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Abstract.

We introduce the method ADAMONT v1.0 to adjust and disaggregate daily climate projections

from a regional climate model against an observational dataset at hourly time resolution. The method

uses a refined quantile mapping approach for statistical adjustment and an analogous method for sub-

daily disaggregation. The method produces ultimately adjusted hourly time series of temperature,5

precipitation, wind speed, humidity, and short- and longwave radiation, which can in turn be used

to force any energy balance land surface model. While the method is generic and can be employed

on any appropriate observation time series, here we focus on the description and evaluation of the

method in the French mountainous regions. The observational dataset used here is the SAFRAN me-

teorological reanalysis, which covers the entire French Alps split into 23 massifs, within which me-10

teorological conditions are provided for several 300 m elevation bands. In order to evaluate the skills

of the method itself, it is applied to the ALADIN-Climate v5 RCM using the ERA-Interim reanalysis

as boundary conditions, for the time period from 1980 to 2010. Results of the ADAMONT method

are compared to the SAFRAN reanalysis itself. Various evaluation criteria are used for tempera-

ture, precipitation, but also snow depth, which is computed by the SURFEX/ISBA-Crocus model15

using the meteorological driving data from either the adjusted RCM data, or the SAFRAN reanaly-

sis itself. The evaluation addresses in particular the time transferability of the method (using various

learning/application time periods), the impact of the RCM grid point selection procedure for each

massif/altitude band configuration, and the inter-variable consistency of the adjusted meteorological

data generated by the method. Results show that the performance of the method is satisfactory, with20

similar or even better evaluation metrics than alternative methods. However, results for air tempera-

ture are generally better than for precipitation. Results in terms of snow depth are satisfactory, which

can be viewed as indicating a reasonably good inter-variable consistency of the meteorological data

produced by the method. In terms of temporal transferability (evaluated over time periods of 15 years

only), results depend on the learning period. In terms of RCM grid point selection technique, the use25

of a complex RCM grid points selection technique, taking into account horizontal but also altitudinal
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proximity to SAFRAN massif centre points/altitude couples, generally degrades evaluation metrics

for high altitudes, compared to a simpler grid point selection method based on horizontal distance.

1 Introduction

Projections of future climate change in terms of meteorological conditions and their impacts are30

requested for many scientific and societal applications (IPCC, 2013, 2014a, b, c). For a given socio-

economic or greenhouse-gas concentration scenario, these projections generally concern future tem-

perature and precipitation, and associated extreme events, and are usually generated using the outputs

of global climate models (GCMs) and regional climate models (RCMs). However, GCMs and RCMs

suffer from biases compared to local observations (Christensen et al., 2008; Rauscher et al., 2010;35

Kotlarski et al., 2014). Raw climate projections must therefore be adjusted (Déqué, 2007; Themeßl

et al., 2011; Gobiet et al., 2015; Maraun, 2016), before they can be used as such (meteorological con-

ditions), or in order to drive specific impact models. Various downscaling and adjustment methods

have been developed (Maraun et al., 2010; Teutschbein and Seibert, 2012, 2013). They all require an

observation dataset which (i) meets the data requirements of the application and (ii) is sufficiently40

long and reliable to be used to infer the relationships between the observations and the raw cli-

mate projections during the observation time period. Several approaches, such as the analog method,

search for relationships between observed large-scale predictors (generally from reanalyses) and

observed local-scale predictands (Vrac et al., 2007a; Dayon et al., 2015). In contrast, model output

statistics approaches calibrate model outputs against observations, with various levels of complexity,45

such as scaling methods (linear scaling, local intensity scaling, variance scaling, ...), delta-change

methods (e.g., Abegg et al., 2007; Hantel and Hirtl-Wielke, 2007; Schmucki et al., 2014) and dis-

tribution mapping methods (e.g., Boe et al., 2007; Déqué, 2007; Gobiet et al., 2015; Olsson et al.,

2015). The latter include quantile mapping, which is considered as an efficient and easy to imple-

ment adjustment method (Themeßl et al., 2011; Teutschbein and Seibert, 2012; Maurer and Pierce,50

2014; Gobiet et al., 2015). The main advantage of this method is that it adjusts deviations in the

shape of the distribution, and is thus able to adjust deviations not only for the mean but the entire

probability distribution function (Themeßl et al., 2011). Moreover, the adjustment is not strictly re-

stricted to the range of observed values in the reference period, which is the case for example for

methods based on analog weather patterns (e.g., Déqué, 2007; Themeßl et al., 2011; Rousselot et al.,55

2012; Dayon et al., 2015), provided that values based on the lowermost and uppermost quantiles are

handled appropriately (Gobiet et al., 2015). It can thus be used for evaluation of climate extremes

or projections at the end of the 21st century, as long as the probability associated with these events

is robustly estimated from a long enough sample. The main limits of quantile mapping are the as-

sumption of time-invariant model deviation to observations on which it is based, and the fact that60

the temporal properties of the model are not adjusted. If the model has a chronological behaviour
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which differs from the observations (too chaotic or too persistent), this will not be adjusted (Déqué,

2007). Moreover, quantile mapping does not guarantee the spatial and inter-variable consistency, in

contrast to e.g. the analog method. Furthermore, the performance level of quantile mapping methods

is sensitive to the observation data set used and the detailed characteristics of their implementation,65

which requires specific attention.

Climate projections in mountainous regions, which are motivated by a broad range of geophysi-

cal, environmental and societally relevant scientific challenges (Martin et al., 1994; Beniston, 1997;

Jomelli et al., 2009; Castebrunet et al., 2014; Piazza et al., 2014; Schmucki et al., 2014; Lafaysse

et al., 2014; Boulangeat et al., 2014; Thuiller et al., 2014; Castebrunet et al., 2014; Francois et al.,70

2015; Spandre et al., 2016), are particularly sensitive to the quality of the adjustment method. In-

deed, regional climate model resolutions typically between 10 and 50 km are not sufficient to capture

the fine-scale processes and thresholds at play. Resolving altitude dependencies is critical, espe-

cially for snow-related issues (because of the temperature dependency of the snow/rain transition).

Furthermore, not only temperature and precipitation act on the snowpack, but a broader range of75

meteorological conditions and their diurnal variations. As a consequence, considering only adjusted

daily temperature and precipitation would miss some of the non-linear response of the snowpack.

Such phenomena cannot be addressed using delta-change methods, which by definition apply fixed

changes to an observed time series, conserving its statistical persistence properties and seasonality

(e.g., Abegg et al., 2007; Hantel and Hirtl-Wielke, 2007; Schmucki et al., 2014; Marty et al., 2017)80

although those could evolve significantly under changed climate conditions.

Here we introduce the ADAMONT v1.0 method, to adjust climate model projections in order

to provide hourly adjusted meteorological conditions for past and future conditions based on cli-

mate model output and observational datasets. Although it could be applied for GCM output, it

was primarily designed to process RCM output. Indeed, raw regional climate projection data are85

increasingly made available, e.g. the World Climate Research Program (WCRP) Coordinated Re-

gional Downscaling Experiment (CORDEX, Giorgi et al. (2009)), whose aim is to improve and dis-

tribute regional climate modelling worldwide. Its European branch, EURO-CORDEX (Jacob et al.,

2014), gathers regional climate simulations over Europe from 30 different modelling groups at 50

km (EUR-44) and 12.5 km (EUR-11) resolution. On the observation side, the use of surface mete-90

orological reanalysis is a powerful alternative to station observation data to provide the necessary

observational dataset (Berg et al., 2015). Indeed, the process by which such reanalyses are generated

addresses the time and space variations of the meteorological conditions, and by design they consist

of gap-free and complete time series. Here we describe the use of the ADAMONT method based on

RCM model output comparable to EURO-CORDEX and on the mountain meteorological reanalysis95

SAFRAN. SAFRAN was developed specifically to address the needs of snowpack numerical simu-

lations in mountainous regions, and contains hourly time series of temperature, precipitation, wind

speed, humidity, and short- and longwave radiation for so-called massifs (ranging between 500 and
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2,000 km2 in the French Alps) by elevation steps of 300 m (Durand et al., 2009a, b). Here, quan-

tile mapping is applied using daily outputs from a given RCM for all the variables provided in the100

SAFRAN reanalysis. Following a subdaily disaggregation step based on analog days selection from

the reanalysis itself, these hourly adjusted fields are then used to force the SURFEX/ISBA-Crocus

(Vionnet et al., 2012) model over the French Alps. We evaluate the performance of the ADAMONT

method, by applying it to the ALADIN-Climate v5 RCM (Colin et al., 2010) forced by the ERA-

Interim reanalysis (Dee et al., 2011) over the period 1980-2010. Sect. 2 describes the models used105

and the evaluation approach. Sects. 3 and 4 contain the results and their discussions, respectively,

and general conclusions are drawn in Sect. 5.

2 Models and methods

2.1 Description of the ADAMONT method

ADAMONT is primarily a quantile mapping adjustment method (Déqué, 2007; Gobiet et al., 2015).110

In general, quantile mapping is considered one of the most efficient bias adjustment methods avail-

able (Themeßl et al., 2011; Maurer and Pierce, 2014; Gobiet et al., 2015). It consists in adjusting

the quantiles of the simulated historical distribution based on the quantiles of the observed distribu-

tion. The main issues with quantile mapping relate to the assumption of time-invariant model biases,

the fact that temporal properties of the RCM are untouched by the adjustment method and that the115

spatial and inter-variable consistency is not guaranteed. Moreover, Driouech et al. (2009) showed

that for mid-latitude climates, such as that in Morocco, quantile mapping adjustment can vary for

different weather regimes, because model biases vary in different regimes. Similarly, Addor et al.

(2016) demonstrated the sensitivity of quantile mapping adjustment to circulation biases over the

Alpine domain. Additionally, the frequency of weather regimes may change in a changing climate120

(Boe et al., 2006; Cattiaux et al., 2013). To improve the stationarity of our method in a changing cli-

mate, weather regimes are thus taken into account, i.e. quantile adjustment functions are computed

and applied depending on the weather regime.

Assuming the availability of a gap-free meteorological observational dataset at hourly time res-

olution consisting of one or several geographical locations considered sharing similar large scale125

meteorological conditions, and daily RCM model outputs covering the geographical domain of in-

terest, the statistical adjustment method ADAMONT consists in the following steps:

1. RCM grid point selection: For each observation point, a RCM grid point is selected, by mini-

mizing the following distance:√
(∆x)2 + (∆y)2 + (N ×∆z)2, (1)130

where ∆x, ∆y and ∆z represent the longitudinal, latitudinal and vertical distances (in km)

between the observation point and the RCM grid points, and N is referred to as the elevation
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factor. Values of 0, 50 and 100 were tested, but only results using a value of 0 and 50 (N50)

are reported in this study. The factor N is a scaling factor between horizontal and vertical

distances, allowing to take into account the strong dependence of meteorological variables135

(mainly precipitation and temperature) on altitude (e.g., Gottardi et al., 2012; Kotlarski et al.,

2012).

2. Weather regime computation: Each day of the RCM and observational records are clustered

into different daily weather regimes based on the geopotential height at 500 hPa, following

Michelangeli et al. (1995), similar to the method described in Driouech et al. (2010). Weather140

regimes clusters were previously computed on the basis of the large scale meteorological re-

analysis ERA-40 (Uppala et al., 2005). The ERA-Interim reanalysis (Dee and Uppala, 2009)

was used to infer weather regimes corresponding to each observation date and for all observa-

tion points. RCM weather regimes were determined based on the synoptic field of the GCM

used a boundary condition for the RCM. In Michelangeli et al. (1995) and Driouech et al.145

(2010), only regimes for the winter season are defined. We chose to apply the same method to

determine weather regimes for the other seasons as well. A classifiability and reproducibility

analysis performed by Michelangeli et al. (1995) showed that 4 weather regimes can reason-

ably be chosen for Europe. This number is a compromise between accuracy of the correction

and robustness of the percentile estimation (more regimes can be used, such as in Ummenhofer150

et al. (2017)). On the other hand this relatively small number of regimes ensures a sufficiently

large size of the datasets used for quantile mapping (which are, as described below, further

partitioned into 4 seasons DJF, MAM, JJA, SON). Figure 1 represents the different regimes

used in this study.

3. Aggregation from hourly to daily observations: The observational data are aggregated from155

hourly to daily time resolution, depending on the variable considered (see Table 1) : for tem-

perature, the daily minimum and maximum values (from 6:00 UTC to 6:00 UTC the next day)

are selected (RCMs generally offer daily minimum and maximum temperature). For wind

speed and humidity, the last value of each day (at 6:00 UTC) is selected (in order to be com-

parable to an instantaneous value), and for precipitation and radiation, the daily mean (6:00160

UTC to 6:00 UTC) is used.

4. Computation of quantile distributions: The quantile values (the 99 percentile values as well as

the 0.5 % and 99.5 % quantile values) of the observational dataset and corresponding RCM

grid point distributions are calculated for each variable, each season (DJF, MAM, JJA, SON)

and each of the four weather regimes, for a reference (also referred to as learning) time period165

when both datasets are available.

5. Quantile mapping: Quantile mapping is then applied to the entire RCM dataset for the applica-

tion time period, taking into account the season and the weather regime. A linear interpolation
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is used for quantile values between the quantiles values specifically computed (the 99 per-

centile values as well as the 0.5 % and 99.5 % quantile values). For RCM values greater than170

the 99.5 % quantile, a constant adjustment based on the value of this last quantile is applied

in order to allow for new extremes. For precipitation, it can happen that for low quantiles, the

probability of precipitation is lower in the RCM than in the observation dataset (i.e. several

null values in the RCM, which can correspond to different positive values in the observational

data). In this case, a random draw is performed amongst the observation values within the175

same quantile.

6. Selection of analogue date for sub-daily disaggregation: For each day in the RCM dataset,

an analogous date is chosen in the observational dataset, matching the following criteria: the

month and the weather regime must be the same as in the RCM dataset, and whenever possible,

consecutive time slices are chosen in the observational dataset in order to avoid artificial jumps180

in the final data linked to the choice of analogues. A further criterion is applied to ensure that

the weather situations are even more comparable between the RCM date and the analogous

date from the observational record, based on precipitation consistency (wet vs. dry conditions).

A threshold of 1 kg m−2 day−1 on total precipitation is applied to partition dates between dry

and wet conditions. For the first RCM date, a random draw amongst all available observational185

dates is performed, then the dates are browsed through chronologically until one meets all

the requirements outlined above. This analogous day is then used in the following step for

all variables. If the following analogue day in the observations still meets all requirements,

it is selected as analogue for the following day in the RCM (to ensure as far as possible

consecutive time slices). A new random draw is only performed once the analogue fails to190

meet all requirements described above.

7. Sub-daily disaggregation: The adjusted RCM dataset is disaggregated from a daily integration

period into an hourly time step by using the hourly observational data from each analogous

date chosen in the previous step to reconstruct the daily cycle of the data:

Xh
RCM (i) = a×Xh

OBS + b, (2)195

where Xh
RCM (i) is the hourly adjusted RCM value of the variable X and Xh

OBS is the hourly

observational value of the same variable from the chosen analogous date (step 6). Different

criteria are chosen to calculate a and b, depending on the variable considered (Table 1). For

the disaggregation of RCM adjusted temperature from daily to hourly (Table 1), a compromise

must be made between obtaining minimum and maximum daily values as close as possible to200

RCM adjusted daily minimum and maximum and minimizing the possible jump in adjusted

6



values between consecutive days. This is achieved by minimising the function:

Q(α) = [Th
RCM (1h,i)−Th

RCM (24h,i− 1)]2 +α[TminhRCM (i)−Tmind,adjRCM (i)]2

+α[TmaxhRCM (i)−Tmaxd,adjRCM (i)]2, (3)

where Th
RCM (1h,i) and Th

RCM (24h,i− 1) are the hourly adjusted RCM temperature val-

ues at the first time step of day i and at the last time step of day i− 1, TminhRCM (i) and205

TmaxhRCM (i) are the hourly minimum and maximum adjusted RCM temperature values re-

spectively, and Tmind,adjRCM (i) and Tmaxd,adjRCM (i) are the daily minimum and maximum ad-

justed RCM temperature values respectively (Fig. 2). α is a parameter which can be tuned

to balance the importance of the minimisation of differences between daily and hourly RCM

minima and maxima and the minimisation of the jump between two consecutive days. For210

a value of α of zero, there would be no jump in values between consecutive days, but the

values of TminhRCM (i) and TmaxhRCM (i) could be far from the values of Tmind,adjRCM (i)

and Tmaxd,adjRCM (i). For an infinitely large value of α, the minimum and maximum hourly

and daily values would match, but the jump between consecutive days could be significant.

Sensitivity tests yielded an optimal value of 2 for α. Following eq. 2, eq. 3 transforms into:215

Q(α,a,b) = [a×Th
OBS(1h) + b−Th

RCM (24h,i− 1)]2

+α[a×TminhOBS + b−Tmind,adjRCM (i)]2

+α[a×TmaxhOBS + b−Tmaxd,adjRCM (i)]2. (4)

By searching for the local minima δQ/δa= 0 and δQ/δb= 0, a and b can be determined, and

the hourly adjusted RCM temperature can be obtained following eq. 2. For specific cases, i.e.

for the first day where Th
RCM (24h,i−1) does not exist, or if the determinant of our system is

too close to zero (< 0.1), or in the case where a < 0, a simpler equation is used, in which we220

only ensure that final mimimum and maximum daily values correspond to the RCM adjusted

minimum and maximum values, by solving:

a=
Tmaxd,adjRCM (i)−Tmind,adjRCM (i)

TmaxhOBS −TminhOBS

(5)

b= Tmaxd,adjRCM (i)− a×TmaxhOBS . (6)

This procedure is only applied for temperature, because the use of the maximum and minimum225

criterion can lead to important jumps between consecutive days, which is not the case for other

variables (Table 1). For humidity, eq. 2 is solved using b= 0 and a=Xd,adj
RCM (i)/Xh

OBS(24h,i),

so that the hourly adjusted RCM value and the hourly observational value at the last time step

of day i (Xh
OBS(24h,i)) are equal. For wind speed, the same calculation as for humidity is ap-

plied, except if a > 1 (i.e., Xd,adj
RCM (i)>Xh

OBS(24h,i)). If so, b=Xd,adj
RCM (i)−Xh

OBS(24h,i)230

is calculated. For humidity and wind speed, ifXh
OBS(24h,i)≤ 10−10, a= 0. For precipitation
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and radiation, b= 0 and a=Xd,adj
RCM (i)/Xh

OBS(mean,i), so that the mean hourly adjusted

RCM value and the mean hourly observation value of day i are equal. For solar radiation, if

Xh
OBS(mean,i)≤ 10−10, a= 0. For precipitation, if this is the case, a= 1.

8. Snow/rain partitioning: Total precipitation is separated into rainfall and snowfall based on235

hourly adjusted temperature (a threshold of 1 ◦C is used for the transition from snow to rain).

As mentioned above, inter-variable consistency is not guaranteed by quantile mapping. Given

the importance of the consistency between temperature and precipitation in many applications

and in particular in mountainous areas, given that precipitation and temperature are corrected

independently from each other (step 5), and because the adjustment can differ for the differ-240

ent precipitation phases, the relationship between temperature and precipitation phase may

be modified by quantile mapping, so that the adjusted rain and snow distributions may lose

consistency. To avoid this, Olsson et al. (2015) separated temperature data into wet and dry

days before adjustment. In our case an additional quantile mapping against the observational

dataset is applied for daily cumulated adjusted RCM rainfall and snowfall separately. Hourly245

adjusted RCM rainfall and snowfall (a2) are then determined by applying the ratio between

daily rainfall or snowfall after quantile mapping (A2) and daily rainfall or snowfall before

quantile mapping (A1) to the hourly rainfall or snowfall before quantile mapping (a1):

a2 = a1×
A2

A1
(7)

If A1 = 0 and A2 = 0, then a2 = 0. If A1 = 0 and A2 6= 0, then a2 =A2.250

9. Final adjusted dataset: The resulting adjusted hourly time series for each variable are obtained

for each snow year (from the 1st of August to the 31st of July of the following year), matching

the format of the observational dataset.

2.2 SAFRAN reanalysis and application of ADAMONT method using SAFRAN

Although the ADAMONT method is highly generic and can be applied using any hourly-resolution255

observational dataset, in the following we focus on the use of ADAMONT using the SAFRAN

reanalysis data as an observational dataset. We first describe SAFRAN, then we present specific

features of the ADAMONT method when using SAFRAN as the observational dataset.

The SAFRAN system is a regional scale meteorological downscaling and surface analysis system

(Durand et al., 1993), which provides hourly data of temperature, precipitation amount and phase,260

specific humidity, wind speed, and shortwave and longwave radiation for each mountain region (or

"massif") in the French Alps (23 massifs, as illustrated in Fig. 3) but also in the French and Span-

ish Pyrenees and Corsica. Unlike traditional reanalyses, SAFRAN does not operate on a grid, but

on French mountain regions subdivided into different polygons known as massifs. Massifs (Durand

et al., 1993, 1999) correspond to regions ranging approximately between 500 and 2,000 km2 for265
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which meteorological conditions are assumed to be spatially homogeneous but vary with altitude.

SAFRAN data are available for elevation bands with a resolution of 300 m, i.e. altitude levels 600,

900, 1200, 1500 m etc. are typically considered, making it possible to extract meteorological infor-

mation at these altitude levels, or in-between using altitude interpolation. It was used by Durand

et al. (2009b) to create a meteorological reanalysis over the French Alps by combining the ERA-40270

reanalysis (Uppala et al., 2005) with various meteorological observations including in situ mountain

stations, radiosondes and satellite data. It was complemented after the end of the ERA-40 reanaly-

sis (2002) by large-scale meteorological fields from the ARPEGE analysis, so that it now spans the

period from 1959 to 2016, making it one of the longest meteorological reanalyses available in the

French mountain regions.275

When the ADAMONT method is applied using the SAFRAN reanalysis, only one geographic

coordinate is used for each massif, corresponding to the center of the massif (see Fig. 3). However,

for each massif several altitude levels are considered, which means that depending on the N fac-

tor considered different RCM grid points may be selected for a given massif and altitude. Also, in

order to maximise the consistency between massifs after the adjustment process, the dry/wet ana-280

logue day criterion used for the time disaggregation of RCM adjusted variables into hourly variable

is computed generally for the entire SAFRAN dataset, here in the 23 French Alps massifs. This

means that a day is considered dry when the average of all daily precipitation data is below 1 kg

m−2 day−1, and wet if it falls above the threshold for all massifs and all altitude levels (from an

observational perspective), and for all corresponding adjusted RCM grid points (from an adjusted285

RCM perspective).

2.3 SURFEX/ISBA-Crocus model

Crocus (Brun et al., 1989, 1992; Vionnet et al., 2012) is a detailed snowpack model within the SUR-

FEX externalised surface module (Masson et al., 2013). It enables the computation of the exchanges

of energy and mass between the snow surface and the atmosphere (radiative balance, turbulent heat290

and moisture fluxes, ...), but also between the snowpack and the ground underneath. Similarly to

most land surface models, it requires sub-diurnal (ideally hourly) meteorological forcing data in-

cluding air temperature, humidity, incoming longwave and shortwave radiation, wind speed, as well

as rain and snow precipitation. The one-dimensional multilayer physical snow scheme Crocus is able

to simulate the evolution of the snowpack over time, by accounting for several processes occurring in295

the snowpack, such as thermal diffusion, phase changes, metamorphism, etc. The SAFRAN-Crocus

model chain has been operationally used for more than 20 years for avalanche hazard forecasting and

extensively evaluated over the alpine domain in particular against snow depth observation stations

(Durand et al., 1999, 2009b; Lafaysse et al., 2013). Here we apply the Crocus model using either

the SAFRAN reanalysis itself, or adjusted fields from a given RCM using the ADAMONT method,300

in order to compute and compare snow conditions using either driving data. This is both a proof-
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of-concept of the applicability of the ADAMONT method to generate data appropriate to driving

land surface model, and a mean to assess the intervariable consistency of the ADAMONT output

given that Crocus is simultaneously sensitive to all meteorological fields and potentially disturbed

by inconsistencies in the forcing dataset.305

2.4 ADAMONT method evaluation

To evaluate the ADAMONT method, it was applied to the Météo France ALADIN RCM forced

by ERA-Interim over the time period from 1980 to 2010. This RCM was run at 12.5 km reso-

lution and we use the daily time resolution output, which is consistent with typical output from

EURO-CORDEX RCMs. This simulation was then adjusted against the SAFRAN reanalysis. The310

spatial domain (2,200 x 2,200 km, centred on France, see Fig. 3) is deliberately smaller than EURO-

CORDEX (5,000 x 5,000 km domain covering all of Europe, Fig. 3) although both are on the same

order of magnitude, in order to place more emphasis on the method skills than on the output of

the RCM itself, especially in terms of chronology. Indeed, the smaller the domain, the more it is

constrained by its driving large-scale model (be it a GCM or a reanalysis) (Alexandru et al., 2007).315

Performance indicators described below were computed for temperature and total precipitation,

but also for the snow depth, which integrates all the meteorological variables considered in the

ADAMONT method. Focus was hereby placed on evaluating the ability of the method to correctly

represent integrated outputs computed using SURFEX/ISBA-Crocus from meteorological variables

adjusted independently of each other. This is often applied to river discharge for downscaling meth-320

ods used for hydrological applications (e.g., Lafaysse et al., 2014; Olsson et al., 2015).

The method was applied for all 23 massifs of the French Alps and all elevation bands (Fig. 3),

totalling 187 massif/altitude configurations. Performance indicators, described below, were either

computed spanning all configurations, or focusing on a given altitude level (1200 m and 2100 m)

and/or a subset of massifs (the Vercors massif was taken as an example, and computations were also325

performed separately for the Northern and Southern Alps, respectively).

We specifically tested the following aspects of the method:

– RCM grid points neighbour selection techniques (N = 0 or N = 50)

– Learning period: Split-sample evaluation was performed using three different learning and

application periods (1980-1995, 1995-2010 and 1980-2010), by evaluating the results on an330

evaluation period different from the learning period (1995-2010 for simulations with the learn-

ing period 1980-1995 and vice-versa). These two sub-periods correspond to markedly differ-

ent climate conditions in the French Alps (Reid et al., 2015). For simulations using the entire

learning period 1980-2010, the evaluation period was 1980-2010. This case with a 30 years

learning period corresponds to the typical duration of the learning period when the method is335

applied for climate projections.
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– Rain/snow quantile mapping: The method was applied with (base case) or without (”no corr”)

the last adjustment step operating on the rainfall and snowfall separately.

– Raw RCM data: Raw RCM simulations, without any adjustment, were considered for some

of the variables (temperature and precipitation only) and compared to adjusted results. This340

can not be used in the case of snow depth, because daily resolution RCM output cannot be

employed to run Crocus.

– The impact of using 6-hour input RCM data instead of daily data was also tested, but yielded

similar results (not shown). Only results based on daily RCM input are presented because

GCM/RCM outputs are often available at this time step on data distribution platforms such as345

the one of EURO-CORDEX

The following indicators were analysed for temperature, total precipitation and snow depth:

– the seasonal average time series from 1980 to 2010 in the SAFRAN and the adjusted RCM

datasets;

– the mean annual cycle over 2 distinct periods: 1980-1995 and 1995-2010 in the SAFRAN and350

the adjusted RCM datasets;

– the mean value for each elevation band over the evaluation period in the SAFRAN and the

adjusted RCM datasets;

– the correlation and the ratio of standard deviations between time series of the SAFRAN and

the adjusted RCM datasets for each variable and as a function of the integration window (from355

1 day to several years) over the evaluation period;

– the cumulated probability density function (PDF) of daily variables over the evaluation period

in the SAFRAN and the adjusted RCM datasets;

– the root mean square error (RMSE) and the mean bias over the evaluation period, computed

over seasonal integration periods based on the SAFRAN and the adjusted RCM datasets (to360

evaluate the method performance in terms of reproducing amounts);

– scores specific to the detection of occurrence of precipitation events in the SAFRAN and

the adjusted RCM datasets over the evaluation period: the probability of detection (POD =

nhh/(nhh +nhd)), the false alarm rate (FAR = ndh/(ndh +nhh)), the probability of false

detection (POFD = ndh/(ndh +ndd)) and the true skill score (TSS = POD - FAR), where nhh365

is the number of days which are wet in the SAFRAN and wet in the adjusted RCM, ndd the

number of days which are dry in the reanalysis and dry in the adjusted RCM, nhd the number

of days which are wet in the reanalysis but dry in the adjusted RCM and ndh the number of

days which are dry in the reanalysis but wet in the adjusted RCM (a threshold of 1 kg m−2

d−1 was considered for the occurrence of precipitation);370
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– scores for the duration and persistence of precipitation events over the evaluation period

(Wilby et al., 1998; Boe et al., 2006): the relative error on the probability of a dry day (EPD =

(nRd −nSd )/nSd ), the relative error on the probability of a dry day following a dry day (EPDD =

(nRd−d/n
R
d −nSd−d/n

S
d )/(nSd−d/n

S
d )), the relative error on the probability of a wet day follow-

ing a wet day (EPHH = (nRh−h/(n−nRd )−nSh−h/(n−nSd ))/(nSh−h/(n−nSd ))) and the relative375

error on the mean duration of wet periods (EHD = (hdurR−hdurS)/hdurS), where nRd and

nSd are the number of dry days in the adjusted RCM and in SAFRAN respectively, nRd−d and

nSd−d the number of dry days following a dry day in the adjusted RCM and in SAFRAN re-

spectively, nRh−h and nSh−h the number of wet days following a wet day in the adjusted RCM

and in SAFRAN respectively, n is the total number of days, and hdurR and hdurS the du-380

ration of wet periods in the adjusted RCM and in SAFRAN respectively. A threshold of 1 kg

m−2 d−1 was considered for the occurrence of precipitation.

These indicators are classically employed (e.g., Boe et al., 2006; Vrac et al., 2007b; Lafaysse,

2011; Kotlarski et al., 2014) to assess:

1. the ability of a model/method to reproduce the statistical characteristics of the observed me-385

teorological variables (through the RMSE, the mean bias, the ratio of standard deviations,

the duration and persistence of precipitation events and the cumulated PDFs) and their spa-

tial variability (through the mean values at each elevation band and the analysis of different

massifs);

2. its capacity to reproduce the low frequency variability of the observations, i.e. their chronol-390

ogy (through the analysis of seasonal average time series, the correlation as a function of the

integration window, the detection of precipitation events);

3. its temporal transferability, i.e. its ability to reproduce the observed variables over a period

different from the learning period (through the use of split-sample evaluation, the analysis of

the mean annual cycle over two distinct periods, the seasonal average time series);395

4. its inter-variable consistency, which is assessed here by applying the evaluation indicators to

snow depth, an integrated output of the Crocus model.

When available, we compare the indicators with the same criteria applied to analog resampling

based or transfer function algorithms by Lafaysse (2011) and Lafaysse et al. (2014), and for other

downscaling and adjustment methods by Vrac et al. (2012) and Olsson et al. (2015).400

Table 1 outlines the input and output variables of Crocus. Table 2 presents a summary of the

different configurations used for the evaluation.
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3 Results

3.1 Spatial variability and statistical characteristics of the variables

This section provides the evidence needed to assess the performance of the ADAMONT method405

applied to a RCM driven by a global reanalysis (ERA-Interim) using the SAFRAN meteorological

reanalysis as the observational dataset in the French Alps. Adjusted RCM data are compared to

SAFRAN itself. Adequate performance of the method is attained when the two datasets match most.

Figure 4 presents the location of the Vercors massif and its average temperature, precipitation and

snow depth for each elevation band, for the evaluation period in the SAFRAN/Crocus reanalysis410

as well as adjusted RCM. The shape of the mean altitudinal evolution of all three variables is well

represented compared to SAFRAN, which is also the case for other massifs (see Supplementary

Information). The computed temperature values are very similar to the one in SAFRAN. It is less

the case for precipitation, with over- or underestimation depending on the learning period (Fig. 4)

and the massif considered (Supplementary Information). Despite the differences in the magnitude415

of average precipitation in the adjusted RCM compared to SAFRAN, the magnitude of average

snow depth in the different adjusted RCM simulations is remarkably close to the results obtained

using the reanalysis as meteorological input, with slight differences depending on the massif (see

Supplementary Information). For all variables and all massifs, the difference between simulations

using the two RCM grid points neighbour selection techniques (N = 0 or N = 50) is smaller than420

the difference induced by using different learning periods.

Figs. 5-7 display the mean bias and the RMSE for each raw and adjusted RCM simulation com-

pared to SAFRAN, for temperature, precipitation and snow depth, for the Vercors massif. Addition-

ally, Table 3 presents the corresponding scores at the annual time scale compared to mean values, for

the adjusted RCM L. 1980-2010 simulation, for each massif in the French Alps and for the Northern425

and Southern Alps, at 1200 m a.s.l. and 2100 m a.s.l.. This highlights the large biases and RM-

SEs values obtained when using raw RCM simulations compared to adjusted simulations, a feature

common to all massifs (Figs. 5-6 and Supplementary Information).

For temperature, biases of the adjusted RCM simulations vary with elevation and for the different

massifs (Fig. 5, Table 3 and Supplementary Information), but lie always within 1 K. Biases are gen-430

erally smaller in autumn (SON) than for other seasons. RMSEs also vary with elevation and massifs,

and can differ significantly between simulations using the two different RCM grid points neighbour

selection techniques. For elevations above ≈ 2100 m a.s.l., stronger biases and higher RMSEs are

found for simulations using the selection technique accounting for altitude differences (N = 50),

especially in summer (JJA) than for other seasons. Temperature biases and RMSEs values also de-435

pend on the learning period considered, the longer learning period 1980-2010 generally presenting

smaller biases and RMSEs (Fig. 5 and Supplementary Information).
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For precipitation, biases generally vary with altitude (Fig. 6, Table 3 and Supplementary Informa-

tion), but less than for temperature (Fig. 5, Table 3 and Supplementary Information). Biases of the

adjusted simulations remain smaller than 150 kg m−2 per month in absolute value, corresponding440

to up to 90% depending on the massif and altitude, and are generally stronger in summer. Smaller

autumn and winter precipitation biases lead to a good agreement between the magnitude of average

snow depth in the different adjusted RCM simulations and the results obtained using the reanalysis

as meteorological input (as noted in Fig. 4). RMSEs values generally increase with altitude. Using

different RCM grid points neighbour selection techniques has less impact on precipitation scores445

than for temperature, except that the N = 50 configuration yields more variability in scores with

altitude. This is due to the choice of different grid points for different altitudes of a single massif, be-

cause precipitation is spatially more variable than temperature. The influence of the learning period

on scores is also visible.

For snow depth, the biases never exceed 50 cm, which corresponds to up to 50% depending on450

the altitude and the massif (Fig. 7, Table 3 and Supplementary Information). The biases are smaller

in autumn than for other seasons, similar to temperature (Fig. 5 and Supplementary Information).

Summer biases at high altitudes are almost always negative, which cannot always be explained by

a combination of positive biases in temperature and/or negative biases in precipitation, indicating

the possible impact of other variables on snow depth (such as longwave radiation for example).455

RMSE values increase with altitude, due to the effect of increased snow accumulation with altitude.

Using the N = 50 configuration generally degrades scores at high elevations, similar to the effect on

temperature.

For precipitation and snow depth, simulations without the ultimate quantile mapping on snow-

fall and rainfall are also presented (by definition it has no impact on temperature). It is clear from460

Figs. 6-7 and the Supplementary Information that without this ultimate correction (no corr), biases in

precipitation and snow depth are much stronger and RMSEs much higher than when this correction

is applied.

Fig. 8 represents the ratio of standard deviations between each adjusted RCM simulation and

SAFRAN for temperature, precipitation and snow depth and as a function of the integration window465

(from 1 day to several years), over the learning period. Ratios are displayed for the Vercors massif,

for altitudes of 1200 m a.s.l. and 2100 m a.s.l.. If this ratio is lower than 1, it means that adjusted

RCM simulations have a smaller standard deviation (i.e. variability) than SAFRAN. For tempera-

ture, the ratio of standard deviations is very close to 1 for integration windows of 1 day to a few

months. It varies more for longer integration windows of 1 year or more. The differences between470

the two altitudinal levels considered or between massifs are limited (Fig. 8 and Supplementary Infor-

mation). Similarly, choosing different learning periods or different grid points neighbour selection

techniques has little effect on the ratio of standard deviations. For precipitation, ratios of standard

deviations are also close to 1 (generally between 0.8 and 1.2) for integration windows of 1 day to 1
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month. This result is similar to ratios of variance between daily RCMs adjusted with a Cumulative475

Distribution Function-transform and observations for the Mediterranean region in Vrac et al. (2012).

For integration windows of 1 month or more, the ratios vary more, with under- or overestimation

of variance depending on the massif, the learning period and the grid points neighbour selection

technique considered (Fig. 8 and Supplementary Information). For snow depth, the ratio does not

vary until 1 month of integration approximately (Fig. 8 and Supplementary Information), and shows480

larger variations for higher values. Some differences can be noted for different altitudes, and dif-

ferent massifs, but also for different learning periods and the two grid points neighbour selection

techniques considered.

Fig. 9 presents the cumulated probability density functions (PDFs) of daily temperature, precipi-

tation and snow depth at 1200 m a.s.l. and 2100 m a.s.l. for the Vercors massif. The distributions of485

daily temperature of adjusted RCM simulations are remarkably close to the distribution of SAFRAN

(Fig. 9 and Supplementary Information). The agreement is better than the one observed in Lafaysse

(2011) and Lafaysse et al. (2014) between the different configurations of analog-based and trans-

fer functions algorithms and SAFRAN for the Durance basin (see Fig.F.2 in Lafaysse (2011), and

Fig.5 in Lafaysse et al. (2014)). A similar agreement was observed in Olsson et al. (2015) between490

two configurations of a distribution-based scaling method and observations in Finland. Only small

differences are observed for different altitudes or different massifs (Fig. 9 and Supplementary Infor-

mation), and the choice of the learning period or the grid points neighbour selection technique has

almost no impact on the PDF. For precipitation, the PDFs of adjusted RCM simulations are also very

close to the PDF of SAFRAN, with a slight overestimation or underestimation of moderate to high495

precipitation, depending on the learning period, occurring for most massifs (Fig. 9 and Supplemen-

tary Information). This result is similar to that observed in Lafaysse (2011) for the Durance basin

(see Fig.11.7 therein). As for temperature, altitude and massif location have only a small impact on

the distribution, as well as the grid points neighbour selection technique considered. The distribution

of snow depth, on the other hand, depends more on the massif considered and the altitude (Fig. 9 and500

Supplementary Information). As for precipitation, the moderate to high snow depth values seem to

be slightly overestimated or underestimated for most massifs, depending on the learning period. The

choice of the grid points neighbour selection technique has also slightly more impact on snow depth

PDFs than for temperature and precipitation. The fact that PDFs for temperature and precipitation are

very close to the ones of SAFRAN is a logical consequence of using a quantile mapping approach.505

That it is also true for snow depth indicates that even if they are treated separately, the inter-variable

consistency of the meteorological fields generated using our method is in general appropriate.

The capacity to reproduce the duration and persistence of precipitation events is shown in Fig. 10.

The ratio between the number of dry days and the number of rainy or snowy days is very correctly re-

produced for every massif and altitude (Fig. 10 and Supplementary Information), the relative error on510

the probability of a dry day being lower than 5%. This feature was also observed by Lafaysse (2011)
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in his study of the Durance basin (see Fig.11.10 therein). The persistence of dry and rainy/snowy

events is generally underestimated (up to about -30%), which was also the case in Lafaysse (2011),

even though the error depends on the massif and the altitude considered. In general, errors on the

persistence of precipitation events are larger in massifs of the Southern Alps than the Northern Alps515

(Supplementary Information). Using different learning periods and different grid points neighbour

selection techniques has an impact on scores, but this is small compared to the influence of the massif

or the altitude.

3.2 Mean seasonal variations

Fig. 11 represents the mean annual cycle of temperature, precipitation and snow depth for the dif-520

ferent adjusted RCM simulations vs. the SAFRAN/Crocus reanalysis, for the period 1980-1995 and

1995-2010, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.. The mean annual cycle of

temperature is very well reproduced for every massif and altitude (Fig. 11 and Supplementary In-

formation). Using different grid points neighbour selection techniques has a limited impact on the

mean annual cycle. For precipitation, the mean annual cycle is relatively well reproduced (Fig. 11525

and Supplementary Information). The choice of grid points neighbour selection technique can have

slightly more influence on the results than for temperature. For snow depth, the annual cycle is

remarkably well reproduced, with peak snow depth in the core of winter (JFM), and no snow or

reduced amounts in late summer months (JAS) (Fig. 11 and Supplementary Information). As for

temperature, the impact of the grid points neighbour selection technique is very limited.530

3.3 Interannual variability

The chronology of time series of seasonal averages of temperature, precipitation and snow depth

from 1980 to 2010 is shown in Figs. 12-14, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.,

in SAFRAN and the adjusted RCM. Temperature RCM time series are similar to SAFRAN, with

an interannual variability which is well reproduced (Fig. 12 and Supplementary Information). Some535

significant differences appear when using different learning periods, as already noted in Sect. 3.2.

Using different grid points neighbour selection techniques has an impact on the time series of tem-

perature which is generally smaller than the influence of the learning period. However, as already

noted in Sect. 3.1, the agreement between observed and simulated time series is degraded for high

altitudes under the spatial and altitudinal (N = 50) grid points neighbour selection technique. The in-540

terannual variability of precipitation is also well reproduced for most massifs and altitudes (Fig. 13

and Supplementary Information), especially given that the only forcing of the RCM comes from

ERA-Interim reanalysis at the boundaries of the RCM domain. It is slightly less well reproduced

in summer (JJA), as observed by Lafaysse (2011) for the analog resampling based transfer function

algorithm DSCLIM (Pagé et al., 2009) and the Durance basin (see Fig.10.1 therein). Differences545

between simulations using different learning periods mostly appear in summer (JJA). The use of
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different grid points neighbour selection techniques has a rather limited impact on time series of

precipitation, whose magnitude depends on the massif and the altitude (Fig. 13 and Supplementary

Information). For snow depth, the interannual variability is well reproduced in winter (DJF) and

correctly reproduced in intermediate seasons (MAM and SON). Summer snow depths are gener-550

ally underestimated, as already noted in Sect. 3.1, but represent a small portion of the annual snow

accumulation. Likewise, adjusted data using the spatial and altitudinal (N = 50) RCM grid points

selection technique can be degraded at high altitudes, similarly to temperature.

Fig. 15 displays the temporal correlation between each adjusted RCM simulation and SAFRAN

over the evaluation period for temperature and precipitation and as a function of the integration win-555

dow (from 1 day to several years). Correlations are displayed for the Vercors massif, for altitudes

of 1200 m a.s.l. and 2100 m a.s.l.. Additionally, Table 3 presents the same correlation values at the

same altitudes, for an integration window of 1 year, and for the adjusted RCM L. 1980-2010 simula-

tion only, for every massif of the French Alps, and for the Northern and Southern Alps. Snow depth

values were not included because of their cumulative nature. Correlations for temperature are very560

high (always above 0.8) for all massifs and altitudes until an integration window of a few months to

1 year (Fig. 15, Table 3 and Supplementary Information), as found by Lafaysse (2011) (see Fig.F.21

therein). The differences between learning periods are negligible. As already observed in Sect. 3.1

and for the time series above, the correlation is clearly degraded for high altitudes (above ≈2100

m a.s.l.) in simulations using the N = 50 grid points selection technique. Precipitation also yields565

satisfactory correlation values (always above 0.4) until a few months integration window, which

vary depending on the massif considered(Fig. 15 and Supplementary Information). Correlations are

generally similar or even better than the ones observed in Lafaysse (2011) for various statistical

downscaling models and different configurations of the ALADIN RCM (see Fig.12.10 therein). The

use of the N = 50 grid points neighbour selection technique increases or decreases correlation val-570

ues depending on the massif and the altitude considered. The choice of learning period has a limited

effect on correlation, at least up to integration windows of a few months. Correlations are higher at

the scale of the Northern and Southern Alps than at the massif scale (Table 3). This scale dependence

of precipitation downscaling skill was also illustrated by Gangopadhyay et al. (2004) and Mezghani

and Hingray (2009).575

Scores for the detection of precipitation events are presented in Fig. 16, for the Vercors massif,

for altitudes of 1200 m a.s.l. and 2100 m a.s.l.. The scores vary depending on massifs and altitude,

but a general pattern emerges (Fig. 16 and Supplementary Information). The POD is the highest,

with values between 0.55 and 0.8, very similar to Lafaysse (2011) (see Figs. 11.14 and 12.8 therein).

The FAR is rather low (always below 0.5), as well as the POFD, below 0.2. TSS are generally better580

for massifs of the Northern Alps (0.25 to 0.6) than the Southern Alps (0.1 to 0.4, Supplementary

Information), where PODs are lower and FAR much higher. Such results indicate that the method

performs well in detecting precipitation events. Using different learning periods has a rather limited
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impact on the detection of precipitation. The choice of the grid points selection technique has a

limited influence at low to mid-altitudes, which increases above ≈2100 m a.s.l..585

4 Discussion

This section discusses the main limits of the method described and evaluated here, and the limits of

the evaluation method itself.

4.1 Transferability in time

The temporal transferability of the ADAMONT method, i.e. its capacity to apply adequately to a590

period which is different from the learning period, can be evaluated from results in Sects. 3.1, 3.2

and 3.3.

Figs. 11-14 and Supplementary Information reveal some significant differences when using dif-

ferent learning periods. This feature is generally most visible in summer. It denotes a limit in the

temporal transferability of the ADAMONT method, which was also the case in Lafaysse (2011) for595

the analog-based and transfer functions algorithms (see Figs. 11.11 and 11.12 therein). Using the

longer learning period 1980-2010 yields better results, most probably due to the fact that, in this

case, the learning and evaluation periods are the same, but also the fact that the learning period is

longer.

There are some limits in the conclusions which can be drawn from this transferability assessment.600

First, reanalysis data used here as forcing for the RCM (ERA-Interim) or for statistical adjustment

and evaluation purposes (SAFRAN reanalysis) are heterogeneous in time (Sterl, 2004; Vidal et al.,

2010). These heterogeneities are especially marked in summer in the SAFRAN reanalysis, when

most observations from mountain stations are not available (Gobiet et al., 2015). Secondly, variations

which will occur in the future climate are expected to be much stronger than the variations which605

can be tested on our evaluation period. Issues related to the time transferability of the adjustment

approach may be amplified when applied in the context of climate projections, but their relative

impact will probably be lower than shown here given the magnitude of the expected changes.

4.2 Impact of the spatial selection technique

The impact of the RCM grid point selection technique is illustrated in Sects. 3.1 and 3.3. Indeed,610

Figs. 5-7, 12-14, 15 and Supplementary Information show a clear degradation of scores for eleva-

tions above ≈ 2100 m a.s.l. using a selection criterion explicitly accounting for the altitude differ-

ence (N = 50). This is linked to the scarcity of high altitude grid points in ALADIN compared to

SAFRAN, resulting in grid points being selected several tens of kilometres from the centre point

of most SAFRAN massifs (see Fig. 4 and Supplementary Information for the location of selected615

grid points). The impact of this issue depends on the location of massifs relative to high-altitude grid
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points in ALADIN. For example, most Southern Alps massifs are affected, except the southernmost

massifs of Ubaye, Alpes Azur and Mercantour (Supplementary Information), which are located less

than 15 km from high-altitude points. This shows that, although it seems appealing to select RCM

grid points at elevations matching the elevation of the observation dataset, rather than using RCM620

grid points with a potentially large elevation difference (hence leading to stronger adjustment re-

quirement), in practice the results are far more homogeneous and quantitatively generally equivalent

or better when concentrating only on the horizontal distance between the RCM grid points and the

observation dataset.

4.3 Inter-variable consistency625

The lack of explicitly enforced inter-variable consistency of the quantile mapping method can be

a major disadvantage. As we focus on a mountainous region for the evaluation and future use of

the method the consistency between temperature and precipitation phase is crucial. The impact of

this ultimate correction is assessed in Sect. 3.1. Figs. 6-7 and Supplementary Information show that

without this ultimate correction (no corr), biases for precipitation are much stronger and RMSEs630

much higher than with this ultimate correction, highlighting its importance.

The inter-variable consistency of the ADAMONT method is indirectly assessed by applying the

evaluation metrics described above to an integrated output of the Crocus model, the snow depth,

which is computed from meteorological variables adjusted independently from each other. As men-

tioned above, snow depth results are generally satisfying, which tend to indicate a good inter-variable635

consistency. Performance indicators for snow depths are often consistent with temperature and pre-

cipitation indicators, even though they cannot always be explained by these two variables alone (for

example the analysis of biases in Sect. 3.1), indicating the probable influence of other variables not

directly analysed here such as longwave radiation.

4.4 Limits of the evaluation method640

The spatial consistency of the ADAMONT method has not been evaluated other than by using spatial

averages. In future studies, it would be necessary to test it by evaluating spatial correlations (for

example using metrics described in Kotlarski et al. (2014)), or by using integrated variables requiring

spatial variability, such as snow cover area or river discharges.

In this study, we evaluated the method using only the ALADIN-Climate RCM. However, Olsson645

et al. (2015) showed that the choice of RCM could have a significant impact on the evaluation of the

performance of the adjustment method. Evaluation using another RCM could thus prove useful, even

though we would have to use RCM outputs run on the same spatial domain as the ALADIN-Climate

RCM in order to compare them.
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5 Conclusions650

The new method ADAMONT is able to statistically adjust daily regional climate model projections

and to provide hourly adjusted outputs of temperature, precipitation, wind speed, humidity and short-

and longwave radiation necessary to force energy balance land surface (impact) models. The method

processes daily outputs from an RCM and adjusts them against a sub-daily (hourly, typically) obser-

vational dataset. The method was evaluated using outputs from the ALADIN-Climate RCM driven655

by ERA-Interim reanalysis for the time period 1980 - 2010, using the SAFRAN meteorological re-

analysis in the French Alps as an observation dataset. The direct outputs of the ADAMONT method,

namely temperature and total precipitation, as well as an indirect output, namely snow depth, com-

puted by the Crocus model from meteorological variables corrected independently of each other,

were evaluated. The impact of the learning period was tested, as well as the method to select RCM660

grid points corresponding to each observational point. The evaluation addressed four main concerns:

(1) the ability of the ADAMONT method to reproduce the spatial (especially altitudinal) variability

and the statistical characteristics of SAFRAN variables, (2) its ability to reproduce the low frequency

variability, i.e. the chronology, of SAFRAN, through the analysis of the interannual variability and

the annual cycle of adjusted variables (3) the temporal transferability of the method, and (4) its665

inter-variable consistency.

Performance scores are always better for adjusted RCM simulations than for raw RCM simula-

tions, which highlights the need for such adjustment and demonstrates the skill of the method. In

general, the performance of the ADAMONT method concerning temperature is better than for pre-

cipitation. However, evaluation indicators for precipitation are generally similar or even better than670

the indicators evaluated in Lafaysse (2011) and Lafaysse et al. (2014) for other types of algorithms

(analog-based or transfer functions). Snow depth yields good results, considering its integrated na-

ture, i.e. the fact that it was computed from variables corrected independently. The impact of the

learning period depends on the evaluation indicator considered, and must be considered when ap-

plying the method. The best solution is probably to choose the longest possible learning period. For675

precipitation and snow depth, the importance of the ultimate quantile mapping applied to snowfall

and rainfall (i.e., after a first quantile mapping on total precipitation, an additional quantile mapping

against the observational dataset is applied for daily cumulated adjusted RCM rainfall and snowfall

separately) is unambiguously demonstrated. Using a grid points selection technique relying on spa-

tial but also altitudinal proximity between SAFRAN massif centre points and RCM grid points either680

had no impact on the performance indicators or degraded them for altitudes higher than 2100 m a.s.l..

As a consequence, the simple spatial grid points neighbour selection technique will be retained for

future applications of the method.

The ADAMONT method is generic and can be applied to any observational dataset. Its application

using the SAFRAN reanalysis as the observation dataset is somewhat a specific case, initially tailord685

for French mountainous regions (Durand et al., 2009a). However, beyond the French mountain re-
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gions, the method could be applied in France using the SAFRAN-France gridded reanalysis (Vidal

et al., 2010). A Spanish version of SAFRAN was also developed recently (Quintana-Seguí et al.,

2017).The method could be applied to other observational datasets or meteorological reanalyses,

such as ERA-Interim surface fields (Dee et al., 2011) or MESCAN (Soci et al., 2016).690

6 Code availability

The code of the ADAMONT v1.0 method is available as an open git repository after free

registration at https://opensource.cnrm-game-meteo.fr/projects/adamont. The version used for

this article is available at https://opensource.cnrm-game-meteo.fr/projects/adamont/repository?rev=

ADAMONT-v1.0.695

The version of the open source code of SURFEX/ISBA-Crocus used in this study is avail-

able as a specific branch of an open svn repository, after free registration, at https://opensource.

cnrm-game-meteo.fr/projects/surfex. For reproductibility of results, the version used in this work is

tagged as http://svn.cnrm-game-meteo.fr/projets/surfex/tags/ADAMONT-1.0.
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Table 1. Variables considered in this study : Variable name, Abbreviation, Input or Output of Crocus, Units,

Level and Method of aggregration (of the observational dataset from hourly to daily) and disaggregation (RCM

adjusted data from daily to hourly). Variables used for the evaluation of the ADAMONT method are highlighted

in bold characters. SW = shortwave, LW = longwave.

Variable Abbreviation Input/Output Units Level Method

Temperature Tair Input K 2 m Min, max

Specific Humidity Qair Input kg kg−1 2 m Last value

Wind speed Wind Input m s−1 10 m Last value

Rainfall Rate Rainf Input kg m−2 h−1 Surface Mean

Snowfall Rate Snowf Input kg m−2 h−1 Surface Mean

Incident LW Radiation LWdown Input W m−2 Surface Mean

Incident Direct SW Radiation DIR_SWdown Input W m−2 Surface Mean

Incident Diffuse SW Radiation SCA_SWdown Input W m−2 Surface Mean

Snowpack Depth SNOWDEPTH Output m < Surface -

930
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Table 2. Name and description of the different configurations used in the evaluation of the ADAMONT method.

Name Description

SAFRAN reanalysis Simulation carried out with the SAFRAN reanalysis, over the period considered

in the figures (1980-2010, 1980-1995 or 1995-2010)

RCM raw N0 Simulation carried out over the period considered in the figures, with the raw

ALADIN RCM (without adjustment)

RCM raw N50 Simulation carried out over the period considered in the figures, with the raw

ALADIN RCM (without adjustment), using the spatial and altitudinal RCM

grid points neighbour selection technique (N = 50)

RCM L. 1980-1995 N0 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-1995

RCM L. 1980-1995 N50 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-1995, using the spatial and altitudi-

nal RCM grid points neighbour selection technique (N = 50)

RCM L. 1980-1995 no corr Same as RCM L. 1980-1995 N0, but without performing the last quantile map-

ping for rain and snow

RCM L. 1995-2010 N0 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1995-2010

RCM L. 1995-2010 N50 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1995-2010, using the spatial and altitudi-

nal RCM grid points neighbour selection technique (N = 50)

RCM L. 1995-2010 no corr Same as RCM L. 1995-2010 N0, but without performing the last quantile map-

ping for rain and snow

RCM L. 1980-2010 N0 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-2010

RCM L. 1980-2010 N50 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-2010, using the spatial and altitudi-

nal RCM grid points neighbour selection technique (N = 50)

RCM L. 1980-2010 no corr Same as RCM L. 1980-2010 N0, but without performing the last quantile map-

ping for rain and snow
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Table 3. Mean values and scores of the ADAMONT-adjusted RCM L. 1980-2010 simulation compared to

SAFRAN over the period 1980-2010 for each massif of the French Alps (massif numbers # indicated in Fig. 3)

and for the Northern and Southern Alps, at 1200 m and 2100 m elevation : mean annual temperature (T, in K)

and precipitation (P, in kg m−2 yr−1), mean winter (DJFMAM) snow depth (SD, in m), mean annual bias of

T and P, mean winter bias of SD, annual root mean square error (RMSE) of T and P, winter RMSE of SD, and935

annual correlation of T and P.

# Massif Altitude Mean value Mean bias RMSE Correlation

T P SD T P SD T P SD T P

Northern Alps 1200 m 280.1 991 0.32 -0.04 -217 -0.04 0.40 643 0.11 0.99 0.92

2100 m 275.8 675 1.25 0.03 -294 -0.03 0.50 804 0.16 0.96 0.91

1 Chablais 1200 m 279.5 1247 0.40 -0.05 -233 -0.04 0.56 1010 0.16 0.97 0.56

2100 m 275.5 845 1.54 0.07 -313 -0.04 0.55 1222 0.27 0.95 0.52

2 Aravis 1200 m 279.8 1205 0.42 -0.02 -282 -0.05 0.47 1021 0.17 0.98 0.88

2100 m 275.7 814 1.65 0.07 -389 -0.03 0.56 1310 0.29 0.95 0.88

3 Mont Blanc 1200 m 279.7 1104 0.35 -0.06 -232 -0.04 0.55 981 0.12 0.97 0.58

2100 m 275.6 854 1.44 0.04 -367 -0.10 0.51 1316 0.29 0.97 0.59

4 Bauges 1200 m 279.7 1177 0.44 -0.02 -273 -0.04 0.44 948 0.17 0.98 0.90

2100 m 275.6 751 1.65 0.07 -408 0.01 0.56 1099 0.31 0.95 0.90

5 Beaufortin 1200 m 280.1 921 0.40 -0.02 -195 -0.02 0.45 786 0.14 0.98 0.79

2100 m 275.6 653 1.36 0.05 -291 -0.05 0.53 974 0.20 0.96 0.78

6 Haute Tarentaise 1200 m 280.3 727 0.33 -0.04 -177 -0.05 0.65 686 0.16 0.97 0.75

2100 m 275.4 509 1.01 0.00 -199 -0.06 0.62 789 0.25 0.97 0.74

7 Chartreuse 1200 m 280.0 1225 0.37 -0.02 -303 -0.04 0.51 1070 0.21 0.97 0.87

2100 m 276.1 761 1.57 0.07 -409 0.06 0.75 1307 0.30 0.89 0.84

8 Belledonne 1200 m 280.1 1112 0.34 -0.05 -229 -0.03 0.48 917 0.16 0.98 0.89

2100 m 275.9 771 1.45 0.03 -314 0.05 0.66 1175 0.26 0.91 0.88

9 Maurienne 1200 m 280.4 854 0.33 -0.04 -184 -0.01 0.48 767 0.15 0.99 0.84

2100 m 275.8 548 1.10 0.03 -241 -0.02 0.55 868 0.21 0.95 0.85

10 Vanoise 1200 m 280.4 771 0.31 -0.03 -129 -0.02 0.53 694 0.11 0.98 0.82

2100 m 275.6 549 1.00 0.00 -186 -0.04 0.54 833 0.20 0.96 0.81

11 Haute Maurienne 1200 m 280.7 642 0.15 -0.05 -147 -0.04 0.59 693 0.10 0.97 0.87

2100 m 275.5 487 0.61 -0.03 -185 -0.08 0.48 858 0.19 0.98 0.84

12 Grandes Rousses 1200 m 280.4 907 0.26 -0.06 -200 -0.03 0.65 902 0.14 0.96 0.83

2100 m 276.0 591 1.06 0.00 -244 -0.02 0.76 998 0.26 0.88 0.85

13 Vercors 1200 m 280.2 1032 0.20 -0.02 -228 -0.04 0.50 768 0.13 0.97 0.89

Table 3 continues on the next page
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Table 3 continued

# Massif Altitude Mean value Mean bias RMSE Correlation

T P SD T P SD T P SD T P

2100 m 276.2 686 1.21 0.05 -308 -0.03 0.73 971 0.25 0.88 0.85

14 Oisans 1200 m 280.5 947 0.19 -0.03 -223 -0.05 0.49 903 0.11 0.98 0.84

2100 m 276.2 629 0.91 0.01 -264 -0.07 0.65 1038 0.28 0.93 0.85

Southern Alps 1200 m 281.2 775 0.10 0.03 -150 -0.02 0.49 530 0.05 0.98 0.93

2100 m 276.4 546 0.63 0.02 -194 -0.04 0.47 646 0.15 0.98 0.93

15 Thabor 2100 m 275.9 452 0.70 0.00 -220 -0.03 0.61 868 0.20 0.96 0.87

16 Pelvoux 1200 m 280.9 733 0.20 0.00 -146 -0.01 0.75 676 0.08 0.94 0.93

2100 m 276.2 533 0.92 0.02 -204 0.00 0.67 878 0.24 0.94 0.92

17 Queyras 1200 m 281.1 568 0.10 0.01 -138 -0.03 0.56 641 0.07 0.98 0.83

2100 m 276.0 426 0.46 0.02 -163 -0.04 0.54 770 0.18 0.98 0.82

18 Dévoluy 1200 m 280.6 935 0.10 -0.02 -171 -0.03 0.50 784 0.08 0.97 0.86

2100 m 276.4 633 0.77 0.05 -186 -0.02 0.66 919 0.24 0.94 0.84

19 Champsaur 1200 m 280.8 823 0.13 -0.02 -180 -0.02 0.57 705 0.08 0.98 0.90

2100 m 276.4 580 0.74 0.01 -217 -0.04 0.57 880 0.24 0.97 0.88

20 Parpaillon 1200 m 281.1 629 0.13 0.02 -145 -0.02 0.60 644 0.07 0.97 0.87

2100 m 276.4 467 0.54 0.02 -179 -0.03 0.52 736 0.17 0.99 0.87

21 Ubaye 1200 m 281.2 682 0.06 0.04 -132 -0.01 0.82 580 0.05 0.92 0.89

2100 m 276.6 525 0.43 0.03 -179 -0.06 0.58 705 0.18 0.98 0.89

22 Alpes Azur 1200 m 281.7 877 0.05 0.10 -119 -0.02 0.66 728 0.08 0.94 0.78

2100 m 277.0 590 0.53 0.03 -180 -0.10 0.48 854 0.22 0.98 0.78

23 Mercantour 1200 m 282.3 952 0.05 0.09 -168 -0.03 0.71 974 0.07 0.94 0.68

2100 m 276.9 707 0.56 -0.02 -223 -0.06 0.61 1133 0.27 0.96 0.69
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Figure 1. Clusters of each weather regime for the different seasons (winter: DJF, spring: MAM, summer: JJA,

autumn: SON) used in this study: mean geopotential height at 500 hPa (m) in ERA-40 over the period 1958-

2001. The seasonal climatological mean was removed. Isohypses are represented every 50 m and the zero

isohypse is not represented. For readability, positive values are shaded progressively.
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Figure 2. Illustration of the different parameters taken into account in the disaggregation of RCM temperature

from a daily integration period into an hourly time step. Th
RCM (1h,i) and Th

RCM (24h,i− 1) are the hourly

adjusted RCM temperature values at the first time step of day i and at the last time step of the day before (i-1),

Tminh
RCM (i) and TmaxhRCM (i) are the hourly minimum and maximum adjusted RCM temperature values

respectively, and Tmind,adj
RCM (i) and Tmaxd,adjRCM (i) are the daily minimum and maximum adjusted RCM tem-

perature values respectively. α is a parameter which can be tuned to give more importance to the minimisation

of differences between daily and hourly RCM minima and maxima. Hourly adjusted RCM temperature time se-

ries for values of α of zero, 2 and infinite are shown. Th
OBS corresponds to the hourly series of the chosen daily

analogue, and Tmind,raw
RCM (i) and Tmaxd,rawRCM (i) are the daily raw minimum and maximum RCM temperature

values (before adjustment).
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Figure 3. Description of geographical configuration of the SAFRAN reanalysis and the ALADIN RCM. The

top right panel illustrates the spatial domains covered by the simulation (FRB12) and by EURO-CORDEX, and

the location of the study area is indicated by the pink box. In the main panel, SAFRAN massifs are delimited by

the black contours for the Northern Alps and by the burgundy contours for the Southern Alps, and their centre

points are indicated by the black stars. ALADIN grid points are represented by dots, with pink contour for the

grid points closest to each SAFRAN massif centre point. Surface elevation in France is from the 50m-DEM

from the Institut National d’Information Géographique et Forestière (IGN) and outside France from GTOPO30

(resolution of 30 arc seconds ≈ 1 km). The elevation of ALADIN grid points is indicated by the color palette

(in m above sea level (a.s.l.)). The bottom right panel indicates the location of each massif used in Table 3.

Projection is in Lambert II étendu (L2E).
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Figure 4. (top left) Location of the Vercors massif, with ALADIN RCM grid points chosen as the closest in

x, y (N = 0, pink contour) and in x, y and z (using N 6= 0). Coloured lines link each SAFRAN massif centre

point with the corresponding grid point in ALADIN for the different elevations considered (600-2400 m above

sea level (a.s.l.)). In this case the 1500 m and 1800 m lines are similar. (top right) Mean temperature for each

elevation band over the evaluation period in each adjusted RCM simulation (different learning periods and 2

grid points neighbour selection methods) and in SAFRAN (1980-2010). (bottom left) Mean precipitation for

each elevation band over the evaluation period. (bottom right) Mean snow depth (using Crocus in this case) for

each elevation band over the evaluation period.
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Figure 5. Temperature mean bias and root mean square error (RMSE) of each raw and adjusted RCM simulation

compared to the SAFRAN reanalysis over the evaluation period for the Vercors massif as a function of elevation.

Scores computed for the raw RCM simulations concern minimum and maximum daily temperatures.
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Figure 6. Precipitation mean bias and root mean square error (RMSE) of each raw and adjusted RCM simulation

compared to the SAFRAN reanalysis over the evaluation period for the Vercors massif as a function of elevation.
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Figure 7. Snow depth mean bias and root mean square error (RMSE) of each adjusted RCM simulation (used as

input of Crocus) compared to the SAFRAN/Crocus reanalysis over the evaluation period for the Vercors massif

as a function of elevation.
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Figure 8. Ratio of standard deviations between the SAFRAN reanalysis and adjusted RCM temperature, pre-

cipitation and snow depth (using Crocus in this case) as a function of the integration window over the evaluation

period, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 9. Cumulated probability density function (PDF) of daily temperature, precipitation and snow depth

(using Crocus in this case) in each adjusted RCM simulation and in the SAFRAN reanalysis (1980-2010) over

the evaluation period, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 10. Scores for the duration and persistence of precipitation events in each adjusted RCM simulation

compared to the SAFRAN reanalysis over the evaluation period, for the Vercors massif at 1200 m a.s.l. and

2100 m a.s.l.. EPD = relative error on the probability of a dry day, EPDD = relative error on the probability of

a dry day following a dry day, EPHH = relative error on the probability of a wet day following a wet day, EHD

= relative error on the mean duration of wet periods.
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Figure 11. Mean annual cycle of temperature, precipitation and snow depth (using Crocus in this case) in each

adjusted RCM simulation and in the SAFRAN reanalysis over the period 1980-1995 and 1995-2010, for the

Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.. Letters on the x-axis correspond to the different months of the

calendar (J = January, F = February, etc.).
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Figure 12. Seasonal average time series of temperature from 1980 to 2010 in each adjusted RCM simulation

and in the SAFRAN reanalysis, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 13. Seasonal average time series of precipitation from 1980 to 2010 in each adjusted RCM simulation

and in the SAFRAN reanalysis, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 14. Seasonal average time series of snow depth from 1980 to 2010 in each adjusted RCM simulation

(used as input for Crocus) and in the SAFRAN/Crocus reanalysis, for the Vercors massif at 1200 m a.s.l. and

2100 m a.s.l..

43



100 101 102 103

Number of days

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

1 month 3 months 1 yr 2 yrs

Vercors 2100 m

100 101 102 103

Number of days

0.80

0.85

0.90

0.95

1.00

C
o
rr

e
la

ti
o
n

1 month 3 months 1 yr 2 yrs

Vercors 2100 m

100 101 102 103

Number of days

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

1 month 3 months 1 yr 2 yrs

Vercors 1200 m

100 101 102 103

Number of days

0.80

0.85

0.90

0.95

1.00

C
o
rr

e
la

ti
o
n

1 month 3 months 1 yr 2 yrs

Vercors 1200 m

RCM L. 1980-1995 N0
RCM L. 1980-1995 N50
RCM L. 1995-2010 N0
RCM L. 1995-2010 N50
RCM L. 1980-2010 N0
RCM L. 1980-2010 N50

Temperature Temperature

Precipitation Precipitation

Figure 15. Correlation between the SAFRAN reanalysis and adjusted RCM temperature and precipitation as a

function of the integration window over the evaluation period, for the Vercors massif at 1200 m a.s.l. and 2100

m a.s.l..
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Figure 16. Scores for the detection of precipitation events in each adjusted RCM simulation compared to the

SAFRAN reanalysis over the evaluation period, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.. POD

= probability of detection, FAR = false alarm rate, POFD = probability of false detection, TSS = true skill score.
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