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Abstract. The dynamic global vegetation model LPJmL4 is a process-based model that simulates

climate and land-use change impacts on the terrestrial biosphere, agricultural production and the

water and carbon cycle. Different versions of the model have been developed and applied to evaluate

the role of natural and managed ecosystems in the Earth system and potential impacts of global

environmental change. A comprehensive model description of the new model version, LPJmL4, is5

provided in a companion paper (Schaphoff et al., under Revision). Here, we provide a full picture

of the model performance, going beyond standard benchmark procedures, give hints of the strengths

and shortcomings of the model to identify the need of further model improvement. Specifically,

we evaluate LPJmL4 against various datasets from in-situ measurement sites, satellite observations,

and agricultural yield statistics. We apply a range of metrics to evaluate the quality of the model10

to simulate stocks and flows of carbon and water in natural and managed ecosystems at different

temporal and spatial scales. We show that an advanced phenology scheme improves the simulation

of seasonal fluctuations in the atmospheric CO2 concentration while the permafrost scheme improves

estimates of carbon stocks. The full LPJmL4 code including the new developments will be supplied

Open Source through https://gitlab.pik-potsdam.de/lpjml/LPJmL. We hope that this will lead to new15

model developments and applications that improve model performance and possibly build up a new

understanding of the terrestrial biosphere.
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1 Introduction

The terrestrial biosphere is a central element in the Earth System, supporting ecosystem functioning

and also providing food to human societies. Dynamic global vegetation models (DGVMs) have been20

developed and used to study the biosphere dynamics under climate and land-use change. LPJmL4

is a DGVM with managed land that has been developed to investigate potential impacts of climate

change on the terrestrial biosphere including natural and managed ecosystems, and is now described

in full detail in the companion paper (Schaphoff et al., under Revision). LPJmL and its predecessors

have been originally benchmarked against ecosystem carbon and water fluxes and global maps of25

vegetation distribution (Sitch et al., 2003), against runoff (Gerten et al., 2004), agricultural yield

statistics (Bondeau et al., 2007), satellite observations of fire activity (Thonicke et al., 2001, 2010),

permafrost distribution and active layer thickness (Schaphoff et al., 2013), satellite observations of

fraction of absorbed photosynthetically active radiation (FAPAR) and albedo (Forkel et al., 2014,

2015), and atmospheric CO2 concentrations (Forkel et al., 2016). These previous evaluation studies30

focussed on single processes or components of the model. Here we present now a comprehensive

multi-sectoral evaluation to demonstrate that LPJmL4 can consistently represent multiple aspects of

biosphere dynamics.

LPJmL4 spans a wide range of processes (from biogeochemical to ecological aspects, from leaf-

level photosynthesis to biome composition) and combines natural ecosystems, terrestrial water cy-35

cling, and managed ecosystems in one consistent framework. As such, it is increasingly applied for

cross-sectoral studies such as the quantification of planetary boundaries (Steffen et al., 2015) and

SDG interactions (Jägermeyr et al., 2017), and of multidimensional impacts of climate and land

use change (e.g., Gerten et al., 2013; Ostberg et al., 2015; Warszawski et al., 2014; Zscheischler

et al., 2014; Müller et al., 2016). With this complexity, its evaluation against historical observations40

along multiple dimensions is essential (Harrison et al., 2016). For such purpose, standardized bench-

marking systems have been proposed (Luo et al., 2012; Kelley et al., 2013; Abramowitz, 2005) and

iLAMB (https://www.ilamb.org/), the international land model benchmarking project, has been es-

tablished. In the present evaluation of a broad range of fundamental features of the LPJmL4 model,

we basically follow the benchmarking procedures, variables, performance metrics and diagnostic45

plots suggested by Luo et al. (2012), and Kelley et al. (2013). Thus the presented evaluation is going

well beyond earlier evaluations of DGVMs and of LPJmL (and its predecessors) itself. We pay spe-

cial attention to LPJmL4’s capability to reproduce observed seasonal and interannual dynamics and

patterns of key biogeochemical, hydrological and agricultural processes at various spatial scales. In

doing so, we highlight the model’s unique feature of representing the interaction of processes for50

both natural and agricultural ecosystems in a single, internally consistent framework.
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2 Model benchmark

In the following we describe in detail the model benchmarking scheme employed here, which allows

for a consistent evaluation of processes simulated by LPJmL4 at seasonal and annual resolution

and at spatial scales from site level (using e.g. eddy-flux measurements for comparison) to global55

level (using e.g. remote sensing products). The evaluation spans the time period from 1901 to 2011.

The benchmarking analysis also considers results from different model set-ups and previous model

versions, in order to demonstrate advancements achieved with the current LPJmL4 version and the

sensitivity of results to individual new modules.

2.1 Model setup and simulation experiments60

As described in Schaphoff et al. (under Revision), we drive the model simulations with observation

based monthly input data on daily mean temperatures from Climatic Research Unit (CRU TS version

3.23 University of East Anglia Climatic Research Unit; Harris (2015); Harris et al. (2014)), precipi-

tation provided by the Global Precipitation Climatology Centre (GPCC Full Data Reanalysis Version

7.0, (Becker et al., 2013)). Shortwave downward radiation and net downward longwave radiation are65

reanalysis data from ERA-Interim (Dee et al., 2011). Monthly average wind speeds are based on the

National Centers for Environmental Prediction (NCEP) re-analysis data and were regridded to CRU

(NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA, Kalnay et al. (1996b)). The

number of wet days per month, which is used to allocate monthly precipitation data to individual

days of the corresponding months, is derived synthetically as suggested by New et al. (2000). Dew70

point temperature is approximated from daily minimum temperature (Thonicke et al., 2010). Global

annual values for atmospheric carbon dioxide concentration are taken from the Mauna Loa station

(NOAA/ESRL, http://www.esrl.noaa.gov/gmd/ccgg/trends/).

The spatial resolution of all input data is 0.5◦ and the model simulations are conducted at this

spatial resolution. All model simulations are based on a 5000 year spinup simulation after initializing75

all pools to zero. A second spinup simulation of 390 years is conducted in which human land use

is introduced in 1700, using the data of Fader et al. (2010). In addition to the original data set

description of Fader et al. (2010), sugar cane is now represented explicitly. Cropping intensity as

calibrated following Fader et al. (2010) is kept static in the simulations, whereas sowing dates are

computed dynamically as a function of climatic conditions until 1971, following Waha et al. (2012)80

and kept static afterwards. Soil texture is given by the Harmonized World Soil Database (HWSD)

version 1 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012; Nachtergaele et al., 2008) and parameterized

based on the relationships between texture and hydraulic properties from Cosby et al. (1984). The

river routing scheme is from the simulated Topological Network (STN-30) drainage direction map

(Vorosmarty and Fekete, 2011). Reservoir parameters are taken from Biemans et al. (2011), locations85

are obtained from the GRanD database (Lehner et al., 2011).

3

http://www.cdc.noaa.gov/
http://www.esrl.noaa.gov/gmd/ccgg/trends/


We test the influence of specific processes that have been implemented or improved in LPJmL4

(specifically, permafrost, phenology, and fire) on overall model performance by conducting the fol-

lowing factorial experiments:

– LPJmL4-GSI-GlobFIRM: a simulation with all standard model features enabled as used in90

Schaphoff et al. (under Revision), i.e. with land use, permafrost dynamics, the growing sea-

son index (GSI) phenology scheme and the simplified fire model (GlobFIRM). This model

experiment is the default LPJmL4 model experiment.

– LPJmL4-GSI-GlobFIRE-PNV: same, but for potential natural vegetation (PNV) to evaluate

the role of managed land on global pattern and processes. This model experiments mimics the95

original LPJ model (i.e. without agriculture) but with improved phenology.

– LPJmL4-NOGSI-GlobFIRM: a simulation with land use, permafrost dynamics and the simpli-

fied fire model, but without the GSI phenology for testing the sole effect of the GSI phenology.

Instead of the GSI phenology, here we use the original phenology model (Sitch et al., 2003)

that is based on a growing-degree day approach. This experiment mimics the LPJmL 3.5 ver-100

sion (including the LPJ core, agriculture, and permafrost) as described in Schaphoff et al.

(2013).

– LPJmL4-NOGSI-NOPERM-GlobFIRM: a simulation with land use and the simplified fire

model but without permafrost and without the GSI phenology. This model experiment mim-

ics the original LPJmL 3.0 model with the LPJ core (Sitch et al., 2003) and the agricultural105

modules (Bondeau et al., 2007).

– LPJmL4-GSI-SPITFIRE: a simulation setup as LPJmL4-GSI-GlobFIRM but with the process-

based fire model (SPITFIRE, Thonicke et al. (2010)). This experiment is a LPJmL4 model run

with an alternative fire module.

2.2 Evaluation data sets110

Following Kelley et al. (2013) we compare LPJmL4 simulations against independent data for vege-

tation cover, atmospheric CO2 concentrations, carbon stocks and fluxes, fractional burnt area, river

discharge and FAPAR. Beyond these suggestions of Kelley et al. (2013), we extend the benchmark-

ing system to data sets of eddy flux tower measurements of evapotranspiration and net ecosys-

tem exchange rate (NEE). Ecosystem respiration (Re) is evaluated against both eddy-flux mea-115

surements and operational remote sensing data. Crop yields are evaluated against FAOSTAT data

(FAO-AQUASTAT, 2014). For FAPAR, we use not just one but three different reference data sets

to account for uncertainties from multiple satellite datasets (see Section 2.2.6). We also compare

LPJmL4 results against data that are not fully independent of other models (mostly empiricial, data-

driven modelling concepts), acknowledging the limitations of these data in a benchmark system.120
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However, this allows for assessing LPJmL4’s performance in additional aspects, where fully data-

based products are not available. These data comprise global gridded data sets of vegetation or

aboveground biomass carbon (Carvalhais et al., 2014; Liu et al., 2015), cropping calendars (Port-

mann et al., 2010), global gross primary production (GPP) (Jung et al., 2011), Re (Jägermeyr et al.,

2014), soil carbon (Carvalhais et al., 2014), and evapotranspiration (Jung et al., 2011).125

We use both site-level and global gridded data because they provide complementary information

but have different advantages for the comparison with simulated data like from LPJmL4. Site-level

data are fully independent from model estimates and assumptions, but typically only represent a

specific ecosystem with a certain vegetation and soil type, and a specific site history. Thus site-level

data have only a limited representativeness for 0.5◦ grid cells. On the other hand, global gridded130

data of GPP (Beer et al., 2010; Jung et al., 2011) and Re (Jägermeyr et al., 2014) are available at the

same scale and thus can be directly compared to simulation outputs of DGVMs. However, global

gridded datasets usually rely on empirical modelling approaches and ancillary data to upscale and

extrapolate site-level data to large regions. Nevertheless, specific site conditions like forest manage-

ment affecting site age, biomass, and carbon fluxes can be hardly re-simulated for a large number135

of global sites within a DGVM. Although Kelley et al. (2013) reject the use of such datasets for

model benchmarking because they depend on modelling approaches, we accept the additional use

of such datasets because they prevent the scale mismatch between site-level data and global DGVM

simulations.

2.2.1 Vegetation cover140

We compare simulated vegetation cover to the ISLSCP II vegetation continuous fields of Defries and

Hansen (2009) as suggested by Kelley et al. (2013). This data set is a gridded snapshot of vegetation

cover for the years 1992/1993 from remote sensing data and distinguishes bare soil, herbaceous, and

tree cover fractions aggregated to 0.5◦ resolution (Defries and Hansen, 2009; Kelley et al., 2013).

Tree cover fractions are further distinguished into evergreen vs. deciduous and into broad-leaved vs.145

needle-leaved tree types, respectively. The herbaceous vegetation class includes woody vegetation

that is less than 5m tall. Data uncertainties increase in regions where tree cover is <20% due to

understorey vegetation and soil disturbing the signal, as well as above 80% due to signal saturation

(Defries and Hansen, 2009; Kelley et al., 2013). To test if the simulated land cover of LPJmL4

performs better than a random-generated land cover distribution we compare the performance of150

LPJmL4 also to the random model as suggested by Kelley et al. (2013, Section 2.3.5), whereas the

original dataset ISLSCP II vegetation continuous fields were randomly resampled.

2.2.2 Atmospheric CO2 concentration

To evaluate the model’s capacity to capture global-scale, intra- and interannual fluctuations of atmo-

spheric CO2 concentrations as driven by the uptake activity of the terrestrial biosphere, we compare155
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simulated CO2 concentrations with those recorded continuously at two remote measurements at

Mauna Loa (MLO, 19.53◦N, 155.58◦W) and Point Barrow (BRW, 71.32◦N, 156.60◦W) (see Rö-

denbeck (2005) for further details on these measurements). We use monthly CO2 concentrations

from flask and continuous measurements from 1980 to 2010 for the comparison with LPJmL4 sim-

ulations. CO2 observations were temporally smoothed and interpolated using a standard method160

(Thoning et al., 1989). The atmospheric transport model (TM3, Rödenbeck et al. (2003)) in Jaco-

bian representation (Kaminski et al., 1999) simulates the global CO2 transport using estimates of

net biome production (NBP) (here simulated by LPJmL4, see Forkel et al. (2016)), estimated net

ocean CO2 fluxes from the Global Carbon Project (Le Quéré et al., 2015) and fossil fuel emissions

from the Carbon Dioxide Information Analysis Center (CDIAC; Boden et al. (2013)). Atmospheric165

transport in TM3 is driven by wind fields of the NCEP reanalysis (Kalnay et al., 1996a) at a spatial

resolution of 4◦ x 5◦.

2.2.3 Terrestrial carbon stocks and fluxes

Model-independent reference data for carbon stocks and fluxes are available from Luyssaert et al.

(2007) for various sites globally distributed. This data set comprises vegetation carbon, aboveground170

biomass, GPP and net primary production (NPP). GPP flux data from Luyssaert et al. (2007) are

based on eddy-flux measurements and are subject to those uncertainties, reported in Luyssaert et al.

(2007, Table 2). Contrastingly, NPP data are derived from direct measurements of continuous leaf-

litter collection, allometry-based estimates of stem and branch NPP from basal measurements, root

NPP estimates from soil cores, mini rhizotrons, or soil respiration, and destructive understorey har-175

vest. Estimates here are subject to uncertainties, depending on the sampling methods (Luyssaert

et al., 2007). Several individual sites of this data set can be located within one simulation unit of a

0.5◦ grid cell and we thus compare simulated values to the range of site measurements in that grid

cell.

Alternatively to the site-based GPP data from Luyssaert et al. (2007), we also compare spatial180

patterns and grid cell specific GPP simulations to the GPP data set of Jung et al. (2011), as also

suggested by Kelley et al. (2013). This global data set is based on a larger set of eddy flux tower

measurements than the data set of Luyssaert et al. (2007), but uses additional satellite and climate

data, and empirical modelling for extrapolation to full global coverage. Re is evaluated for the time

period 2000 to 2009 directly against plot-scale FLUXNET (http://fluxnet.fluxdata.org/data/la-thuile-185

dataset/) measurements (ORNL DAAC, 2011), but also against large-scale Re estimates from an

empirical model based on operational remote sensing data by the Moderate Resolution Imaging

Spectroradiometer (MODIS) with a resolution of 1 km and 8 days (Jägermeyr et al., 2014).

In addition to GPP, Re and NPP, we also compare simulated NEE fluxes with eddy flux tower

measurements directly. We use 70 time series of estimated NEE from eddy flux tower sites that190

measure the exchanges of carbon and water fluxes continuously over a broad range of climate and
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biome types (ORNL DAAC, 2011). Nevertheless, eddy flux tower sites are not well distributed across

the globe and sites in the temperate and boreal zone are better represented than the tropical zone.

For the global comparison of the soil and vegetation carbon stocks we use the data compiled by

Carvalhais et al. (2014). The soil organic carbon (SOC) estimations are based on the Harmonized195

World Soil Database (HWSD) (Nachtergaele et al., 2008). Carvalhais et al. (2014) used an empirical

model to calculate SOC stocks (kgm−2) from soil organic content (%), layer thickness (m, here

for the first 3 m), gravel content (vol%), and bulk density (kgm−3). They pointed out that regions

as North America and northern Eurasia are less reliable as HWSD was work in progress at that

time. The vegetation carbon data of Carvalhais et al. (2014) are based on a forest biomass map for200

temperate and boreal forests from microwave satellite observations (Thurner et al., 2014), a biomass

map for tropical forests based on Lidar observations (Saatchi et al., 2011), and an additional estimate

of grassland biomass. Uncertainties in biomass are in most regions between 30-40% and are strongly

related to uncertainties in belowground biomass. We also compare simulated aboveground biomass

to the estimates of Liu et al. (2015), which is also based on satellite-based passive microwave data.205

This comparison requires additional assumptions on the separation of aboveground and belowground

biomass in LPJmL4 simulations. Liu et al. (2015) estimates for 2000 a global aboveground biomass

of 362PgC with a 90% confidence interval of 310–422PgC.

2.2.4 Terrestrial water fluxes

River discharge measurements are taken from the ArcticNET and UNH/GRDC data sets for 287210

gauges (Vörösmarty et al., 1996). From this data base, we only selected river gauges with catchment

areas ≥ 10,000 km2 as the model setup and resolution are not suitable for comparison with smaller

catchments. We also only selected river gauge records with a temporal coverage of more than 95%

of the observation period and an observation period longer than 2 years at a monthly resolution.

Evapotranspiration fluxes are taken from the FLUXNET data base and comprise 126 sites, of215

which we selected sites (n=99) with at least 3 years of data available (ORNL DAAC, 2011). Addi-

tional to site-level data, we used global gridded ET data from Jung et al. (2011), which is based on an

upscaling of site-level eddy covariance observations with satellite and climate data using a machine

learning approach.

Irrigation withdrawal and consumption data we compare to are from other modelling approaches.220

Nonetheless, human water use for irrigation is an important component in the terrestrial water cycle

and we discuss modelled LPJmL4 estimates in comparison to other model-based estimates, acknowl-

edging the limitation of this comparison and addressing different sources of uncertainty.

2.2.5 Permafrost

For the evaluation of simulated permafrost dynamics, we use the measured thaw depth data from 131225

stations of the Circumpolar Active Layer Monitoring (CALM) station data set: https://www2.gwu.edu/ calm/
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(Brown et al., 2000) as well as the International Permafrost Association (IPA) Circum–Arctic Map

of Permafrost http://nsidc.org/data/ggd318 (Brown et al., 1998). The distribution of permafrost is

based on regional elevation, physiography and surface geology. The permafrost extent represents

four classes which categorize the percentage of the ground underlain by permafrost (continuous,230

90-100%; discontinuous, 50-90%; sporadic, 10-50%; and isolated patches of permafrost, 0-10%).

2.2.6 Fractional area burnt

For the evaluation of simulated fire dynamics, we employ data on fractional area burnt from the

Global Fire Emissions Database GFED4, Version 4 (GFED4) data set (http://www.globalfiredata.org/;

Giglio et al. (2013)) for the period 1995 to 2014 and climate change initiative (CCI) Fire Version 4.1235

(http://cci.esa.int/data; Chuvieco et al. (2016)) for the period 2005 to 2011. Mean annual burned area

was computed for both datasets for the overlapping period (2005-2011). Both data sets are derived

from satellite data. Active fire data was used in GFED4, to prolong the dataset prior to the MODIS

period (i.e. for 1995-2000).

2.2.7 Fraction of absorbed photosynthetic active radiation and albedo240

Data on the fraction of absorbed photosnthetically
:::::::::::::::
photosynthetically

:
active radiation (FAPAR)

are derived from three different satellite data sets to account for differences between datasets for

model evaluation (see Table 4, Forkel et al. (2015)). The MODIS (Moderate-Resolution Imaging

Spectroradiometer; USGS, 2001) FAPAR (Knyazikhin et al., 1999), the Geoland2 BioPar (GEOV1)

FAPAR data set (Baret et al., 2013) (hereafter called VGT2 FAPAR), and the GIMMS3g FAPAR245

data set (Zhu et al., 2013). The MODIS FAPAR data set is taken from the MOD15A2 product with

a temporal resolution of 8 days at a spatial resolution of 1 km, covering the period 2001 to 2011.

VGT2 is based on SPOT VGT with a temporal resolution of 10 days and 0.05◦ spatial resolution

(Baret et al., 2013), covering the period 2003 to 2011. The GIMMS3g data set has a 15-day temporal

resolution and 1/12◦ spatial resolution and covers the period from 1982 to 2011. Data on FAPAR250

is also subject to uncertainties from the processing of the remotely sensed data and is not available

continuously for all areas. We compare the spatial patterns of the peak FAPAR, and the temporal dy-

namics of FAPAR in each grid cell, and seasonal variations in FAPAR averaged for Köppen-Geiger

climate zones for the three different FAPAR data sets. The aggregated FAPAR represents the average

:::::::
monthly time series for all grid cells that belong to a certain Köppen-Geiger climate zone (see also255

Forkel et al. (2015)). For the Köppen-Geiger climate zones, FAPAR time series are averaged over all

grid cells that belong to that
::
the

:::::
same Köppen-Geiger climate zone (see also Forkel et al. (2015)).

For the evaluation of the reflectance of the earth surface we used the MODIS C5 albedo time

series data set from 2000-2010 (Lucht et al., 2000; Schaaf et al., 2002), that we also aggregated to

Köppen-Geiger climate zones for the evaluation here.260
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2.2.8 Agricultural productivity

Detailed data on crop growth and productivity are available for individual sentinel sites (Rosenzweig

et al., 2014). For global-scale or regional simulations, reference data are available only for crop yields

and in (sub-)national aggregations (e.g., FAO-AQUASTAT, 2014) or as processed and interpolated

gridded products (Iizumi et al., 2014). In all yield data statistics outside of well-controlled field265

experiments, yield levels and interannual variability are not only affected by variability in weather,

but also by variance in management conditions, such as sowing dates, variety choices, cropping

areas, fertilizer inputs, pest control and others (Schauberger et al., 2016). Consequently, it is difficult

to evaluate model performance from a comparison of simulated yields with static assumptions on

most management aspects with yield statistics in which the contribution of weather variability on270

yield variability is unknown. Müller et al. (2017) propose a combination of global gridded crop

model simulations and different observation-based yield data sets to establish a benchmark for global

crop model evaluation. Generally, global gridded crop models perform well in most regions for

which statistical models can detect significant influence of weather on crop yield variability (Ray

et al., 2015). We here evaluate LPJmL4 by comparing simulated and observed yield variability of275

the 10 top-producing countries
:
of
::::

the
::::::::
respective

:::::
crop (FAO-AQUASTAT, 2014). We refrain from

comparing to individual sentinel sites, but refer to the evaluation of LPJmL crop simulations at

global, national and grid cell scale in the global gridded crop model evaluation framework (Müller

et al., 2017). As in Müller et al. (2017), we aggregate simulated grid-cell level yield time series to

average national yield time series using the MIRCA2000 data set for spatial aggregation (Porwollik280

et al., 2016) and removing trends in observations and simulations with a moving window average

(see Müller et al. (2017) for details).

The productivity of biomass plantations is evaluated with data from experimental sites for mis-

canthus, switchgrass, poplar, willow and eucalyptus production, using the data collection of Heck

et al. (2016). Data on biomass productivity typically report a data range. These are site-specific285

management differences and reflect the diverse drivers of reported productivity, such as variation of

plant species, fertiliser use and irrigation management, crop spacing or sapling size. We average the

minimum and maximum values to derive the mean productivity per site.

2.2.9 Sowing dates

For evaluating the accuracy of the simulated rainfed sowing dates, we use the global data set of290

growing areas and growing periods, MIRCA2000 (Portmann et al., 2008, 2010) at a spatial resolution

of 0.5◦ and a temporal resolution of one month, as proposed by Waha et al. (2012). Monthly data

in MIRCA2000 were converted to daily data by assuming that the growing period starts at the first

day of the month following Portmann et al. (2010). MIRCA2000 reports several growing periods in

a year for some administrative units and
::
for

:::
the

:::::
crops wheat, rapeseed, rice, cassava and maize. For295
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comparison we select the best corresponding growing period so that a close agreement indicates that

simulated sowing dates are reasonable, but not necessarily the most frequently chosen by farmers.

We do not compare simulated sowing dates for sugar cane (see SI-Fig. S94) to observed sowing dates

as MIRCA2000 assumes it is grown all year round as a perennial crop.

2.3 Evaluation metrics300

We employ Taylor diagrams Taylor (2001)
::::::::::::
(Taylor, 2001) to compare the correlation, differences

in standard deviation, and the centered root mean squared error (CRMS) between simulated and

observed carbon and water fluxes at FLUXNET sites (ORNL DAAC, 2011) and at gauge stations

from ArcticNET and UNH/GRDC. The standard deviations of the reference data sets have been

normalized to 1.0 so that multiple sites can be displayed in one figure.305

Table 1. Evaluation metrics
::::
used

::
in

:::
this

::::
study

Metric Equation Reference

NMSE NMSE =
∑N

i=1(yi−xi)
2∑N

i=1(xi−x)2
Kelley et al. (2013)

NME NME=
∑N

i=1|yi−xi|∑N
i=1|xi−x| Kelley et al. (2013)

ME ME=
∑N

i=1|yi−xi|·Ai∑N
i=1Ai

W W= 1−
∑N

i=1(yi−xi)
2·Ai∑N

i=1(|yi−x|+|xi−x|)2·Ai
Willmott (1982)

MM MM=
∑N

i=1|qi,j−pi,j |
N

Kelley et al. (2013)

yi is the simulated and xi the observed value in grid cell i, x the mean observed

value, Ai the area weight in grid cell i, and N the number of grid cells or sites, qi,j
is the simulated and pi,j is the observed fraction of item j in grid cell i. Normalized

mean square error – NMSE, Normalized mean error – NME, ME – Mean absolute

error, W – Willmott coefficient of agreement, MM – Manhattan metric

For global gridded reference data sets, such as for carbon stocks, we show spatial patterns in

maps and aggregations as latitudinal means and quantify overall differences as a spatial correlation

analysis over all grid cells (see Table 4). As suggested by Kelley et al. (2013) we use the normalized

mean squared
::::::
square error (NMSE) to describe differences between model simulation and reference

data sets. The NMSE is zero for perfect agreement, 1.0 if the model is as good as using the data310

mean as predictor and larger 1.0 if the model performs less well than that. The squared error term

puts stronger emphasis on large deviations between simulations and observations and is thus stricter

than the normalized mean error (see Table 1 for equations). Kelley et al. (2013) also suggests to use

the Normalized mean error (NME) as a more robust metric than NMSE. NME is based on absolute

residuals (NMSE on squared residuals) and thus is especially better suited for variables that can315
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have very large values and residuals. Additionally, we use the Manhattan metric (MM) proposed

by Kelley et al. (2013) for evaluation of vegetation cover. Values for MM less than 1 reflect that

the model perform
::::::::
performs better than the mean valueand additionally .

:::::::::::
Additionally

:
we show the

random model- "produced
:
,
:::::
which

::::
was

::::::::
generated

:
by bootstrap resampling of the observations " -

::
as proposed by Kelley et al. (2013, Table 4)for

:
.
::::
The

::::::
random

::::::
model

:::
was

:::::
used

:::
for

:::
the evaluation of320

vegetation distribution.

Table 2 gives an overview of variables evaluated at the local scale and which measures are
:::
the

:::::::
measures

::::
that

::::
were

:
used for the evaluation of time series for crop yields, we

:
.
:::
We employ a simple

time series correlation analysis after removing trends with a moving-window detrending method. For

comparison with point measurements, we extract the time series from corresponding 0.5◦ grid cells.325

These simulated time series may differ in terms of weather and soil conditions from the actual site

as the simulations are based on gridded global data set inputs. Time period is given by the respective

measurements, which differ for each observation point.

Table 2. Overview of variables evaluating LPJmL4, showing measures and references at
:::::::
measures

:::
used

:::
for the

:::::::
evaluation

::
of
:::::::
LPJmL4 local scale.

Measure Reference

Standard Reference

Variable CRMSE Deviation Correlation to figures Data Citation

CO2 x Fig. 1 & 2 Atmospheric transport Rödenbeck (2005)

NEE x x x Fig. 3 FLUXNET ORNL DAAC (2011)

ET x x x Fig. 7 FLUXNET ORNL DAAC (2011)

NPP x Fig. 4d Luyssaert et al. (2007)

GPP x Fig. 4c Luyssaert et al. (2007)

BIOMASS x Fig. 4a & 4b Luyssaert et al. (2007)

DISCHARGE x x x Fig. 8 & ArcticNET &

SI-Fig. S19-S66 UNH/GRDC Vörösmarty et al. (1996)

Centered root mean square error (CRMSE)

To envisage the degree of agreement between simulated (LPJmL4) and observed (MIRCA2000)

sowing dates, we follow Waha et al. (2012) and compute two different metrics: the Willmott coef-330

ficient of agreement (W) (Willmott, 1982) and the mean absolute error (ME), both weighted by the

crop-specific cultivated area according to (Portmann et al., 2010). For an overview of all metrics

used, see Table 1.

3 Results and discussion

In the following we compare the standard version LPJmL4, which refers to the experiment LPJmL4-335

GSI-GlobFIRM. In case of the other experiments we refer to the names defined in Section 2.1.
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3.1 Vegetation cover

LPJmL4 reproduces the observed vegetation distribution better than the random model (Table 3).

Such as the random model, LPJmL4 can best reproduce the distinction between bare soil and veg-

etated areas (MM = 0.22) and between tree-covered areas and areas without trees (MM = 0.31), but340

with considerably better scores than the random model (MM = 0.56 and 0.54 respectively). More-

over
:
,
:
LPJmL4 simulation results reach the lowest MM scores for the distinction of evergreen vs.

deciduous trees (MM = 0.52) and for the distribution and composition of life forms (trees vs. herba-

ceous vs. bare soil; MM = 0.45), these are substantially better than the random model (MM = 0.87

and 0.88 respectively). The largest improvement of LPJmL4 simulations over the random model are345

found for the patterns of broadleaved vs. needleleaved trees (MM = 0.37 for LPJmL4 vs. 0.94 for the

random model, see Table 3).

Table 3. Comparison metric scores for LPJmL4 simulations against observations of fractional vegetation cover

data from International Satellite Land-Surface Climatology Project (ISLSCP) II vegetation continuous field

(VCF) (Defries and Hansen, 2009).

Vegetation cover Manhattan Metric (MM)

LPJmL4 Random model∗

Life forms 0.45 0.88

Tree vs. non-tree 0.31 0.54

Herb vs. non-herb 0.42 0.66

Bare vs. covered ground 0.22 0.56

Evergreen vs. deciduous 0.52 0.87

Broadleaf vs. needleleaf 0.37 0.94

MM suggested by Kelley et al. (2013),∗ values taken from Kelley

et al. (2013, Table. 4)

3.2 Atmospheric CO2 concentration and NEE

3.2.1 Comparison of simulated NBP to atmospheric CO2 concentration at MLO and BRW

LPJmL4 reproduces well observed long-term and seasonal dynamics of atmospheric CO2 (Fig. 1350

and 2). The long-term trend of atmospheric CO2 is well reproduced in all the different model setups

(Fig. 1), except for the setup with natural vegetation only (LPJmL4-GSI-GlobFIRM-PNV). The ex-

periment with all processes included (LPJmL4-GSI-GlobFIRM) gives the best correlation and trend

reproduction, which suggests that an integral representation of the LPJmL4’s features is required

to match observations best. Next to land-use dynamics, the inclusion of permafrost dynamics has355

the strongest effects on the simulated trend (LPJmL4-NOGSI-NOPERRM-GlobFIRM vs. LPJmL4-

NOGSI-GlobFIRM). The use of the process-based fire model SPITFIRE leads to small overestima-

tion of the trend in atmospheric CO2 concentrations compared to the other model setups, especially

at MLO. Seasonal variations in atmospheric CO2 can be well reproduced by LPJmL4, especially

12



by the standard setup (LPJmL4-GSI-GlobFIRM) (Fig. 2). The simulation of seasonal variations in360

atmospheric CO2 content are especially improved by the GSI phenology scheme (LPJmL4-NOGSI-

GlobFIRM vs. LPJmL4-GSI-GlobFIRM, Fig. 2 (a)(b)
:::
top

::::
panel). All model setups (except LPJmL4-

GSI-SPITFIRE) can reproduce the observed strong significant increase in the seasonal CO2 ampli-

tude at BRW and the weak (but
:::
and insignificant) increase at MLO (Fig. 2 (c)

:::::
bottom

:::::
panel). These

results are in agreement with a previous evaluation of simulated seasonal CO2 changes in LPJmL365

(Forkel et al., 2016).
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Figure 1. Comparison of the atmospheric CO2 concentrations at Mauna Loa
::::
Point

::::::
Barrow (MLO

::::
BRW) at the

top and Point Barrow
:::::
Mauna

:::
Loa

:
(BRW

::::
MLO) at the bottom for the different LPJmL4 experiments.

Further analysis shows that the standard setup (LPJmL4-GSI-GlobFIRM) can best produce the

mean seasonal cycle in MLO, whereas the version that omits land use (LPJmL4-GSI-GlobFIRM-

PNV) performs slightly better than this in BRW (Fig. 2). The standard setup (LPJmL4-GSI-GlobFIRM)

can also best reproduce the increase in the seasonal amplitude at BRW, whereas it is the only setup370

that produces a statistically significant but still very small increase in the seasonal amplitude at MLO,

where also observations do not show a statistically significant increase.

3.2.2 Comparison of simulated NEE to eddy-flux measurements

We evaluate model performance of simulated NEE from LPJmL4 for temporal and spatial variation

of NEE data from eddy flux measurements, using Taylor diagrams (Taylor, 2001). Stations are sorted375
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Figure 2. Comparison of the atmospheric CO2 concentration at Mauna Loa (MLO) and Point Barrow (BRW)

simulated in the different LPJmL4 experiments. Top panel, seasonal cycle; bottom panel, trend of the seasonal

amplitude, slope
:::::
slopes are given for the different LPJmL4 experiments.

from North to South (see Fig. 3) for all NEE measurements available for >3 years. The model is able

to reproduce the mid-latitudes best (represented by yellow over green to light blue colors), with

correlation coefficients mostly between 0.4 and 0.9 and standard deviations often within +/-30% of

the reference data. The northernmost regions are well reproduced at some flux towers, but often with

higher standard deviation than in the flux tower data, which means that the simulated time series380

are largely in phase with but are more variable than the observations. In contrast, the evaluation

is comparatively poor for tropical regions, especially the station at Santarém with strong negative

correlations (r< -0.6) but realistic standard deviations. For this site, however, Saleska et al. (2003)

have already pointed out that the eddy-flux measurements show the opposite sign compared to tree

growth observations and model predictions, which also is the case for LPJmL4. We stress that this385

evaluation is done for a standard LPJmL4 run and standard input (the LPJmL4-GSI-GlobFIRM as

described in Schaphoff et al. (under Revision)), i.e. we did not calibrate the model to site-specific

conditions and also drive the model with gridded input data rather than the observed soil and weather

data at individual stations. More detail for comparisons with eddy-flux tower measurements for

individual locations is supplied in the supplementary material (see SI-Fig. S1-S7). Additionally we390

have simulated NEE by conducting simulations with station-specific meteorological observations

(see SI-Fig. S17). It shows that results are similar to simulations driven by global climate data.
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Figure 3. Net ecosystem exchange rate measured at eddy flux towers: ORNL DAAC (2011). Available online

FLUXNET. Sites (colours) are ordered from north to south.

3.3 Vegetation and soil carbon stocks and vegetation productivity

3.3.1 Soil carbon and vegetation carbon stocks

The spatial correlation between simulated and observation-based estimates of SOC by Carvalhais395

et al. (2014) is weak (r = 0.29, Table 4) with disagreements in the sub-tropics, where LPJmL4 sim-

ulations substantially underestimate soil carbon stocks, whereas LPJmL4 report much higher soil

carbon in the high northern latitudes (>50◦N) and lower values for the tropical and temperate zone,

compared to Carvalhais et al. (2014) (see SI-Fig. 67). Other estimates by Tarnocai et al. (2009) show

much higher carbon content for the permafrost affected areas than the data set of Carvalhais et al.400

(2014). We thus assume that the disagreement between simulations and the Carvalhais et al. (2014)

data may also result from an underestimation of carbon stocks in the Carvalhais et al. (2014) data.

Although that
::::::::
However, the estimation of global soil carbon is less in LPJmL4 (1869 PgC) than

estimated by Carvalhais et al. (2014) (2352±400 PgC).

The comparison of simulated and observation-based assessments of vegetation carbon show a405

good spatial correlation (r = 0.84, Table 4). Globally Carvalhais et al. (2014) estimates slightly lower
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Table 4. Overview of variables evaluating LPJmL4, showing measures and references at the global scale.

Measure Reference

spatial temporal Visual

Variable NME NMSE Correlation Correlation Comparison Data Citation

GPP - Av 0.20 0.13 0.87 Fig. 5& GPP Jung et al. (2011)

SI-Fig. S68

Re - Av 0.67 0.55 0.67 Fig. 6 & Jägermeyr et al. (2014)

SI-Fig. S70

SoilC - Av 0.48 0.75 0.29 SI-Fig. S67 Soil carbon stocks Carvalhais et al. (2014)

VegC - Av 0.33 0.36 0.84 SI-Fig. S69 (a) Total Biomass Carvalhais et al. (2014)

SI-Fig. S69 (b) AGB Liu et al. (2015)

FAPAR - I-aMv 0.17 0.13 0.63 Fig. 10a MODIS FAPAR Knyazikhin et al. (1999)

FAPAR - I-aMv 0.18 0.15 0.59 Fig. 10b GIMMS3g FAPAR Zhu et al. (2013)

FAPAR - I-aMv 0.21 0.20 0.69 Fig. 10c VGT2 FAPAR Baret et al. (2013)

ET 1E-6 0.07 0.84 SI-Fig. S71 Latent heat flux Jung et al. (2011)

fBA SI-Fig. S72 GFED4 & CCI Fire (4.1)

Albedo SI-Fig. S72 MODIS C5 Lucht et al. (2000)

Discharge ArcticNET & Vörösmarty et al. (1996)

Ov 0.42 0.24 R2 = 0.90 UNH/GRDC

Mav 0.36 0.19 R2 = 0.92

I-av 0.24 0.06 R2 = 0.97

Normalised mean error (NME) and Normalised mean square error (NMSE) as suggested by Kelley et al. (2013); Av – Annual average; I-aMv –

Inter-annual-monthly variability; Overall variability – Ov; Monthly average variability – Mav; Inter-annual variability – I-av; Vegetation carbon –

VegC; Aboveground biomass – AGB; Soil carbon – SoilC; fBA – fractional burnt area.

biomass (445±8 PgC) as simulated by LPJmL4 (507 PgC). The spatial patterns of vegetation car-

bon stocks are shown in SI-Fig. S69 (a) for simulations and the data product of Carvalhais et al.

(2014). While the broad geographical patterns are in overall agreement with the evaluation data, the

absolute values differ in some regions. Specifically, LPJmL4 simulates much higher biomass (see the410

latitudinal pattern of SI-Fig. S69) for the tropics, and lower biomass between 20 and 40 degrees on

the northern and southern hemisphere, where Carvalhais et al. (2014) show higher values compared

to LPJmL4. This is probably due to an overestimation of vegetation carbon in agricultural regions by

Carvalhais et al. (2014) as Liu et al. (2015) shows similar aboveground biomass estimates there (see

SI-Fig. S69 (b)). The sub-tropical region
:
, where biomass carbon is underestimated

:
, corresponds also415

to the region where LPJmL4 simulations underestimate soil carbon stocks compared to Carvalhais

et al. (2014). Also the comparison of aboveground biomass estimates with the data set of Liu et al.

(2015) shows a similar spatial pattern of overestimation of vegetation biomass with too high values

in boreal and tropical areas. The comparison is complicated by uncertainties in the estimation of

belowground biomass (Saatchi et al., 2011) and the assumed distribution between aboveground and420

belowground
:::::::
biomass in LPJmL4 simulations, where LPJmL4 assumes that belowground biomass

consists of all fine root biomass and one third of all sapwood biomass. The simulation experiments

without permafrost dynamics (LPJmL4-NOGSI-NOPERM-GlobFIRM) show a high overestimation

of biomass in the high latitudes. Similarly, the inclusion of the GSI phenology substantially reduces

the biomass overestimation in comparison to Carvalhais et al. (2014) and Liu et al. (2015), which425
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is consistent with the finding of Forkel et al. (2014). The consideration of human land use in the

simulations improves carbon stock simulations in the temperate zones (SI-Fig. S69). This clearly

demonstrates the importance of permafrost, human land use and the GSI phenology for the simula-

tion of the terrestrial carbon cycle, even though the remaining discrepancies warrant further model

improvement.430
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Figure 4. Evaluation of Vegetation carbon (a), aboveground biomass (b), GPP (c), and NPP (d). Observed data

are provided by Luyssaert et al. (2007). Bars give the minimum and maximum of the estimation within one 0.5◦

cell simulated by LPJmL4.

Fig. 4a and 4b compares site data estimation with the representative LPJmL4 grid cell estimation,

with an uncertainty range, which comes from the different measurements within one 0.5◦ grid cell.

Both vegetation and aboveground carbon show a slight overestimation of some simulated values,

but also some strong underestimation
::
are

:::::::
slightly

::::::::::::
overestimated

::
in

:::::
some

:::::
cases

:::
but

::::
also

::::::::
strongly

::::::::::::
underestimated

:
in others. As LPJmL4 calculates a representative mean value of a 0.5◦ grid cell for435

all benchmarks, the simulated values should match to the mean values. However, it can be assumed

that measurements are not evenly distributed through the age classes within one grid cell or forest

and it remains unclear how representative the measurements
::
are

:
for a 0.5◦ grid cell area.

3.3.2 Gross and net primary production (GPP and NPP)

The global estimation of 123.7 PgCa−1 GPP from LPJmL4 (see Fig. 5) matches the estimates from440

Beer et al. (2010); Jung et al. (2011) of 123±8 resp. 119±6 PgCa−1 for the years 1982-2005,

whereas the highest divergence can be observed in the tropics, where LPJmL4 estimates much lower

values despite the higher biomass estimations (see Section 3.3). LPJmL4 simulated higher GPP for

the temperate and boreal zones than reported by Jung et al. (2011). The different model experi-

ments show similar pattern except for LPJmL4-GSI-GlobFIRM-PNV, which shows lower GPP in445

the Mediterranean (see Fig. 5). Carvalhais et al. (2014) estimates global NPP at 54±10 PgCa−1 and

LPJmL4 at 57 PgCa−1 for the mean of the years 1982-2011.

The site data comparison to Luyssaert et al. (2007) shows a good agreement between site mea-

surements and simulated GPP ( see Fig. 4c) and NPP (see Fig. 4d). The overestimation of simulated

biomass and the good agreement of NPP and GPP leads to the conclusion that LPJmL4 underesti-450
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Figure 5. The maps (left side) show the spatial pattern of gross primary production (GPP, [gCm−2 a−1])

distribution from the standard LPJmL4 simulation against the MTE data (Jung et al., 2011). The graph on

the right side shows the latitudinal pattern of evapotranspiration
:::
GPP

:
distribution simulated by the different

versions of LPJmL4 against data from Jung et al. (2011).

mates mortality. This warrants further investigation why LPJmL4 seems to overestimate global GPP

but shows good agreement with site data. The comparison of LPJmL4 against MTE data (Jung et al.,

2011) on the local scale for the same points as given by Luyssaert et al. (2007) show a good agree-

ment, especially if outliers are excluded (SI-Fig. S68(b,c). SI-Fig. S68a compares plot data against

the global data.455

3.3.3 Ecosystem respiration (Re)

Comparison of satellite-derived ecosystem respiration with those simulated by LPJmL4 reveals sim-

ilar spatial patterns (Fig. 6 and SI-Fig. S70). However, LPJmL4 shows higher temperature sensitivi-

ties (Fig. 6 (a)) and consistently simulates higher Re values in high-latitude and subtropical regions

(SI-Fig. S70). Since satellite-derived ecosystem respiration is calibrated for FLUXNET data and460

hence exhibits marginal cross-latitude bias, the discrepancies to LPJmL4 are likely associated ei-

ther with LPJmL4 parameterization or with systematic errors in the FLUXNET sampling
:::::::::
processing

technique. Additional details and figures are presented in Jägermeyr et al. (2014).

3.4 Water fluxes

3.4.1 Evapotranspiration465

The spatial distribution of evapotranspiration of LPJmL4 shows a very similar pattern as estimated

by Jung et al. (2011) (Table 4, SI-Fig. S71). It indicates a general underestimation of ET, especially

in the tropics and subtropics, but in most cases within the uncertainty range. This is consistent with

the underestimation of GPP in the tropics (Fig. 5), but not with the general overestimation of veg-
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Figure 6. Ecosystem respiration (Re) evaluation of standard LPJmL4 simulations with satellite-derived esti-

mations from (Jägermeyr et al., 2014). Compared are annual Re sums for all pixels from the displayed extent

in SI-Fig. S70, separated by climate type (a)–(c). Dashed lines indicate a polynomial bias curve. Chart symbols

are separated for forest (FOR) and grassland/cropland (GRA/CRO) land cover classes.

etation biomass (SI-Fig. S69). The different experiments show nearly no effects on the simulated470

evapotranspiration.

At site level, the evapotranspiration fluxes show a good agreement with eddy-flux tower measure-

ments in (Fig. 7). LPJmL4 shows good performance in most regions, with correlation coefficients

often larger than 0.6. Especially the northern and temperate stations (red to light blue symbols) show

high correlation with low CRMS. Simulations of tropical and subtropical ET (dark blue to purple475

symbols) show weak or even negative correlations coupled with a high CRMS for some stations. We

also provide more detailed time series analyses for the evapotranspiration fluxes of individual sites

in the supplementary material (SI-Fig. S8-S16).

3.4.2 River discharge stations evaluation

Discharge simulated by earlier LPJmL versions was evaluated before in several studies, also in com-480

parison with other global hydrologial and land surface models (Haddeland et al., 2011). River dis-

charge was evaluated for major catchments globally, also accounting for effects of different precipi-

tation datasets (Biemans et al., 2009) and regionally for the Amazon basin (Langerwisch et al., 2013)

and the Ganges (Siderius et al., 2013).

Fig. 8 shows the comparison of simulated LPJmL4 and observed river discharge values for all485

gauges with basin area ≥ 10,000 km2. Here, the most northern (blue) and also most southern (purple)

gauges show good agreement, but overall the picture is mixed with respect to correlation coefficients

and standard deviation. For further insights, we provide comparisons for all considered gauges in the

supplementary material (SI-Fig. S19-S66). For many gauges, the simulated seasonal timing of river

discharge (peaks) has improved (see SI-Fig. S19-S22) compared to the previous model evaluation490

of river discharge (Schaphoff et al., 2013), which is mainly a result of the newly implemented GSI-
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Figure 7. Evaporation rate measured at eddy flux towers: ORNL DAAC (2011). Available online FLUXNET.

Site locations are ordered from north to south.

phenology scheme (Forkel et al., 2014). Especially, the discharge spring peaks in permafrost areas

are affected by this improvement. At many gauges, LPJmL4 can reproduce the variability for the

whole time series and specially the seasonality, with a high R2 and a NME/NMSE, which implies

a better performance than the mean model. The dynamics at gauges in temperate zone (SI-Fig. S49-495

S50, S61) are not well reproduced in the simulations and also the NME/NMSE show high values

in contrast to gauges in the subtropics and tropics (SI-Fig. S64-S66), which typically show high R2

and low NME/NMSE.

The evaluation at the global aggregation (computed for all stations and than averaged) shows

very high agreement between observed and modelled discharge (see Table 4). Both the explained500

variance (R2) and the NME/NMSE contribute to the good performance of the simulated discharge.

The constant flow velocity in all rivers, as assumed in LPJmL4 simulations, could be varied by river

for further model improvement, especially for the timing in flat areas where wetland dynamics may

play an important role.
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Figure 8. Comparison of simulated discharge with 287 gauges provided by ArcticNET and UNH/GRDC. Sta-

tions with basin area ≥ 10,000 km2 are taken into account. Gauges are ordered from north to south (see legend

color).

3.4.3 Irrigation withdrawal and consumption505

Global estimates of irrigation water withdrawal (Wd: 2545 km3a−1) and consumption (Wc: 1292 km3a−1)

agree well with previous studies. Reported Wd values for the period 1998-2012 are 2722 km3a−1

(FAO-AQUASTAT, 2014), and modelling results range from 2217 to 3185 km3a−1 (Döll et al.,

2014; Wada and Bierkens, 2014; Döll et al., 2012; Alexandratos and Bruinsma, 2012; Wada et al.,

2011; Siebert and Döll, 2010). Wc estimations range between 927 and 1530 km3a−1 (Chaturvedi510

et al., 2015; Döll et al., 2014; Hoff et al., 2010). Döll et al. (2012) finds that 1179 km3a−1 (1098 km3a−1

in Wada and Bierkens (2014)) relate to surface water and additional 257 km3a−1 from groundwater

resources. LPJmL4 does not account for fossil groundwater extraction nor desalination. However,

previous studies show that 80% of groundwater withdrawals are recharged by return flows (Döll

et al., 2012). It is thus plausible that studies accounting for (fossil) groundwater reach Wd estimates515

somewhat higher than in LPJmL4. Naturally, irrigation water estimates are associated with uncer-

tainties in the precipitation input employed (Biemans et al., 2009). A representation of multiple

cropping systems in LPJmL4 (Waha et al., 2013) and corresponding growing seasons (Waha et al.,

2012) could also help to improve water withdrawal and consumption estimates and eventually river

discharge, especially in tropical areas.520

Simulated irrigation efficiencies are difficult to compare with observations due to inhomogeneous

definitions and field measurement problems. Yet, in SI-Table S1 we relate our results to comparable
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literature. Our simulations meet indicative estimates of Brouwer et al. (1989) at global level. Sauer

et al. (2010) provide another independent estimate of field efficiency with global average values

of 42%, 78%, and 89% for the three irrigation types, respectively. Our estimates agree well with525

these numbers globally and regionally, even though there are some regional patterns that are not

represented in our results. Sauer et al. (2010), for instance, find lower surface irrigation efficiencies

in Middle East, North Africa (MENA) and sub-Saharan Africa (SSA). We simulate above-average

efficiencies in MENA and particularly low ones in South Asia, which is both supported by Rosegrant

et al. (2002) and Döll and Siebert (2002). Overall, the evaluation of the irrigation model in LPJmL4530

demonstrates that it is well in line with reported patterns and yet it comes with much more detail

depths with respect to process representation and spatio-temporal resolution than these.

3.5 Permafrost distribution and active-layer thickness

The current permafrost distribution and the active-layer thickness (Fig. 9) is well represented by the

LPJmL4 model compared to independent studies (Brown et al., 1998, 2000). LPJmL4 is able to535

reproduce the distribution of permafrost and the measured active-layer thickness in most grid cells.

The continuous permafrost zone is characterized by a thawing depth of equal or less than 1 m in

LPJmL4, while the model simulates for sporadic permafrost and isolated patches a thawing depth of

more than 3 m. The spatial distribution of greater thaw depth from north to south is simulated well

by the model. CALM station data show a similar thawing depth as simulated by LPJmL4 (Fig. 9,540

bottom), but CALM station data indicate also that thawing depth can be different for the same grid

cell, as other processes (e.g. exposition) not represented by LPJmL4 can play an important role.

3.6 Fire

3.6.1 Burnt area

Simulated fractional area burnt is largest in the seasonal dry tropics and temperate regions in all545

model versions and smallest in cold or wet environments (SI-Fig. S72). However, maximum frac-

tional burnt area does not exceed 0.0625 in tropical and subtropical savannah and shrubland areas

when the Glob-FIRM model is applied. It is comparable to GFED4 and CCI estimates only in South

America, while in other tropical regions GFED4 (Giglio et al., 2013) and CCI reports fractional

burnt area between 0.125 and 0.75 (SI-Fig. S72). In these regions, fractional burnt area simulated550

by the SPITFIRE model is overestimated with values between 0.25 and 1, specifically in the south-

ern hemispheric Africa and northern Australia. SPITFIRE is very sensitive to vegetation, thus fuel

composition where homogeneous C4 grasslands can lead to an overestimation of simulated area

burnt which is specifically the case for seasonally dry South America and the Indian subcontinent.

LPJmL4-GSI-SPITFIRE captures the distribution of fractional burnt area much better than LPJmL4-555

GSI-GlobFIRM which is too homogeneous in its response.
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Figure 9. Observed and simulated permafrost distribution and active layer thickness. Top, contemporary per-

mafrost extent according to the IPA Circum–Arctic Map of Permafrost (*1 Brown et al. (1998)). Bottom,

LPJmL4-simulated active-layer thickness compared to the *2 CALM station data means both for the observa-

tion time 1991-2009 (http://www.gwu.edu/ calm/; Brown et al. (2000)). The colour scheme used at the bottom

are the same for simulated thaw depth and Circumpolar Active Layer Monitoring (CALM) data.

In contrast, LPJmL4-GSI-SPITFIRE better captures the very small fractions reported for the wet

tropical forests which is better comparable to GFED4. Here, the approach to simulate fire risk based

on the climatic fire danger index instead of deriving a fire probability from the top-soil soil moisture
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is of great advantage in these regions. While LPJmL4-GSI-GlobFIRM simulates a relatively homo-560

geneous spatial distribution of fractional burnt area in temperate and boreal forest regions, LPJmL4-

GSI-SPITFIRE underestimates fractional burnt area in these biomes. LPJmL4-GSI-GlobFIRM un-

derestimates fractional burnt area in the temperate steppe regions, whereas LPJmL4-GSI-SPITFIRE

manages to spatially capture the burning conditions in these biomes, even though the total amount

is overestimated. The phenology module in LPJmL4 has no effect on fractional burnt area simulated565

by LPJmL4-GSI-GlobFIRM, whereas including permafrost increases burnt area in the circumboreal

region, specifically in Siberia, even though the spatial effect is too homogeneous.

3.6.2 Fire effects on biomass and vegetation distribution

Both fire model approaches simulate a comparable latitudinal distribution of biomass starting from

the wet tropics towards dry and colder areas in the North and South. Both model versions simu-570

late comparable values in the wet tropics around the equator and capture the gradient to seasonal

dry tropics in the North (until 10◦N) and South (until 20◦S). The overestimation of burnt area in

tropical savannahs around 20◦N in LPJmL4-GSI-SPITFIRE leads to an underestimation in simu-

lated biomass compared to the other LPJmL4 experiments. The consideration of permafrost and fire

dynamics is required to reproduce observed vegetation biomass values in boreal regions.575

3.6.3 Global biomass burning

The modelling errors in fractional area burnt compensate in different ways in each fire model. SPIT-

FIRE simulates global biomass burning values of 2.7 PgCa−1 on average between 1996-2005 which

is comparable to the 2.33 PgCa−1 (Randerson et al., 2015)
::::::::
suggested

::
by

::::::::::::::::::::
Randerson et al. (2015) .

Here, overestimations of burnt area in tropical savannahs and underestimations in boreal forests com-580

pensate each other. Glob-FIRM simulates more fires in boreal regions, but less spatially pronounced

as in GFED4, but underestimates fractional burnt area in the subtropics and tropics. Glob-FIRM

therefore estimates global biomass burning by 2.8 PgCa−1, similar to SPITFIRE.

3.7 Fraction of absorbed Photosynthetically Active Radiation- (FAPAR) and Albedo

Evaluations against multiple satellite datasets of FAPAR have already shown that LPJmL-GSI can585

well reproduce the seasonality of FAPAR and the inter-annual variability and trends in the start

and end of growing season within observational uncertainties (Forkel et al., 2015). LPJmL4 shows

a high spatial correlation with correlation coefficients between 0.6 and 0.71 for PEAK-FAPAR. It

shows also a good agreement with the temporal variations (Fig. 10a-10c
:
). Large parts of the wet

tropics display a negative correlation between simulated and observed FAPAR, which may explain590

the phase-offset in the dynamics of NEE at the station Santarém. However, in these regions also

the difference
:::::::::
differences between datasets are large which is caused by the limitations of optical

satellite observations in regions with permanent cloud cover (Forkel et al., 2015).
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(a) (b) (c)

Figure 10. Evaluation of FAPAR for different data sources MODIS (a), GIMMS (b), and VGT2 (c).

LPJmL4 reproduces the global patterns of annual peak FAPAR (Fig. 11) well. Especially, in north-

ern latitudes and in the tropics, LPJmL4 is within the range of the FAPAR datasets. However,595

LPJmL4 overestimates peak FAPAR especially in middle and low latitudes which originates from an

overestimation of FAPAR in semi-arid regions. LPJmL4 reproduces well the temporal dynamic of

FAPAR in most climate regions with very high correlations between simulated and observed FAPAR

in temperate and boreal climates (climate regions Cf and D*) and with medium to high correlations

in semi-arid climate regions (e.g. Am, As, Aw, Bsh, Bsk, Cs in SI-Fig. S73). LPJmL4 and the ob-600

servational datasets show low correlations in wet tropics (Af) and in winter-dry temperate climates

(Cw).

GIMMS3g
Peak FAPAR

MODIS
Peak FAPAR

VGT2
Peak FAPAR

LPJmL4−GSI−GlobFIRM

Peak FAPAR

0 0.2 0.4 0.6 0.8 1

−

Figure 11. FAPAR mean annual peak comparison with 3 different remote sensing products.

LPJmL4 overestimates albedo in all regions (SI-Fig. S74. The temporal dynamic of snow-free

albedo was well reproduced in cold steppes (climate region BSk) and in boreal regions (climate

regions D*). The correlation between simulated and observed albedo is poor in tropical semi-arid605

and temperate climates (e.g. As, Aw, Cs, Cf). This is likely caused by soil moisture-induced changes

in soil and background albedo, which has a great effect on soil reflectance (Lobell and Asner, 2002)

outside the vegetation season. Such changes are not considered in LPJmL4.
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3.8 Agriculture

3.8.1 Crop yields variability610

The evaluation of simulated crop growth and yield can be assessed at individual sites if the model

is used as a point model as in different model intercomparison simulations (Asseng et al., 2013;

Bassu et al., 2014; Kollas et al., 2015; Asseng et al., 2015) where reference data are available for

end-of-season properties (most importantly: crop yield) as well as within-season dynamics (e.g.

development of leaf area index (LAI)). The crop yield simulations of LPJmL were evaluated in the615

framework of the Agricultural Model Intercomparison and Improvement Project (AgMIP) for wheat,

maize, rice and soybean by (Müller et al., 2017)
::::::::::::::::
Müller et al. (2017) . They find that the performance

of LPJmL is similar to that of the other gridded crop models in that model ensemble (n = 14). We

here supplement the model evaluation with time series correlation analyses for the ten top-producing

countries for all crops implemented in LPJmL4 (Schaphoff et al., under Revision). Results are por-620

trayed in Fig. 12, except for field peas where no spatial data on crop-specific harvested areas exists

for aggregation to national yield time series (Porwollik et al., 2016). As national yield levels are

roughly calibrated in standard LPJmL simulations (Fader et al., 2010), a comparison of the mean

bias is not providing insights on model performance. As management intensity is assumed to be

static in the simulations (section 2.1), yield trends cannot be reproduced so that simulated and re-625

ported national yield time series have been detrended with a running mean approach (Müller et al.,

2017) prior to comparison. For a more comprehensive evaluation of LPJmL’s performance in yield

simulations, see Müller et al. (2017).

The agreement between simulated and observed yields is not only dependent on model perfor-

mance, but also on the aggregation mask used (Porwollik et al., 2016), assumptions on management630

and model parametrization (Folberth et al., 2016a), soil parameters (Folberth et al., 2016b) and

weather data inputs (Ruane et al., 2016). LPJmL4 yield simulations are typically correlated with na-

tional yield statistics (FAO-AQUASTAT, 2014) for some of the 10 top-producing countries for each

crop, but only for one of these for
::::::
country

::
in
::::
case

::
of

:
cassava (Brazil) and sugarcane (China) (Fig. 12

and supplementary material Fig. S75-S83 for the other crops).635

3.8.2 Biomass yield

For the purpose of this evaluation, irrigated and rainfed biomass plants were simulated to grow glob-

ally, wherever biophysical conditions allow sustained growth. The averaged simulated yields for the

16-year period (1994–2009) were compared to reported biomass yields of switchgrass, miscanthus,

poplar, willow and eucalyptus plantations on experimental test-sites located in the respective grid640

cell (Fig. 13). It shows that simulated yields are mostly within the range of observations for miscant-

hus, poplar, willow and eucalyptus, but mostly overestimates switchgrass productivity. Management

options for BFTs implemented in LPJmL4 are limited to irrigation management (rainfed and fully
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Figure 12. Evaluation of simulated yield variability for wheat (a) and maize (b) in comparison to FAO-data

(FAOSTAT).
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Figure 13. Map of simulated biomass yields by LPJmL4 from rainfed herbaceous (a) and woody (b) BFTs (av-

erages 1994–2009). Dots indicate the location of the experimental sites and measured yield, with colours scaled

to map colours. Scatterplots compare observed and simulated yields in the respective grid cells. Model uncer-

tainty is derived from simulations with and without irrigation. Observation uncertainty reflects dependencies on

plantation management (adapted from Heck et al. (2016)).

irrigated), because plant species and plantation characteristics (e.g. sapling size and crop spacing)

are parametrised
:::::::::::
parameterised

:
as a constant scenario setting and were not varied here. The differ-645

ences between rainfed and irrigated biomass yield simulations are depicted as vertical error bars in

Fig. 13. The range of rainfed vs. fully irrigated biomass yields represent an approximation of man-

agement uncertainty, because simulated yields depend strongly on water availability. Nevertheless

the simulated yield range is likely to represent an optimal field management for rainfed resp. irrigated

plantations as nutrient limitations are not taken into account in these simulations.650

3.8.3 Month of sowing

The average mean error (ME) for all crops globally is smaller than two months, with the exception

of pulses (Table 5). For wheat (excl. Russia), millet, rice, sunflower and sugar beet, the agreement

between simulated and observed timing of sowing is higher, with a difference of about one month.

The Willmott coefficients (W) are high indicating good agreement between observations and sim-655

ulations (W > 0.85) for all crops except pulses, sugar beet and groundnut. Both measures indicate

closer agreement for pulses, groundnut, sunflower and rapeseed in temperate regions (Waha et al.,

2012). Poor agreement, with differences between simulated and observed sowing dates of more than

five months, is found for maize and cassava in Southeast Asia and China (for maize in East Africa),
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Figure 14. Evaluation of sowing dates of wheat: (from top to bottom panel) simulated (LPJmL4) sowing

date, observed (MIRCA2000) sowing date and difference between simulated and observed sowing date. Green

colours (red colours) in the difference map indicate that simulated sowing dates are too late (too early) com-

pared to observations. White colours indicate crop area with less than 0.001% of the grid cell area. Regions

without seasonality are not shown.

for wheat in Russia, for pulses in Southeast Asia, India, West and East Africa, the south-east region660

of Brazil and southern Australia, for groundnut in India and Indonesia, and for rapeseed in southern

Australia and southern Europe (for wheat Fig. 14; for the other crops SI-Fig. S84-S93). Divergences

are also substantial for crops growing in the southern part of the Democratic Republic of Congo, in

Indo-China and in tropical climates.

There are several reasons for these disagreements between sowing dates simulated solely using665

climate data and the global crop calendar, please see Waha et al. (2012) for a more detailed discus-

sion. Firstly the crop varieties in the crop calendar and simulated here differ, i.e. spring and winter

varieties of wheat and rapeseed in temperate regions (e.g. in Russia). Secondly, multiple cropping in

tropical regions with high cropping intensity and complex cropping systems is not considered here.

Thirdly, we use of only one global temperature threshold for simulating sowing temperatures, which670

is known to vary between regions and lastly, there are other uncertainties in our method of simulating

sowing dates and in the global crop calendar we use for comparison. We are also neglecting impor-
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tant factors such as the availability of labour and machinery, social customs, markets and prizes, the

demand for certain agricultural products at certain times in the year.

Table 5. Indices of agreement between simulated (LPJmL4) and observed (MIRCA2000) sowing dates.

All cells Precipitation seasonality Temperature seasonality

Crop W [-] ME [days] N W [-] ME [days] N [%] W [-] ME [days] N [%]

wheat 0.87 44 13962 0.86 40 15 0.87 44 85

rice 0.90 25 4995 0.90 24 82 0.87 28 18

maize 0.88 37 16333 0.89 37 48 0.85 36 52

millet 0.89 17 7851 0.92 16 63 0.89 31 37

pulses 0.63 69 14712 0.61 80 48 0.84 37 52

sugarbeet 0.37 19 2918 0.24 0.37 19 100

cassava 0.93 51 6082 0.93 51 83 0.95 57 17

sunflower 0.92 25 5876 0.87 45 22 0.93 22 78

soybean 0.94 36 8259 0.94 35 31 0.92 36 69

groundnut 0.77 34 5642 0.71 36 81 0.96 20 19

rapeseed 0.86 49 5680 0.36 135 13 0.92 37 87

wheat excl. Russia 0.94 30 11511 0.86 40 18 0.94 29 82

Mean absolute error (ME) and the Willmott coefficient of agreement (W)

The comparison to the global crop calendar, however, shows that close agreement between simu-675

lated and observed sowing dates can be achieved with purely climate-driven rules for large parts of

the earth for wheat, rice, maize, millet, soybean and sunflower, as well as for pulses and groundnut

in temperate regions. For about 75% of the global cropping area the difference between simulated

and observed sowing dates is two months and with the exception of cassava and rapeseed 80% of the

crop area displays a difference of only one month which is the minimum difference possible
:::::::
possible680

::::::::
difference

:
as the crop calendar reports monthly sowing dates.

4 Conclusions

This article provides a comprehensive evaluation of the now launched version 4.0 of the LPJmL

DGVM that includes an operational representation of agriculture. Unique in its combination of fea-

tures, the LPJmL4 model enables simulation of carbon and water fluxes linked to the dynamics of685

both natural and agricultural vegetation in a single, internally consistent frameworks
::::::::::
framework.

:::
We

::::
show

::::
that

:::
the

::::::
model

:::
has

:::::
great

:::::::
strength

:::
in

::::::::::
reproducing

::::::
carbon

::::::
fluxes,

:::::::::
especially

:::
for

:::::
NBP

::
on

::::
the

:::::
global

:::::
scale

:::
and

:::::
NEE

:::
on

:::
the

::::
local

:::::
scale.

::::
But

:::
we

:::
are

::::
also

::::
able

::
to

:::::
show

::::
that

:::::
water

:::::
fluxes

::::::::
matches

:::
well

:::::
other

:::::::::
estimates.

:::::
Both,

::::::
carbon

:::
and

:::::
water

::::::
fluxes,

:::
are

:::
the

::::
link

::
to

:::::
many

:::::::::
ecosystem

::::::::
processes

::::
that

::
the

::::::
model

:::::::::
represents

:::
and

::::::::
therefore

:::
are

::::
very

::::::::
important

:::
for

:::
the

::::::::::::
understanding

::
of

:::
its

:::::::::::
interrelation.

:::
On690

::
the

::::::::::
agriculture

:::::
sector

:::
we

:::::::::
synthesize

:::
that

::
in

::::::
regions

:::::
with

:
a
:::::
strong

:::::::
weather

::::::
signal

::
the

::::::
model

::
is

::::
able

::
to

:::::
match

::::::
annual

::::
yield

:::::::::
variability.

::::::::::::
Nevertheless,

::
in

::::
high

::::::::
managed

:::::::
countries

:::::
yield

:::::::::
variability

::
is

:::
not

::::
well
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:::::::::
reproduced

::
by

:::
the

::::::::
LPJmL4

::::::
model.

::::
This

:::
can

:::
be

::::::::
explained

::
by

:::
the

::::::
absent

::
of

:
a
:::::::::::
management

:::::::
module

::
in

::
the

::::::
model. By following suggestions for objective intercomparative benchmarking systems of mul-

tiple models with dedicated software (Abramowitz, 2012; Kelley et al., 2013; Luo et al., 2012), the695

evaluation takes into account a number of performance metrics, diagnostic plots and a broad range

of fundamental model features. This work thus goes well beyond earlier evaluations of DGVMs

(see Kelley et al. (2013)) and of model evaluations published for earlier versions of LPJmL or its

modules.

Pending major model improvements — anticipated as part of forthcoming LPJmL versions — are700

the incorporation of a scheme for calculating groundwater recharge and storage, the representation of

nitrogen cycling for both natural and agricultural landscapes, consideration of ozone effects on plants

(Schauberger et al., submitted) and of soil degradation, representation of wetlands with associated

methane emissions, the continuous refinement of crop parameterization including multi-cropping

and other management forms, and possibly a revised implementation of soil moisture (following e.g.705

Evaristo et al. (2015)) and stomatal conductance (following e.g. Lin et al. (2015)). As such improve-

ments are expected to have significant effects e.g. on plant production, carbon and water fluxes –

thus influencing overall model performance – any future LPJmL version will routinely be subjected

to the evaluation protocol used here and, if applicable, tested against other standardized inter-model

benchmarks (including participation in model intercomparisons with evaluation of single compo-710

nents such as in Hattermann et al. (2017)). Such continued model maintenance and benchmarking

shall also keep pace with recent developments in observational and experimental data, ideally sup-

porting identification of key uncertainties in model performance (see Medlyn et al. (2015); Smith

et al. (2016)).

Besides identifying features for future model improvement, we here demonstrate adequate per-715

formance of the LPJmL4 DGVM in terms of the simulation of long-term averages and also the

temporal dynamics across biogeochemical, hydrological and agricultural processes. This unique ca-

pacity renders the LPJmL4 model suitable for process-based analyses of biosphere dynamics includ-

ing assessments of multi-sectoral impacts of climate change or other anthropogenic earth system

interference
::::::::::
interferences.720

5 Code and data availability

The model code of LPJmL4 is publicly available through PIK’s gitlab server at https://gitlab.pik-

potsdam.de/lpjml/LPJmL and an exact version of the code described here is archived under doi"xyz"
:
:

http://doi.org/10.5880/pik.2018.002
:::
and

::::::
should

::
be

:::::::::
referenced

:::
by

::::::::::::::::::::
Schaphoff et al. (2018b) . The out-

put data from the model simulations described here is available at the research data repository725

http://dataservices.gfz-potsdam.de/portal/ under doi"ABC". " :
:

http://doi.org/10.5880/pik.2018.002

:::
and

:::
can

:::
be

::::::::
referenced

:::
by

:::::::::::::::::::::
(Schaphoff et al., 2018a) .

:
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