
Response to Referee 1

We  thank  R1  for  this  detailed  review,  which  enabled  us  to  significantly  improve  our  article.
Enclosed please find a detailed explanation of the revisions we made based on R1's comments.
For convenience, comments are in bold and our responses are in italic. Revisions made in the
manuscript are presented in italic with grey background.

General  comments:  This  paper  describes  a  new  sophisticated  method  to  adjust  and
disaggregate daily RCM output to hourly values, which are usually necessary to force energy-
balanced based land surface models. Such a method is an interesting and useful addition to
the field.  The work is  therefore relevant,  although the applied reanalysis  data set used as
reference is very specific and the performance of the method with other observational datasets
first needs to be demonstrated. After the authors investigated the impact of the grid point
selection, the “ultimate quantile mapping” and the transferability in time, it would also be
interesting to know the impact of the weather regime consideration or not. This is just a wish
and since the paper is already long enough I understand if the authors want to cut this point.
Therefore, I recommend publishing the paper once the authors addressed at least the points
listed below:

We thank the reviewer for this review, please see our specific responses to each point below. 

Concerning the remark:  « it  would also be interesting to know the impact of the weather
regime consideration or not. », we also think this would be interesting. We haven’t looked deeply
into this, but as shown in Driouech et al. (2010), the frequency of weather regimes changes in a
warmer  climate,  contributing  significantly  to  the  change  in  precipitation.  If  we  adjust  a  model
irrespective of  the regimes,  the adjustment  may result  from a compensation between regime-
dependent systematic errors. It is therefore wiser, if sampling permits, to correct this error for each
regime separately. As a result, the conditional systematic error for each regime for present climate
is, by construction, zero. But since the model regime frequencies are not exactly the same as the
observed ones during the training period, the full-sample systematic error is not zero. Our method
is thus a compromise : we slightly degrade present climate in oder to expect less bias in future
climate. However, in order to keep the manuscript as short as possible, we did not develop this
point further.

Specific comments:

L80: ADAMONT stands for what?

ADAMONT is the name of one of the projects which funded this study, which was then used to
name the method. We thus prefer to not give any sense to the name chosen.

L123: daily RCM model outputs

This was included (Line 126).



L143: 4 weather regimes: Can they be named or described somehow? If I understand right,
this means that every day in the reference period has been categorized in one of the four
weather types,  which is  valid for all  massifs  for this day? Is this  already implemented in
ADAMONT for Europe as a kind of look-up table? The 4 weather regimes are based on quite
old study. What about the consideration of 5 weather regimes as proposed in a recent study
(http://onlinelibrary.wiley.com/doi/10.1002/2017GL074188/epdf) ?

There are 4 different regimes defined for each season and it is now explained (Line 144-147) :
« RCM weather regimes were determined based on the synoptic fields of the GCM model used as
boundary condition for the RCM. In Michelangeli et al. (1995) and Driouech et al. (2010), only
regimes for the winter season are defined. We chose to apply the same method to determine
weather regimes for the other seasons as well.» For the winter season, regimes have been given a
traditional  name  (the  number  is  arbitrary):  1  =  Zonal,  2  =  Atlantic  Ridge,  3  =  Blocking,  4  =
Greenland  Anticyclone.  For  other  seasons,  they  don’t  have  any  name,  we  applied  the  same
algorithm as for winter. 
Indeed, every day in the reference period has been categorized into one of the four weather types
for each season, which is valid for all massifs for this day. This is now clarified (Line 142-144) :
« The  ERA-Interim  reanalysis  (Dee  and  Uppala,  2009)  was  used  to  infer  weather  regimes
corresponding to each observation date and for all observation points. ».
Our choice of regimes is  based on the  study of Michelangeli et al. (1995), which has served as
basis  for  other studies such as Driouech et  al.  (2010).  Moreover,  the initial  method has been
updated here by computing weather regimes for  the different  seasons,  and by computing the
clusters based on ERA-40 (as in previous studies), but using ERA-Interim to infer the weather
regime corresponding to each observation date and for all observation points. We could use more
regimes, but this would endanger the robustness of our results, because of the too limited number
of  data  used  to  infer  quantile  values  if  too  many  weather  regimes  are  considered,  some
corresponding to a small number of days. Four regimes is found to be satisfying for this study, as it
ensures a sufficiently large size of the datasets for quantile mapping. We have rephrased the end
of  the  paragraph  (Line  149-153) :  « This  number  is  a  compromise  between  accuracy  of  the
correction and robustness of the percentile estimation (more regimes can be used, such as in
Ummenhofer et al. (2017)). On the other hand this relatively small number of regimes ensures a
sufficiently large size of the datasets used for quantile mapping (which are, as described below,
further partitioned into 4 seasons DJF, MAM, JJA, SON). »
A new Figure was added to represent the different regimes used (Line 153-154 & Fig. 1) : « Figure
1 represents the different regimes used in this study. »

L146: Integration: Would “Aggregation” not be the better term?

Yes,  this  would  be  better.  We  changed  the  word  « integration »  to  « aggregation »  and
« integrated » to « aggregated » (Line 155 and caption of Table 1).

L148: 6 am to 6 am the next day: Is this UTC or local time?

This is UTC. We have now changed the sentence to introduce this precision (Line 157):  « (from
6:00 UTC to 6:00 UTC the next day) ». 

L150: daily mean: 6 am to 6 am?

No, this is UTC. This was included (Line 159-161).

L152: Ok, you calculate the 99 percentiles, but what do you mean with “99 percentiles + 0.5 %
and 99.5 % quantiles” ?



The percentiles (1 %, 2 %, …, 99%) are calculated, and we also calculate the 0.5 % quantile and
the 99.5 % quantile. This sentence was changed to (Line 162-163): « The quantile values (the 99
percentile values as well as the 0.5 % and 99.5 % quantile values)... »

L160: For RCM values greater than the 99.5 % quantile, a constant adjustment based on the
value of this last quantile is applied in order to allow for new extremes.

This precision was added (Line 170-172).

L170: A further criterion can be applied: Did you apply it or not?

Yes, this sentence was corrected (Line 181) : « A further criterion is applied... ».

L174: a random draw: This in contradiction to the desired "consecutive time slices" described
above!

R1 is right. This point was not clear enough. We have rephrased the paragraph as follows (Line
185-191) :  « For the first  RCM date, a random draw amongst all available observational dates is
performed,  then  the  dates  are  browsed  through  chronologically  until  one  meets  all  the
requirements  outlined  above.  This  analogous  day  is  then  used  in  the  following  step  for  all
variables.  If  the  following  analogue  day  in  the  observations  still  meets  all  requirements,  it  is
selected as analogue for the following day in the RCM (to ensure as far as possible consecutive
time  slices).  A  new  random  draw  is  only  performed  once  the  analogue  fails  to  meet  all
requirements described above. »

L175: browsed through: in which direction?

They are browsed through chronologically. This is now specified (Line 186) : « (…) then the dates
are browsed through chronologically until one meets all the requirements outlined above. »

L186: RCM adjusted daily minimum and maximum: It  should be mentioned before,  that
RCM often provide daily minimum and maximum temperatures.

This is now mentioned in point n°3 (Line 156-158) :  « for temperature, the daily minimum and
maximum values (from 6:00 UTC to 6:00 UTC the next day) are selected (RCMs generally offer
daily minimum and maximum temperature). »

L201: Equation 4: T_h_RCM(24h, i-1) is not available for the first day. What to take then?

We thank R1 for this remark. Indeed, this is a point that we did not describe in detail in the article.
This is now included (Line 218-224) : « For specific cases, i.e. for the first day where TRCM (24h, i −
1) does not exist, or if the determinant of our system is too close to zero (< 0.1), or in the case
where a < 0, a much simpler equation is used, in which we only ensure that final mimimum and
maximum  daily  values  correspond  to  the  RCM  adjusted  minimum  and  maximum  values,  by
solving:

a = (TmaxRCM
d,adj(i) – TminRCM

d,adj(i)) / ((TmaxOBS
h – TminOBS

h)
b = TmaxRCM

d,adj(i) – a TmaxOBS
h. »

L206-209: X_h_SAF should be replaced with X_h_OBS!

 It is now corrected (Line 229-230).



L231: Definition of snow year is missing!

This is now defined (Line 251-253) : « The resulting adjusted hourly time series for each variable
are obtained for each snow year (from the 1st of August to the 31st of July of the following year) ».

L260: all massifs: Should it not be one massif, since the calculation is done by massif?

No, this criterion on the wet/dry analogue days is applied to all massifs in order to « maximise the
consistency between massifs after the adjustment process », as indicated in the text. Please keep
in mind, however, that this criterion is a second order criterion for the selection of analogous days,
the first order criterions being the month of the year, the weather regime and whenever possible,
consecutive time slices for consecutive RCM dates.

L282: Replace Method with ADAMONT

The section title was changed to « ADAMONT method evaluation » (Line 306).

L300: I guess a given altitude level means a +/-150 m wide elevation band?

We have added a clearer description of  elevation bands earlier  in  the article  (Line 267-269) :
«SAFRAN data are available for elevation bands with a resolution of 300 m, i.e. altitude levels 600,
900,  1200,  1500  m etc.  are  typically  considered,  making  it  possible  to  extract  meteorological
information at these altitude levels, or in-between using altitude interpolation. » 

L304-372: References to the corresponding tables and figures would help a lot.

The reviewer is correct that it could ease reading, but given that Tables and Figures are introduced
in the Results section, referring to them earlier in the manuscript would recquire major changes to
their  description.  Indeed,  this  would  alter  Figures  and  Tables  order,  and  lead  to  the need  to
introduce them fully  in  the Methods sections,  before the introduction of  their  detailed content,
which is a problem too. Given these condiserations, we chose to not introduce the Tables and
Figures there.

L391-393: Please mention that the good agreement for snow depth is due to the fact that the
difference in winter precipitation is small (see Fig. 5)!

This is now indicated (Line 441-444) : « Smaller autumn and winter precipitation biases lead to a
good agreement between the magnitude of average snow depth in the different adjusted RCM
simulations and the results obtained using the reanalysis as meteorological input (as noted in Fig.
4). »

L403 & L412: Are there no noteworthy differences between massifs?

The large biases and RMSEs values obtained when using raw RCM simulations compared to
adjusted simulations are features common to all massifs. It is now more clearly indicated (Line
426-428) :  « This highlights the large biases and RMSEs values obtained when using raw RCM
simulations compared to adjusted simulations, a feature common to all  massifs (Figs. 5-6 and
Supplementary Information)».  So is the fact that the longer learning period 1980-2010 generally
presents  smaller  biases and  RMSEs.  The  word « generally »  in  this  sense encompasses the
analysis across all massifs.

L415: smaller than 150 kg m−2 per month: This should also be expressed in percentage!



OK. This  information was added (Line 439-441) :  « Biases of  the adjusted simulations remain
smaller than 150 kg m −2  per month in absolute value, corresponding to up to 90% depending on
the massif and altitude »

L422: biases never exceed 50 cm: This should also be expressed in percentage!

This  was  added  (Line  450-451) :  « For  snow  depth,  the  biases  never  exceed  50  cm,  which
corresponds to up to 50% depending on the altitude and the massif »

L430: Fig. 5 & 6

Indeed (it is now Figs. 6-7). This was corrected (Line 460-461).

L533: as found by Lafaysse (2011)

Done (Line 562).

L551: TSS are generally better for massifs of the Northern Alps: Could you please provide
some percentage range!

This information was added (Line 580-582) : « TSS are generally better for massifs of the Northern
Alps (0.25 to 0.6) than the Southern Alps (0.1 to 0.4, Supplementary Information) ».

L564: Why not Figs. 10-13?

Yes (now Figs. 11-14), this error was corrected (Line 593).

L575-577: Please give a reference for this statement!

This was added (Line 603-604) : « (…) when most observations from mountain stations are not
available (Gobiet et al., 2015) ».

L602: biases for precipitation

This was included (Line 630) .

L622-623: The new method ADAMONT is able to statistically adjust daily regional climate
model projections and to provide hourly. . .

This sentence was rephrased accordingly (Line 651-653).

L647: ultimate quantile mapping: Should be again explained in more detail for the conclusion
section.

We thank R1 for this suggestion. This was added (Line 676-679) : « the ultimate quantile mapping
applied  to  snowfall  and  rainfall  (i.e.,  after  a  first  quantile  mapping  on  total  precipitation,  an
additional  quantile  mapping  against  the  observational  dataset  is  applied  for  daily  cumulated
adjusted RCM rainfall and snowfall separately) »

Table 2: For a better understanding, the configuration with N=0 should be also labeled as
such.

OK. This has now been included in Table 2, Figs 4-16 and in the Supplementary Information.



Figure 1: An additional small map with numbered massifs (e.g. right of the elevation color
bar) would give the reader a possibility to geographically locate the massifs listed in Table 3,
where the same number needs to be inserted.

 This is now included in Fig. 3 and Table 3.

Figure 3 (top left): Why is the 1800 m elevation not considered?

It is considered, but it corresponds to the same ALADIN RCM grid point as for 1500 m, so we don’t
see the line corresponding to 1800 m. We included the following sentence in the caption of Fig. 4
to indicate this : « In this case the 1500 m and 1800 m lines are similar. »

Figure 3 (top right): I guess the time period of the SAFRAN reanalysis is 1980-2010. Please
give this information in the legend or in the figure caption.

This is now included in the figure caption (Fig. 4).

Figure 3 (caption L3): different elevations considered (900-2400 m. . .)

Done (Fig. 4).

Figure 8: I guess the time period of the SAFRAN reanalysis is 1980-2010. Please give this
information in the legend or in the figure caption.

This is now included in the figure caption (Fig. 9).

Figure 10: Scale of the y-axis for the two elevations should be the same for comparability. The
y-axis labeling in the 2. and the 4. column is missing. Should be like Figure 11.

We are afraid that if we use the same scale for the y-axis for 1200 m and 2100 m, some curves for
1200 m won’t be readable anymore. The values at 1200 m and 2100 m can be very different,
especially for precipitation and even more for snow depth. This is why we would prefer to keep the
scales for the y-axis as is. However, we have changed the labeling of the y-axis as proposed by
R1 (Fig. 11).



Response to Referee 2

We thank R2 for this helpful review. Enclosed please find a detailed explanation of the revisions
we made based on R2's comments. For convenience, comments are in bold and our responses
are in italic. Revisions made in the manuscript are presented in italic with grey background..

Review report  for manuscript “The method ADAMONT v1.0 for statistical  adjustment of
climate  projections  applicable  to  energy balance land surface  models”  by Verfaillie  et  al.
(2017) This study introduces the method ADAMONT v1.0 to adjust and disaggregate daily
climate projections from a regional climate model against an observational dataset at hourly
time resolution. The method makes use of a refined quantile mapping approach for statistical
adjustment and an analogous method for sub-daily disaggregation. The method is capable of
producing adjusted hourly time series of temperature, precipitation, wind speed, humidity,
and short- and longwave radiation, which can in turn be used to drive any energy balance
land surface model (e.g. a fully distributed energy and water balance hydrologic model). The
observational dataset used here is the SAFRAN meteorological reanalysis, which covers the
entire French Alps split into 23 massifs, within which meteorological conditions are provided
for several 300 m elevation bands. In order to evaluate the skills of the method itself, it is
applied  to  the  ALADIN-Climate  v5  RCM using the  ERA-Interim reanalysis  as  boundary
conditions, for the time period from 1980 to 2010. The authors find the disaggregation method
to preserve inter-variable dependency structures although it performed well for temperature
compared to precipitation. The manuscript is well organized and the analyses methods are
well thought out, except a few points. Please find below a few comments which could help you
to improve your manuscript on the way to publication.

We thank the reviewer for this review, please see our specific responses to each point below.

Major comment: Line 1 – 64: The authors introduce the need for bias-correction of RCM
outputs but completely fail to address the many flaws of bias-adjustment which have been
well detailed in Ehret at al 2012: “Should we apply bias correction to global and regional
climate model data?” Most impact studies are now utilizing convection permitting models at
<4km resolution to overcome some of these limitations. Also, the authors have to specifically
state that the results of the quantile mapping are sensitive to data sets used and adjustment
method as well. Thus, there is a wide array of uncertainties associated with these kinds of
studies.

The reviewer is correct that bias-correction is not a perfect solution, but it is still a necessary step
when  using  regional  climate  model  data  for  impact  studies  (Maraun  2016),  be  it  convection
permitting or not. In addition, while a few studies have recently emerged using non-hydrostatic
high-resolution  model  approaches  targeting  summertime processes  such  as  convection-driven
events  (e.g.  Ban  et  al.,  2015,  Giorgi  et  al.,  2016,  https://www.hymex.org/cordexfps-
convection/wiki/doku.php?id=modellist  ),  in  some  areas  impact  studies  have  only  marginally
employed such models and most existing studies extensively rely on 10-km resolution regional
climate models such as those employed in EURO-CORDEX. For example, studies addressing
snow in mountainous areas have only in a few cases employed high resolution non-hydrostastic
models (e.g. Musselmann et al., 2017), mostly for upstream research and process studies rather
than for impact studies, which require very low biases because of the threshold effects at play in
snowpack  processes.  We  therefore  believe  that,  even  though  future  studies  will  increasingly



employ high resolution convection permitting regional climate models, many impact studies will be
carried out using hydrostatic models as part of large-scale projects such as EURO-CORDEX and
beyond. Furthermore, as indicated above, convection-permitting models are not immune of biases
(Prein et al., 2015) and will require appropriate adjustment for being used in impact assessments.
Concerning the sensitivity of quantile mapping to the data sets used and adjustment method, we
have  now added  the  following  sentence  to  account  for  this  (Line  64-66) :  « Furthermore,  the
performance level of quantile mapping methods is sensitive to the observation data set used and
the detailed characteristics of their implementation, which requires specific attention. »

Ban, N., J. Schmidli and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-
term summer precipitation increase faster?. Geophys. Res. Lett., 42, 1165-1172.

Giorgi  F.,  C.  Torma,  E.  Coppola,  N.  Ban,  C.  Schär  and  S.  Somot,  2016:  Enhanced  summer
convective rainfall at Alpine high elevations in response to climate warming, Nature Geoscience, 9,
584-590.

Musselman, K.N, M.P. Clark, C. Liu, K. Ikeda, and R. Rasmussen, 2017:  Slower snowmelt in a
warmer world, Nature Climate Change, 7, 214-219.

Prein,  A.F.,  W. Langhans,  G. Fosser,  A.  Ferrone,  N.  Ban,  K. Goergen,  M. Keller,  M. Tölle,  O.
Gutjahr,  F. Feser,  E. Brisson, S. Kollet, J. Schmidli,  N.P.M. van Lipzig, and R. Leung, 2015: A
review  on  regional  convection-permitting  climate  modeling:  Demonstrations,  prospects,  and
challenges, Rev. Geophys., 53, 323-361.

Minor Comments:

Abstract: I could not tell  for which RCP(s) the adjustment was made just by reading the
abstract. Please make the abstract a standalone section.

No RCP was used. In this article, we only focus on the evaluation for the recent period 1980-2010,
as indicated in the abstract (Line 11-13) : « In order to evaluate the skills of the method itself, it is
applied to the ALADIN-Climate v5 RCM using the ERA-Interim reanalysis as boundary conditions,
for the time period from 1980 to 2010. »

What is “ADAMONT”?

ADAMONT is the name of one of the projects which funded this study.  There is no meaningful
definition beyond this name.

Line 145 – 160: what do you mean by integration? Just use something like “aggregation” for
easy understanding. Tmax/Tmin is taken from 6am to 6am? This is not clear at all. When did
you take the max and min specifically?

We thank R2 for this remark.
We changed the word « integration » to « aggregation » and « integrated » to « aggregated » (Line
155 and caption of Table 1). Maximum and minimum values are calculated from 6 am to 6 am, and
only for temperature. For other variables, the daily mean (from 6 am to 6 am, this information has
now been included) or the last value of each day is used.
We have slightly changed this paragraph to make it clearer (Line 156-161) : « for temperature, the
daily minimum and maximum values (from 6:00 UTC to 6:00 UTC the next day) are selected
(RCMs generally offer daily minimum and maximum temperature). For wind speed and humidity,
the last value of each day (at 6:00 UTC) is selected (in order to be comparable to an instantaneous
value), and for precipitation and radiation, the daily mean (6:00 UTC to 6:00 UTC) is used. »



Line  335:  The  authors  should  clearly  state  that  the  RMSE and  mean  bias  were  used  to
evaluate  model  performance  in  terms  of  reproducing  amounts  while  FAR,  POD  etc.  for
occurrence.

OK,  even though we don’t  evaluate  model  performances,  but  rather  the  performances of  the
ADAMONT method.
This is now stated (Line 359-362) :  « – the root mean square error (RMSE) and the mean bias
over the evaluation period, computed over seasonal integration periods based on the SAFRAN
and the adjusted RCM datasets (to evaluate the method performance in terms of  reproducing
amounts);
– scores specific to the detection of occurrence of precipitation events (...) »



Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 18 September 2017

The method ADAMONT v1.0 for statistical
adjustment of climate projections applicable to
energy balance land surface models
Deborah Verfaillie1, Michel Déqué2, Samuel Morin1, and Matthieu Lafaysse1

1Météo-France - CNRS, CNRM UMR 3589, Centre d’Études de la Neige, Grenoble, France
2Météo-France - CNRS, CNRM UMR 3589, Toulouse, France

Correspondence to: Deborah Verfaillie (deborah.verfaillie@meteo.fr)

Abstract.

We introduce the method ADAMONT v1.0 to adjust and disaggregate daily climate projections

from a regional climate model against an observational dataset at hourly time resolution. The method

uses a refined quantile mapping approach for statistical adjustment and an analogous method for sub-

daily disaggregation. The method produces ultimately adjusted hourly time series of temperature,5

precipitation, wind speed, humidity, and short- and longwave radiation, which can in turn be used

to force any energy balance land surface model. While the method is generic and can be employed

on any appropriate observation time series, here we focus on the description and evaluation of the

method in the French mountainous regions. The observational dataset used here is the SAFRAN me-

teorological reanalysis, which covers the entire French Alps split into 23 massifs, within which me-10

teorological conditions are provided for several 300 m elevation bands. In order to evaluate the skills

of the method itself, it is applied to the ALADIN-Climate v5 RCM using the ERA-Interim reanalysis

as boundary conditions, for the time period from 1980 to 2010. Results of the ADAMONT method

are compared to the SAFRAN reanalysis itself. Various evaluation criteria are used for tempera-

ture, precipitation, but also snow depth, which is computed by the SURFEX/ISBA-Crocus model15

using the meteorological driving data from either the adjusted RCM data, or the SAFRAN reanaly-

sis itself. The evaluation addresses in particular the time transferability of the method (using various

learning/application time periods), the impact of the RCM grid point selection procedure for each

massif/altitude band configuration, and the inter-variable consistency of the adjusted meteorological

data generated by the method. Results show that the performance of the method is satisfactory, with20

similar or even better evaluation metrics than alternative methods. However, results for air tempera-

ture are generally better than for precipitation. Results in terms of snow depth are satisfactory, which

can be viewed as indicating a reasonably good inter-variable consistency of the meteorological data

produced by the method. In terms of temporal transferability (evaluated over time periods of 15 years

only), results depend on the learning period. In terms of RCM grid point selection technique, the use25

of a complex RCM grid points selection technique, taking into account horizontal but also altitudinal
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proximity to SAFRAN massif centre points/altitude couples, generally degrades evaluation metrics

for high altitudes, compared to a simpler grid point selection method based on horizontal distance.

1 Introduction

Projections of future climate change in terms of meteorological conditions and their impacts are30

requested for many scientific and societal applications (IPCC, 2013, 2014a, b, c). For a given socio-

economic or greenhouse-gas concentration scenario, these projections generally concern future tem-

perature and precipitation, and associated extreme events, and are usually generated using the outputs

of global climate models (GCMs) and regional climate models (RCMs). However, GCMs and RCMs

suffer from biases compared to local observations (Christensen et al., 2008; Rauscher et al., 2010;35

Kotlarski et al., 2014). Raw climate projections must therefore be adjusted (Déqué, 2007; Themeßl

et al., 2011; Gobiet et al., 2015; Maraun, 2016), before they can be used as such (meteorological con-

ditions), or in order to drive specific impact models. Various downscaling and adjustment methods

have been developed (Maraun et al., 2010; Teutschbein and Seibert, 2012, 2013). They all require an

observation dataset which (i) meets the data requirements of the application and (ii) is sufficiently40

long and reliable to be used to infer the relationships between the observations and the raw cli-

mate projections during the observation time period. Several approaches, such as the analog method,

search for relationships between observed large-scale predictors (generally from reanalyses) and

observed local-scale predictands (Vrac et al., 2007a; Dayon et al., 2015). In contrast, model output

statistics approaches calibrate model outputs against observations, with various levels of complexity,45

such as scaling methods (linear scaling, local intensity scaling, variance scaling, ...), delta-change

methods (e.g., Abegg et al., 2007; Hantel and Hirtl-Wielke, 2007; Schmucki et al., 2014) and dis-

tribution mapping methods (e.g., Boe et al., 2007; Déqué, 2007; Gobiet et al., 2015; Olsson et al.,

2015). The latter include quantile mapping, which is considered as an efficient and easy to imple-

ment adjustment method (Themeßl et al., 2011; Teutschbein and Seibert, 2012; Maurer and Pierce,50

2014; Gobiet et al., 2015). The main advantage of this method is that it adjusts deviations in the

shape of the distribution, and is thus able to adjust deviations not only for the mean but the entire

probability distribution function (Themeßl et al., 2011). Moreover, the adjustment is not strictly re-

stricted to the range of observed values in the reference period, which is the case for example for

methods based on analog weather patterns (e.g., Déqué, 2007; Themeßl et al., 2011; Rousselot et al.,55

2012; Dayon et al., 2015), provided that values based on the lowermost and uppermost quantiles are

handled appropriately (Gobiet et al., 2015). It can thus be used for evaluation of climate extremes

or projections at the end of the 21st century, as long as the probability associated with these events

is robustly estimated from a long enough sample. The main limits of quantile mapping are the as-

sumption of time-invariant model deviation to observations on which it is based, and the fact that60

the temporal properties of the model are not adjusted. If the model has a chronological behaviour

2



which differs from the observations (too chaotic or too persistent), this will not be adjusted (Déqué,

2007). Moreover, quantile mapping does not guarantee the spatial and inter-variable consistency, in

contrast to e.g. the analog method. Furthermore, the performance level of quantile mapping methods

is sensitive to the observation data set used and the detailed characteristics of their implementation,65

which requires specific attention.

Climate projections in mountainous regions, which are motivated by a broad range of geophysi-

cal, environmental and societally relevant scientific challenges (Martin et al., 1994; Beniston, 1997;

Jomelli et al., 2009; Castebrunet et al., 2014; Piazza et al., 2014; Schmucki et al., 2014; Lafaysse

et al., 2014; Boulangeat et al., 2014; Thuiller et al., 2014; Castebrunet et al., 2014; Francois et al.,70

2015; Spandre et al., 2016), are particularly sensitive to the quality of the adjustment method. In-

deed, regional climate model resolutions typically between 10 and 50 km are not sufficient to capture

the fine-scale processes and thresholds at play. Resolving altitude dependencies is critical, espe-

cially for snow-related issues (because of the temperature dependency of the snow/rain transition).

Furthermore, not only temperature and precipitation act on the snowpack, but a broader range of75

meteorological conditions and their diurnal variations. As a consequence, considering only adjusted

daily temperature and precipitation would miss some of the non-linear response of the snowpack.

Such phenomena cannot be addressed using delta-change methods, which by definition apply fixed

changes to an observed time series, conserving its statistical persistence properties and seasonality

(e.g., Abegg et al., 2007; Hantel and Hirtl-Wielke, 2007; Schmucki et al., 2014; Marty et al., 2017)80

although those could evolve significantly under changed climate conditions.

Here we introduce the ADAMONT v1.0 method, to adjust climate model projections in order

to provide hourly adjusted meteorological conditions for past and future conditions based on cli-

mate model output and observational datasets. Although it could be applied for GCM output, it

was primarily designed to process RCM output. Indeed, raw regional climate projection data are85

increasingly made available, e.g. the World Climate Research Program (WCRP) Coordinated Re-

gional Downscaling Experiment (CORDEX, Giorgi et al. (2009)), whose aim is to improve and dis-

tribute regional climate modelling worldwide. Its European branch, EURO-CORDEX (Jacob et al.,

2014), gathers regional climate simulations over Europe from 30 different modelling groups at 50

km (EUR-44) and 12.5 km (EUR-11) resolution. On the observation side, the use of surface mete-90

orological reanalysis is a powerful alternative to station observation data to provide the necessary

observational dataset (Berg et al., 2015). Indeed, the process by which such reanalyses are generated

addresses the time and space variations of the meteorological conditions, and by design they consist

of gap-free and complete time series. Here we describe the use of the ADAMONT method based on

RCM model output comparable to EURO-CORDEX and on the mountain meteorological reanalysis95

SAFRAN. SAFRAN was developed specifically to address the needs of snowpack numerical simu-

lations in mountainous regions, and contains hourly time series of temperature, precipitation, wind

speed, humidity, and short- and longwave radiation for so-called massifs (ranging between 500 and
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2,000 km2 in the French Alps) by elevation steps of 300 m (Durand et al., 2009a, b). Here, quan-

tile mapping is applied using daily outputs from a given RCM for all the variables provided in the100

SAFRAN reanalysis. Following a subdaily disaggregation step based on analog days selection from

the reanalysis itself, these hourly adjusted fields are then used to force the SURFEX/ISBA-Crocus

(Vionnet et al., 2012) model over the French Alps. We evaluate the performance of the ADAMONT

method, by applying it to the ALADIN-Climate v5 RCM (Colin et al., 2010) forced by the ERA-

Interim reanalysis (Dee et al., 2011) over the period 1980-2010. Sect. 2 describes the models used105

and the evaluation approach. Sects. 3 and 4 contain the results and their discussions, respectively,

and general conclusions are drawn in Sect. 5.

2 Models and methods

2.1 Description of the ADAMONT method

ADAMONT is primarily a quantile mapping adjustment method (Déqué, 2007; Gobiet et al., 2015).110

In general, quantile mapping is considered one of the most efficient bias adjustment methods avail-

able (Themeßl et al., 2011; Maurer and Pierce, 2014; Gobiet et al., 2015). It consists in adjusting

the quantiles of the simulated historical distribution based on the quantiles of the observed distribu-

tion. The main issues with quantile mapping relate to the assumption of time-invariant model biases,

the fact that temporal properties of the RCM are untouched by the adjustment method and that the115

spatial and inter-variable consistency is not guaranteed. Moreover, Driouech et al. (2009) showed

that for mid-latitude climates, such as that in Morocco, quantile mapping adjustment can vary for

different weather regimes, because model biases vary in different regimes. Similarly, Addor et al.

(2016) demonstrated the sensitivity of quantile mapping adjustment to circulation biases over the

Alpine domain. Additionally, the frequency of weather regimes may change in a changing climate120

(Boe et al., 2006; Cattiaux et al., 2013). To improve the stationarity of our method in a changing cli-

mate, weather regimes are thus taken into account in our method, i.e. quantile adjustment functions

are computed and applied depending on the weather regime.

Assuming the availability of a gap-free meteorological observational dataset at hourly time res-

olution consisting of one or several geographical locations considered sharing similar large scale125

meteorological conditions, and daily RCM model outputs covering the geographical domain of in-

terest, the statistical adjustment method ADAMONT consists in the following steps:

1. RCM grid point selection: For each observation point, a RCM grid point is selected, by mini-

mizing the following distance:√
(∆x)2 + (∆y)2 + (N ×∆z)2, (1)130

where ∆x, ∆y and ∆z represent the longitudinal, latitudinal and vertical distances (in km)

between the observation point and the RCM grid points, and N is referred to as the elevation
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factor. Values of 0, 50 and 100 were tested, but only results using a value of 0 and 50 (N50)

are reported in this study. The factor N is a scaling factor between horizontal and vertical

distances, allowing to take into account the strong dependence of meteorological variables135

(mainly precipitation and temperature) on altitude (e.g., Gottardi et al., 2012; Kotlarski et al.,

2012).

2. Weather regime computation: Each day of the RCM and observational records are clustered

into different daily weather regimes based on the geopotential height at 500 hPa, following

Michelangeli et al. (1995), similar to the method described in Driouech et al. (2010). Weather140

regimes clusters are were previously computed on the basis of a the large scale meteorological

reanalysis ERA-40 (Uppala et al., 2005). consistent with the observational dataset (in our

case, ERA-Interim reanalysis, Dee and Uppala, 2009), and used to infer the weather regime

for each date of the RCM dataset based on the synoptic fields of the GCM model used as

boundary condition for the RCM. The ERA-Interim reanalysis (Dee and Uppala, 2009) was145

used to infer weather regimes corresponding to each observation date and for all observation

points. RCM weather regimes were determined based on the synoptic field of the GCM used a

boundary condition for the RCM. In Michelangeli et al. (1995) and Driouech et al. (2010), only

regimes for the winter season are defined. We chose to apply the same method to determine

weather regimes for the other seasons as well. A classifiability and reproducibility analysis150

performed by Michelangeli et al. (1995) showed that 4 weather regimes can reasonably be

chosen for Europe. This number also is a compromise between accuracy of the correction and

robustness of the percentile estimation (more regimes can be used, such as in Ummenhofer

et al. (2017)). On the other hand this relatively small number of regimes ensures a sufficiently

large size of the datasets used for quantile mapping (which are, as described below, further155

partitioned into 4 seasons DJF, MAM, JJA, SON). Figure 1 represents the different regimes

used in this study.

3. Integration Aggregation from hourly to daily observations: The observational data are integrated

aggregated from hourly to daily time resolution, depending on the variable considered (see Ta-

ble 1) : for temperature, the daily (6 am to 6 am the next day) minimum and maximum values160

(from 6:00 UTC to 6:00 UTC the next day) are selected (RCMs generally offer daily mini-

mum and maximum temperature). For wind speed and humidity, the last value of each day

(at 6 am 6:00 UTC) is selected (in order to be comparable to an instantaneous value), and for

precipitation and radiation, the daily mean (6:00 UTC to 6:00 UTC) is used.

4. Computation of quantile distributions: The quantiles values (the 99 percentiles values as well165

as the 0.5 % and 99.5 % quantiles values) of the observational dataset and corresponding RCM

grid point distributions are calculated for each variable, each season (DJF, MAM, JJA, SON)
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and each of the four weather regimes, for a reference (also referred to as learning) time period

when both datasets are available.

5. Quantile mapping: Quantile mapping is then applied to the entire RCM dataset for the applica-170

tion time period, taking into account the season and the weather regime. A linear interpolation

is used for quantile values between the quantiles values specifically computed (99 percentiles

+ 0.5 % and 99.5 % quantiles the 99 percentile values as well as the 0.5 % and 99.5 % quantile

values). For RCM values greater than the 99.5 % quantile, a constant adjustment based on the

value of this last quantile is applied in order to allow for new extremes. For precipitation, it175

can happen that for low quantiles, the probability of precipitation is lower in the RCM than in

the observation dataset (i.e. several null values in the RCM, which can correspond to different

positive values in the observational data). In this case, a random draw is performed amongst

the observation values within the same quantile.

6. Selection of analogue date for sub-daily disaggregation: For each day in the RCM dataset,180

an analogous date is chosen in the observational dataset, matching the following criteria: the

month and the weather regime must be the same as in the RCM dataset, and whenever possible,

consecutive time slices are chosen in the observational dataset in order to avoid artificial jumps

in the final data linked to the choice of analogues. A further criterion can be is applied to

ensure that the weather situations are even more comparable between the RCM date and the185

analogous date from the observational record, based on precipitation consistency (wet vs. dry

conditions). A threshold of 1 kg m−2 day−1 on total precipitation is applied to partition dates

between dry and wet conditions. For each the first RCM date, a random draw amongst all

available observational dates is performed, then the dates are browsed through chronologically

until one meets all the requirements outlined above. This analogous day is then used in the190

following step for all variables. If the following analogue day in the observations still meets

all requirements, it is selected as analogue for the following day in the RCM (to ensure as far

as possible consecutive time slices). A new random draw is only performed once the analogue

fails to meet all requirements described above.

7. Sub-daily disaggregation: The adjusted RCM dataset is disaggregated from a daily integration195

period into an hourly time step by using the hourly observational data from each analogous

date chosen in the previous step to reconstruct the daily cycle of the data:

Xh
RCM (i) = a×Xh

OBS + b, (2)

where Xh
RCM (i) is the hourly adjusted RCM value of the variable X and Xh

OBS is the hourly

observational value of the same variable from the chosen analogous date (step 6). Different200

criteria are chosen to calculate a and b, depending on the variable considered (Table 1). For

the disaggregation of RCM adjusted temperature from daily to hourly (Table 1), a compromise
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must be made between obtaining minimum and maximum daily values as close as possible to

RCM adjusted daily minimum and maximum and minimizing the possible jump in adjusted

values between consecutive days. This is achieved by minimising the function:205

Q(α) = [Th
RCM (1h,i)−Th

RCM (24h,i− 1)]2 +α[TminhRCM (i)−Tmind,adjRCM (i)]2

+α[TmaxhRCM (i)−Tmaxd,adjRCM (i)]2, (3)

where Th
RCM (1h,i) and Th

RCM (24h,i− 1) are the hourly adjusted RCM temperature val-

ues at the first time step of day i and at the last time step of day i− 1, TminhRCM (i) and

TmaxhRCM (i) are the hourly minimum and maximum adjusted RCM temperature values re-

spectively, and Tmind,adjRCM (i) and Tmaxd,adjRCM (i) are the daily minimum and maximum ad-210

justed RCM temperature values respectively (Fig. 2). α is a parameter which can be tuned

to balance the importance of the minimisation of differences between daily and hourly RCM

minima and maxima and the minimisation of the jump between two consecutive days. For

a value of α of zero, there would be no jump in values between consecutive days, but the

values of TminhRCM (i) and TmaxhRCM (i) could be far from the values of Tmind,adjRCM (i)215

and Tmaxd,adjRCM (i). For an infinitely large value of α, the minimum and maximum hourly

and daily values would match, but the jump between consecutive days could be significant.

Sensitivity tests yielded an optimal value of 2 for α. Following eq. 2, eq. 3 transforms into:

Q(α,a,b) = [a×Th
OBS(1h) + b−Th

RCM (24h,i− 1)]2

+α[a×TminhOBS + b−Tmind,adjRCM (i)]2

+α[a×TmaxhOBS + b−Tmaxd,adjRCM (i)]2. (4)

By searching for the local minima δQ/δa= 0 and δQ/δb= 0, a and b can be determined, and220

the hourly adjusted RCM temperature can be obtained following eq. 2. For specific cases, i.e.

for the first day where Th
RCM (24h,i−1) does not exist, or if the determinant of our system is

too close to zero (< 0.1), or in the case where a < 0, a simpler equation is used, in which we

only ensure that final mimimum and maximum daily values correspond to the RCM adjusted

minimum and maximum values, by solving:225

a=
Tmaxd,adjRCM (i)−Tmind,adjRCM (i)

TmaxhOBS −TminhOBS

(5)

b= Tmaxd,adjRCM (i)− a×TmaxhOBS . (6)

This procedure is only applied for temperature, because the use of the maximum and mini-

mum criterion can lead to important jumps between consecutive days, which is not the case for

other variables (Table 1). For humidity, eq. 2 is solved using b= 0 and a=Xd,adj
RCM (i)/Xh

OBS(24h,i),230

so that the hourly adjusted RCM value and the hourly observational value at the last time step

of day i (Xh
OBS(24h,i)) are equal. For wind speed, the same calculation as for humidity is ap-

plied, except if a > 1 (i.e., Xd,adj
RCM (i)>Xh

OBS(24h,i)). If so, b=Xd,adj
RCM (i)−Xh

OBS(24h,i)
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is calculated. For humidity and wind speed, if Xh
OBS(24h,i)≤ 10−10, a= 0. For precipita-

tion and radiation, b= 0 and a=Xd,adj
RCM (i)/Xh

OBS(mean,i), so that the mean hourly ad-235

justed RCM value and the mean hourly SAFRAN observation value of day i are equal. For

solar radiation, if Xh
OBS(mean,i)≤ 10−10, a= 0. For precipitation, if this is the case, a= 1.

8. Snow/rain partitioning: Total precipitation is separated into rainfall and snowfall based on

hourly adjusted temperature (a threshold of 1 ◦C is used for the transition from snow to rain).

As mentioned above, inter-variable consistency is not guaranteed by quantile mapping. Given240

the importance of the consistency between temperature and precipitation in many applications

and in particular in mountainous areas, given that precipitation and temperature are corrected

independently from each other (step 5), and because the adjustment can differ for the differ-

ent precipitation phases, the relationship between temperature and precipitation phase may

be modified by quantile mapping, so that the adjusted rain and snow distributions may lose245

consistency. To avoid this, Olsson et al. (2015) separated temperature data into wet and dry

days before adjustment. In our case an additional quantile mapping against the observational

dataset is applied for daily cumulated adjusted RCM rainfall and snowfall separately. Hourly

adjusted RCM rainfall and snowfall (a2) are then determined by applying the ratio between

daily rainfall or snowfall after quantile mapping (A2) and daily rainfall or snowfall before250

quantile mapping (A1) to the hourly rainfall or snowfall before quantile mapping (a1):

a2 = a1×
A2

A1
(7)

If A1 = 0 and A2 = 0, then a2 = 0. If A1 = 0 and A2 6= 0, then a2 =A2.

9. Final adjusted dataset: The resulting adjusted hourly time series for each variable are obtained

for each snow year (from the 1st of August to the 31st of July of the following year), matching255

the format of the observational dataset.

2.2 SAFRAN reanalysis and application of ADAMONT method using SAFRAN

Although the ADAMONT method is highly generic and can be applied using any hourly-resolution

observational dataset, in the following we focus on the use of ADAMONT using the SAFRAN

reanalysis data as an observational dataset. We first describe SAFRAN, then we present specific260

features of the ADAMONT method when using SAFRAN as the observational dataset.

The SAFRAN system is a regional scale meteorological downscaling and surface analysis system

(Durand et al., 1993), which provides hourly data of temperature, precipitation amount and phase,

specific humidity, wind speed, and shortwave and longwave radiation for each mountain region (or

"massif") in the French Alps (23 massifs, as illustrated in Fig. 3) but also in the French and Span-265

ish Pyrenees and Corsica. Unlike traditional reanalyses, SAFRAN does not operate on a grid, but

on French mountain regions subdivided into different polygons known as massifs. Massifs (Durand
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et al., 1993, 1999) correspond to regions ranging approximately between 500 and 2,000 km2 for

which meteorological conditions are assumed to be spatially homogeneous but vary with altitude.

SAFRAN data are available for elevation bands with a resolution of 300 m, i.e. altitude levels 600,270

900, 1200, 1500 m etc. are typically considered, making it possible to extract meteorological infor-

mation at these altitude levels, or in-between using altitude interpolation.. It was used by Durand

et al. (2009b) to create a meteorological reanalysis over the French Alps by combining the ERA-40

reanalysis (Uppala et al., 2005) with various meteorological observations including in situ mountain

stations, radiosondes and satellite data. It was complemented after the end of the ERA-40 reanaly-275

sis (2002) by large-scale meteorological fields from the ARPEGE analysis, so that it now spans the

period from 1959 to 2016, making it one of the longest meteorological reanalyses available in the

French mountain regions.

When the ADAMONT method is applied using the SAFRAN reanalysis, only one geographic

coordinate is used for each massif, corresponding to the center of the massif (see Fig. 3). However,280

for each massif several altitude levels are considered, which means that depending on the N fac-

tor considered different RCM grid points may be selected for a given massif and altitude. Also, in

order to maximise the consistency between massifs after the adjustment process, the dry/wet ana-

logue day criterion used for the time disaggregation of RCM adjusted variables into hourly variable

is computed generally for the entire SAFRAN dataset, here in the 23 French Alps massifs. This285

means that a day is considered dry when the average of all daily precipitation data is below 1 kg

m−2 day−1, and wet if it falls above the threshold for all massifs and all altitude levels (from an

observational perspective), and for all corresponding adjusted RCM grid points (from an adjusted

RCM perspective).

2.3 SURFEX/ISBA-Crocus model290

Crocus (Brun et al., 1989, 1992; Vionnet et al., 2012) is a detailed snowpack model within the SUR-

FEX externalised surface module (Masson et al., 2013). It enables the computation of the exchanges

of energy and mass between the snow surface and the atmosphere (radiative balance, turbulent heat

and moisture fluxes, ...), but also between the snowpack and the ground underneath. Similarly to

most land surface models, it requires sub-diurnal (ideally hourly) meteorological forcing data in-295

cluding air temperature, humidity, incoming longwave and shortwave radiation, wind speed, as well

as rain and snow precipitation. The one-dimensional multilayer physical snow scheme Crocus is able

to simulate the evolution of the snowpack over time, by accounting for several processes occurring in

the snowpack, such as thermal diffusion, phase changes, metamorphism, etc. The SAFRAN-Crocus

model chain has been operationally used for more than 20 years for avalanche hazard forecasting and300

extensively evaluated over the alpine domain in particular against snow depth observation stations

(Durand et al., 1999, 2009b; Lafaysse et al., 2013). Here we apply the Crocus model using either

the SAFRAN reanalysis itself, or adjusted fields from a given RCM using the ADAMONT method,
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in order to compute and compare snow conditions using either driving data. This is both a proof-

of-concept of the applicability of the ADAMONT method to generate data appropriate to driving305

land surface model, and a mean to assess the intervariable consistency of the ADAMONT output

given that Crocus is simultaneously sensitive to all meteorological fields and potentially disturbed

by inconsistencies in the forcing dataset.

2.4 ADAMONT method evaluation

To evaluate the ADAMONT method, it was applied to the Météo France ALADIN RCM forced310

by ERA-Interim over the time period from 1980 to 2010. This RCM was run at 12.5 km reso-

lution and we use the daily time resolution output, which is consistent with typical output from

EURO-CORDEX RCMs. This simulation was then adjusted against the SAFRAN reanalysis. The

spatial domain (2,200 x 2,200 km, centred on France, see Fig. 3) is deliberately smaller than EURO-

CORDEX (5,000 x 5,000 km domain covering all of Europe, Fig. 3) although both are on the same315

order of magnitude, in order to place more emphasis on the method skills than on the output of

the RCM itself, especially in terms of chronology. Indeed, the smaller the domain, the more it is

constrained by its driving large-scale model (be it a GCM or a reanalysis) (Alexandru et al., 2007).

Performance indicators described below were computed for temperature and total precipitation,

but also for the snow depth, which integrates all the meteorological variables considered in the320

ADAMONT method. Focus was hereby placed on evaluating the ability of the method to correctly

represent integrated outputs computed using SURFEX/ISBA-Crocus from meteorological variables

adjusted independently of each other. This is often applied to river discharge for downscaling meth-

ods used for hydrological applications (e.g., Lafaysse et al., 2014; Olsson et al., 2015).

The method was applied for all 23 massifs of the French Alps and all elevation bands (Fig. 3),325

totalling 187 massif/altitude configurations. Performance indicators, described below, were either

computed spanning all configurations, or focusing on a given altitude level (1200 m and 2100 m)

and/or a subset of massifs (the Vercors massif was taken as an example, and computations were also

performed separately for the Northern and Southern Alps, respectively).

We specifically tested the following aspects of the method:330

– RCM grid points neighbour selection techniques (N = 0 or N = 50)

– Learning period: Split-sample evaluation was performed using three different learning and

application periods (1980-1995, 1995-2010 and 1980-2010), by evaluating the results on an

evaluation period different from the learning period (1995-2010 for simulations with the learn-

ing period 1980-1995 and vice-versa). These two sub-periods correspond to markedly differ-335

ent climate conditions in the French Alps (Reid et al., 2015). For simulations using the entire

learning period 1980-2010, the evaluation period was 1980-2010. This case with a 30 years
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learning period corresponds to the typical duration of the learning period when the method is

applied for climate projections.

– Rain/snow quantile mapping: The method was applied with (base case) or without (”no corr”)340

the last adjustment step operating on the rainfall and snowfall separately.

– Raw RCM data: Raw RCM simulations, without any adjustment, were considered for some

of the variables (temperature and precipitation only) and compared to adjusted results. This

can not be used in the case of snow depth, because daily resolution RCM output cannot be

employed to run Crocus.345

– The impact of using 6-hour input RCM data instead of daily data was also tested, but yielded

similar results (not shown). Only results based on daily RCM input are presented because

GCM/RCM outputs are often available at this time step on data distribution platforms such as

the one of EURO-CORDEX

The following indicators were analysed for temperature, total precipitation and snow depth:350

– the seasonal average time series from 1980 to 2010 in the SAFRAN and the adjusted RCM

datasets;

– the mean annual cycle over 2 distinct periods: 1980-1995 and 1995-2010 in the SAFRAN and

the adjusted RCM datasets;

– the mean value for each elevation band over the evaluation period in the SAFRAN and the355

adjusted RCM datasets;

– the correlation and the ratio of standard deviations between time series of the SAFRAN and

the adjusted RCM datasets for each variable and as a function of the integration window (from

1 day to several years) over the evaluation period;

– the cumulated probability density function (PDF) of daily variables over the evaluation period360

in the SAFRAN and the adjusted RCM datasets;

– the root mean square error (RMSE) and the mean bias over the evaluation period, computed

over seasonal integration periods based on the SAFRAN and the adjusted RCM datasets (to

evaluate the method performance in terms of reproducing amounts);

– scores specific to the detection of occurrence of precipitation events in the SAFRAN and365

the adjusted RCM datasets over the evaluation period: the probability of detection (POD =

nhh/(nhh +nhd)), the false alarm rate (FAR = ndh/(ndh +nhh)), the probability of false

detection (POFD = ndh/(ndh +ndd)) and the true skill score (TSS = POD - FAR), where nhh

is the number of days which are wet in the SAFRAN and wet in the adjusted RCM, ndd the
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number of days which are dry in the reanalysis and dry in the adjusted RCM, nhd the number370

of days which are wet in the reanalysis but dry in the adjusted RCM and ndh the number of

days which are dry in the reanalysis but wet in the adjusted RCM (a threshold of 1 kg m−2

d−1 was considered for the occurrence of precipitation);

– scores for the duration and persistence of precipitation events over the evaluation period

(Wilby et al., 1998; Boe et al., 2006): the relative error on the probability of a dry day (EPD =375

(nRd −nSd )/nSd ), the relative error on the probability of a dry day following a dry day (EPDD =

(nRd−d/n
R
d −nSd−d/n

S
d )/(nSd−d/n

S
d )), the relative error on the probability of a wet day follow-

ing a wet day (EPHH = (nRh−h/(n−nRd )−nSh−h/(n−nSd ))/(nSh−h/(n−nSd ))) and the relative

error on the mean duration of wet periods (EHD = (hdurR−hdurS)/hdurS), where nRd and

nSd are the number of dry days in the adjusted RCM and in SAFRAN respectively, nRd−d and380

nSd−d the number of dry days following a dry day in the adjusted RCM and in SAFRAN re-

spectively, nRh−h and nSh−h the number of wet days following a wet day in the adjusted RCM

and in SAFRAN respectively, n is the total number of days, and hdurR and hdurS the du-

ration of wet periods in the adjusted RCM and in SAFRAN respectively. A threshold of 1 kg

m−2 d−1 was considered for the occurrence of precipitation.385

These indicators are classically employed (e.g., Boe et al., 2006; Vrac et al., 2007b; Lafaysse,

2011; Kotlarski et al., 2014) to assess:

1. the ability of a model/method to reproduce the statistical characteristics of the observed me-

teorological variables (through the RMSE, the mean bias, the ratio of standard deviations,

the duration and persistence of precipitation events and the cumulated PDFs) and their spa-390

tial variability (through the mean values at each elevation band and the analysis of different

massifs);

2. its capacity to reproduce the low frequency variability of the observations, i.e. their chronol-

ogy (through the analysis of seasonal average time series, the correlation as a function of the

integration window, the detection of precipitation events);395

3. its temporal transferability, i.e. its ability to reproduce the observed variables over a period

different from the learning period (through the use of split-sample evaluation, the analysis of

the mean annual cycle over two distinct periods, the seasonal average time series);

4. its inter-variable consistency, which is assessed here by applying the evaluation indicators to

snow depth, an integrated output of the Crocus model.400

When available, we compare the indicators with the same criteria applied to analog resampling

based or transfer function algorithms by Lafaysse (2011) and Lafaysse et al. (2014), and for other

downscaling and adjustment methods by Vrac et al. (2012) and Olsson et al. (2015).
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Table 1 outlines the input and output variables of Crocus. Table 2 presents a summary of the

different configurations used for the evaluation.405

3 Results

3.1 Spatial variability and statistical characteristics of the variables

This section provides the evidence needed to assess the performance of the ADAMONT method

applied to a RCM driven by a global reanalysis (ERA-Interim) using the SAFRAN meteorological

reanalysis as the observational dataset in the French Alps. Adjusted RCM data are compared to410

SAFRAN itself. Adequate performance of the method is attained when the two datasets match most.

Figure 4 presents the location of the Vercors massif and its average temperature, precipitation and

snow depth for each elevation band, for the evaluation period in the SAFRAN/Crocus reanalysis

as well as adjusted RCM. The shape of the mean altitudinal evolution of all three variables is well

represented compared to SAFRAN, which is also the case for other massifs (see Supplementary415

Information). The computed temperature values are very similar to the one in SAFRAN. It is less

the case for precipitation, with over- or underestimation depending on the learning period (Fig. 4)

and the massif considered (Supplementary Information). Despite the differences in the magnitude

of average precipitation in the adjusted RCM compared to SAFRAN, the magnitude of average

snow depth in the different adjusted RCM simulations is remarkably close to the results obtained420

using the reanalysis as meteorological input, with slight differences depending on the massif (see

Supplementary Information). For all variables and all massifs, the difference between simulations

using the two RCM grid points neighbour selection techniques (N = 0 or N = 50) is smaller than

the difference induced by using different learning periods.

Figs. 5-7 display the mean bias and the RMSE for each raw and adjusted RCM simulation com-425

pared to SAFRAN, for temperature, precipitation and snow depth, for the Vercors massif. Addition-

ally, Table 3 presents the corresponding scores at the annual time scale compared to mean values, for

the adjusted RCM L. 1980-2010 simulation, for each massif in the French Alps and for the Northern

and Southern Alps, at 1200 m a.s.l. and 2100 m a.s.l.. This highlights the large biases and RM-

SEs values obtained when using raw RCM simulations compared to adjusted simulations, a feature430

common to all massifs (Figs. 5-6 and Supplementary Information).

For temperature, biases of the adjusted RCM simulations vary with elevation and for the different

massifs (Fig. 5, Table 3 and Supplementary Information), but lie always within 1 K. Biases are gen-

erally smaller in autumn (SON) than for other seasons. RMSEs also vary with elevation and massifs,

and can differ significantly between simulations using the two different RCM grid points neighbour435

selection techniques. For elevations above ≈ 2100 m a.s.l., stronger biases and higher RMSEs are

found for simulations using the selection technique accounting for altitude differences (N = 50),

especially in summer (JJA) than for other seasons. Temperature biases and RMSEs values also de-
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pend on the learning period considered, the longer learning period 1980-2010 generally presenting

smaller biases and RMSEs (Fig. 5 and Supplementary Information).440

For precipitation, biases generally vary with altitude (Fig. 6, Table 3 and Supplementary Informa-

tion), but less than for temperature (Fig. 5, Table 3 and Supplementary Information). Biases of the

adjusted simulations remain smaller than 150 kg m−2 per month in absolute value, corresponding

to up to 90% depending on the massif and altitude, and are generally stronger in summer. Smaller

autumn and winter precipitation biases lead to a good agreement between the magnitude of average445

snow depth in the different adjusted RCM simulations and the results obtained using the reanalysis

as meteorological input (as noted in Fig. 4). RMSEs values generally increase with altitude. Using

different RCM grid points neighbour selection techniques has less impact on precipitation scores

than for temperature, except that the N = 50 configuration yields more variability in scores with

altitude. This is due to the choice of different grid points for different altitudes of a single massif, be-450

cause precipitation is spatially more variable than temperature. The influence of the learning period

on scores is also visible.

For snow depth, the biases never exceed 50 cm, which corresponds to up to 50% depending on

the altitude and the massif (Fig. 7, Table 3 and Supplementary Information). The biases are smaller

in autumn than for other seasons, similar to temperature (Fig. 5 and Supplementary Information).455

Summer biases at high altitudes are almost always negative, which cannot always be explained by

a combination of positive biases in temperature and/or negative biases in precipitation, indicating

the possible impact of other variables on snow depth (such as longwave radiation for example).

RMSE values increase with altitude, due to the effect of increased snow accumulation with altitude.

Using the N = 50 configuration generally degrades scores at high elevations, similar to the effect on460

temperature.

For precipitation and snow depth, simulations without the ultimate quantile mapping on snow-

fall and rainfall are also presented (by definition it has no impact on temperature). It is clear from

Figs. 6-7 and the Supplementary Information that without this ultimate correction (no corr), biases in

precipitation and snow depth are much stronger and RMSEs much higher than when this correction465

is applied.

Fig. 8 represents the ratio of standard deviations between each adjusted RCM simulation and

SAFRAN for temperature, precipitation and snow depth and as a function of the integration window

(from 1 day to several years), over the learning period. Ratios are displayed for the Vercors massif,

for altitudes of 1200 m a.s.l. and 2100 m a.s.l.. If this ratio is lower than 1, it means that adjusted470

RCM simulations have a smaller standard deviation (i.e. variability) than SAFRAN. For tempera-

ture, the ratio of standard deviations is very close to 1 for integration windows of 1 day to a few

months. It varies more for longer integration windows of 1 year or more. The differences between

the two altitudinal levels considered or between massifs are limited (Fig. 8 and Supplementary Infor-

mation). Similarly, choosing different learning periods or different grid points neighbour selection475
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techniques has little effect on the ratio of standard deviations. For precipitation, ratios of standard

deviations are also close to 1 (generally between 0.8 and 1.2) for integration windows of 1 day to 1

month. This result is similar to ratios of variance between daily RCMs adjusted with a Cumulative

Distribution Function-transform and observations for the Mediterranean region in Vrac et al. (2012).

For integration windows of 1 month or more, the ratios vary more, with under- or overestimation480

of variance depending on the massif, the learning period and the grid points neighbour selection

technique considered (Fig. 8 and Supplementary Information). For snow depth, the ratio does not

vary until 1 month of integration approximately (Fig. 8 and Supplementary Information), and shows

larger variations for higher values. Some differences can be noted for different altitudes, and dif-

ferent massifs, but also for different learning periods and the two grid points neighbour selection485

techniques considered.

Fig. 9 presents the cumulated probability density functions (PDFs) of daily temperature, precipi-

tation and snow depth at 1200 m a.s.l. and 2100 m a.s.l. for the Vercors massif. The distributions of

daily temperature of adjusted RCM simulations are remarkably close to the distribution of SAFRAN

(Fig. 9 and Supplementary Information). The agreement is better than the one observed in Lafaysse490

(2011) and Lafaysse et al. (2014) between the different configurations of analog-based and trans-

fer functions algorithms and SAFRAN for the Durance basin (see Fig.F.2 in Lafaysse (2011), and

Fig.5 in Lafaysse et al. (2014)). A similar agreement was observed in Olsson et al. (2015) between

two configurations of a distribution-based scaling method and observations in Finland. Only small

differences are observed for different altitudes or different massifs (Fig. 9 and Supplementary Infor-495

mation), and the choice of the learning period or the grid points neighbour selection technique has

almost no impact on the PDF. For precipitation, the PDFs of adjusted RCM simulations are also very

close to the PDF of SAFRAN, with a slight overestimation or underestimation of moderate to high

precipitation, depending on the learning period, occurring for most massifs (Fig. 9 and Supplemen-

tary Information). This result is similar to that observed in Lafaysse (2011) for the Durance basin500

(see Fig.11.7 therein). As for temperature, altitude and massif location have only a small impact on

the distribution, as well as the grid points neighbour selection technique considered. The distribution

of snow depth, on the other hand, depends more on the massif considered and the altitude (Fig. 9 and

Supplementary Information). As for precipitation, the moderate to high snow depth values seem to

be slightly overestimated or underestimated for most massifs, depending on the learning period. The505

choice of the grid points neighbour selection technique has also slightly more impact on snow depth

PDFs than for temperature and precipitation. The fact that PDFs for temperature and precipitation are

very close to the ones of SAFRAN is a logical consequence of using a quantile mapping approach.

That it is also true for snow depth indicates that even if they are treated separately, the inter-variable

consistency of the meteorological fields generated using our method is in general appropriate.510

The capacity to reproduce the duration and persistence of precipitation events is shown in Fig. 10.

The ratio between the number of dry days and the number of rainy or snowy days is very correctly re-
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produced for every massif and altitude (Fig. 10 and Supplementary Information), the relative error on

the probability of a dry day being lower than 5%. This feature was also observed by Lafaysse (2011)

in his study of the Durance basin (see Fig.11.10 therein). The persistence of dry and rainy/snowy515

events is generally underestimated (up to about -30%), which was also the case in Lafaysse (2011),

even though the error depends on the massif and the altitude considered. In general, errors on the

persistence of precipitation events are larger in massifs of the Southern Alps than the Northern Alps

(Supplementary Information). Using different learning periods and different grid points neighbour

selection techniques has an impact on scores, but this is small compared to the influence of the massif520

or the altitude.

3.2 Mean seasonal variations

Fig. 11 represents the mean annual cycle of temperature, precipitation and snow depth for the dif-

ferent adjusted RCM simulations vs. the SAFRAN/Crocus reanalysis, for the period 1980-1995 and

1995-2010, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.. The mean annual cycle of525

temperature is very well reproduced for every massif and altitude (Fig. 11 and Supplementary In-

formation). Using different grid points neighbour selection techniques has a limited impact on the

mean annual cycle. For precipitation, the mean annual cycle is relatively well reproduced (Fig. 11

and Supplementary Information). The choice of grid points neighbour selection technique can have

slightly more influence on the results than for temperature. For snow depth, the annual cycle is530

remarkably well reproduced, with peak snow depth in the core of winter (JFM), and no snow or

reduced amounts in late summer months (JAS) (Fig. 11 and Supplementary Information). As for

temperature, the impact of the grid points neighbour selection technique is very limited.

3.3 Interannual variability

The chronology of time series of seasonal averages of temperature, precipitation and snow depth535

from 1980 to 2010 is shown in Figs. 12-14, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.,

in SAFRAN and the adjusted RCM. Temperature RCM time series are similar to SAFRAN, with

an interannual variability which is well reproduced (Fig. 12 and Supplementary Information). Some

significant differences appear when using different learning periods, as already noted in Sect. 3.2.

Using different grid points neighbour selection techniques has an impact on the time series of tem-540

perature which is generally smaller than the influence of the learning period. However, as already

noted in Sect. 3.1, the agreement between observed and simulated time series is degraded for high

altitudes under the spatial and altitudinal (N = 50) grid points neighbour selection technique. The in-

terannual variability of precipitation is also well reproduced for most massifs and altitudes (Fig. 13

and Supplementary Information), especially given that the only forcing of the RCM comes from545

ERA-Interim reanalysis at the boundaries of the RCM domain. It is slightly less well reproduced

in summer (JJA), as observed by Lafaysse (2011) for the analog resampling based transfer function
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algorithm DSCLIM (Pagé et al., 2009) and the Durance basin (see Fig.10.1 therein). Differences

between simulations using different learning periods mostly appear in summer (JJA). The use of

different grid points neighbour selection techniques has a rather limited impact on time series of550

precipitation, whose magnitude depends on the massif and the altitude (Fig. 13 and Supplementary

Information). For snow depth, the interannual variability is well reproduced in winter (DJF) and

correctly reproduced in intermediate seasons (MAM and SON). Summer snow depths are gener-

ally underestimated, as already noted in Sect. 3.1, but represent a small portion of the annual snow

accumulation. Likewise, adjusted data using the spatial and altitudinal (N = 50) RCM grid points555

selection technique can be degraded at high altitudes, similarly to temperature.

Fig. 15 displays the temporal correlation between each adjusted RCM simulation and SAFRAN

over the evaluation period for temperature and precipitation and as a function of the integration win-

dow (from 1 day to several years). Correlations are displayed for the Vercors massif, for altitudes

of 1200 m a.s.l. and 2100 m a.s.l.. Additionally, Table 3 presents the same correlation values at the560

same altitudes, for an integration window of 1 year, and for the adjusted RCM L. 1980-2010 simula-

tion only, for every massif of the French Alps, and for the Northern and Southern Alps. Snow depth

values were not included because of their cumulative nature. Correlations for temperature are very

high (always above 0.8) for all massifs and altitudes until an integration window of a few months

to 1 year (Fig. 15, Table 3 and Supplementary Information), similar to as found by Lafaysse (2011)565

(see Fig.F.21 therein). The differences between learning periods are negligible. As already observed

in Sect. 3.1 and for the time series above, the correlation is clearly degraded for high altitudes (above

≈2100 m a.s.l.) in simulations using the N = 50 grid points selection technique. Precipitation also

yields satisfactory correlation values (always above 0.4) until a few months integration window,

which vary depending on the massif considered(Fig. 15 and Supplementary Information). Correla-570

tions are generally similar or even better than the ones observed in Lafaysse (2011) for various statis-

tical downscaling models and different configurations of the ALADIN RCM (see Fig.12.10 therein).

The use of the N = 50 grid points neighbour selection technique increases or decreases correlation

values depending on the massif and the altitude considered. The choice of learning period has a

limited effect on correlation, at least up to integration windows of a few months. Correlations are575

higher at the scale of the Northern and Southern Alps than at the massif scale (Table 3). This scale

dependence of precipitation downscaling skill was also illustrated by Gangopadhyay et al. (2004)

and Mezghani and Hingray (2009).

Scores for the detection of precipitation events are presented in Fig. 16, for the Vercors massif,

for altitudes of 1200 m a.s.l. and 2100 m a.s.l.. The scores vary depending on massifs and altitude,580

but a general pattern emerges (Fig. 16 and Supplementary Information). The POD is the highest,

with values between 0.55 and 0.8, very similar to Lafaysse (2011) (see Figs. 11.14 and 12.8 therein).

The FAR is rather low (always below 0.5), as well as the POFD, below 0.2. TSS are generally better

for massifs of the Northern Alps (0.25 to 0.6) than the Southern Alps (0.1 to 0.4, Supplementary
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Information), where PODs are lower and FAR much higher. Such results indicate that the method585

performs well in detecting precipitation events. Using different learning periods has a rather limited

impact on the detection of precipitation. The choice of the grid points selection technique has a

limited influence at low to mid-altitudes, which increases above ≈2100 m a.s.l..

4 Discussion

This section discusses the main limits of the method described and evaluated here, and the limits of590

the evaluation method itself.

4.1 Transferability in time

The temporal transferability of the ADAMONT method, i.e. its capacity to apply adequately to a

period which is different from the learning period, can be evaluated from results in Sects. 3.1, 3.3

and 3.2 3.1, 3.2 and 3.3.595

Figs. 12-14, 11 11-14 and Supplementary Information reveal some significant differences when

using different learning periods. This feature is generally most visible in summer. It denotes a limit in

the temporal transferability of the ADAMONT method, which was also the case in Lafaysse (2011)

for the analog-based and transfer functions algorithms (see Figs. 11.11 and 11.12 therein). Using

the longer learning period 1980-2010 yields better results, most probably due to the fact that, in this600

case, the learning and evaluation periods are the same, but also the fact that the learning period is

longer.

There are some limits in the conclusions which can be drawn from this transferability assessment.

First, reanalysis data used here as forcing for the RCM (ERA-Interim) or for statistical adjustment

and evaluation purposes (SAFRAN reanalysis) are heterogeneous in time (Sterl, 2004; Vidal et al.,605

2010). These heterogeneities are especially marked in summer in the SAFRAN reanalysis, when

most observations from mountain stations are not available (Gobiet et al., 2015). Secondly, variations

which will occur in the future climate are expected to be much stronger than the variations which

can be tested on our evaluation period. Issues related to the time transferability of the adjustment

approach may be amplified when applied in the context of climate projections, but their relative610

impact will probably be lower than shown here given the magnitude of the expected changes.

4.2 Impact of the spatial selection technique

The impact of the RCM grid point selection technique is illustrated in Sects. 3.1 and 3.3. Indeed,

Figs. 5-7, 12-14, 15 and Supplementary Information show a clear degradation of scores for eleva-

tions above ≈ 2100 m a.s.l. using a selection criterion explicitly accounting for the altitude differ-615

ence (N = 50). This is linked to the scarcity of high altitude grid points in ALADIN compared to

SAFRAN, resulting in grid points being selected several tens of kilometres from the centre point
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of most SAFRAN massifs (see Fig. 4 and Supplementary Information for the location of selected

grid points). The impact of this issue depends on the location of massifs relative to high-altitude grid

points in ALADIN. For example, most Southern Alps massifs are affected, except the southernmost620

massifs of Ubaye, Alpes Azur and Mercantour (Supplementary Information), which are located less

than 15 km from high-altitude points. This shows that, although it seems appealing to select RCM

grid points at elevations matching the elevation of the observation dataset, rather than using RCM

grid points with a potentially large elevation difference (hence leading to stronger adjustment re-

quirement), in practice the results are far more homogeneous and quantitatively generally equivalent625

or better when concentrating only on the horizontal distance between the RCM grid points and the

observation dataset.

4.3 Inter-variable consistency

The lack of explicitly enforced inter-variable consistency of the quantile mapping method can be

a major disadvantage. As we focus on a mountainous region for the evaluation and future use of630

the method the consistency between temperature and precipitation phase is crucial. The impact of

this ultimate correction is assessed in Sect. 3.1. Figs. 6-7 and Supplementary Information show that

without this ultimate correction (no corr), biases for precipitation are much stronger and RMSEs

much higher than with this ultimate correction, highlighting its importance.

The inter-variable consistency of the ADAMONT method is indirectly assessed by applying the635

evaluation metrics described above to an integrated output of the Crocus model, the snow depth,

which is computed from meteorological variables adjusted independently from each other. As men-

tioned above, snow depth results are generally satisfying, which tend to indicate a good inter-variable

consistency. Performance indicators for snow depths are often consistent with temperature and pre-

cipitation indicators, even though they cannot always be explained by these two variables alone (for640

example the analysis of biases in Sect. 3.1), indicating the probable influence of other variables not

directly analysed here such as longwave radiation.

4.4 Limits of the evaluation method

The spatial consistency of the ADAMONT method has not been evaluated other than by using spatial

averages. In future studies, it would be necessary to test it by evaluating spatial correlations (for645

example using metrics described in Kotlarski et al. (2014)), or by using integrated variables requiring

spatial variability, such as snow cover area or river discharges.

In this study, we evaluated the method using only the ALADIN-Climate RCM. However, Olsson

et al. (2015) showed that the choice of RCM could have a significant impact on the evaluation of the

performance of the adjustment method. Evaluation using another RCM could thus prove useful, even650

though we would have to use RCM outputs run on the same spatial domain as the ALADIN-Climate

RCM in order to compare them.
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5 Conclusions

The new method to statistically adjust regional climate model projections ADAMONT is introduced,

which provides hourly The new method ADAMONT is able to statistically adjust daily regional655

climate model projections and to provide hourly adjusted outputs of temperature, precipitation, wind

speed, humidity and short- and longwave radiation necessary to force energy balance land surface

(impact) models. The method processes daily outputs from an RCM and adjusts them against a

sub-daily (hourly, typically) observational dataset. The method was evaluated using outputs from

the ALADIN-Climate RCM driven by ERA-Interim reanalysis for the time period 1980 - 2010,660

using the SAFRAN meteorological reanalysis in the French Alps as an observation dataset. The

direct outputs of the ADAMONT method, namely temperature and total precipitation, as well as an

indirect output, namely snow depth, computed by the Crocus model from meteorological variables

corrected independently of each other, were evaluated. The impact of the learning period was tested,

as well as the method to select RCM grid points corresponding to each observational point. The665

evaluation addressed four main concerns: (1) the ability of the ADAMONT method to reproduce the

spatial (especially altitudinal) variability and the statistical characteristics of SAFRAN variables, (2)

its ability to reproduce the low frequency variability, i.e. the chronology, of SAFRAN, through the

analysis of the interannual variability and the annual cycle of adjusted variables (3) the temporal

transferability of the method, and (4) its inter-variable consistency.670

Performance scores are always better for adjusted RCM simulations than for raw RCM simula-

tions, which highlights the need for such adjustment and demonstrates the skill of the method. In

general, the performance of the ADAMONT method concerning temperature is better than for pre-

cipitation. However, evaluation indicators for precipitation are generally similar or even better than

the indicators evaluated in Lafaysse (2011) and Lafaysse et al. (2014) for other types of algorithms675

(analog-based or transfer functions). Snow depth yields good results, considering its integrated na-

ture, i.e. the fact that it was computed from variables corrected independently. The impact of the

learning period depends on the evaluation indicator considered, and must be considered when ap-

plying the method. The best solution is probably to choose the longest possible learning period. For

precipitation and snow depth, the importance of the ultimate quantile mapping applied to snowfall680

and rainfall (i.e., after a first quantile mapping on total precipitation, an additional quantile mapping

against the observational dataset is applied for daily cumulated adjusted RCM rainfall and snowfall

separately) is unambiguously demonstrated. Using a grid points selection technique relying on spa-

tial but also altitudinal proximity between SAFRAN massif centre points and RCM grid points either

had no impact on the performance indicators or degraded them for altitudes higher than 2100 m a.s.l..685

As a consequence, the simple spatial grid points neighbour selection technique will be retained for

future applications of the method.

The ADAMONT method is generic and can be applied to any observational dataset. Its application

using the SAFRAN reanalysis as the observation dataset is somewhat a specific case, initially tailord
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for French mountainous regions (Durand et al., 2009a). However, beyond the French mountain re-690

gions, the method could be applied in France using the SAFRAN-France gridded reanalysis (Vidal

et al., 2010). A Spanish version of SAFRAN was also developed recently (Quintana-Seguí et al.,

2017).The method could be applied to other observational datasets or meteorological reanalyses,

such as ERA-Interim surface fields (Dee et al., 2011) or MESCAN (Soci et al., 2016).

6 Code availability695

The code of the ADAMONT v1.0 method is available as an open git repository after free

registration at https://opensource.cnrm-game-meteo.fr/projects/adamont. The version used for

this article is available at https://opensource.cnrm-game-meteo.fr/projects/adamont/repository?rev=

ADAMONT-v1.0.

The version of the open source code of SURFEX/ISBA-Crocus used in this study is avail-700

able as a specific branch of an open svn repository, after free registration, at https://opensource.

cnrm-game-meteo.fr/projects/surfex. For reproductibility of results, the version used in this work is

tagged as http://svn.cnrm-game-meteo.fr/projets/surfex/tags/ADAMONT-1.0.

Acknowledgements. This study benefited from funding from the French Ministry for Ecology (MEEM) through

the GICC program and ONERC, in the framework of the ADAMONT project. It also forms part of the Interreg705

project POCTEFA/Clim’Py. CNRM/CEN is part of LabEX OSUG@2020 (ANR10 LABX56). We thank S.

Bernus, P. Lassegues, F. Besson and V. Gouget at Météo-France for helping making the method more robust.

We thank two anonymous reviewers for useful and constructive comments.

21

https://opensource.cnrm-game-meteo.fr/projects/adamont
https://opensource.cnrm-game-meteo.fr/projects/adamont/repository?rev=ADAMONT-v1.0
https://opensource.cnrm-game-meteo.fr/projects/adamont/repository?rev=ADAMONT-v1.0
https://opensource.cnrm-game-meteo.fr/projects/adamont/repository?rev=ADAMONT-v1.0
https://opensource.cnrm-game-meteo.fr/projects/surfex
https://opensource.cnrm-game-meteo.fr/projects/surfex
https://opensource.cnrm-game-meteo.fr/projects/surfex
http://svn.cnrm-game-meteo.fr/projets/surfex/tags/ADAMONT-1.0


References

Abegg, B., Agrawala, S., Crick, F., and de Montfalcon, A.: Climate change impacts and adaptation in win-710

ter tourism, in: Climate Change in the European Alps, edited by Agrawala, S., pp. 25–60, OECD Paris,

doi:10.1787/9789264031692-en, 2007.

Addor, N., Rohrer, M., Furrer, R., and Seibert, J.: Propagation of biases in climate models from the synop-

tic to the regional scale: Implications for bias adjustment, J. Geophys. Res. - Atmos., 121, 2075–2089,

doi:10.1002/2015JD024040, 2016.715

Alexandru, A., de Elia, R., and Laprise, R.: Internal variability in regional climate downscaling at the seasonal

scale, Mon. Weather Rev., 135, 3221–3238, doi:http://dx.doi.org/10.1175/MWR3456.1, 2007.

Beniston, M.: Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes

in large-scale climatic forcings, Climatic Change, 36, 281–300, doi:10.1023/A:1005310214361, 1997.

Berg, P., Bosshard, T., and Yang, W.: Model consistent pseudo-observations of precipitation and their use for720

bias correcting regional climate models, Climate, 3, 118–132, doi:10.3390/cli3010118, 2015.

Boe, J., Terray, L., Habets, F., and Martin, E.: A simple statistical-dynamical downscaling scheme based on

weather types and conditional resampling, J. Geophys. Res. - Atmos., 111, doi:10.1029/2005JD006889,

2006.

Boe, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate725

for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, doi:10.1002/joc.1602, 2007.

Boulangeat, I., Georges, D., Dentant, C., Bonet, R., Van Es, J., Abdulhak, S., Zimmermann, N., and Thuiller,

W.: Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land

use change in a protected area, Ecography, 37, 1230–1239, doi:10.1111/ecog.00694, 2014.

Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C.: An energy and mass model of snow cover suitable730

for operational avalanche forecasting, J. Glaciol., 35, 333 – 342, 1989.

Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for

operational avalanche forecasting, J. Glaciol., 38, 13 – 22, 1992.

Castebrunet, H., Eckert, N., Giraud, G., Durand, Y., and Morin, S.: Projected changes of snow conditions and

avalanche activity in a warming climate: the French Alps over the 2020-2050 and 2070-2100 periods, The735

Cryosphere, 8, 1673–1697, doi:10.5194/tc-8-1673-2014, 2014.

Cattiaux, J., Douville, H., and Peings, Y.: European temperatures in CMIP5: origins of present-day biases and

future uncertainties, Clim. Dynam., 41, 2889–2907, doi:10.1007/s00382-013-1731-y, 2013.

Christensen, J., Boberg, F., Christensen, O., and Lucas-Picher, P.: On the need for bias correction

of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35,740

doi:10.1029/2008GL035694, 2008.

Colin, J., Déqué, M., Radu, R., and Somot, S.: Sensitivity study of heavy precipitation in Limited Area Model

climate simulations: influence of the size of the domain and the use of the spectral nudging technique, Tellus

A, 62, 591–604, doi:10.1111/j.1600-0870.2010.00467.x, 2010.

Dayon, G., Boé, J., and Martin, E.: Transferability in the future climate of a statistical downscaling method for745

precipitation in France, Journal of Geophysical R, 120, 1023–1043, doi:10.1002/2014JD022236, 2015.

Dee, D. and Uppala, S.: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis,

Quart. J. Roy. Meteor. Soc., 135, 1830–1841, doi:10.1002/qj.493, 2009.

22

http://dx.doi.org/10.1787/9789264031692-en
http://dx.doi.org/10.1002/2015JD024040
http://dx.doi.org/http://dx.doi.org/10.1175/MWR3456.1
http://dx.doi.org/10.1023/A:1005310214361
http://dx.doi.org/10.3390/cli3010118
http://dx.doi.org/10.1029/2005JD006889
http://dx.doi.org/10.1002/joc.1602
http://dx.doi.org/10.1111/ecog.00694
http://dx.doi.org/10.5194/tc-8-1673-2014
http://dx.doi.org/10.1007/s00382-013-1731-y
http://dx.doi.org/10.1029/2008GL035694
http://dx.doi.org/10.1111/j.1600-0870.2010.00467.x
http://dx.doi.org/10.1002/2014JD022236
http://dx.doi.org/10.1002/qj.493


Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A.,

Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol,750

C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen,

L., Kålberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,

B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:

configuration and performance of the data assimilation system, Quart. J. Roy. Meteor. Soc., 137, 553–597,

doi:10.1002/qj.828, 2011.755

Déqué, M.: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario:

Model results and statistical correction according to observed values, Global Planet. Change, 57, 16–26,

doi:10.1016/j.gloplacha.2006.11.030, 2007.

Driouech, F., Déqué, M., and Mokssit, A.: Numerical simulation of the probability distribution function of

precipitation over Morocco, Clim. Dynam., 32, 1055–1063, doi:10.1007/s00382-008-0430-6, 2009.760

Driouech, F., Déqué, M., and Sánchez-Gómez, E.: Weather regimes—Moroccan precipitation link in a regional

climate change simulation, Global Planet. Change, 72, 1–10, doi:10.1016/j.gloplacha.2010.03.004, 2010.

Durand, Y., Brun, E., Mérindol, L., Guyomarc’h, G., Lesaffre, B., and Martin, E.: A meteorological estimation

of relevant parameters for snow models, Ann. Glaciol., 18, 65–71, 1993.

Durand, Y., Giraud, G., Brun, E., Mérindol, L., and Martin, E.: A computer-based system simulating snowpack765

structures as a tool for regional avalanche forecasting, J. Glaciol., 45, 469–484, 1999.

Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., and Lesaffre, B.: Reanalysis of 47 Years of

Climate in the French Alps (1958–2005): Climatology and Trends for Snow Cover, J. Appl. Meteor. Climat.,

48, 2487–2512, doi:10.1175/2009JAMC1810.1, 2009a.

Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., and Lesaffre, B.: Reanalysis of 44 Yr of770

Climate in the French Alps (1958–2002): Methodology, Model Validation, Climatology, and Trends for

Air Temperature and Precipitation., J. Appl. Meteor. Climat., 48, 429–449, doi:10.1175/2008JAMC1808.1,

2009b.

Francois, B., Hingray, B., Creutin, J., and Hendrickx, F.: Estimating water system performance under cli-

mate change: influence of the management strategy modeling, Water Resour. Manag., 29, 4903–4918,775

doi:10.1007/s11269-015-1097-5, 2015.

Gangopadhyay, S., Clark, M., Werner, K., Brandon, D., and Rajagopalan, B.: Effects of spatial and temporal

aggregation on the accuracy of statistically downscaled precipitation estimates in the upper Colorado River

basin, J. Hydrometeorol., 5, 1192–1206, doi:http://dx.doi.org/10.1175/JHM-391.1, 2004.

Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information needs at the regional level: the CORDEX780

framework, World Meteorol. Organ., 58, 175–183, 2009.

Gobiet, A., Suklitsch, M., and Heinrich, G.: The effect of empirical-statistical correction of intensity-

dependent model errors on the temperature climate change signal, Hydrol. Earth Syst. Sc., 19, 4055–4066,

doi:10.5194/hess-19-4055-2015, 2015.

Gottardi, F., Obled, C., Gailhard, J., and Paquet, E.: Statistical reanalysis of precipitation fields based on785

ground network data and weather patterns: Application over French mountains, Journal of Hydrology,

doi:10.1016/j.jhydrol.2012.02.014, 2012.

23

http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1016/j.gloplacha.2006.11.030
http://dx.doi.org/10.1007/s00382-008-0430-6
http://dx.doi.org/10.1016/j.gloplacha.2010.03.004
http://dx.doi.org/10.1175/2009JAMC1810.1
http://dx.doi.org/10.1175/2008JAMC1808.1
http://dx.doi.org/10.1007/s11269-015-1097-5
http://dx.doi.org/http://dx.doi.org/10.1175/JHM-391.1
http://dx.doi.org/10.5194/hess-19-4055-2015
http://dx.doi.org/10.1016/j.jhydrol.2012.02.014


Hantel, M. and Hirtl-Wielke, L.-M.: Sensitivity of Alpine snow cover to European temperature, Int. J. Climatol.,

27, 1265–1275, doi:10.1002/joc.1472, 2007.

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assess-790

ment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M.

Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge University

Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, 2013.

IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.

Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate795

Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee,

K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea,

and L.L. White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,

1132 pp, http://www.ipcc.ch/report/ar5/wg2/, 2014a.

IPCC: Climate change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution800

of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

[Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi,

Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.

White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 688 pp,

http://www.ipcc.ch/report/ar5/wg2/, 2014b.805

IPCC: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga,

Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann,

J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)], Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA, 1435 pp, http://www.ipcc.ch/report/ar5/wg3/, 2014c.810

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Deque,

M., Georgievski, G., Georgopoulou, E., Gobiets, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann,

N., Jones, C., Keuler, K., Kovats, S., Kroner, N., Kotlarski, S., Kriegsmann, A., Martin, E., Meijgaard,

E. V., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,

Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.:815

EURO-CORDEX: new high-resolution climate change projections for European impact research, Regional

Environmental Change, 14, 563–578, doi:10.1007/s10113-013-0499-2, 2014.

Jomelli, V., Brunstein, D., Déqué, M., Vrac, M., and Grancher, D.: Impacts of future climatic change (2070–

2099) on the potential occurrence of debris flows: a case study in the Massif des Ecrins (French Alps),

Climatic Change, 97, 171–191, doi:10.1007/s10584-009-9616-0, 2009.820

Kotlarski, S., Bosshard, T., Lüthi, D., Pall, P., and Schär, C.: Elevation gradients of European climate change in

the regional climate model COSMO-CLM, Climatic change, 112, 189–215, doi:10.1007/s10584-011-0195-

5, 2012.

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Deque, M., Gobiet, A., Goergen, K., Jacob, D., Luthi,

D., Meijgaard, E. V., Nikulin, G., Schar, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer,825

V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM

ensemble, Geoscientific Model Development, 7, 1297–1333, doi:10.5194/gmd-7-1297-2014, 2014.

24

http://dx.doi.org/10.1002/joc.1472
http://www.ipcc.ch/report/ar5/wg2/
http://www.ipcc.ch/report/ar5/wg2/
http://www.ipcc.ch/report/ar5/wg3/
http://dx.doi.org/10.1007/s10113-013-0499-2
http://dx.doi.org/10.1007/s10584-009-9616-0
http://dx.doi.org/10.1007/s10584-011-0195-5
http://dx.doi.org/10.1007/s10584-011-0195-5
http://dx.doi.org/10.1007/s10584-011-0195-5
http://dx.doi.org/10.5194/gmd-7-1297-2014


Lafaysse, M.: Changement climatique et régime hydrologique d’un bassin alpin. Génération de scénarios sur

la Haute-Durance, méthodologie d’évaluation et incertitudes associées, Ph.D. thesis, Université Toulouse

III-Paul Sabatier, 2011.830

Lafaysse, M., Morin, S., Coleou, C., Vernay, M., Serca, D., Besson, F., Willemet, J.-M., Giraud, G., and Du-

rand, Y.: Towards a new chain of models for avalanche hazard forecasting in French mountain ranges, includ-

ing low altitude mountains, in: Proceedings of International Snow Science Workshop Grenoble–Chamonix

Mont-Blanc, pp. 162–166, CEN, 2013.

Lafaysse, M., Hingray, B., Mezghani, A., Gailhard, J., and Terray, L.: Internal variability and model uncer-835

tainty components in future hydrometeorological projections: The Alpine Durance basin, Water Resources

Research, 50, 3317–3341, doi:10.1002/2013WR014897, 2014.

Maraun, D.: Bias correcting climate change simulations-a critical review, Curr. Clim. Change Rep., 2, 211–220,

doi:10.1007/s40641-016-0050-x, 2016.

Maraun, D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E., Widmann, M., Brienen, S., Rust, H., Sauter,840

T., Themeßl, M., et al.: Precipitation downscaling under climate change: Recent developments to bridge the

gap between dynamical models and the end user, Rev. Geophys., 48, doi:10.1029/2009RG000314, 2010.

Martin, E., Brun, E., and Durand, Y.: Sensitivity of the French Alps snow cover to the variation of climatic

variables, Ann. Geophys., 12, 469–477, doi:10.1007/s00585-994-0469-6, 1994.

Marty, C., Schlögl, S., Bavay, M., and Lehning, M.: How much can we save? Impact of different emission845

scenarios on future snow cover in the Alps, The Cryosphere, 11, 517–529, doi:10.5194/tc-11-517-2017,

2017.

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone,

A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S.,

Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse,850

M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin,

S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and

Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth

surface variables and fluxes, Geoscientific Model Development, 6, 929–960, doi:10.5194/gmd-6-929-2013,

2013.855

Maurer, E. P. and Pierce, D. W.: Bias correction can modify climate model simulated precipitation changes

without adverse effect on the ensemble mean, Hydrology and Earth System Sciences, 18, 915–925,

doi:10.5194/hess-18-915-2014, 2014.

Mezghani, A. and Hingray, B.: A combined downscaling-disaggregation weather generator for stochastic gen-

eration of multisite hourly weather variables over complex terrain: Development and multi-scale validation860

for the Upper Rhone River basin, J. Hydrol., 377, 245–260, doi:10.1016/j.jhydrol.2009.08.033, 2009.

Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather regimes: Recurrence and quasi stationarity, J. Atmos.

Sci., 52, 1237–1256, doi:http://dx.doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995.

Olsson, T., Jakkila, J., Veijalainen, N., Backman, L., Kaurola, J., and Vehviläinen, B.: Impacts of climate change

on temperature, precipitation and hydrology in Finland–studies using bias corrected Regional Climate Model865

data, Hydrol. Earth Sys. Sci., 19, 3217–3238, doi:10.5194/hess-19-3217-2015, 2015.

25

http://dx.doi.org/10.1002/2013WR014897
http://dx.doi.org/10.1007/s40641-016-0050-x
http://dx.doi.org/10.1029/2009RG000314
http://dx.doi.org/10.1007/s00585-994-0469-6
http://dx.doi.org/10.5194/tc-11-517-2017
http://dx.doi.org/10.5194/gmd-6-929-2013
http://dx.doi.org/10.5194/hess-18-915-2014
http://dx.doi.org/10.1016/j.jhydrol.2009.08.033
http://dx.doi.org/http://dx.doi.org/10.1175/1520-0469(1995)052%3C1237:WRRAQS%3E2.0.CO;2
http://dx.doi.org/10.5194/hess-19-3217-2015


Pagé, C., Terray, L., and Boé, J.: dsclim: A software package to downscale climate scenarios at regional scale

using a weather-typing based statistical methodology, Tech. rep., Climate Modelling and Global Change–

CERFACS, Toulouse, http://www. cerfacs. fr/globc/publication/technicalreport/2009/dsclim doc. pdf, 2009.

Piazza, M., Boe, J., Terray, L., Page, C., Sanchez-Gomez, E., and Deque, M.: Projected 21st century870

snowfall changes over the French Alps and related uncertainties, Climatic Change, 122, 583–594,

doi:10.1007/s10584-013-1017-8, 2014.

Quintana-Seguí, P., Turco, M., Herrera, S., and Miguez-Macho, G.: Validation of a new SAFRAN-based gridded

precipitation product for Spain and comparisons to Spain02 and ERA-Interim, Hydrol. Earth Sys. Sci., 21,

2187–2201, doi:10.5194/hess-21-2187-2017, 2017.875

Rauscher, S. A., Coppola, E., Piani, C., and Giorgi, F.: Resolution effects on regional climate model simulations

of seasonal precipitation over Europe, Clim. Dynam., 35, 685–711, doi:10.1007/s00382-009-0607-7, 2010.

Reid, P., Hari, R., Beaugrand, G., Livingstone, D., Marty, C., Straile, D., Barichivich, J., Goberville, E., Adrian,

R., Aono, Y., Brown, R., Foster, J., Groisman, P., Hélaou et, P., Hsu, H.-H., Kirby, R., Knight, J., Kraberg, A.,

Li, J., Lo, T.-T., Myneni, R., North, R., Pounds, J., Sparks, T., St ubi, R., Tian, Y., Wiltshire, K., Xiao, D., and880

Zhu, Z.: Global impacts of the 1980s regime shift, Glob. Change Biol., 22, 682–703, doi:10.1111/gcb.13106,

2015.

Rousselot, M., Durand, Y., Giraud, G., Mérindol, L., Dombrowski-Etchevers, I., Déqué, M., and Castebrunet,

H.: Statistical adaptation of ALADIN RCM outputs over the French Alps -application to future climate and

snow cover, The Cryosphere, 6, 785–805, doi:10.5194/tc-6-785-2012, 2012.885

Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Simulations of 21st century snow response to

climate change in Switzerland from a set of RCMs, International Journal of Clim, 35, 3185–3384,

doi:10.1002/joc.4205, 2014.

Soci, C., Bazile, E., Besson, F., and Landelius, T.: High-resolution precipitation re-analysis system for climato-

logical purposes, Tellus A, 68, doi:10.3402/tellusa.v68.29879, 2016.890

Spandre, P., François, H., George-Marcelpoil, E., and Morin, S.: Panel based assessment of snow management

operations in French ski resorts, Journal of Outdoor Recreation and Tourism, doi:10.1016/j.jort.2016.09.002,

2016.

Sterl, A.: On the (in) homogeneity of reanalysis products, J. Climate, 17, 3866–3873,

doi:http://dx.doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2, 2004.895

Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological

climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456, 12–29,

doi:10.1016/j.jhydrol.2012.05.052, 2012.

Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for

non-stationary conditions?, Hydrol. Earth Syst. Sc., 17, 5061–5077, doi:10.5194/hess-17-5061-2013, 2013.900

Themeßl, M. J., Gobiet, A., and Leuprecht, A.: Empirical-statistical downscaling and error correction of daily

precipitation from regional climate models, Int. J. Climatol., 31, 1530–1544, doi:10.1002/joc.2168, 2011.

Thuiller, W., Gueguen, M., Georges, D., Bonet, R., Chalmandrier, L., Garraud, L., Renaud, J., Roquet, C.,

Van Es, J., Zimmermann, N., and Lavergne, S.: Are different facets of plant diversity well protected

against climate and land cover changes? A test study in the French Alps, Ecography, 37, 1254–1266,905

doi:10.1111/ecog.00670, 2014.

26

http://dx.doi.org/10.1007/s10584-013-1017-8
http://dx.doi.org/10.5194/hess-21-2187-2017
http://dx.doi.org/10.1007/s00382-009-0607-7
http://dx.doi.org/10.1111/gcb.13106
http://dx.doi.org/10.5194/tc-6-785-2012
http://dx.doi.org/10.1002/joc.4205
http://dx.doi.org/10.3402/tellusa.v68.29879
http://dx.doi.org/10.1016/j.jort.2016.09.002
http://dx.doi.org/http://dx.doi.org/10.1175/1520-0442(2004)017%3C3866:OTIORP%3E2.0.CO;2
http://dx.doi.org/10.1016/j.jhydrol.2012.05.052
http://dx.doi.org/10.5194/hess-17-5061-2013
http://dx.doi.org/10.1002/joc.2168
http://dx.doi.org/10.1111/ecog.00670


Ummenhofer, C., Seo, H., Kwon, Y.-O., Parfitt, R., Brands, S., and Joyce, T.: Emerging European winter pre-

cipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades,

Geophys. Res. Lett., 44, doi:10.1002/2017GL074188, 2017.

Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K.,910

Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Anders-

son, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires,

S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins,

B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner,

N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and915

Woollen, J.: The ERA-40 re-analysis, Quarterly Journal of the Royal Meteorological Society, 131, 2961–

3012, doi:10.1256/qj.04.176, 2005.

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50 year high reso-

lution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644,

doi:10.1002/joc.2003, 2010.920

Vionnet, V., Brun, E., Morin, S., Boone, A., Martin, E., Faroux, S., Moigne, P. L., and Willemet, J.-M.: The

detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model. Dev., 5, 773–

791, doi:10.5194/gmd-5-773-2012, 2012.

Vrac, M., Stein, M., and Hayhoe, K.: Statistical downscaling of precipitation through nonhomogeneous stochas-

tic weather typing, Clim. Res., 34, 169, doi:doi: 10.3354/cr00696, 2007a.925

Vrac, M., Stein, M., Hayhoe, K., and Liang, X.-Z.: A general method for validating statistical downscaling

methods under future climate change, Geophys. Res. Lett., 34, doi:10.1029/2007GL030295, 2007b.

Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and Somot, S.: Dynamical and statisti-

cal downscaling of the French Mediterranean climate: uncertainty assessment, Nat. Hazard. Earth Sys., 12,

2769–2784, doi:10.5194/nhess-12-2769-2012, 2012.930

Wilby, R., Wigley, T., Conway, D., Jones, P., Hewitson, B., Main, J., and Wilks, D.: Statistical downscal-

ing of general circulation model output: a comparison of methods, Water Resour. Res., 34, 2995–3008,

doi:10.1029/98WR02577, 1998.

27

http://dx.doi.org/10.1002/2017GL074188
http://dx.doi.org/10.1256/qj.04.176
http://dx.doi.org/10.1002/joc.2003
http://dx.doi.org/10.5194/gmd-5-773-2012
http://dx.doi.org/doi: 10.3354/cr00696
http://dx.doi.org/10.1029/2007GL030295
http://dx.doi.org/10.5194/nhess-12-2769-2012
http://dx.doi.org/10.1029/98WR02577


Table 1. Variables considered in this study : Variable name, Abbreviation, Input or Output of Crocus, Units,

Level and Method of integration aggregation (of the observational dataset from hourly to daily) and disaggre-

gation (RCM adjusted data from daily to hourly). Variables used for the evaluation of the ADAMONT method

are highlighted in bold characters. SW = shortwave, LW = longwave.

Variable Abbreviation Input/Output Units Level Method

Temperature Tair Input K 2 m Min, max

Specific Humidity Qair Input kg kg−1 2 m Last value

Wind speed Wind Input m s−1 10 m Last value

Rainfall Rate Rainf Input kg m−2 h−1 Surface Mean

Snowfall Rate Snowf Input kg m−2 h−1 Surface Mean

Incident LW Radiation LWdown Input W m−2 Surface Mean

Incident Direct SW Radiation DIR_SWdown Input W m−2 Surface Mean

Incident Diffuse SW Radiation SCA_SWdown Input W m−2 Surface Mean

Snowpack Depth SNOWDEPTH Output m < Surface -
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Table 2. Name and description of the different configurations used in the evaluation of the ADAMONT method.

Name Description

SAFRAN reanalysis Simulation carried out with the SAFRAN reanalysis, over the period considered

in the figures (1980-2010, 1980-1995 or 1995-2010)

RCM raw N0 Simulation carried out over the period considered in the figures, with the raw

ALADIN RCM (without adjustment)

RCM raw N50 Simulation carried out over the period considered in the figures, with the raw

ALADIN RCM (without adjustment), using the spatial and altitudinal RCM

grid points neighbour selection technique (N = 50)

RCM L. 1980-1995 N0 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-1995

RCM L. 1980-1995 N50 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-1995, using the spatial and altitudi-

nal RCM grid points neighbour selection technique (N = 50)

RCM L. 1980-1995 no corr Same as RCM L. 1980-1995 N0, but without performing the last quantile map-

ping for rain and snow

RCM L. 1995-2010 N0 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1995-2010

RCM L. 1995-2010 N50 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1995-2010, using the spatial and altitudi-

nal RCM grid points neighbour selection technique (N = 50)

RCM L. 1995-2010 no corr Same as RCM L. 1995-2010 N0, but without performing the last quantile map-

ping for rain and snow

RCM L. 1980-2010 N0 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-2010

RCM L. 1980-2010 N50 Simulation carried out over the period considered in the figures, with the AL-

ADIN RCM, and the learning period 1980-2010, using the spatial and altitudi-

nal RCM grid points neighbour selection technique (N = 50)

RCM L. 1980-2010 no corr Same as RCM L. 1980-2010 N0, but without performing the last quantile map-

ping for rain and snow
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Table 3. Mean values and scores of the ADAMONT-adjusted RCM L. 1980-2010 simulation compared to935

SAFRAN over the period 1980-2010 for each massif of the French Alps (massif numbers # indicated in Fig. 3)

and for the Northern and Southern Alps, at 1200 m and 2100 m elevation : mean annual temperature (T, in K)

and precipitation (P, in kg m−2 yr−1), mean winter (DJFMAM) snow depth (SD, in m), mean annual bias of

T and P, mean winter bias of SD, annual root mean square error (RMSE) of T and P, winter RMSE of SD, and

annual correlation of T and P.940

# Massif Altitude Mean value Mean bias RMSE Correlation

T P SD T P SD T P SD T P

Northern Alps 1200 m 280.1 991 0.32 -0.04 -217 -0.04 0.40 643 0.11 0.99 0.92

2100 m 275.8 675 1.25 0.03 -294 -0.03 0.50 804 0.16 0.96 0.91

1 Chablais 1200 m 279.5 1247 0.40 -0.05 -233 -0.04 0.56 1010 0.16 0.97 0.56

2100 m 275.5 845 1.54 0.07 -313 -0.04 0.55 1222 0.27 0.95 0.52

2 Aravis 1200 m 279.8 1205 0.42 -0.02 -282 -0.05 0.47 1021 0.17 0.98 0.88

2100 m 275.7 814 1.65 0.07 -389 -0.03 0.56 1310 0.29 0.95 0.88

3 Mont Blanc 1200 m 279.7 1104 0.35 -0.06 -232 -0.04 0.55 981 0.12 0.97 0.58

2100 m 275.6 854 1.44 0.04 -367 -0.10 0.51 1316 0.29 0.97 0.59

4 Bauges 1200 m 279.7 1177 0.44 -0.02 -273 -0.04 0.44 948 0.17 0.98 0.90

2100 m 275.6 751 1.65 0.07 -408 0.01 0.56 1099 0.31 0.95 0.90

5 Beaufortin 1200 m 280.1 921 0.40 -0.02 -195 -0.02 0.45 786 0.14 0.98 0.79

2100 m 275.6 653 1.36 0.05 -291 -0.05 0.53 974 0.20 0.96 0.78

6 Haute Tarentaise 1200 m 280.3 727 0.33 -0.04 -177 -0.05 0.65 686 0.16 0.97 0.75

2100 m 275.4 509 1.01 0.00 -199 -0.06 0.62 789 0.25 0.97 0.74

7 Chartreuse 1200 m 280.0 1225 0.37 -0.02 -303 -0.04 0.51 1070 0.21 0.97 0.87

2100 m 276.1 761 1.57 0.07 -409 0.06 0.75 1307 0.30 0.89 0.84

8 Belledonne 1200 m 280.1 1112 0.34 -0.05 -229 -0.03 0.48 917 0.16 0.98 0.89

2100 m 275.9 771 1.45 0.03 -314 0.05 0.66 1175 0.26 0.91 0.88

9 Maurienne 1200 m 280.4 854 0.33 -0.04 -184 -0.01 0.48 767 0.15 0.99 0.84

2100 m 275.8 548 1.10 0.03 -241 -0.02 0.55 868 0.21 0.95 0.85

10 Vanoise 1200 m 280.4 771 0.31 -0.03 -129 -0.02 0.53 694 0.11 0.98 0.82

2100 m 275.6 549 1.00 0.00 -186 -0.04 0.54 833 0.20 0.96 0.81

11 Haute Maurienne 1200 m 280.7 642 0.15 -0.05 -147 -0.04 0.59 693 0.10 0.97 0.87

2100 m 275.5 487 0.61 -0.03 -185 -0.08 0.48 858 0.19 0.98 0.84

12 Grandes Rousses 1200 m 280.4 907 0.26 -0.06 -200 -0.03 0.65 902 0.14 0.96 0.83

2100 m 276.0 591 1.06 0.00 -244 -0.02 0.76 998 0.26 0.88 0.85

13 Vercors 1200 m 280.2 1032 0.20 -0.02 -228 -0.04 0.50 768 0.13 0.97 0.89

Table 3 continues on the next page
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Table 3 continued

# Massif Altitude Mean value Mean bias RMSE Correlation

T P SD T P SD T P SD T P

2100 m 276.2 686 1.21 0.05 -308 -0.03 0.73 971 0.25 0.88 0.85

14 Oisans 1200 m 280.5 947 0.19 -0.03 -223 -0.05 0.49 903 0.11 0.98 0.84

2100 m 276.2 629 0.91 0.01 -264 -0.07 0.65 1038 0.28 0.93 0.85

Southern Alps 1200 m 281.2 775 0.10 0.03 -150 -0.02 0.49 530 0.05 0.98 0.93

2100 m 276.4 546 0.63 0.02 -194 -0.04 0.47 646 0.15 0.98 0.93

15 Thabor 2100 m 275.9 452 0.70 0.00 -220 -0.03 0.61 868 0.20 0.96 0.87

16 Pelvoux 1200 m 280.9 733 0.20 0.00 -146 -0.01 0.75 676 0.08 0.94 0.93

2100 m 276.2 533 0.92 0.02 -204 0.00 0.67 878 0.24 0.94 0.92

17 Queyras 1200 m 281.1 568 0.10 0.01 -138 -0.03 0.56 641 0.07 0.98 0.83

2100 m 276.0 426 0.46 0.02 -163 -0.04 0.54 770 0.18 0.98 0.82

18 Dévoluy 1200 m 280.6 935 0.10 -0.02 -171 -0.03 0.50 784 0.08 0.97 0.86

2100 m 276.4 633 0.77 0.05 -186 -0.02 0.66 919 0.24 0.94 0.84

19 Champsaur 1200 m 280.8 823 0.13 -0.02 -180 -0.02 0.57 705 0.08 0.98 0.90

2100 m 276.4 580 0.74 0.01 -217 -0.04 0.57 880 0.24 0.97 0.88

20 Parpaillon 1200 m 281.1 629 0.13 0.02 -145 -0.02 0.60 644 0.07 0.97 0.87

2100 m 276.4 467 0.54 0.02 -179 -0.03 0.52 736 0.17 0.99 0.87

21 Ubaye 1200 m 281.2 682 0.06 0.04 -132 -0.01 0.82 580 0.05 0.92 0.89

2100 m 276.6 525 0.43 0.03 -179 -0.06 0.58 705 0.18 0.98 0.89

22 Alpes Azur 1200 m 281.7 877 0.05 0.10 -119 -0.02 0.66 728 0.08 0.94 0.78

2100 m 277.0 590 0.53 0.03 -180 -0.10 0.48 854 0.22 0.98 0.78

23 Mercantour 1200 m 282.3 952 0.05 0.09 -168 -0.03 0.71 974 0.07 0.94 0.68

2100 m 276.9 707 0.56 -0.02 -223 -0.06 0.61 1133 0.27 0.96 0.69
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Figure 1. Clusters of each weather regime for the different seasons (winter: DJF, spring: MAM, summer: JJA,

autumn: SON) used in this study: mean geopotential height at 500 hPa (m) in ERA-40 over the period 1958-

2001. The seasonal climatological mean was removed. Isohypses are represented every 50 m and the zero

isohypse is not represented. For readability, positive values are shaded progressively.
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Figure 2. Illustration of the different parameters taken into account in the disaggregation of RCM temperature

from a daily integration period into an hourly time step. Th
RCM (1h,i) and Th

RCM (24h,i− 1) are the hourly

adjusted RCM temperature values at the first time step of day i and at the last time step of the day before (i-1),

Tminh
RCM (i) and TmaxhRCM (i) are the hourly minimum and maximum adjusted RCM temperature values

respectively, and Tmind,adj
RCM (i) and Tmaxd,adjRCM (i) are the daily minimum and maximum adjusted RCM tem-

perature values respectively. α is a parameter which can be tuned to give more importance to the minimisation

of differences between daily and hourly RCM minima and maxima. Hourly adjusted RCM temperature time se-

ries for values of α of zero, 2 and infinite are shown. Th
OBS corresponds to the hourly series of the chosen daily

analogue, and Tmind,raw
RCM (i) and Tmaxd,rawRCM (i) are the daily raw minimum and maximum RCM temperature

values (before adjustment).
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Figure 3. Description of geographical configuration of the SAFRAN reanalysis and the ALADIN RCM. The

top right panel illustrates the spatial domains covered by the simulation (FRB12) and by EURO-CORDEX, and

the location of the study area is indicated by the pink box. In the main panel, SAFRAN massifs are delimited by

the black contours for the Northern Alps and by the burgundy contours for the Southern Alps, and their centre

points are indicated by the black stars. ALADIN grid points are represented by dots, with pink contour for the

grid points closest to each SAFRAN massif centre point. Surface elevation in France is from the 50m-DEM

from the Institut National d’Information Géographique et Forestière (IGN) and outside France from GTOPO30

(resolution of 30 arc seconds ≈ 1 km). The elevation of ALADIN grid points is indicated by the color palette

(in m above sea level (a.s.l.)). The bottom right panel indicates the location of each massif used in Table 3.

Projection is in Lambert II étendu (L2E).
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Figure 4. (top left) Location of the Vercors massif, with ALADIN RCM grid points chosen as the closest in x, y

(N = 0, pink contour) and in x, y and z (using N 6= 0). Coloured lines link each SAFRAN massif centre point

with the corresponding grid point in ALADIN for the different elevations considered (600-2400in m above

sea level (a.s.l.)). In this case the 1500 m and 1800 m lines are similar. (top right) Mean temperature for each

elevation band over the evaluation period in each adjusted RCM simulation (different learning periods and 2

grid points neighbour selection methods) and in SAFRAN (1980-2010). (bottom left) Mean precipitation for

each elevation band over the evaluation period. (bottom right) Mean snow depth (using Crocus in this case) for

each elevation band over the evaluation period.
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Figure 5. Temperature mean bias and root mean square error (RMSE) of each raw and adjusted RCM simulation

compared to the SAFRAN reanalysis over the evaluation period for the Vercors massif as a function of elevation.

Scores computed for the raw RCM simulations concern minimum and maximum daily temperatures.
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Figure 6. Precipitation mean bias and root mean square error (RMSE) of each raw and adjusted RCM simulation

compared to the SAFRAN reanalysis over the evaluation period for the Vercors massif as a function of elevation.
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Figure 7. Snow depth mean bias and root mean square error (RMSE) of each adjusted RCM simulation (used as

input of Crocus) compared to the SAFRAN/Crocus reanalysis over the evaluation period for the Vercors massif

as a function of elevation.
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Figure 8. Ratio of standard deviations between the SAFRAN reanalysis and adjusted RCM temperature, pre-

cipitation and snow depth (using Crocus in this case) as a function of the integration window over the evaluation

period, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 9. Cumulated probability density function (PDF) of daily temperature, precipitation and snow depth

(using Crocus in this case) in each adjusted RCM simulation and in the SAFRAN reanalysis (1980-2010) over

the evaluation period, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 10. Scores for the duration and persistence of precipitation events in each adjusted RCM simulation

compared to the SAFRAN reanalysis over the evaluation period, for the Vercors massif at 1200 m a.s.l. and

2100 m a.s.l.. EPD = relative error on the probability of a dry day, EPDD = relative error on the probability of

a dry day following a dry day, EPHH = relative error on the probability of a wet day following a wet day, EHD

= relative error on the mean duration of wet periods.
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Figure 11. Mean annual cycle of temperature, precipitation and snow depth (using Crocus in this case) in each

adjusted RCM simulation and in the SAFRAN reanalysis over the period 1980-1995 and 1995-2010, for the

Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.. Letters on the x-axis correspond to the different months of the

calendar (J = January, F = February, etc.).
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Figure 12. Seasonal average time series of temperature from 1980 to 2010 in each adjusted RCM simulation

and in the SAFRAN reanalysis, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 13. Seasonal average time series of precipitation from 1980 to 2010 in each adjusted RCM simulation

and in the SAFRAN reanalysis, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l..
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Figure 14. Seasonal average time series of snow depth from 1980 to 2010 in each adjusted RCM simulation

(used as input for Crocus) and in the SAFRAN/Crocus reanalysis, for the Vercors massif at 1200 m a.s.l. and

2100 m a.s.l..
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Figure 15. Correlation between the SAFRAN reanalysis and adjusted RCM temperature and precipitation as a

function of the integration window over the evaluation period, for the Vercors massif at 1200 m a.s.l. and 2100

m a.s.l..
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Figure 16. Scores for the detection of precipitation events in each adjusted RCM simulation compared to the

SAFRAN reanalysis over the evaluation period, for the Vercors massif at 1200 m a.s.l. and 2100 m a.s.l.. POD

= probability of detection, FAR = false alarm rate, POFD = probability of false detection, TSS = true skill score.
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