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Abstract.

Peatlands store large amounts of soil carbon and constitute an important component of the global carbon cycle. Accurate

information on the global extent and distribution of peatlands is presently lacking but it important for earth system models

(ESMs) to be able to simulate the effects of climate change on the global carbon balance. The most comprehensive peatland

map produced to date is a qualitative presence/absence product. Here, we present a spatially continuous global map of peatland5

fractional coverage using the extremely randomized tree machine learning method suitable for use as a prescribed geophysical

field in an ESM. Inputs to our statistical model include spatially distributed climate data, soil data and topographical slopes.

Available maps of peatland fractional coverage for Canada and West Siberia were used along with a proxy for non-peatland

areas to train and test the statistical model. Regions where the peatland fraction is expected to be zero were estimated from

a map of topsoil organic carbon content below a threshold value of 13 kg/m2. The modelled coverage of peatlands yields10

a root mean square error of 4% and a coefficient of determination of 0.91 for the 10,978 tested 0.5 degree grid cells. We

then generated a complete global peatland fractional coverage map. In comparison with earlier qualitative estimates, our global

modelled peatland map is able to reproduce peatland distributions in places remote from the training areas and capture peatland

hot spots in both boreal and tropical regions, as well as in the southern hemisphere. Additionally we demonstrate that our

machine-learning method has greater skill than solely setting peatland areas based on histosols from a soil database.15
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1 Introduction5

Peatlands contain 20% of the global soil carbon stocks and have played an important role in regulating the global climate since

the onset of the Holocene (Yu et al., 2010). Earth system models (ESMs) simulate the global carbon cycle and its feedbacks

to climate and are used to make future climate projections. Recognizing the importance of carbon stored in peatlands for the

global carbon budget, climate modelling groups have begun to integrate peatlands into stand-alone terrestrial ecosystem models

(TEMs) and also TEMs that serve ESMs and global climate models (GCMs). For example, wetlands and peatlands have been10

incorporated into the Lund–Potsdam–Jena (LPJ) model to simulate global methane emissions (LPJ-WHy; Wania et al. (2009b,

a); Spahni et al. (2013)) and the spatial expansion and carbon sequestration of peatlands as well as wetlands (Kleinen et al.,

2012; Schuldt et al., 2013) during the Holocene. A peatland carbon model has recently been developed for the Canadian Land

Surface Scheme and Canadian Terrestrial Ecosystem Model (CLASS-CTEM) which forms the terrestrial component of the

Canadian Earth System Model (CanESM) (Wu et al., 2016).15

Since the land surface of GCMs and ESMs is grid-based, a prerequisite of integrating peatlands into these models involves

defining the location and the fractional cover of peatlands on the model grid. However, peatlands have generally been over-

looked in landscape databases and their mapping remains challenging (Krankina et al., 2008). Since peatlands are usually

considered as a type of wetland that contains large amounts of organic carbon in the soil, one previous approach to determining

peatland distribution has been based on maps of soil organic matter density (e.g. Wania et al. (2009b)). However, using soil20

organic matter databases alone in determining peatland distribution tends to overlook the subsurface hydrology and vegetation

(more on this in Section 3.2). The first complete global peatland distribution map derived from a paleontological perspective

was produced in 2010 (Yu et al., 2010), but it is an estimated binary map, not a gridded product, and it does not provide quan-

titative information on fractional coverage. As stated by Yu et al. (2010) in describing their dataset, “accurate true peatland

coverage and distribution is not available for many mapped regions”.25

Another approach has been to use a soil map together with global wetland maps or inundation extent maps (e.g. Köchy et al.

(2015)). Wetland and inundated area databases have mostly been produced using the following techniques: mapping of shallow

surface water based on remote sensing data as in the Global Inundation Extent from Multi-Satellites (GIEMS) initiative (Prigent

et al., 2007; Papa et al., 2010) and the Surface WAter Microwave Product Series (SWAMPS) (Schroeder et al., 2015); and land

cover mapping using surface observations and moderate resolution imaging spectroradiometer (MODIS) data as in the Global30

Lake and Wetlands Database (GLWD-3; Lehner and Döll (2004)). However, the currently available wetland mapping products

are of limited utility for peatland modelling applications. These databases generally do not agree well amongst themselves

(Melton et al., 2013) and may exhibit biases depending on how they were generated (see discussion in Bohn et al. (2015)). As
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well, in the boreal zone some peatlands are not inundated, therefore using hydrological characteristics alone can underestimate

their extent (Matthews, 1989; Prigent et al., 2007).

The reliability of maps based on remote sensing data depends on the sampling and interpretation of the remote sensing

signals and the quality control methods (e.g. Zhao et al. (2014)), and is complicated by technical issues such as the interfer-

ence of trees with the signals (Krankina et al., 2008). Because of the difficulties with ground truthing, good quality peatland5

coverage maps are only available for limited areas such as Canada (Tarnocai et al., 2011), Sweden (SGU, 2011) and West

Siberia (Peregon et al., 2009). Despite recent advances in remote sensing, mapping peatlands globally at a high resolution also

requires knowledge of pedology and palaeoecology, and a complete map using these methods is not expected until at least

2020 (Barthelmes et al., 2014).

We are aware of two attempts to dynamically determine peatland extent on a global scale. In their 2012 paper, Kleinen10

and coworkers used a TOPMODEL-based approach to estimate wetland area and water table depth (Kleinen et al., 2012). A

statistical approach based on topography was used to determine regions that are likely to flood. Regions with relatively stable

wetland areas were then allowed to eventually grow peat. Stocker et al. (2014) adapted the TOPMODEL-based approach of

Kleinen et al. (2012) and brought it to the global scale in their Dynamical Peatland Model based on TOPMODEL (DYPTOP).

Both models are designed to simulate peatlands as well as other forms of wetlands. An additional study by Thompson et al.15

(2016) used forest inventory plots along with organic soil depth measurements to create a predictive model of treed peatlands

across Canada. Their model found that certain tree species, along with stand height and stand age, were the best predictors of

peatland presence. Unfortunately, detailed information like this is not available on a global scale. We present here an approach

based on machine learning techniques that does not rely upon the TOPMODEL formulation or forest inventory plots, and that

can independently determine peatland locations globally.20

2 Materials and Methods

2.1 Data acquisition and preparation

The general process of data preparation, model training and testing is illustrated in Fig. 1. To account for the hydrological

and climatic criteria for peatland formation, we used input data covering three aspects of the land surface: climate, soil and

topography. Climate data were obtained from the comprehensive Climatic Research Unit (CRU) database, version 3.22 (Uni-25

versity of East Anglia Climatic Research Unit et al., 2008). The monthly mean and annual mean values of cloud cover, diurnal

temperature range, potential evapotranspiration, precipitation, minimum daily temperature, mean daily temperature, maximum

daily temperature, and vapour pressure were generated from the 1901 to 2013 monthly time series. In total, therefore, 104

climatic input variables for the statistical model were produced from the 8 climate variables listed above (12 monthly average

values and one annual average value per climate variable). Soil properties were obtained from the Harmonized World Soil30

Database (HWSD) v1.2 (Wieder et al., 2014) at 0.05 x 0.05 degree resolution, which was regridded and interpolated to 0.5 x

0.5 degree resolution. Twenty-three soil properties were obtained, including: available water storage capacity, sum of subsoil C

content, sum of topsoil C content, soil or non-soil units, depth of obstacles to roots, topsoil bulk density, subsoil bulk density,
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topsoil gravel content, subsoil gravel content, topsoil clay fraction, subsoil clay fraction, topsoil organic carbon, subsoil organic

carbon, topsoil sand fraction, subsoil sand fraction, topsoil silt fraction, subsoil silt fraction, topsoil pH in water, subsoil pH in

water, cation exchange capacity of the clay fraction in the topsoil, cation exchange capacity of the clay fraction in the subsoil,

dominant soil type subsoil carbon content, topsoil carbon content (Wieder et al., 2014). Topographic information was incorpo-

rated by using calculated fractions of each 0.5 x 0.5 degree grid cell with slopes below specified thresholds using the digital5

elevation ETOPO1 data (Amante and Eakins, 2009). The ETOPO1 data were used to calculate slopes at 1 arc minute (1/60th

degree) resolution. Each 1 arc minute grid cell was assigned a slope that was the average of eight slopes based on its elevation

and the elevation of its eight surrounding grid cells without consideration of aspect. The fraction of each 0.5 degree grid cell

that was flatter than a given slope threshold was calculated using these 1 arc minute slopes. Eight slope thresholds were used:

0.35%, 0.30%, 0.25%, 0.20%, 0.15%, 0.10%, 0.05% and 0.025%. The total number of input variables for the statistical model10

was therefore 135.

For training and testing the model, peatland fractional cover was selected as the target variable. Peatland coverage data were

obtained for Canada (Tarnocai et al., 2011) and West Siberia (Peregon et al., 2009), where 12% and 50-75% respectively of the

land surface is covered with peatlands. For Canada, ESRI shapefiles were available with information on Bog, Fen and Bog/Fen

features with≥1% peat coverage (Tarnocai et al., 2011). Fractional peatland cover was projected from these polygons onto the15

0.5 x 0.5 degree grid. The West Siberia dataset contains peatland fractional cover on a 0.5 x 0.5 degree grid aggregated from

remote sensing and ground survey based data describing 20 wetland types and their areal cover (Peregon et al., 2009). Since

it is unlikely that a reliable global map of peatland coverage can be generated using data solely from these two regions in the

Northern Hemisphere, we derived additional data to provide coverage outside of Canada and West Siberia. Areas where there

are no peatlands at all should correspond to sufficiently low amounts of soil organic carbon. We set the peatland coverage to20

zero for all grid cells below a threshold topsoil organic carbon content (from the HWSD dataset) of 13 kg/m2, which was the

value that provided the best fit during the training and testing of the model. We experimented with other variables that could

potentially be used as a proxy, such as subsoil organic carbon content and annual precipitation, but none of these produced a

better fit.

2.2 Extremely randomized tree methods25

In light of recent successful applications of machine learning methods to global mapping in various areas (e.g. Crowther et al.

(2015)), we set out to produce a spatially continuous global peatland fractional coverage map, using machine learning and

available information on peatland distribution, which would be suitable for use as an input geophysical field for TEMs/ESMs.

Extremely randomized trees, or Extra-Trees, is an ensemble, nonparametric tree model for data interpretation and statistical

modelling. A classification or a regression tree is a representation of an input-output model by a tree whose interior nodes are30

each labelled with a test based on one input variable (Geurts and Louppe, 2011). Each terminal node of the tree is labelled with

a value of the output. The predicted output of the target variable is determined as the output associated to the leaf propagating

through the tree starting at the root node. A tree is built by recursively identifying at each node the test that leads to a split of

the node sample into two subsamples that are as pure as possible in terms of their output values (Geurts and Louppe, 2011).
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Extra-Trees uses randomly selected features at each node in each tree, but randomizes strongly both the attribute and cut-point

choice when splitting a tree node (Geurts et al., 2006), which significantly improves precision and reduces computational

complexity while increasing computational efficiency and scalability (Wehenkel et al., 2006). Extra-Trees is especially suited

to batch-mode supervised learning problems with a focus on those characterized by numerous input variables and a single

target variable (Geurts et al., 2006). Therefore, it is suitable for this study on peatland mapping where numerous variables that5

may be correlated to varying degrees are being used as predictors. To select the most informative features from the original 135

identified, we used the L1-based cross validation feature selection tool that is implemented in the scikit-learn library. L1 prior,

or Lasso, is a linear model that estimates sparse coefficients, which is usually used for sparse estimators due to its tendency to

prefer solutions with fewer parameter values (Pedregosa et al., 2011).

2.3 Statistical modelling and evaluation10

The statistical modelling was conducted in the programming language Python 2.7.10. The Scikit-Learn library (Pedregosa

et al., 2011) was used for building, evaluating and optimizing the Extra-Trees model. As noted above, 135 input variables

were prepared and parsed into the model. Using the default LassoCV hypo-parameters in scikit-learn, however, only 14 of

the original 135 features were selected for the final model and are listed in Table 1. It should be noted that none of the slope

thresholds was selected indicating that slope was not found to be a constraint on peatland location. The combined datasets15

were randomly split across the 27,443 grid cells for which we have values for peatland coverage (60% for training and 40%

for testing). The model was optimized for the highest coefficient of determination (r2).

As fractional peatland coverage data do not currently exist for evaluating the model at a global scale, we used the qualitative

peatland distribution map of Yu et al. (2010) as an independent check of our results. We projected this map, which consists of an

irregular grid containing a logical field indicating the presence or absence of peatlands, onto a 1/24th degree latitude-longitude20

grid. This high resolution logical map was further interpolated using a box-averaging method onto our statistical model grid

at 0.5 x 0.5 degree resolution. Peatland coverage derived in this manner depends on the assumption that the density of the

points on the original grid is a proxy of the fractional coverage. Comparing this result over the two regions where we have

good quantitative information on peatland coverage, the method appears to work well over West Siberia, but is problematic

over Canada because of the lack of points in the original grid over the Mackenzie valley and in the area south of Hudson Bay25

(see Figure A1). In order to obtain the best global representation of peatland coverage, therefore, we merged this global map

with the Canadian and the West Siberia peatland coverage maps to provide a basis for comparison against “observations”. We

refer to this product hereafter as C-WS-Y.
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3 Results and Discussion

3.1 Peatland distributions globally and regionally

The most important variables for determining peatland locations, as found by the statistical model, include top soil organic C

content (% weight), subsoil organic C content (% weight) and area weighted subsoil C content (kg C m−2). Together these

three variables explain 74.4% of the variance as found by the statistical model. Of the remaining 25.6% of the variance, climatic5

variables explain 22.2% (including monthly mean cloud percentage cover in November (3.9%), annual mean of the monthly

near-surface minimum temperatures (3.8%), cloud percentage cover (2.6%), vapour pressure (2.6%), precipitation (1.8%),

monthly mean precipitation in August (2.0%) and April (1.8%))(Table 1). These predictor variables indicate that the soil

organic C content is the best indicator of peatland location. Perhaps surprisingly, other climate indices that have been suggested

as helpful in predicting boreal peatland locations (e.g. Alexandrov et al. (2016)) such as precipitation, temperature, potential10

evapotranspiration, or cloud cover were all found to play a small role in the statistical model’s prediction of a peatland location.

The result suggested that for near-surface temperature, the average minimum is perhaps more important than the average mean

temperature; for precipitation, certain months such as August and April are more critical than the other months in determining

the location of peatlands. The selection of August and April could represent an artifact of the datasets available for model

training, which are from the northern hemisphere. It is possible that the lack of training datasets for the southern hemisphere15

would bias the feature selection towards variables of importance to, primarily, northern hemisphere peatlands. Interestingly,

slope was not selected as one of the final 14 variables. This demonstrates that prior selection of deterministic variables, as has

been done in other studies (e.g. Gallego-Sala and Prentice (2012)), can lead to the use of variables that actually do not have

any predictive power for determining peatland distribution.

Our prediction error was calculated as the difference between the modelled and the observed values for the grid cells in20

our test regions of Canada and West Siberia. Figure 2 shows the heat map of prediction error with the training data masked

in light grey. The total modelled peatland area in Canada was 1.11 million km2, compared with 1.14 million km2 estimated

by Tarnocai et al. (2011). The total area of peatlands in West Siberia calculated by the model was 0.70 million km2, which

agrees very well with the estimated 0.69 million km2 based on remote sensing and ground surveys (Peregon et al., 2009). For

the 10,978 test grid cells, the root mean square error was 4% fractional coverage with a coefficient of determination of 0.91.25

Fig. 3 shows a scatter plot of the modelled versus observed peatland fractions with the biases color-coded, and it can be seen

that there is little or no systematic error, which confirms the ability of the statistical model to capture the peatland distribution

across regions.

This statistical model was then used to create a complete map of global peatland fractional coverage at 0.5 degrees resolution,

shown in Fig. 4a. The merged C-WS-Y map described in the previous section is shown in Fig. 4b and is plotted with two30

different colour keys: the observation-based peatland fractions over Canada and West Siberia are plotted using the same colour

palette as for Fig. 4a, but the fractions obtained qualitatively from Yu et al. (2010) are plotted with a different (red-based) colour

palette. Compared to C-WS-Y, the model predicts similar patterns of peatland density in the northern hemisphere, the tropical

areas and the South, with similar areas of high peatland coverage in the Hudson Bay Lowlands, the West Siberia Lowlands,
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Finland, and tropical islands in Asia. It should be noted that in regions where the C-WS-Y map is solely derived from the Yu

et al. (2010) dataset, it likely represents an underestimate of peatland area as the threshold for inclusion is >5% coverage, so

many areas with peatlands below that threshold will be missed. The model also predicts some peatland areas that have been

discovered in recent years or which lie outside of the data sources of Yu et al. (2010), for example southern Patagonia in Chile

between 52◦11’S, 70◦57’W and 53◦45’S, 72◦56’W (Schmidt et al., 2010), and the Changuinola peat dome in Panama (Lawson5

et al., 2015). (Note that according to Z. Yu (personal communication), polygons over Sweden and Tasmania were omitted from

their original shapefile due to copyright reasons.)

Globally, we estimate the total area of peatlands at 4.42 million km2, of which 3.90 million km2 is located north of 30◦N.

Our estimate for this northern region compares well with the value of 4.0 million km2 reported by Yu et al. (2010) and with

the estimate of between 3.88 and 4.09 million km2 by Maltby and Immirzi (1993). It is also in line with the Tarnocai et al.10

(2009) estimate for boreal permafrost regions of 3.6 million km2. Over the tropics (30◦S to 30◦N), our model produces a value

of 0.43 million km2, which lies between those of 0.37 million km2 reported in Yu et al. (2010) and 0.44 million km2 in Page

et al. (2011) but well below the recent model-based estimate of 1.7 million km2 by Gumbricht et al. (2017). The very large

extent estimated by Gumbricht et al. (2017) requires extensive ground validation, as the authors themselves state, before it can

be assumed to be more reliable than the lower estimates of Page et al. (2011) and Yu et al. (2010). For the region south of 30◦S,15

our estimate is 0.07 million km2, which is higher than the value of 0.045 million km2 by Yu et al. (2010). Over Southeast Asia,

our estimate of 0.17 million km2 is lower than that reported by Page et al. (2011) of 0.24 million km2.

Regional peatland maps derived from the model and from C-WS-Y for Russia and Indonesia are shown in Fig. 5. The model

predicts hotspots of peatlands with more than 40% of areal coverage along the shore of the White Sea and in the Amur River

watershed in Russia (Fig. 5a) and in areas along the coastlines in Indonesia (Fig. 5b). The model predictions for Russia (2.1720

million km2) appear to agree well spatially with C-WS-Y but are lower than Vompersky et al. (2011) (3.69 million km2). The

estimate of Vompersky et al. (2011) includes both peatlands (defined by a peat layer >30 cm) and paludified shallow peatlands

(defined by a peat layer <30 cm). In Indonesia, the model predicts similar locations but larger coverage of peatlands than C-

WS-Y (Fig. 5b). The recent rapid loss of peatland areas due to mainly human activities may have altered the natural distribution

of the peatlands in these regions (Margono et al., 2014) and contributed to the discrepancy between the model predictions and25

C-WS-Y.

3.2 Comparison against using the HWSD soil database for peatland distribution

Since the majority of the variance found in our machine-learning method is attributable to soil carbon content, an impor-

tant test is to ensure that we have greater skill in determining peatland distribution than simply using a soil map alone. The

HWSD dataset includes a grid of mapping unit identifiers at 1/120th degree resolution and a database associating each map-30

ping unit with various soil properties and characteristics, including soil types and fractional coverages. A map of histosols was

constructed by assigning each mapping unit on the high resolution grid with the total coverage from soils identified as his-

tosols according to the FAO-74 and/or the FAO-90 soil classification and box-averaged onto our 0.5 degree resolution model

grid.Figure 6 shows scatter plots for Canada and West Siberia for our approach (upper panels) and the HWSD dataset (lower
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panels) compared to observations (Tarnocai et al., 2011; Peregon et al., 2009). For West Siberia, the modelled peatland dis-

tribution has excellent agreement with the observations (r2 of 0.97 and RMSE of 0.005) while the HWSD shows a bias at

higher peatland extent and larger error (r2 of 0.85 and RMSE of 0.012). The modelled peatland distribution for Canada shows

similarly good agreement with observations (r2 of 0.95 and RMSE of 0.007) while the HWSD appears to have some threshold

behaviour around 0.7 and 0.2 for peatland extent, causing greater error in peatland distribution (r2 of 0.67 and RMSE of 0.021).5

These plots demonstrate that our method produces a significantly better estimation of peatland distribution than solely using

the HWSD dataset.

3.3 Weaknesses of our machine-learning approach

The purpose of our study is to produce a map of peatland distribution for use as an input geophysical field for TEM/ESMs with

integrated peatland models. It is tempting to ask whether our technique can give any insights into peat formation or the con-10

ditions necessary for a peatland to develop and persist. Given that the machine-learning approach is using presently observed

conditions to determine peatland area extent, it is difficult to determine cause from effect. While the climatic conditions that

explained about a quarter of the variance are likely indicative of conditions needed for peatland formation or persistence, the

majority of the variance is explained by soil carbon content. Is high soil C content required for peatland existence or is it that

peatlands themselves create high soil C contents? Our machine-learning method is unable to answer this rather basic question.15

Although useful for determining peatland location, which is our primary goal, it is unable to deal with questions regarding

peatland processes at a mechanistic level.

An additional constraint of the machine-learning approach is the reliance on representative inputs. Recently discovered

tropical peatlands in the Congo Basin (Dargie et al., 2017) and Amazonia (Draper et al., 2014) are not well captured by our

method as both regions do not show elevated soil carbon contents (which is the source of the majority of the variance in our20

method) in the HWSD soil maps. Thus this shortcoming of the HWSD dataset is passed on to our results. Future improvements

in soil mapping products should yield improvements in future versions of our peatland distribution map but because our

technique is diagnostic, not predictive, we will remain constrained by the quality of our input datasets. This constraint is not

limited to soil maps but also to the quality of the climate and topographic datasets.

A final weakness of our approach lies in the availability of training data. Our training data for peatland distribution is biased25

towards the northern hemisphere. While we have good coverage of peatland presence in Canada and West Siberia and peatland

absence globally (see Section 2.1), we presently lack access to sufficient observed peatland distribution maps for the southern

hemispere and the tropics for training of peatland presence in those regions. While it appears from our results that we are

not heavily biased outside of the northern hemisphere (see Section 3.1), better training data would likely improve our model

estimates.30
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4 Conclusions

We present a new global peatland fractional coverage map at a scale of 0.5 degree resolution. We applied a machine learning

method to produce a statistical model, which was trained using existing fractional coverage datasets for Canada and West

Siberia, as well as datasets of climate, soil and topographic information. Our model was able to reproduce test areas of peatland

coverage within the Canadian and West Siberian regions with an r2 value of 0.91 and a RMSE of 4%. A strength of this5

peatland mapping technique is that it does not rely on wetland maps, the TOPMODEL approach, or on prescribed rules of soil

organic matter density, as other studies have done. The global peatland map generated by the model successfully reproduces

well-known peatland hotspots in the boreal region, tropical Asia and the Southern Hemisphere and outperforms techniques

that identify peatlands solely using maps of soil classification. While our peatland map does miss recently discovered tropical

peatlands, we attribute this to deficiencies in the datasets used as inputs to our machine-learning technique. Our global peatland10

map compares well against other global and regional estimates as well as against a qualitative global map (Yu et al., 2010)

and is suitable for use as a peatland mask in global-scale peatland simulations both offline and as part of ESMs/GCMs, and is

slated for implementation in future versions of CanESM.

5 Code availability

Python code for the data processing, statistical modelling and model evaluation is available on request and upon agreeing to15

Environment and Climate Change Canada’s licensing agreement which can be viewed at

http://collaboration.cmc.ec.gc.ca/science/rpn.comm/license.html. Please contact Ed Chan (ed.chan@canada.ca) to obtain the

model code.

The map of peatland distribution is available at ftp://ccrp.tor.ec.gc.ca/pub/EChan/global-peatland-fractional-coverage.nc
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Table 1. Variables used in the extra tree model and ranked with variance explained. Topsoil refers to soil between 0 and 30 cm and subsoil

refers to soil between 30 and 100 cm.

Variance Explained (%) Variable Data Source

29.6 Subsoil organic C content (% weight) HWSD v1.2

28.7 Topsoil organic C content (% weight) HWSD v1.2

16.1 Area weighted subsoil C content (kg C m−2) HWSD v1.2

3.9 Monthly mean cloud percentage cover in November CRU TS 3.22

3.8 Annual mean near-surface minimum temperature CRU TS 3.22

3.0 Annual mean cloud percentage cover CRU TS 3.22

2.6 Annual mean vapor pressure CRU TS 3.22

2.0 Monthly mean precipitation in August CRU TS 3.22

1.8 Annual mean precipitation CRU TS 3.22

1.8 Monthly mean precipitation in April CRU TS 3.22

1.7 Topsoil cation exchange capacity for clay (cmol kg−1) HWSD v1.2

1.7 Monthly mean precipitation in March CRU TS 3.22

1.7 Subsoil gravel content (% volume) HWSD v1.2

1.6 Monthly mean precipitation in July CRU TS 3.22
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Figure 1. A flow chart of the machine learning procedure.

14

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-152
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 13 July 2017
c© Author(s) 2017. CC BY 4.0 License.



Figure 2. Prediction errors (modelled values - observation-based estimates) of peatland fraction on a 0.5 x 0.5 degree grid. The grid cells

used for training are masked in light grey.
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Figure 3. A scatter plot of the modelled vs. the observation-based estimates of peatland fractions for the test data. The differences between

the model and observation-based values are color-coded.
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Figure 4. Global peatland coverage maps: (a) generated from the statistical model, (b) derived by merging the interpolated peatland fraction

from the qualitative map of Yu et al. (2010) and the observation-based peatland fraction maps of Canada and West Siberia (the qualitative

portion of this map is plotted with an alternate red-based key) (see Section 2.1).
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Figure 5. Regional modelled peatland fractions compared to observational based estimations in (a) Russia, (b) Indonesia (the qualitative

portion of this map is plotted with an alternate red-based key). 18
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Figure 5. continued
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Figure 6. Scatter plots comparing modelled peatland fractional coverage (upper panels) and histosol fractions from the HWSD v. 1.3 (Wieder

et al., 2014) (lower panels). The observed values (on the x-axis) for Canada in the left column are from Tarnocai et al. (2011) and the right

column is for West Siberia from Peregon et al. (2009). The mean bias error (MBE), root mean standard error (RMSE), coefficient of

determination (r2) and number of grid cells (N) are listed in each plot.
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Figure A1. Interpolated peatland fraction from the qualitative map of Yu et al. (2010). Note that because of the interpolation procedure from

the original polygon based map to a gridded product, regions with very large polygons can appear to have no peatlands, e.g. the Hudson Bay

Lowlands.
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