: Empirical model naming key. For example, a model named “STHWdT_lR10d_lT6hM_km243” has seven inputs

(shortwave down, air temperature, relative humidity, wind speed, the difference in temperature between the current time step

and dawn, 10-day lagged average of rainfall, and 6-hour lagged average of air temperature minus instantaneous air tempera-

ture), and uses a 243-cluster K-means regression, with a separate linear regression of over all input variables for each cluster.

key meaning

S Shortwave down

T Air temperature

H Relative humidity

L Longwave down

W Wind speed

R Rainfall

Q Specific humidity
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key meaning

l[v][time](M) Lagged average of variable [v], over the preceding [time]. M indicates that the original

variable is subtracted from the result.

d[v] Delta [v] - change in [v] since dawn, each day.

lin Linear regression

km[k] K-means cluster ([k] clusters), linear regression per cluster
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