10

15

20

25

30

35

GLOFRIM v1.0 — A globally applicable computational framework
for integrated hydrological-hydrodynamic modelling

Jannis M. Hoch? Jeffrey C. Ned| Fedor Baaft Rens van Beék Hessel C. Winsemi@$ Paul D.
Bates, Marc F.P. Bierkerlg

! Department of Physical Geography, Utrecht Uniwgr$.0. Box 80115, 3508 TC Utrecht, the Nethertand
2 Deltares, P.O. Box 177, 2600 MH Delft, the Nethads

3 School of Geographical Sciences, University of&ii University Road, Bristol, BSBSS, UK

4 Institute for Environmental Studies, VU Universifye Boelelaan 1087, 1081 HV, Amsterdam, the Nédhes

Correspondence to: Jannis M. Hoch (j.m.hoch@uu.nl)

Abstract. We here present GLOFRIM, a globally applicable patational framework for integrated hydrological-
hydrodynamic modelling GLOFRIM facilitates spatyakxplicit coupling of hydrodynamic and hydrologwodels and
caters for an ensemble of models to be coupledurtently encompasses the global hydrological m&d&R-GLOBWB as
well as the hydrodynamic models Delft3D Flexibledig§DFM), solving the full shallow-water equaticarsd allowing for
spatially flexible meshing, and LISFLOOD-FP (LFBdlving the local inertia equations and runningregular grids. The
main advantages of the framework are its open se®l dccess, its global applicability, its versigtiland its extensibility
with other hydrological or hydrodynamic models. &ef applying GLOFRIM to an actual test case, wecherarked both
DFM and LFP for a synthetic test case. Results stiat for sub-critical flow conditions, dischargesponse to the same
input signal is near-identical for both models, ethagrees with previous studies. We subsequentiljeabthe framework to
the Amazon River basin to not only test the framdwtboroughly, but also to perform a first-ever blemark of flexible
and regular grids at the large-scale. Both DFM BRB produce comparable results in terms of simdlaischarge with
LFP exhibiting slightly higher accuracy as expresdy a Kling-Gupta-Efficiency of 0.82 compared t&/® for DFM.
However, benchmarking inundation extent between C#fld LFP over the entire study area, a criticatsss index of 0.46
was obtained, indicating that the models disage®ften as they agree. Differences between modeloih simulated
discharge and inundation extent are to a largenextributable to the gridding techniques employedfact, the result
show that both the numerical scheme of the inuodatnodel and the gridding technique can contrihatéeviations in
simulated inundation extent as we control for mddeting and boundary conditions. This study sheat the presented
computational framework is robust and widely apgiie. GLOFRIM is designed as open access and eagéyndable, and
thus we hope that other large-scale hydrologicdl lydrodynamic models will be added. Eventuallyyeniocally relevant
processes would be captured and more robust mogigldomparison, benchmarking, and ensemble simnokabf flood

hazard at the large scale would be allowed for.

1 Introduction

In the latter half of the last century, losses thueiverine floods increased greatly, leading toremmic losses of more than
$1 billion and 220,000 casualties since 1980 (Mrike, 2013; Visser et al., 2012). Much of this @age is thought to be
due to continued settlement along rivers and shiftslimate patterns, meaning that this tendencly mbst likely be

exacerbated in the future (Ceola et al., 2014; béiyashi et al., 2013; Winsemius et al., 2016). Romundation estimates

are therefore paramount to enhance our procesgsiadding and to provide better flood hazard eggéséor risk models.
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Since recent research showed that flood inundatam easily affect large areas, in particular nedginimg river basins
(Jongman et al., 2014), it is vital that flood hazmodels can simulate the relevant processeslargeg domains. Applying
such large-scale models has the additional advargaépcilitating the identification of risk hotsggoand providing critical
insight into data-scarce areas (Ward et al., 20ltbJact, there are already a number of globales¢galindation models
available (Dottori et al., 2016; Pappenberger et24112; Sampson et al., 2015; Winsemius et all32¢amazaki et al.,
2011), differing in their process descriptions &odnputational engine. While some approaches délioeel hazard from a
coarse-scale hydrological model and subsequent sttading, others force fine-scale hydrodynamic medeith globally
regionalized discharge data. A first inter-compami®f global flood hazard models by Trigg et alDi8) for the African
continent, however, revealed that they agree fdy &0%-40% of aggregated flood extent, thus indizptthat the
representativeness of local flood risk estimateg depend strongly on the computational engine oftieds well as on the
model forcing applied. Identifying the exact reaséor model disagreement was impossible due talithersity of methods
and lack of a systematic approach to the inter-@ispn where individual aspects of the modelliryrfeworks could be
isolated.

Employing a global hydrological model (GHM) such RER-GLOBWB (van Beek et al., 2011; van Beek anerl&ns,
2008), WaterGAP (Alcamo et al., 1997; Ddll et @D03) or VIC (Liang et al., 1994; Wood et al., 1p®as the benefit of
providing spatially distributed surface runoff anduted discharge simulations, thereby facilitatidigect forcing for
spatially distributed inundation models. In additithese models are usually forced by global metegical data, hence
diminishing the dependency on observed data as agelllowing for easier implementation of futurémete scenarios.
However, the routing schemes currently implemeritedarge-scale hydrological models can generallydescribed as
simplistic as they are based on gridded drainageranks at coarse spatial resolution, with the auttyefinest spatial
resolution of GHMs being 5 arcmin or around 10 kri& km at the Equator (Bierkens, 2015). Furthermdischarge
accuracy may be reduced in low-gradient catchn&nt® topography at this scale is generally pararzed in distribution
functions and river routing is often representedtsymple scheme, such as the kinematic wave ajpppatign.
Hydrodynamic models, on the other hand, can be muilumerous ways for inundation modelling, tyflicéan 1-D, 2-D or
combined 1-D/2-D, and are mostly forced with gaudestharge data or synthesized flood waves. Whith @pproaches do
not require rainfall-runoff conversion, they arelplematic for studies concerning large-scale clar@tange impacts or the
seamless simulation of flood events and their apatrrelation (Jongman et al., 2014). Some motilkeés CaMa-Flood
(Yamazaki et al., 2011) route a priori computedrbiaby-based surface runoff with 1-D hydrodynanacs! parameterized
2-D floodplain storage. Applying such a 1-D/2-D eggch, however, does not allow for explicit modgliof floodplain
flow pathways as well as channel-floodplain intéicats. Explicitly representing these processes il beneficial as they
are known to greatly influence inundation dynaméeel patterns (Neal et al., 2012a; Trigg et al.,920Compared to
hydrological models, hydrodynamic models solving thll SWE or at least a more advanced approximasioch as the
local inertia equations (LIE) have the advantagepaividing a better representation of backwateeaf, which are
important flood-triggering processes (Meade et #991; Moussa and Bocquillon, 1996; Paiva et @13). Another
difference to GHMs is that current applicationshydrodynamic models at the large to global scale ma at spatial
resolutions of up to 1 km (Sampson et al., 201Batly facilitating the representation of both et channel-floodplain
interactions (Rudorff et al., 2014a, 2014b) andvflsathways on floodplains (Rudorff et al., 2014ayédfi et al., 2007) as
well as enhancing the usability for decision-makimgcesses (Beven et al., 2015; Trigg et al., 2046)withstanding these
advantages, most hydrodynamic models applied fgetacale inundation modelling lack an advancedempntation of
hydrological processes and thus may overpredidt bnindation extent and depth as, for instanceympgtevater infiltration

and evaporation from inundated floodplains areenitty not fully accounted for.
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Large-scale flood hazard estimates may thus beffigfibh increased integration of hydrology and hygmamics in
inundation models to allow for physically more mitated assessments and to compensate for the@ctasgpshortcomings.
In fact, hydrological-hydrodynamic coupling waseady applied in a number of studies (Biancamaria.e2009; Kim et
al., 2012; Lian et al., 2007; Schumann et al., 20E8r example, output from hydrological or landfage models was used
as input to the 1-D/2-D hydrodynamic model LISFLO®P (Bates et al., 2010; Bates and de Roo, 2008)ratmber of
locations. While such approaches reduce the depegden gauged data or synthesized flood waves, taeyot fully
account for important and spatially distributed tofdgical flood-triggering processes within the mbdomain. This would,
however, be advantageous to support the assessirgpdtial correlations of flood waves in adjacewer basins, which are
shown to increase trans-national flood risk (Jongrea al., 2014). A further valuable contributionr foromoting the
coupling of models from different disciplines waslized by the Community Surface Dynamics ModelBygtems group
(CSDMS) with their development of the Web Modellifigol (WMT; CSDMS (2017)). This tool enables theuw create a
coupled model from a list of readily available misdand run it on a server of CSDMS. Whilst thisais important step
towards integrated modelling between disciplingspliaability is hampered by the fact that model €ad not openly
accessible and that the number of available maddilsited and predefined.

Recently, Hoch et al. (2017) coupled PCR-GLOBWHEréaéter PCR) with the hydrodynamic model Delft3[@ble Mesh
(hereafter DFM; Kernkamp et al. (2011)) for the Amma River basin to integrate the hydrological anydirbdynamic
processes occurring over the entire study areaulRemdicate that spatially explicit coupling ofydrological and
hydrodynamic models can improve the representationundation for all river reaches, not only thakat are connected to
upstream boundary conditions. Findings also comatieothat spatially distributed forcing retrievedrh a hydrological
model in combination with a sophisticated rivertiog scheme outperforms results obtained with lmotdlels run in stand-
alone mode.

Even though these results are promising, it hasetacknowledged that the accuracy of a hydrologicdl hydrodynamic
model can vary strongly, depending on the chosailysirea, model parameterization, model structurmerical scheme or
the use of different input data (Li et al., 201%ig@ et al., 2016). It would hence be advantageousase the choice of the
coupled models on their local performance, potéptiautperforming predefined set-ups, or simply &me model
schematization at hand.

To facilitate such model selection and to furthesmpote the coupling of large-scale hydrological Aagdrodynamic models,
we developed GLOFRIM, a GLObally applicable compioteal FRamework for Integrated hydrological-hydyndmic
Modelling. In addition to the work of Hoch et aR017), it includes the widely used hydrodynamic elddSFLOOD-FP
(hereafter LFP; Bates and de Roo (2000)) and amowel as well as extended coupling algorithm, ttatering a wider
range of model schematizations and applicationsvéddelieve that by combining the locally best-parfing hydrological
and hydrodynamic models relevant processes canapeired better, GLOFRIM is designed in an expareaidy to
eventually incorporate more models. Furthermore,fthmework is openly available under GNU 3.0 le@mo stimulate
collaboration and idea exchange within the scientiommunity. Key assets of the framework are feefand open
accessibility, its global applicability, its versi&g, and its potential to be further developed d@ofull two-dimensional
coupling scheme between hydrology and hydrodynamibsch would play a particularly crucial role im$ins in semi-arid
climates as for instance the Niger (Dadson eRall0; Mahe et al., 2009).

In the remainder of the paper, we first descriteerttodel components of the framework and theretifteeframework and its

functionalities in detail. Subsequently, we comptiestwo hydrodynamic models in a simple synthegst case to obtain a

L The code and user manual of GLOFRIM is downloaglabldoi.org/10.5281/zenodo0.597107
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first understanding of possible differences, intipatar in terms of their numerical schemes. As nsetor benchmarking,
we assess simulated discharge along the flow patlgell as run times for a 1-D and 2-D set-up iiadiglly. We then apply
GLOFRIM to one-directionally couple PCR with botlFk and LFP and benchmark the set-ups for an atégatase in the
Amazon River basin, hence also constituting a @icshparison of flexible and regular grids for lasggmle applications. For
model benchmarking, we assess simulated dischamager levels, run times, and inundation extentr&ads correlation r,

the root mean square error RMSE, and the Kling-&ficiency KGE (Gupta et al., 2009) are deterrdibby comparison

to observed discharge data from the Global RunathlCentre (GRDC) at Obidos. We opt for GRDC dattha presented
approach is merely based on input data sets wihaglcoverage. Simulated water levels are compategh upstream,
midstream, and downstream station to assess ahamheater level dynamics are correctly represeatetb) to what extent
DFM and LFP differ or agree in their water levehguutations. Computational efficiency is assesseddwgparing the run
times of the coupled set-ups. To benchmark inuadatktent from DFM with LFP, we determine the laiter H, false alarm
ratio F, and the critical success index C basethwmdation maps of both models at the end of thukition. No validation

of simulated inundation extent was performed ashHztcal. (2017) already showed good agreementsofteeobtained with

DFM for the same study domain.

This openly available computational framework ma&esaluable contribution to current inundation nibdg at the large

scale by enhancing the integration of hydrologiaatl hydrodynamic model processes, which eventually lead to

improved decision making as well as planning ofpgida and mitigation measures.

2 Models

Currently, GLOFRIM includes the hydrological modeCR-GLOBWB as well as the hydrodynamic models B&lft
Flexible Mesh and LISFLOOD-FP. Hereafter, an ovewbf the main features of the models is providexd.further details

regarding model development and model set-up, fee te the specific manuals or websites.

2.1 PCR-GLOBWB

To generate hydrological input, the global hydraday model PCR-GLOBWB (PCR) is currently incorp@etin the
framework. It can be applied at 30 arcmin resolufiapproximately 55 km x 55 km at the Equator) &l as at 5 arcmin
resolution (approximately 10 km x 10 km at the Bqda which may increase accuracy but also runtiReR is entirely
coded in PCRaster Python (Karssenberg et al., 2@h@) distinguishes between two vertically stackei lsyers, an
underlying groundwater layer, and a surface carapsr. Water can be exchanged vertically, and exsasgface water can
be routed horizontally along a local drainage dioec(LDD) network employing the kinematic wave apximation. The
model is forced with Climate Research Unit (CRUggipitation and temperature data (Harris et al1,43Gat 30 arcmin
spatial resolution, and evaporation is computetigushe Penman-Monteith equation. Data sets are sicaled to daily
fields for the period from 1957 to 2010 using ERAZRAI (Kallberg et al., 2005; Uppala et al., 200Bgsides, PCR is able
to account for domestic and industrial water corstion by accounting for water demand data (FAO,7J0For more
detailed information on CRU-fording, its processimgpd PCR in general, we refer to van Beek (2008 Beek and
Bierkens (2008), and van Beek et al. (2011). PCR akeady applied for a wide range of studies siscfiood and drought
forecasting (Yossef et al., 2012), human impaati@ughts (Wanders and Wada, 2015), global watesstfvan Beek et al.,
2011), and global groundwater simulations (de Grtafl., 2015). More relevant to this study, PCRstibutes the
computational backbone of the “GLObal Flood RiskhMiMAGE Scenarios” framework (GLOFRIS; Winsemiusa.,
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(2013)) which is also used as basis for the Aquedlobal Flood Analyzer of the World Resources itogt (World

Resources Institute, 2017).

2.2 Delft3D Flexible Mesh

Delft3D Flexible Mesh (DFM) allows the user to sofatize the model domain with a flexible mesh in /2-D/3-D, and
therefore supports the computationally efficierfiesnatization of topographically challenging areashsas river bends or
irregular slopes. The model solves the full Saiet@nt equations, or shallow-water equations (SWHEg main partial

differential equations solved by DFM are
oh

E+DEﬂhu):O 1)
ou 1 1 - 17
E-'-E(D Eﬂhuu)—uD[ﬂhu)):—gDZ+ED[@vh(Du+Du ))+E; (2)
With
(a aY
(53 3

{ being the water leveh the water depthy is the velocity vectorg the gravitational accelerationthe viscosityp the water
mass density, andthe bottom friction. For 1-D flow, the equatioresmrain the same except that the viscosgigoes not
contain horizontal eddy viscosity. For further teiddal details and derivation, we refer to the TechhManual (Deltares,
2017a). DFM is an openly accessible model and cae Iobtained by contacting Deltares
(https://www.deltares.nl/en/software/delft3d-flelebmesh-suite/). Besides riverine flood hazard rliodg it also caters a
wider range of applications, for instance groundwdliow, sediment transport, and water quality datians in 1-D, 2-D,
and 3-D. For more information regarding the appicaof DFM, we refer to the User Manual (Deltar2817b). Due to its
very recent publication, only a limited number abfished studies using DFM are available. It was,ifistance, applied in
a global-scale reanalysis for extreme sea levelsgMt al., 2016). In another study, Castro Gana. ¢2013) applied DFM
to model flood hazard at the Yellow River, and doded that applying a flexible mesh reduces contmtatime by a

factor 10 compared to square grids with equal guafimodel output.

2.3 LISFLOOD-FP

LISFLOOD-FP (LFP) is a widely used, raster-basediehdo compute floodplain inundation. Since itsffiversion (Bates
and de Roo, 2000), it has regularly been adaptddraproved (Bates et al., 2010), for instance bgirgl a sub-gridding
scheme to account for channel flow within cellsgNet al., 2012a).

It is possible to run LFP with different set-up2-® only, a 1-D, a 1-D/2-D or a sub-grid modelthwihe latter being the
most accurate for large-scale inundation modeléipgroaches as it greatly increases floodplain adivigy (Neal et al.,

2012a).

When using the sub-grid scheme, LFP solves theesuiesit equation for channel flow that is based simgplification of

the SWE ignoring advection (Bates et al., 2010; INstaal., 2012a). Herg denotes the flow per unit widtly the

gravitational acceleratiog,the water levelR the hydraulic radiug) Manning’s surface roughness, ¢ the gradients in x-

and y-direction as described in Eq. 3:
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a n2 2
Sroane + ol =0 (4)

Mass conservation is implemented as

O(h+a)=0 )

Wherebyt denotes the time stegx the cell size andj the cell indices. For further information about rabdevelopment,
derivation of numerical solutions, assumptions, @aldlations, we refer to the above-mentioned paper

LFP is specifically developed to model floodplaiumdation and has been used in a wide range oestudost notable in
the context of large-scale flood hazard modellmghie work by Sampson et al. (2015) who applied td~Bompute global
estimates of flood hazard and risk as well as byu8@nn et al. (2013) and Biancamaria et al. (20@8) used LFP to
simulate inundation in the Zambezi River and ObeRivespectively, forced with lateral input frontead surface model.
The BMI adapter (see subsequent section) was ingslead for LFP version 5.9 which provides all relgvéeatures, in

particular the sub-gridding scheme, to model |asg@le inundation.

2.4 Basic Model Interface

Generally, the Basic Model Interface (BMI) has saléunctions that can be called from external eggpions like, as in this
case, a Python script. To make these functiondadlaifor a model, a BMI adapter needs to be dgesldor each model
with respect to the specific internal model stroetand programming language. Whilst PCR is alremdtyen in Python and
its BMI implementation is hence straightforward, dBffers a native C-compliant BMI-implementatiororALFP, which is
written in C++, the code and file structure hadbtoslightly adapted to agree with the requiremémtshe BMI. Once a
BMI adapter is developed, it is possible to exeautet of functions: first, the user can initialtbe models by using the
BMI adapter. Second, the BMI adapter allows foriegtng a set of variables from memory. The vagasbéxposed through
the BMI adapter can be defined during the develogroéthe BMI adapter and is thus not limited tpra-set range. Third,
the manipulated variables can be set back to tlagat model or can be used to overwrite varialiesne or multiple other
models, given that they agree to the internal datecture of those models. Fourth, models conndctedBMI adapter can
be updated at a user-specified time step, henddieganline-coupling of models. In this way itpessible to get, change,
and set variables during the execution of the modeluse on a time step basis. Last, models cdimakzed to end the
computations. It is noteworthy that implementing BBMI functions does not alter any functionality mutines in the
models. Both DFM and LFP, although not being comeBython, can be called from within Python usihg BMI-python
package (see https://github.com/openearth/bmi-pytheor further information regarding the BMI, wefer to Peckham et
al. (2013) and the related website (CSDMS, 2016).

3 The computational framework GLOFRIM

The computational framework presented here consistavo key elements, a) the actual code and bttings-file.

Hereafter, a brief overview is given of their mairoperties. More detailed information and outlisgrovided in the files
themselves.

The computational backbone of GLOFRIM is entirelyitten in Python 2.7 and was developed and testedJiountu

systems. By means of a python-file (“couplingFramdwvl.py” in the downloadable data), the stepsnfimdel coupling
are executed (see Figure 1 for a flow chart). Tloeleis are first initialized, that is, the model figuration files of each
model are read and the internal steps requiredbtairo an initial state of the models are promptgdhe BMI adapter.

Thereafter, the BMI adapter is used to retrieve rajuired model variables, especially geometry rmgttion. This
6
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information is subsequently used to construct thesgof the models and to spatially couple thenolgrlay and grid-to-
grid assignment. A many-to-one assignment basedsier indices is performed and the routing contjmra in PCR are
turned off for all cells signalled as coupled. &se no 1-D or 2-D hydrodynamic cells are locatatiwia PCR cell, this cell
is therefore not considered to be coupled andahtng scheme as implemented in PCR prevails. Euittiormation about
the spatial coupling can be found in Hoch et a01({@. Once the models are spatially coupled, tltatgploop commences.
During execution of this loop, PCR will be updatgdeach time step — typically one day —, and sarfaooff and discharge
output will be retrieved as well as adapted to egvith the data structure of the chosen hydrodyoanadel. Subsequently,
either the water depth or a flux variable in thetogynamic model will be overwritten, and finallyet hydrodynamic model
will be updated until it reaches the same simufatime as PCR. The loop is exited once a user-Speaiumber of time
steps is reached. It should be noted that in threesti version of the framework, only one-directibicaupling from
hydrology to hydrodynamics is supported, possiklyding to local overprediction of simulated disgjeans there is, for
instance, no re-infiltration of water going overkaRuture research will thus focus on extending thia full two-directional
coupling scheme with feedback loops from hydrodyicanto hydrology. Such two-way coupling would, fimstance,
contain explicit modelling of hydrological processever inundated areas in the hydrodynamic model.

To specify all relevant information about the canglrun to be performed, a configuration file ided (“default.ini” in the
downloadable data). Besides all critical paths taleh data, other model settings can be defineldrconfiguration file, for
example the number of model time steps. In gensgettings defined in the ini-file overrule thosegified for the individual
models. In the current version of GLOFRIM, thrediams need to be specified to realize model cogplby activating the
so-called “River-Floodplain-Scheme”, by specifyithg variables to be updated, and by choosing fdrddynamic models
in either spherical or projected coordinate systems

The “River-Floodplain-Scheme” (RFS) defines wheungpat from PCR is coupled to. If RFS is activatedter volume of
one PCR cell is directly coupled to the 1-D chasrmdlthe hydrodynamic model within the correspogdiCR cell, while,
when RFS is inactive, water is distributed over2ald grid cells within the corresponding PCR caélbplying the RFS has
two major advantages: first, it reduces run timgegata exchange and computations need to be pedofon a smaller
number of cells; second, using RFS in large-scppi@ations with sufficient channel information texs the dependency
on the accuracy of remotely sensed 2-D elevatiga siach as Shuttle Rader Topographic Mission (SRd&a (Farr et al.,
2007). Recent research showed that such globakéégacontain strong vertical bias as well as syatie and random noise
(Yamazaki et al., 2017). In particular, simulatiit@v over vertically irregular terrain resulting super-critical regimes is
contra-indicated for LFP because of its use ofLilie In case overland flow needs to be modelled BF, we advise to take
measures accordingly, for instance by limiting fleelocities. For DFM we found that runs are mombk, yet slower,
when deactivating the RFS.

Second, it is possible to force the hydrodynamiadet® by updating the water depth variableriror by updating fluxes,
which are expressed as discharge in LFRis and as precipitation imm/d in DFM. For DFM, added daily water depth is
divided over a number of user-specified time stépsice reducing the computational load, while fluaees daily constants.
We found that updating fluxes reduces run timespamad to states, and hence advise opting for fitisra While it is also
possible to perform state-updating in LFP, tessrsimowed that this option should be used careadlif easily increases run
times. This is because it is currently not possiblepdate LFP at a user-specified time step dubedCourant-Friedrichs-
Lewy condition. It may hence happen that gradidetsveen added daily water depths are too steemasing the risk of
model instability. We therefore recommend applyfing-updating in LFP instead.

Third, it is possible to use the hydrodynamic medeith Cartesian coordinates, although PCR runsdn-Cartesian

coordinates. By providing the projected coordiratstem the model is based on, the computationaleweork can translate
7
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the grid into spherical coordinates and performgtié overlay and cell assignment, thus guarantgtsia applicability of all
already existing hydrodynamic schematizations.offfler computations remain unaffected by the coatdisystem in use as
the coordinate information is solely required fpasally coupling the grids.

As expressed before, GLOFRIM employs the BMI's tiowalities to couple hydrological to hydrodynamimcesses. Even
though the current version of GLOFRIM only suppartee-directional coupling, basing it upon the BMelgls strong
advantages for future two-directional coupling asupled models do not get unnecessarily entangledcaked
“integronsters” (Voinov and Shugart, 2013). Sucb-ghrectional coupling is currently not yet availalfor GLOFRIM due
to on-going testing as well as concept developraadtwill be provided in a future version of thenfireawork.

Besides being openly accessible and thus adapaableell as extendable to the user’s preferencésdoridual modelling
requirements, GLOFRIM contains a humber of add#@iadvantages: first, by having PCR-GLOBWAB, or atiyer GHM,
as the hydrological output creator, the framewoak easily be applied anywhere on the globe givédrydrodynamic
schematization; second, models to be coupled magleeted depending on their local performances flussibly capturing
more relevant processes; third, the spatially ekptioupling scheme can be extended to a full faekiboop between
hydrology and hydrodynamic, also incorporating im@nt groundwater infiltration and evaporation msses; fourth, by
guaranteeing identical hydrological forcing, apptyi the computational framework facilitates bencHamay of
hydrodynamic models by eliminating a sources ofedénce, potentially supporting hydrodynamic endenthodelling

approaches.

4 The Synthetic Test Cases
4.1 Set-up

To gain insight in possible differences in modehdgour between LFP and DFM, we created two syitthest cases, one
being set-up as 1-D only (STC 1-D) and the othez-Bsonly (STC 2-D). For the latter, both models&vschematized such
that they cover a domain of 11 cells by 500 celish the cell resolution being 1 km. For the 1-Dyodesign, the channel
had a length of 500 cells with a 1 km resolutiomn@orm channel width of 500 m, and a uniform amelrdepth of 3 m. As
default settings, we applied Manning’s surface rmags coefficients of 0.04 s¥afor the 1-D only run and 0.07 s¥for
the 2-D only run. Both synthetic test cases weregfd with an artificial upstream discharge boundgorgnning one year and
consisting of two peak flow moments to introduceialaility in model dynamics, thus not employing GERIM for those
test cases. As downstream boundary condition at@otnwater level of 0 m was set. The entire sinoaperiod was three
years to ensure it exceeds the time of concentrafio assess model output, seven cross-sections aefined, hence
capturing the downstream propagation of the aidifitood waves and facilitating the assessmemtasfsible attenuation and
dampening effects. For benchmarking the modelsher compared discharge along the cross-sectionglaas run times

to obtain a first indication how the different comgtional schemes might vary (Figure 2).



10

15

20

25

4.2 Results and Discussion

Assessing the results for both 2-D and 1-D, we fintthat both models simulate the same responses taetimput signal applied (
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Figure 3Figure 3). Due to the higher friction cagént and the wider flow area, it takes the 2-Desnatization almost the
entire simulation period to entirely convey the evatolumes to the downstream boundary. In the lecBematization,
however, all water is already drained after aro@Adper cent of the entire simulation period. Thuilsirity of simulated
discharge between LFP and DFM is, despite the rsbdifferences in complexity and design, in linettwthe findings
made by Neal et al. (2012b) and De Almeida and 8¢2613). In the latter study, differences in goveg equations were
assessed analytically for various flow regimes iragndrom sub- to supercritical flow. It was conciutlthat for applications
with low Froude numbers=¢ << 0.5), such as the synthetic test case used hersignificant differences occur between
models solving the LIEs and those solving the diythamics of the SWESs. Also, Neal et al. (2012b)wst that it appears
unnecessary to employ models solving the SWEsIléw fradually varying in time and for subcriticdbdv regimes. In
addition, the study showed that for those appliceti run times of local inertia models are shotit@n those of models
solving the full SWEs. The run times measured ffer Yarious synthetic test cases used here undgnigifinding as LFP
exhibits shorter run times, especially for the 2dhematization (
Table 1). To facilitate comparability, we a prigat the maximum solver time step in DFM to the agerof the time steps
required by LFP. It is noteworthy that the diffecem in run times may not merely be attributablevaoying solver

complexity, but partially also to the programmirgnduage and compiler used as well as to generatincodhplexity and
level of code optimization applied.

5 Test case: the Amazon River basin

5.1 Set-up

To test GLOFRIM in an actual test case as welbdsehchmark the flexible and regular grid, the famark was applied in
the Amazon River basin with DFM and LFP being schagred as a flexible mesh and regular grid, respegt The
methods applied to derive the hydrodynamic schemaiddin of the Amazon River basin for DFM are expdai in detail in

Hoch et al. (2017). First, a regular 2-D grid atkb® x 10 km resolution refined until a grid size2okm x 2 km was locally
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obtained, based on the Height Above Nearest Draimgorithm (HAND; Renno¢ et al. (2008)). Therebgas with low
HAND values were stronger refined than those withér values, resulting in a finer mesh along aext o river channels.
This implies a major difference to the synthetist tease above, as we now employ a flexible meskddsof a regular grid
for DFM. As input elevation, canopy-free elevatidata at 15 arcsec spatial resolution was appliedigB et al., 2013;
O’Loughlin et al., 2016) and subsequently smoottredliminate local depressions and other residwestd vertical errors
of SRTM data (Yamazaki et al., 2012). Elevatioradats then assigned to the flexible mesh by spatilaging. For the 1-
D channel network and bathymetry, river width daftéthe Global Width Database for Large Rivers (GWR:-Yamazaki et
al. (2014)) was employed which was combined witheéfuations from Paiva et al. (2011) to derive yratitry information.
For further information, we refer to the relevaapprs.

To obtain a LPF schematization equivalent to th&/D¥ehematization, elevation data as well as batérnvidth and river
depth information were processed to agree withrélgeirements of LFP. For river channel properties, depth and width
information stored in the vector data used for Diare rasterized, and for the elevation data theosimeal canopy-free
elevation data was upscaled to a 2 km spatial ugsal employing the nearest neighbour technigaenatch the finest
spatial resolution of the DFM schematization (Fegd). From Figure 4 it is visible that LFP containgreater level of detall
in areas farther upstream due to the finer spagsdlution uniformly applied. Consequently, thetatumber of cells in LFP
exceeds the number of 2-D cells in DFM by a faetofTable 2). Furthermore, only around 10 per cdnthe entire
schematization represents 1-D channels in LFP evth2 channel network of DFM was based on arounge3@ent of all
DFM cells. For both DFM and LFP, Manning’s surfaceighness coefficient was uniformly set to 0.03"%rfor channel
and floodplains which is consistent with other caglies in the Amazon (Paiva et al., 2013; Rudeirfil., 2014a, 2014b;
Trigg et al., 2009; Yamazaki et al., 2011). As dsetseam boundary, we imposed a constant water &\@Im at the river's
delta. It is noteworthy that GLOFRIM supports tteipling of any hydrodynamic schematization, notyadhbse bordering
at a delta but also midstream applications, fotaimse, if the internal hydrodynamic model requirataeare satisfied.
Additionally, is should be mentioned that the 14iaenels of both schematizations, even with the GMRDaccounting for
islands and thus providing an effective width, dd capture the impact of both braiding and rivdutmiation, which may
potentially impact model results, especially atrilrer mouth. This is, however, not due to the iligbof the hydrodynamic
models to account for them, but merely becausettbsen algorithm to derive 1-D network propertiessinot allow for it.
For the hydrological model PCR-GLOBWB, the kinernatiave approach was used for routing outside ofcthpled
domain. This is required as the hydrodynamic schieatéons in this test case do not cover the emtxtent of the Amazon
River basin, even with the kinematic wave approiompotentially introducing an error to the upstreboundary inflow
applied. Since simulated discharge from PCR forAhezon substantially under-predicts observatiaresdecided to apply
an optional regionalized optimization techniqueilfeting comparison between simulated and measudischarge value
(Hoch et al. (2017). As such optimization techniggieptional and only advisable for catchment stsda global application
is not constrained thereby. In analogy to the hggnamic models, the surface roughness coefficieRCGR was uniformly
setto 0.03 s M.

Model output of both set-ups was validated agaibserved GRDC-discharge at Obidos, the most doaanstistation of the
GRDC-network in the Amazon River basin (Figure B).that end, Pearson’s r, the relative mean soggiaoe RMSE, and
the Kling-Gupta Efficiency KGE (Gupta et al., 2008re computed. Possible uncertainties in obsedisharge (Clarke et
al., 2000) were thereby omitted. Besides, simulatedharge was qualitatively compared at two lacetifurther upstream
(Locl and Loc?2). The model time covers the perioanf01/1984 until 12/1990 with the first year beingged for spin-up of
the coupled setting. This period had to be chosentd the limitation of available GRDC data for mbudalidation. As with

the synthetic test case, run times were comparedbdl able to understand water level dynamics asilated by both
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models, we compared them at three locations thmutgthe basin (Figure 4). The locations were chaagh that they
represent the downstream (Loc3), midstream (Lcadd, upstream dynamics in the basin (Loc5). Besidasdation extent
was benchmarked by applying three evaluation foneti using the LFP inundation results as the beadhaataset. First,

the hit rate H was computed based on the subseqqgaation:

NDFM N NLFP
NLFP
NLer andNppw indicate thereby the number of inundated cellsiP and DFM at the same moment in time, respegtivied

H = 6)

perform consistent benchmarking, the flexible cefl©FM were resembled to the resolution of LFPeTit rate can vary
between 0, signalling that DFM and LFP have no dtated cells in common and 1, indicating that allsce LFP are also
inundated by DFM.
In addition, we determined the false alarm ratio Blso consider false positive alarms. The falagraratio can be obtained
with
F = NDFM \NLFP )
Noew N Nigp + Npey \Niep

In the optimal situation, F would be 0 showing thatcells are incorrectly marked as flooded in Diiiereas a value of 1

indicates that all cells are classified as falseras.
Last, we assessed the critical success index Chwdumbines both hit rate and false alarm ratio orie parameter which
can vary between 0 in the worst and 1 in the bastario, indicating perfect match between both dation maps:
— NDFM n NLFP
NDFM D NLFP
For both set-ups, the River-Floodplain-Scheme wetsvated and flux-updating was opted for. All siemibns were

(8)

performed on a Linux environment with an Intel i790 core at 3.90 GHz and 16 GB memory.

5.2 Results and Discussion

Benchmarking discharge results against observdtiom GRDC at Obidos shows that both models behavelasly.
However, LFP tends to compute earlier peak flowwadl as earlier and lower low flow (Figure 5). Th#are, obtained
coefficients of correlation are lower for LFP, whithe model's skill as expressed by KGE are highel.FP and the
RMSEs are comparable (Table 3). The general dewiati simulated results to observations can betoaerange of factors,
for example the lack of channel bifurcations in folematization, the already less accurate upstieffow as simulated
with the kinematic wave approximation or the gehexeerprediction of discharge by PCR-GLOBWB (Hodhak, 2017),
but have not been further explored as this wouliked the scope of this study.

Even though the discrepancies in simulated disehéefween the two models are not remarkable, taqyire further
investigation as they cannot be exhaustively erpldiwith our current process understanding. Basetthe results obtained
in the synthetic test case and since the hydradddarcing of both models is equal in terms of watelumes, spatial
distribution, and timing, we decided to evaluate impact of the following parameters: the actuakrilength and
dimension in LFP compared to DFM and the sensjtioftLFP to Manning’s surface roughness coefficiever large areas.
Since the routing scheme of LFP is based on a Bt#sywhere water can flow in southerly, northeglgsterly or westerly
direction, channel length and dimension in LPF tendiffer from other hydrodynamic models that ac¢ based on such a
system, for example DFM. Reducing or increasing uhiéless meandering coefficient in LFP to scaleridimensions,

however, did not show any significant impact onudated discharge (Figure 6a). After investigatimgvichanges in surface
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roughness values in LFP may close the gap to DFM,indeed found a more pronounced response, yeanhat
satisfactorily explain the difference in simulatgidcharge either (Figure 6b). Since in the synthexiample both models
can produce near-identical results if using theeséniation coefficient and, because the flow regimehe Amazon basin
can be described as sub-critical, different sensijtto surface roughness over large areas candtagsbe disregarded as
cause for discharge discrepancies. For the rentagap in simulated discharge, we can at this pmiht make assumptions
about the cause. Possible reasons include diffeseimcinternal processing of 1-D channel bathymeathannel-floodplain
interaction, and input elevation assignment du¢heodifferent grid schematizations of a flexibleshmeand regular grid,
respectively.

For a further first-order assessment of a posdibleact of spatial resolution, we compared simuladéstharge at two
stations further upstream, Locl and Loc2 (Figure Rigsults indeed suggest that the differences stregm spatial
resolution result in different flood wave propagati (Figure 6c): with covered flow distance, peascharge of LFP is
increasingly delayed compared with DFM, presumahilg to the larger floodplain cells in DFM. Besidig timing of the
rising and falling limb, respectively, is affectedigher simulated discharge by LFP than DFM at Laltkes not only
indicate that the impact of cell resolution isueéld with downstream distance and additional taibe$ contributing to the
flood wave, but that especially discharge compartetiin upstream areas can be easily affected &s tie discrepancy in
cell size is largest there.

Assessing differences in simulated water level dyina at the observation locations, we cannot fingt particularly
prevailing difference between the models’ respdadeydrological forcing (Figure 6d). In general, oleserve that modelled
water levels are comparable, yet with locally difig patterns. While at the most upstream station5LDFM simulates
lower water levels than LFP, this is opposite & thost downstream station Loc3, and at Loc4 botlletsoprovide
comparable results. Besides differences in actaéémievels, both models show a comparable respons®del input, yet
LFP tends to yield earlier peak water levels thavDwhich concurs with the discharge dynamics oleglex The reason
for differences in simulated water levels as wslltlaeir dynamics could not be fully attributed toecspecific cause. For
example, the more pronounced difference in wategl¢eat Locl may be a local effect due to spagaldback dynamics
between neighbouring cells of an observation stafidardy et al., 1999), may be related to sliglifedences in model
schematization at the downstream boundary or ttvbater effects in the delta regions as a resuttitbérent influence of
the downstream water level boundary. Furthermasgrepancies are likely to be related to differanicesurface elevation
simulated at the observation stations due to tfferdnces in gridding between DFM and LFP. Indesssessing the local
properties of the observation stations revealetitteasurface elevation in DFM is higher than irPL{ able 4)Last, results
indicate that differences in gridding and therefoe size may thus have locally impacted the dVevater levels too since
the above-discussed discharge simulations in igpstegeas exhibited clear deviations between botletaqFigure 6c).
Regarding the run times of the two coupled set-ugs,find that it takes LFP around six hours to datesthe entire
simulation period of seven years, that is modektiplus spin-up, while performing the same simutatidth DFM takes
around seven hours (Table 3). The difference intimes is less pronounced than for the synthetitdase, which can be
related to the lower number of cells in DFM compiate LFP due to use of a flexible mesh. In additianmore
computationally expensive interaction between 1fd 2@-D domain in DFM could also affect run times BFM is in
general a multi-purpose tool whose applicationas Inmited to inundation modelling, it is not unegied that it may be
slightly slower than programmes specifically tagidrfor efficient large-scale inundation modellingls as LFP.

We find that inundation extents obtained at the ehthe simulation runs with DFM and LFP are conaiide, yet far from
identical (Figure 7). Due to the larger inundatettent of DFM, a hit rate of 0.85 is obtained, aaling that 85 % of extent
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as simulated by LFP is also simulated by DFM. Eglgcdifferences in inundated extent in upstreamaa and along small
reaches can explain the obtained false alarm o&050 (

Table 5). These differences are also responsibléh@critical success index of 0.46 corroboratimagt in bit less than half
of the cells inundation extent is simulated by bawibdels. A model agreement of 46 % is slightly kigthan the 30 % - 40
% found by Trigg et al. (2016) for a benchmarkiigdy of global flood hazard models. This, in fastiggests that the
choice of numerical scheme and model schematizatame can greatly impact upon inundation, configrihat differences
in model forcing and boundary conditions do notaohe as a cause of modelled inundation differewbéch could have
been the case in the results obtained by Trigl) €2@16) .

A main cause for the differences observed for rgforther upstream is that DFM tends to computgelaflood extent than
LFP: with DFM having larger cells in upstream ardag to the flexible meshing, a larger 2-D aremssantly marked as
inundated for DFM once overbank flow occurs. Thussl of level of detail in DFM is the concessionb® made for a
reduced number of grid cells and hence potentfalger computations in the 2-D domain. For more mkiveam regions,
differences in inundation extent are primarily grgsat small river channels while floodplain inutida is comparable.
This, however, can to some extent be attributedifferences in how the 1-D domain is implementedhi@ models, with

DFM using grid-size independent vectors and LFRagirids at the overall spatial resolution of tbbematization. Given
the overall larger inundation extent simulated byM) the above-discussed deviations in simulatedhdige and in
particular the more pronounced wave attenuatioDfM may be explained as return flows from the flplaih to the

channel seem to be faster in LFP than in DFM.

6 Conclusion and recommendations

In this study, we presented GLOFRIM, a GLObally laggble computational FRamework for Integrated loyolgical-
hydrodynamic Modelling. In its current version, ptovides an environment to one-directionally coughe global
hydrological model PCR-GLOBWB (PCR) with two hydymémic models: Delft3D Flexible Mesh (DFM) solvittge full
shallow-water equations, and LISLFOOD-FP (LFP) swvthe local inertia equations. By linking hydrglo to
hydrodynamics, it is possible to take advantagethef strengths of both while at the same time corsgémg their
weaknesses.
We define five main assets of GLOFRIM: (i) it isespy accessible and hence can be directly appdigdpted to specific
purposes, and extended with other models; (ii) mpleying a global hydrological model to obtain mbdercing, the
framework can easily be applied globally; (iii) deds to be coupled may be selected depending anidical performance
and thus more relevant processes can be captuv@dhé spatially explicit coupling scheme can béeaded to a full
feedback-loop between hydrology and hydrodynami@g; thorough benchmarking and ensemble modelling
hydrodynamic models is supported by providing idehthydrological forcing for experiments.
GLOFRIM at present provides a range of optionsnfiodel coupling. Users can choose between coupl@ig #® either the
1-D or 2-D domain, can specify whether to updatdrbgiynamics through states or fluxes, and can mdrddynamic
models in both non-Cartesian spherical and praject®rdinate systems. It is generically written doés not require any a
priori knowledge of the code as all important sefsi are specified in a separate settings-file.
Besides PCR as well as DFM and LFP, there are rother global hydrological and hydrodynamic modefsilable which
have their individual advantages. As the framewisrkreely and openly available, its design canlgast extended and
adapted to cater the coupling of other hydrologaahydrodynamic models, merely requiring the impdmtation of the
BMI into each model to be added. Eventually, addintyD continental hydrodynamic such as CaMa-Flptamazaki et
13
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al., 2011) would allow for replacing the kinematiave approximation of PCR to provide more accuugtgtream boundary
inflow to the domain with explicit high-resolutichD floodplain computations. Empoying a Basic Mottgerface (BMI)
does not change the model functionality while & $hhme time providing a range of added functionsthErmore, not all
model variables need to be exposed, only thosepmduce model geometry, distinguish between 1-d2aB cells, and to
update model states. We therefore recommend caoimgidihis option for future model developments awil also aim to
incorporate other models ourselves. To our knowdedgatially explicit model coupling at global scély means of such a
framework is unprecedented. Consequently, userrexpes and lessons learnt are still sparse andnéiatives regarding
framework extension are therefore kindly receivedtie authors, as well as feedback and experiemae. We also
recommend the testing and application of it in p#tady areas and under different boundary condtio further evaluate
the code, process flow, and applicability.

Before applying GLOFRIM in an actual test case,p@gformed a simple synthetic test case to obtdirstaorder insight in
how both models may differ regarding their compotal complexity. Thereby both the 1-D and 2-D demaere forced
by a synthetic inflow signal and simulated discleamgas evaluated along the flow path. Results sh@at hoth models
produce the same response to the signal despitdiffeeence in solver complexity. The results obéal are in line with
previous studies showing that for sub-critical fleegimes discharge results should be similar (DeeMa and Bates, 2013;
Neal et al., 2012b).

Both hydrodynamic models were then applied withibOERIM for the Amazon River basin and evaluatedarding
simulated discharge, water levels, run time, anchd@ation extent, also constituting a first comparisf large-scale flexible
mesh and regular grid applications. Assessing sitedldischarge shows that both models exhibit cosmyba results with
LFP tending to compute earlier and slightly inceshpeak discharge estimates. As thorough testimpdaokible causes did
not show significant improvements, we speculata thifierences in processing of 1-D channel bathymenteraction
between 1-D channels and 2-D floodplains or assegnrof input surface elevation data to the differgnids may impact
discharge results. The latter is supported by disshobservations made in farther upstream areasevdifferences in grids
are largest. A more in-depth analysis of theseetbfices was, however, outside the scope of thily stnd thus needs to be
performed in a follow-up study. As the general gvediction of observed discharge at Obidos carlyplbet attributed to the
absence of hydrological processes on inundatedfl@ins, it is envisaged to extend the current cadih that it also caters
for a full feedback loop between hydrodynamics aydirology.

Water levels simulated by both models differ logallet only slightly. These discrepancies betweeth models are most
likely due different grid schematizations in DFMdabFP, which results in locally differing elevatialues and cell areas
and thus influences simulated water levels. Dudifterences in model structure and design, dowastréooundary
conditions had to be implemented slightly diffetgnpossibly also impacting water level resultsparticular for more
downstream stations. As it was the aim of this papentroduce the computational framework appliadnore elaborated
evaluation of causes for water level deviatiorfsiigre work.

A key parameter for large-scale modelling is runeti In the current study, the schematization of IcBRtains more than
four times the number of 2-D cells than DFM white number of 1-D cells is 40 per cent higher in [@8Rn DFM. Despite
the greater number of cells, LFP has a slightlyrtslnaun time. This is in line with the results aioied in the synthetic test
case, yet the relative difference is reduced dubeaapplication of flexible meshes for the 2-D ddmand the nature of the
coupling algorithm applied: because water was aaligirectly into the 1-D channels, flow over th® 2Zlomain was limited
and, as a result, so was the impact of differemce®mputational efficiency of the models. Diffeceis in run times may
also be related to more fundamental factors, sscth@ degree of code optimization applied. Addaibn DFM was, in

contrast to LFP, not explicitly developed for eiffist inundation modelling, but as a multi-purposel tincluding several
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additional physical processes, such as the potewtisimulate 3-D flow, estuarine processes or bgdpmorphologic
dynamics, which could also result in longer rung&mTo better understand causes of run time digncégs, further model
development, testing, and evaluation is therefecemmended.

To benchmark LFP and DFM in terms of simulated d@ation extent in the Amazon River basin, the hie rid, the false
alarm ratio F, and the critical success index Cewdetermined. In general, both models agree abeuiftan as they
disagree, indicating that both DFM and LFP prediatulation extent for around half of all cells. $hével of agreement is
slightly higher than the one obtained by Trigglet(2016) and is a strong indication that the niag@metry and numerical
scheme play a similarly strong role in influencimgdel accuracy as the boundary conditions and nfodehg applied in
global flood hazard models. Moreover, a higher @abwuld not be obtained due to the impact of tleailfle mesh,
especially for upstream areas where DFM runs ds ¢kht are a factor 25 larger than in LFP. Whilehs large cells
contribute strongly to shorter run times, they nadgso have implications for detailed flood hazartinestes which can be
strongly hampered. In case of employing a flexilesh, it seems as if an a priori decision has tonhde where and to
which extent such models are supposed to provigedcale results or whether computational effiggeiscthe main aim —
both at the same time does not seem to be fedsiloleour results. We hence recommend testing tipdicapion of flexible
meshes for large-scale riverine inundation modgliim more detail to obtain a better understandifithe trade-off to be
made between grid refinement and model accuracy.

With the presented computational framework GLOFRIMI the satisfactory results obtained, we trustaee contributed
to the current development of model coupling andgration, and to have provided an openly accessial that facilitates
more accurate large-scale flood hazard estimates. Wpe that, eventually, the integration of hydgadal and
hydrodynamic models will lead to improved floodkrigssessments and planning of climate change inmpiicfation and
adaption measures.

Code and/or data availability. The code of GLOFRIM as well as the BMI-versiond 86FLOOD-FP and PCR-GLOBWB
are openly accessible and freely downloadable iadrd10.5281/zenodo.597107
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Figure 6: Results of sensitivity analysis of (a) #1 meandering coefficient and (b) both 1-D and 2-Dusface roughness coefficients in
LFP. Since the D4 system in LFP can both decrease ardcrease effective river dimension, the dimensioaks meandering
coefficient was not only reduced from default (1.0Yo 0.09, 0.08, and 0.07, but also increased to 1112, and 1.3. As default
Manning’s surface roughness is already low (0.03 ®/3), coefficients were increased to 0.05, 0.07, andd9;(c) Comparison of
simulated discharge across basin to assess impadt spatial resolution on simulated discharge; to theaend two additional

observations upstream of Obidos were introduced, Ldc(most upstream) and Loc2 (intermediate upstream)(d) Comparison of
simulated water depth at three different locationgLoc3, Loc4, and Loc5) randomly picked within the domén
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Figure 7: Benchmarking simulated inundation extentoy DFM and LFP.
Table 1: Run times of different set-ups in synthetitest case
2-D 1-D
DFM 19.5 min 5.5 min
LFP 2.1 min 2.6 min

Table 2: Overview of key properties of hydrodynamicschematizations coupled to PCR-GLOBWSB in this study

2-D cells 1-D cells Smallest cell size Largest ksize
DFM 41,207 12,185 2x2km 10 x 10 km
LFP 174,982 17,119 2x2km 2x2km

Table 3: Results of Pearson’s coefficient r, root na square error RMSE, and Kling-Gupta-Efficiency KGE dbtained to

benchmark discharge as well as run times of coupledins

r

RMSE

KGE

Run time
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DFM 0.92 25,289 rh 0.76 7h

LFP 0.89 22,291 rh 0.82 6h

Table 4: Local properties of water level observatiorstations; input elevation refers to values obtainedfter hydraulic conditioning
of canopy-free SRTM elevation data at 15 arcsec spal resolution

Loc3 Loc4 Loc5
Input elevation 4.0 7.0 44.5
Model elevation LFP -0.2 24 374
Model elevation DFM 0.5 4.9 42.5
Cell area LFP ~4 x 16
Cell area DFM 7,7x 16 7,7x 106 30,9 x 16

Table 5: Resulting benchmarking indicators for inundation extent

H F C

LFP / DFM 0.85 0.50 0.46

26




