

Interactive comment on "A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM1.4" by Qiang Wang et al.

Anonymous Referee #2

Received and published: 8 December 2017

Recommendation: major revision

General comments

This manuscript presents an update on the ability of the global, multi-resolution model FESOM1.4 to accuracy simulate the Arctic Ocean. As the authors correctly highlight, despite its size, the Arctic Ocean plays a critical role in the global climate system. The uncertainty in prediction in the Arctic region is a major contributor to uncertainty in global forecasts. This point is highlighted in both the recent Fifth Assessment Report (AR5) from the Intergovernmental Panel on Climate Change (IPCC) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) of the World Climate Research Pro-

C1

gramme (WCRP). Efforts to improve the accuracy of numerical modelling in the region, and therefore of future forecasts, are critical at this time. I applaud the authors for taking up this challenge in exploring how this can be achieved.

It is an impressive feat that an unstructured mesh model of FESOM's nature is now taking part in the international model intercomparison CORE-II. It is fundamentally quite a different approach to the majority of models in CORE-II (and the complimentary CMIP study), and as a consequence, offers opportunities to improve process modelling that is not possible in other cases. In this paper the authors look at increasing horizontal spatial resolution in the Arctic region. It should then be possible to resolve smallerscale processes, and overall, a larger range of processes – which has the potential to improve overall prediction of key properties such as water mass and heat transport, and sea-ice migration. Intuitively, this is a logical step – that ncreasing resolution in regions of the globe where there is largest uncertainty will improve prediction. This is however, certainly not a given result, which makes it a very worthy area of study.

The initialisation of flexible, unstructured mesh models such as FESOM is significantly more complex than the structured models that are traditionally used in climate modeling studies. With variable resolution possible, the question on the best spatial discretisation to use is a huge question. This is very much an ongoing area of research and one which would be very difficult to address definitively in a single paper such as this. So whilst it is somewhat unsatisfactory to take a single mesh choice, run the coupled model in this configuration and analyse the output – there is still the potential to learn significantly from this type of exercise. It is interesting the authors additionally include an intermediate case with relatively high resolution restricted to the channels of the Canadian Arctic Archipelago (CAA). As the authors highlight, treatment of the CAA channels varies significantly between climate models because they are difficult to resolve with the fixed resolutions in the majority of climate models. As the authors find, the feedback from resolution on uncertainty is heterogeneous. It is very useful this is included in the paper, and I expect could be the subject of a separate work given the

options that could be explored, and comparisons made to existing approaches.

Specific comments

1. Focus. As stated, the research is very timely and I am pleased to see this being covered and particularly in a global context. I think the basis of the research idea here is excellent. As far as I can read into the execution and analysis, this too appears excellent. Saying this, I found the write up difficult to follow. It is very long and feels like it wants to act as: (a) a review of physical processes in the Arctic, (b) introduce a multi-resolution global model with a high resolution Arctic, whilst also (c) evaluating the multi-scale model. I understand it is a complex system, and there is some need to discuss expected physics, but as a GMD model evaluation paper, I think it would help the reader significantly if focus is directed at (c). Details of (b) to be included as required for reproducibility (since the model 1.4 is introduced in past papers) and (a) discussed for context of the analysis of model output.

Related to (a), some paragraphs go into a detailed description of physical processes in the ocean, only to end with a general suggestion that more work is required. It is good to include a description of the physics, but only if this is relevant to specific analysis of model output, or in direct relation to the basis of this work – with increased resolution.

Cleaning up these and the more general statements that appear but seem unnecessary and do not add to the paper – would help focus the paper, reduce verbosity and make it more accessible.

Some examples in the introduction:

 "Numerical modeling can be used to understand the dynamics of the ocean and predict its future changes."

C3

- "Large model biases in the upper Arctic Ocean are another common issue in many ocean general circulation models." – which models? and links to why? Is this a resolution issue? These statements need to be specific about models and approaches when this paper is exactly about a different modelling approach that could solve these issues.
- "Model simulation results can be sensitive to model configuration, including the choice of numerical and physical schemes, parameters and grid resolution." – surely model simulation results *are* directly dependent on model configuration?
- "As computational resources grow with time, the modeling community tends to use higher and higher model resolution. Certainly there is a need in the modeling community to evaluate high resolution models with respect to the common model issues identified in previous model studies." – again this is very verbose, is not specific and does not add anything significant. Which "common model issues"? Which "previous model studies"?
- "These studies provided background knowledge on the Arctic Ocean representation in those models and identified their common issues." again a weak summary of what has already been said previously. This repetition with no specifics is not helpful.

General sentences like these should be removed.

Other examples of superfluous content:

- Page 5, line 12: "It helps to preserve monotonicity and eliminate overshoots. When compared to a second order scheme without flux limiter and an implicit second order scheme in idealized 2-D test cases, at coarse resolution this FCT scheme tends to slightly reduce local maxima even for a smooth field, but at high resolution it well represents sharp fronts and shows least dispersion errors (Wang, 2007)." This is a model detail under (b), but it is not clear how this is relevant to the focus of the paper. Please either elaborate on how this is relevant or remove.

- This is again repeated on page 31, line 32, and does not appear necessary to include. Here a link is at least suggested to the work, "which can explain the obtained improvement of the AW layer in the high resolution simulation"
 but is only loose conjecture. This is something that could be tested here in this modelling framework. Please either test and include or remove.
- The following paragraph (beginning "The diapycnal mixing is..") could also be potentially removed. These are useful details of the model setup, but standard for FESOM1.4, and all detailed in the model description paper Wang et al. (2014). If these choices are different to others (in CORE-II, for example) and pertinent to the success of the model here, please elaborate (as per the later on SSS restoring), otherwise remove.
- "Besides identifying the impact of horizontal resolution on the Arctic Ocean main circulation, we also discussed scientific questions and model issues that need to be explored in future work, and some of the illustrated model issues are common in many other ocean-sea ice models. Overall, increasing model resolution does considerably improve the performance of the Arctic Ocean simulation, while further efforts are necessary to solve remaining issues that are not linked to applied model resolution, and to develop/improve parameterizations that are still required even with best resolution affordable now." – this lengthy paragraph adds very little except a very general comment that it has been shown that increased resolution helps. Please remove.

In general, please ensure all discussion of physical processes directly links to quantitative analysis of model performance and output. Detailed descriptions of physical process in the Arctic that end with loose general statements that these could be important / need to be considered when modelling, do not add significantly to the paper and its aim to evaluate the 3 configurations. The increased

C5

length only makes the paper more inaccessible.

 Structure. This paper is part of a concerted effort to develop FESOM, improve estimation in the Arctic and this is the subject of many recent related papers. (The lead author is lead author on 3 cited works in 2016 alone). Given this, the paper would greatly benefit from a focused "positioning" section.

Before jumping straight into *"Model setup"* I suggest a section briefly reviewing the effort to date, how each of the relevant papers fits in and solves/identifies lines of research to arrive at the work here. Some of this can be collected from snippets spread throughout the paper – including for example parts of the introduction, and a large part of *"5.3 Unstructured-mesh modeling"* (which I found odd positioned at the end of the paper).

On the introduction, the beginning 3 paragraphs are good and give a nice motivation for the work. The fourth paragraph jumps straight into the aim of the paper to investigate resolution – which at that point is not motivated – but then jumps back into motivation discussing the narrow straits. The fifth paragraph then jumps back out to talk about the overall modelling framework in general development. I suggest the fourth paragraph discusses the narrow straits, to then motivate and justify why an increase in resolution could help. There is some good justification given in Section 5.3 (e.g. *"An adequate representation of the CAA throughflow is found to be very important. With an unstructured-mesh model like FESOM, one can locally increase model resolution to accurately resolve the narrow channels and faithfully simulate the FW export (Wekerle et al., 2013)..."*, and more therein). There is also a review of higher resolution modelling efforts there that is appropriate for the motivation in the introduction, and to give context to this approach.

This then naturally leads into a short paragraph outlining the aims here – bringing in the 4.5km high resolution, potentially addressing issues prevalent in CORE-II.

Please make this concise. For example, the following, all in the latter part of the introduction, largely say the same:

- "In this paper we will evaluate a high resolution Arctic Ocean simulation and ellucidate the sensitivity of model results to resolution."
- "As one of the first steps towards designing such a system, in this paper we evaluate the simulated Arctic Ocean by FESOM on a global mesh with 4.5 km resolution inside the Arctic Ocean".
- "We will compare the 4.5 km model results with those from this coarse setup to understand the impace of model resolution." (note this typo – I think should be "impact")

Then I suggest the "positioning" section to make it clear what has been achieved with this approach, related studies (e.g. the 4.5km sea-ice modelling study "Werkerle et al. (2013) The Canadian Arctic Archipelago throughflow in a multiresolution global model: Model assessment and the driving mechanism of interannual variability" and how this studies fits / differs / is an important step in this continuing development.

- 3. Figure 1. This is a good figure and helpful to include for reference. It is also useful to locate the vertical section in figure 8. I suggest the "curves" are better identified as "arrows", since they are orientated markings. In hardcopy, it was difficult to make out the blue arrows and blue text "Transpolar drift" on top of the scalar blue background. I suggest different colours are used to make a clear distinction between the arrows and text vs. the background. Possibly the background scalar depth field could be coloured in green? The arrows outlined in white?
- 4. *Figure projections*. Figures 2(a) and (b) are compared and it is good to discuss resolution of the Rossby radius in this way but they are presented in different projections, which makes a comparison by eye difficult.

Moreover, Figure 1 is used for orientation – again this is helpful – but it is orientated differently to 2(b) and the subsequent 4, 6 7, 10, 11, 14 and 15. Please make the orientation consistent, such that Figure 1 can be used to easily identify regions when later output figures are discussed.

- Definition of HIGH and LOW. The introduction refers to Figure 2 on page 4. Figure 4, on page 5, refers to HIGH, but this is not defined until later in the text on page 6. Please fix so the reader knows what HIGH refers to before it is used in text.
- 6. Eddy resolving considerations. Figure 2 and the connected text make an analysis of where the fixed mesh can resolve mesoscale eddy activity. This quantitative analysis, including the spatial dependence presented in 2(b), is then significantly undermined by the Figure 2 caption comment: *"Note that effective model resolution usually is coarser than the grid size due to numerical dissipation."*

Please change this into a quantitative argument. As it stands the reader really is at a loose end in knowing where the model under consideration is mesoscale eddy resolving. This point is part of the discussion, and the reason for figure 2(b) – and link to / motivation for the increased resolution – so it is important it is completed. Is there a quantitative study of FESOM1.4 (or the underlying discretisation/numerical dissipation present) that can be used to infer the effective model resolution, and where in fact, in this configuration being evaluated here, the model is mesoscale eddy resolving?

7. Reproducibility and Zenodo archive. The authors have provided a DOI link to a Zenodo archive. I was able to access the link at https://doi.org/10.5281/zenodo.831484 and download the archive fesom1.4.tar.bz2. After attempting various methods, unfortunately I could not access the contents of the archive. For example, trying: tar tvjf fesom1.4.tar.bz2

tar: This does not look like a tar archive

C7

tar: Skipping to next header tar: Exiting with failure status due to previous errors

Please take a look at the archive. It appears the format is not as expected. Please provide instructions on how to access the data. Alternatively, and a better solution in my opinion, I suggest uploading files as they are, and not compressed or contained in an archive (Zenodo can handle large single files <50GB) – to avoid problems in opening/uncompressing files.

8. *Mesh set-up and reproducibility.* A large focus of the paper is on the three mesh configurations, LOW, HIGH and high only in the CAA. Sometimes the labels *"24 km"* and *"4.5km"* are used for LOW and HIGH in the figures. It could be helpful to keep this consistently to the defined labels LOW and HIGH. For the third mesh configuration with high resolution only in the CAA, various labels are used. *"CAA HIGH"* appears in figure 10 but is not defined. The graphic uses *"CAA 4.5 km"*. It would be helpful to stick to one label for all throughout. Please define a clear label for this third case, and ideally together with the definitions of the LOW and HIGH cases. It would also be helpful to make it clear in this same place early on that there are 3 different mesh configurations considered here.

The description of how the resolution varies and in particular how it varies between the three is not described sufficiently. This makes it difficult to reproduce or even compare results. Another flexible mesh model may wish to use 4.5km resolution in the Arctic in the same way to compare and contrast. It is not clear how this would be achieved without significant ambiguity over how resolution is varied, bar the broad, general description *"On the second mesh (HIGH) the horizontal resolution is further increased to 4.5 km inside the Arctic Ocean (defined by the Arctic gateways of Bering Strait, CAA, Fram Strait and Barents Sea Opening, Fig. 2a)" and the image in figure 2a (which would be difficult to extract this data from and also includes only half the globe). This paper is evaluating the*

C9

sensitivity of output to mesh resolution. It is important this is characterised fully. In what way does the resolution vary from 4.5km to 24km in mesh HIGH? The 4.5km region is defined as the Arctic Ocean, closed with reference to the gateways. Yet this description appears incomplete, since in figure 2a it appears higher resolution is applied in the Baltic Sea also?

On reproducibility, can the bounds of the 4.5km region used in this case be defined by a mathematical function, in terms of longitude and latitude for this purpose? If not, can shapefile definitions be provided? Other multi-resolution models may not use a triangular mesh, and require accurate description of regions for generation. Please provide sufficient information such that the 3 three mesh configurations can be regenerated – in storage that is persistent and can be reliably depended on, ideally with a DOI.

The description of the third configuration is even less well-defined: *"It has resolution similar to LOW outside CAA, but the same resolution as in HIGH inside CAA."* and leaves the reader questioning why is it not the same resolution as LOW outside the CAA? How is the CAA region defined? How does the resolution vary as you move to outside of the CAA?

This is an important study that others will want to compare to. It is important the 3 configurations can be regenerated. Also, ideally there will be sufficient information that others would be able to re-run the same FESOM simulations.

The authors advocate a model intercomparison using high resolution cases. It seems this would be facilitated with sharing as much as possible of the model configurations and model output. Why not make the 3 mesh configurations available on a persistent resource such as Zenodo? It would also benefit a model intercomparison if key outputs from FESOM1.4 here were also made available in this way – for others to contrast and compare.

9. Spin up and simulation time frames. The spin up part of model runs is repeatedly

referred to throughout, but it is not clear how long this is and what forcing data is used. Section 4.2 mentions it takes nearly 30 years for salinity to reach a quasi-equilibrium state. Is this enough for the whole model? In the section on freshwater 5.2, 20 to 30 years is mentioned for a specific sensitivity run exploring the effect of SSS restoring. Please clarify.

Page 6, line 29 implies the 3 configurations are run from 1950 to 2009 (with some spin up assumed beforehand, relaxing to a set climatology?). This is supported by figures such as 3, 8 and 9 with time axes over this period.

Figure 4 shows an average from 1970-1999, figure 8 from 1980-1999, figure 6 compares the 70s to 90s, figure 7 is not clear on range considered. Figures 10 and 11 considers different periods 1993-2002, 2003-2007 and 1996-2009, and figure 14 and 15 other ranges. In some cases these choices are justified, but others not. Please make sure it is clear why particular time ranges have been chosen. For example, why in figure 8 miss the contribution from 1970-1979 which is included in figure 4? Indeed why not an average of the entire simulated record over the CORE-II time range?

For a paper on model evaluation and more so when differing spatial resolutions (and by CFL, time stepping) are involved, one would expect an analysis of model performance with respect to time. This is touched on with a loose reference to 7 days throughput per day. Please include details of time steps used in all three configurations and simulation time per time step on each mesh. If possible include a scaling plot. It would also be interesting to compare simulation time per time step for each of the model components (e.g. ocean, sea-ice) on each mesh configuration. This information is very important for comparison studies, to guide choices in the development of other models and for users in model choice – possibly even more so here given FESOM2.0 is being developed with a different dynamical core and discretisation choice.

On "The deficiency indicates a clear requirement for eddy resolving resolution

C11

in the Fram Strait region in order to faithfully simulate the amount and property of AW that enters the Arctic basins through the Fram Strait. In ocean climate simulations, however, it is hardly possible to afford 1 km model resolution in the near future." (page 28, line 3): it would be helpful to be more quantitative here – how much computational effort do the authors believe a 1km version of the model would require? Analysis in Holt et al. (GMD, 2017) implies it will be possible to run global models more routinely down to coastal scales of 1.5km in the next 10 years.

The following "Accordingly, efforts on parameterizations are required to improve the simulation of AW circulation in Fram Strait." does not add much. Please add clarification on what parameterisations are required or remove.

Page 30, line 21: *"However, if the finest grid size is used in narrow straits in FE-SOM, the model time step and the overall model throughput could be constrained by this grid size."* What else is it likely to be constrained by? It seems very likely rather than *"could"*. A breakdown of costs of model components (e.g. ocean, sea-ice, ...), including the cost impact of moving to 4.5km in the Arctic region or just to the CAA – suggested above – would help give a quantitative answer here. As it stands the reader has no feeling for what the next step might be. What is the computational impact of HIGH vs HIGH CAA? – an important aspect of evaluating these model configurations.

10. Atlantic Water core temperature prediction.

Examining Figure 4(a), it appears the LOW model over-estimates the Atlantic Water core temperature (AWCT) compared to PHC climatology. Moving to HIGH this over-estimation increases significantly. Notably warmer waters (of over 1 degree above the PHC climatology) appear to propagate through the Fram Strait into the Arctic Ocean region. In this regard, AWCT temperature *distribution* appears to worsen in the move to using high resolution. Please comment.

How do instantaneous distributions appear? A significant error is seen in HIGH's LFW transport anomaly across the Fram Strait between 1950-1970 (not apparent in LOW) – is this linked? (although Figure 4 contains model results averaged 1970-1999).

On discussing heat content, with both LOW and HIGH integrated content higher, further analysis is dismissed with the following: "Due to inaccuracy in diagnosing heat budget terms (e.g., caused by interpolation) and ignoring heat diffusion in model output, the mismatch between the ocean heat content changing rate and Arctic net heat flux can have the same order of magnitude as this value." (page 26). It is not clear what is meant here. Please reword and improve the explanation. It does not seem satisfactory that the increased heat content cannot be explained.

"Our model results show that the magnitude of the AW temperature is not lower in LOW" (page 26) – is this shown in Figure 5? Is this the maximum or depthintegrated magnitude of AW temperature?

11. Over-estimation of liquid freshwater content. Both LOW and HIGH over-estimate the liquid freshwater (FW) content. This is noted on page 18, line 11. What are the reasons for this over-estimation? Is it expected this can be further reduced by further increasing resolution?

"The variety of FW content distributions simulated in different ocean models shown by Wang et al. (2016b) presumably can be partly attributed to different model representations of the CAA region." – this is could be true, but this does not add significantly. Can it be backed up by other studies? What are the different representations? How do they relate to the HIGH CAA configuration here? Do other representations – that are most closely related to the one here – show similar changes/improvements/indications? Some of this is discussed much later on in 5.3 and 6. It appears a key consideration here given focus on resolution and representation and might be good to have its own section?

C13

12. Passive tracer implementation. Figure 11 includes the comments "Note that the passive tracers were set to zero south of Fram and Davis Straits. The passive tracers are averaged over the upper 100 m." These are details better included inline in the text. This raises additional questions. For the tracer ϕ , the above implies:

$$\frac{\partial}{\partial t} \int_{V} \phi \, dV \neq 0 \tag{1}$$

So tracer total is not conserved? Please elaborate on why this is done and its implications.

What is the reason for averaging the tracer over the top 100m?

Is this type of analysis done elsewhere, under the same conditions?

- 13. FW variability. Referring to these sentences in section 4.4:
 - "Compared to the period of 1980-2000, the mean Arctic FW content averaged over the 2000s has increased by about 4500 km3 based on observations (Polyakov et al., 2013b; Haine et al., 2015), while the increase is only about 1700 km3 in our two simulations (Table 1)."
 - "On average the 13 CORE-II models analyzed in Wang et al. (2016b) underestimated the observed upward trend also by half."

Observations show mean Arctic FW content has increased nearly 3 times that seen in the model simulations presented. Why is this? The paper highlights that on average CORE-II models underestimate by a half. These models have a significantly lower resolution than the HIGH case considered here, yet the above implies this higher-resolution simulation performs more poorly than the average. Why is this?

The paragraph on temporal variation (page 22, line 7) ends with *"Simulation HIGH consistently obtains positive changes in the Eurasian Basin, but with a larger*

magnitude. It has negative values north of Greenland, which is not present in the observation." which appear unexplained. Can you suggest why negative changes are seen north of Greenland? and the positive change in the Eurasian Basin?

On "The interannual variability of FW transport through the Arctic gateways shows large similarity between the two simulations (Fig. 13a-c)." It does not seem correct to characterise this as a large similarity. There is some agreement in the anomaly trend, but also large deviations. Fig. 13(a) shows HIGH has a very significant deviation in the first two decades 1950-1970 of the six decades considered. The magnitude of the deviation is of the order of the max change seen, so arguably significant. Why the deviation? Is it linked to the excessively warmer waters see entering through the Fram Strait in the model output?

14. Outcomes. "Instead, we often modify the geometry of the CAA channels to allow adequate CAA throughflow. Such model adjustment, however, is not trivial as shown by the large model spread in CAA FW transports among the ocean climate models analyzed in Wang et al. (2016b)." (Page 30, line 27). This can be considered yet another parameterisation and the same approaches made to analyse its impact.

"When developing global climate models, the modeling groups certainly need more efforts to better adjust the 30 CAA representation. Besides, maintaining high resolution measurements of ocean transports is of great importance for model development too." (Page 30, line 29). This does not add anything significant. Can the authors suggest a solution to CAA representation/parameterisation?

"Most of the models analyzed in past CORE-II model intercomparison studies have relatively coarse resolution. For developing our unstructured-mesh model system with regional focus, it would be helpful to communicate experience with the large structured-mesh model community, for example, in future high resolution ocean climate model intercomparison projects." (Page 31, line 1). This

C15

could be better worded. Do you mean *"Most of the test cases/configurations in past CORE-II..."*? – and you are suggesting a suite of higher resolution intercomparison test cases?

- 15. Other small points.
 - (a) Last line of the abstract sounds disjoint, given the paper concerns increased resolution. Maybe something like: "Along with increased resolution, we additionally discuss other issues that could benefit from development to help increase accuracy in the region, including the improvement of parametertizations, for example."
 - (b) Lars Smedsrud et al. have recently published (January 2017 you cite as "Smedsrud et al., 2017") on Fram Strait sea ice export – can this help update the 11+ year old figure and error in Table 1? "Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years" The Cryosphere, doi:10.5194/tc-11-65-2017. There appears to be some large deviations in Fram Strait fluxes here, comparing FESOM model output and observations.
 - (c) Page 24, line 21: Part of a general request for more quantitative statements: "Note that much higher model resolution is required in order to simulate sea ice leads with realistic width." What resolution is required? Is it therefore expected that increase in sea-ice model resolution which see no advantage until this is reached?

Technical corrections

1. Use of the definite article "the" appears to have been skipped in multiple places throughout the paper. e.g. Page 10, line 6: *"The maximum temperature in Eurasian Basin in simulation"*, Page 11, line 8: *"correct circulation direction in Canadian Basin"*.

- 2. Page 1, line 14: "including improving parameterizations", better: "including the improvement of parametertizations".
- 3. Page 1, line 22: "deep water formation regions" better worded as "regions where deep water is formed"?
- 4. Page 2, line 16: "lower latitudes ocean and climate", change to "lower latitude ocean and climate".
- 5. Page 2, line 16: "societal" is better here than "social".
- 6. Page 2, line 16: "that remains under debate" better.
- 7. Please check capitalisation in references, e.g.
 - Wekerle et al. (2013) should contain "Canadian Arctic Archipelago".
 - Schauer et al (2002) "Amundsen" and "Makarov".
 - "Arctic", "Fram" and "Barents" in Maslowski et al. (2004).
 - ...
- 8. Page 25, line 3: "(e.g., Smedsrud" comma not needed please check throughout.
- Figure 14(f) is not labelled "(f)". Also, the coastline is not identified like the others (a)-(e).
- 10. Figure 2 caption: "Values larger than one indicate mesoscale eddy resolving." the meaning is understood, but please make into a sentence.
- 11. Page 5, line 3: "It work with", change to "It works with".
- 12. Page 5, line 15: "shows *the* least".

C17

- 13. Page 6, line 21: *"one over the ocean column"* is this one over the ocean depth? water column thickness?
- 14. Pages 4 and 6: Please avoid repetition of the *"Time frame of 7 model years per day"*.
- 15. Min and max values are missing in many colour bars e.g. Figures 2b, 3a, 3c, 7a, 7b, 8a-e, 10, ... This is very helpful for future studies comparing to this work. Please ensure all min and maxes are labelled.
- 16. Some axis do not have end values e.g. time axes in Figure 9. Is this data until 2009? Please make it clear where the axis ends (mark with year, or make it a decade to 2010). Same with Fig 3, 12, 13, ...
- 17. Use of the definite article "the" appears inconsistent e.g. *"towards the Fram Strait*" on page 7 (twice), but *"toward Fram Strait*" on page 8.
- 18. Spelling of "elucidate" page 2, line 34.
- 19. "Dupont, F., and others (2015)" please elucidate on the "others".
- 20. "CAA" unnecessarily redefined in figure 10.
- 21. Possibly move the reference to Holloway et al. (2007) on page 11 up to the introduction of topostrophy so readers know where to find its definition.
- 22. Page 11, line 10: "Indeed, the Arctic Ocean hydrography obtained on mesh LOW was found to be one of the well simulated when comparing the state-of-the-art ocean climate models (Ilicak et al., 2016)" "one of the well simulated" does not read well and the sentence is verbose. Last part better rephrased as "when compared to the suite of state-of-the-art climate models in Ilicak et al. (2016)"?
- 23. Page 12, line 10: "between the two models" or "between models".

- 24. Page 18. line 2: Please refer directly to the section number rather than this loose reference.
- 25. Page 24, line 11: "in *the* 2000s".
- 26. Page 30, line 4: "without necessity", please reword "without "the" necessity"?
- 27. Page 33, line 1: Space in URL.

C19