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Abstract. Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often

embedded into Earth System models which are increasingly used for decision making regarding climate policies. These models

contain poorly constrained parameters (e.g., maximum phytoplankton growth rate) which are typically adjusted until the model

shows a reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model

and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical5

processes are non-linear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and

might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose to determine a preferably

large lower bound for the global optimum, that is relatively easy to obtain and that will help to assess the quality of an optimum,

generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is

typically larger than zero. We suggest to derive such lower bounds based on typical properties of biogeochemical models10

(e.g., a limited number of extremes and a bounded time-derivative). We evaluate this approach with synthetic observations and

demonstrate a real-world example that consists of phytoplankton observations in the Baltic Sea, proving that an exemplary

model of NPZD type is quite well-calibrated.

1 Introduction

Earth system models are widely used to assess the consequences of climate change and explore climate engineering op-15

tions (e.g., Brovkin et al., 2009; Keller et al., 2014; Mengis et al., 2015; Cao and Caldeira, 2008, 2010, and many more to

follow). In order to capture the development of climate relevant greenhouse gases such as CO2 and N2O a pelagic biogeo-

chemical component, embedded into a numerical ocean model, is essential.

In contrast to ocean physics, which is derived from first principles, current biogeochemical modules are based on empiri-

cal relationships. Thus, several studies compare models of different complexities (e.g., Friedrichs et al., 2006). Still there is20

no consensus yet which complexity is needed to capture the major processes and how exactly the model should be formu-

lated (e.g., Anderson, 2005; Löptien, 2011). Today, various model formulations exist. Popular examples are the BLING model

with 4 prognostic variables only (Galbraith et al., 2010) versus the PICES model, containing 24 prognostic variables (Aumont

et al., 2015). Another related major problem, beside the model complexity, is generally the multitude of poorly known model
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parameters which exert crucial control on the model behavior (e.g., Kriest et al., 2010). To assess and compare the quality of the

different model formulations, it is crucial to chose these parameters such that the fit to observations is as good as possible. Due

to the large computational expenses of 3-dimensional coupled biogeochemical ocean models, it is common practice that few

parameters are adjusted “by hand” until the model shows a “reasonable” agreement with some observations. More advanced

approaches use automatized optimization techniques to adjust the model parameters. These techniques require an objective5

metric (e.g., Evans, 2003) that measures the model-data misfit and can be minimized automatically. Due to computational lim-

itations, various studies estimate the model parameters at singular stations and adopt these for the full model (e.g. Kane et al.,

2011; Kaufman et al., 2017; Matear, 1995; Schartau and Oschlies, 2003). For this approach, it can be problematic to determine

one parameter set for several sites (e.g., Kidston et al., 2011). Thus, other studies use fast approximations (Kennedy et al.,

2006; Khatiwala, 2007) to optimize full 3-dimensional models. A drawback is, that these approaches are generally restricted10

to the estimation of few parameters only (e.g., Mattern et al., 2012; Kriest et al., 2017; Prieß et al., 2013a, b; Piwonski and

Slawig, 2016; Rückelt et al., 2010). In addition, limited data availability (e.g., Lawson et al., 1996) and deficient processes

in the ocean circulation model (e.g., Dietze and Löptien, 2013) cumber the optimization process. In summary, the systematic

optimization of a 3D coupled biogeochemical ocean model remains a difficult task and requires an ongoing advancement of

the existing methods (Schartau et al., 2017).15

Biogeochemical processes are non-linear, non-convex and complexly entangled. Therefore, as stressed by several studies,

associated model-data misfit measures comprise an unknown number of local optima and admit no proof whether an obtained

parameter set is globally optimal or not (e.g., Faugeras et al., 2003; Hurtt and Armstrong, 1996). Many parameter optimization

studies invoke deterministic methods that use gradient information about the objective function (the model-data misfit measure)

to iteratively approach a locally optimal set of parameters in an efficient way, starting from some initial guess. Most of these20

studies calculate gradient information by the adjoint method (introduced for biogeochemical models by Lawson et al. (1995)

since it is efficient if there are more parameters than model states) and use the gradient to determine a direction and an efficient

stepsize to change the parameters, often by applying a quasi-Newton method (e.g., Fennel et al., 2001; Friedrichs, 2001, 2002;

Spitz et al., 1998; Tjiputra et al., 2007; Xiao and Friedrichs, 2014). Other attempts focus on stochastic search algorithms

which rely on random decisions. Examples for stochastic search algorithms that have been applied to optimize parameters of25

biogeochemical models are simulated annealing (e.g., Hurtt and Armstrong, 1996, 1999; Matear, 1995; Kidston et al., 2011),

genetic algorithms (e.g., Hemmings and Challenor, 2012; Kaufman et al., 2017; Schartau and Oschlies, 2003) and estimation

of distribution algorithms (Kriest et al., 2017). Vallino (2000) compares the performance of a couple of optimization algorithms

of both types, tuning the parameters of an ecosystem model against mesocosm data. Stochastic search algorithms require more

model simulations (computation time) than gradient-based methods to converge but are less likely to get trapped in a “first30

available” local optimum (cf. Vallino, 2000), which might possibly be far off the global optimum. On the other hand, several

contributions which focus on gradient-based methods aim to increase confidence in the quality of an obtained parameter set

by repeating the optimization procedure many times (20–600), while using various random starting points (e.g., Garcia-Gorriz

et al., 2003; Hemmings et al., 2004; Schartau et al., 2001). Also this approach increases the number of required simulations

considerably.35
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Still, it is crucial to find a global optimum to assess the quality of a certain model formulation. Lacking a proof about the

global optimality of chosen parameters it is difficult to determine whether a model-data misfit is mainly caused by the param-

eter choice or attributed to other sources of uncertainty, like those concerning model equations or observational data (cf., e.g.,

Faugeras et al., 2003; Spitz et al., 1998; Schartau et al., 2001). Facing this situation, we have a strong interest to estimate the

deviation of a model-data misfit for a given parameter set relative to the unknown global optimum. As the minimal accomplish-5

able model-data misfit (i.e., the global optimum) is unknown, a good (i.e., preferably large) and easy to obtain lower bound on

that value would help to judge the quality of a minimum obtained by an automated optimization algorithm. Provided that such

a lower bound is close to the obtained model-data misfit, a continuation of the parameter optimization process would not be

necessary. In the present study, we introduce an approach to determine such lower bounds. We suggest to consider a surrogate

formulation that is easier to solve and determine the global optimum based on this “relaxed” problem. Our approach is based10

on certain properties of typical biogeochemical models which are likewise fulfilled by non-parametric functions. We propose

to search for the best fit to the observations among these functions – which is a much easier and faster optimization problem

than minimizing the model-data misfit based on the full biogeochemical model. Optimizing these non-parametric functions

provides the desired bounds on the lowest possible misfit of the actual model, since the properties we choose to constrain the

generalized optimization problems are satisfied by each solution of the original problem.15

The following section focuses on some typical properties of biogeochemical models which lead to the intended relaxed

problems. The choice of model properties is also owed to the fact that efficient tailored algorithms to solve the associated

problem relaxations are easily available. In Section 3, we examine the proposed method with regard to both characteristics

of observational data: their noise-level and coverage. For this purpose, we generate synthetic observations by adding random

Gaussian noise to samples of a parameterized exemplary model trajectory. In the next step, we compare the results with our20

lower bound approaches, i.e., with the global optima of the corresponding easier optimization problems. We systematically

examine the relation between both values in dependence of sparseness of the observational data and noise level. We further

consider a common NPZD-type biogeochemical model in combination with real-world observations in the Baltic Sea.

2 Methods

Comparing model output to observational data requires a criterion to measure the misfit between both data sets. To apply25

an automated optimization algorithm, such a measure needs to be reduced to a single real number. We give commonly used

measures in the following Subsection. In Subsection 2.2, we introduce a mathematical notation for the optimization problem

based on the given measure for the model-data misfit. Additionally, we provide a mathematical formulation for the (simplified)

non-parametric approach. We then give specifications of the non-parametric data-fit problem based on frequency limits on the

parameterized models (Subsection 2.3 and Subsection 2.4), bounds on their derivatives (Subsection 2.5), and the combination30

of both (Subsection 2.6). These non-parametric relaxations will be used to calculate lower misfit bounds as outlined above.
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2.1 Model-data misfit

A quality assessment of biogeochemical models usually compares available observational data o = (o1, . . . ,oN ) with corre-

sponding model output (model predictions) p = (p1, . . . ,pN ).

For the sake of simplicity, we will consider scalar data in the following, assuming that both o and p are uni-variate time series.

Clearly, with comprehensive global ocean models and observational data sets, both time series consist of vectors, comprising5

multiple quantities of interest on spatial grids. The presented lower bound methods can be transferred to that multi-variate case

by applying them to each quantity and each grid box and summing up the obtained results, optionally using weights for the

single terms.

Objective judgment about the differences between observational data and model output requires an associated measure ferr

that assigns a real number to the model-data misfit. Such an objective model-data misfit measure ferr further has the advantage10

that it allows to apply mathematical optimization algorithms to parametric models, where otherwise only manual parameter

tuning can be done until the model output shows a “reasonable” behavior.

There are several possible measures for the model-data misfit that have been used to evaluate biogeochemical models (see,

e.g., Evans, 2003; Gregg et al., 2009; Stow et al., 2009). Common measures are the mean absolute error (MAE)

fmae(p,o) =
1

N

N∑
i=1

|pi− oi|15

and the root mean squared error (RMSE)

frmse(p,o) =

√√√√ 1

N

N∑
i=1

(pi− oi)2
.

It is sufficient to consider the following expression (sum of squared errors)

N∑
i=1

pi− oi2

instead of RMSE as this transformation does not change the ranking on considered model outputs p. We will exemplarily work20

with RMSE which is the most commonly used misfit measure for biogeochemical models. However, our approach and the

corresponding algorithms are transferable to other misfit measures like MAE.

2.2 The optimization problem

As mentioned above, we consider scalar observations o = (o1, . . . ,oN ) taken at times t1 < t2 < · · ·< tN . Moreover, we in-

troduce a scalar parametric model function ϕ : S×R→ R, where the set S ⊆ Rn is the domain of the free parameters of25

the model. For a given parameter vector s ∈ S, the model prediction p(s) = (p(s)1, . . . ,p(s)N ) at times t1 < t2 < · · ·< tN

is given by p(s)i = ϕ(s; ti). So, in order to determine optimal model parameters, we want to minimize the model-data misfit
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measure

min

N∑
i=1

(ϕ(s; ti)− oi)2
,

s.t. s ∈ S,

(1)

that is, we want to determine the minimal sum of squared errors over all possible parameter values. As discussed in the

introduction, for global biogeochemical ocean models a full scan of the parameter space is hampered by computationally

expensive models that would have to be evaluated several times for differing parameter sets during the optimization. Moreover,5

we usually neither know if selected parameters s ∈ S correspond to a global optimum of the associated data-fit problem (1)

nor how good (or bad) these parameters are in relation to a global optimum of (1). Therefore, the idea is to find a value as large

as possible which we know to be smaller than the minimum of the optimization problem (1), i.e., a lower bound. Then, if the

minimum obtained by the optimization is close to this value, we may terminate the procedure. In mathematical terms we seek

a number α ∈ R>0 which is as large as possible while satisfying10

α≤
N∑
i=1

(ϕ(s; ti)− oi)2 for all s ∈ S. (2)

Now, if α satisfies Inequality (2) and it holds for some model parameters s ∈ S that the corresponding model-data misfit is

close to α, then s is a good parameter set with respect to the observational data (as well as α is a good lower bound on the

unknown optimal model-data misfit).

In order to find such a lower bound α, our approach is to replace the parametric optimization problem (1) by a formulation15

that can be solved more easily. Therefore, we specify a number of properties of the original model that hold for all parameter

sets s ∈ S and which we require the alternative formulation to fulfill. It is intuitively clear that the global optimal value of

such a relaxed problem is a lower bound α on the best possible model-data misfit of the original model. If the relaxed problem

is convex, in contrast to the original optimization task, its global optimum can be calculated efficiently (cf., e.g., Boyd and

Vandenberghe, 2004). We also refer to the information box below. Mathematically, our relaxations are modifications of the20

original optimization task (1) in the sense that the parametric model function ϕ is replaced by a non-parametric function Φ

from a class F of all functions that satisfy the considered property. In particular, F contains ϕ(s; ·) for all s from the parameter

domain S of the actual model. The associated non-parametric optimization problem on the “extended search space” reads

min

N∑
i=1

(Φ(ti)− oi)2
,

s.t. Φ ∈ F .

(3)

The model-data misfit of a global optimum of the relaxed problem (3) satisfies Inequality (2), meaning that it is a lower bound25

on the model-data misfit for all allowed parameters s of the original problem (1). We refer to Section 3 for thoughts on how

the lower bound is employed in applications to judge the quality of the optimization outcome. In short, the main idea of the

lower bound method can be summarized as
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– pick some properties that the model comprises for all parameters s ∈ S

– solve the optimization problem detached from the parametric model. Precisely, we minimize the sum of squared errors

over all functions Φ ∈ F that fulfill the selected properties.

– The procedure yields a lower bound for the original optimization problem as the set of possible solutions is larger for the

relaxed problem and contains the original model output.5

In the following sections, we give examples on the properties of the model that we choose.

Terms and background information

Given a function f : Rn→ R and a subset X of Rn, a general mathematical optimization problem is

(MP) minimize f(x),

subject to x ∈X.

An example is the parameter optimization problem (1).

Convex optimization problem. If f is a convex function and X is a convex set, then (MP) is a called a convex optimiza-

tion problem (CP). All relaxed problem formulations considered below are CPs. An important property of a CP is, that

every local optimum of f over X is already a global optimum (cf., e.g., Boyd and Vandenberghe, 2004).

Quadratic program. A special CP is a convex quadratic program (QP). A QP has a convex quadratic objective function

f and its function domain X is described in terms of some k linear constraints, i.e.,

X = {x ∈ Rn |gi(x)≥ 0 for i= 1, . . . ,k} ,

where gi, i= 1, . . . ,k, are linear functions. The surrogate model formulations (4)–(7) are QPs. Tools to calculate global

optima of arbitrary QPs exist, but for most of our surrogates we can apply tailored algorithms which are more efficient.

2.3 Bounds for monotonic models

We start with an example that is not directly related to biogeochemical models but which serves as a basis for the approaches

in Subsection 2.4 and Subsection 2.6, respectively. The task here is to fit a time series of observations by a monotonically

increasing data set. Measuring the model-data misfit by its sum squared error, the associated non-parametric optimization10

problem can, e.g., be stated as a convex quadratic program as follows

min

N∑
i=1

(pi− oi)2
,

s.t. p ∈ RN ,

pi ≤ pi+1 for i ∈ {1, . . . ,N − 1}.

(4)
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Figure 1. Synthetic data (blue dots) and corresponding output (blue crosses) of a periodic model function (blue curve). As the model

frequencies are low, both the model function and its samples take only two local extremes. The segments before, after, and between the

extremes (times tj and tk) are monotonically decreasing/increasing. The respective monotonic fits to the data (drawn in red) are therefore

“better” than the model output.

This yields a vector p ∈ RN with monotonically increasing entries, where pi is the data point that corresponds to time ti. These

entries are selected such that the sum of the squared deviations from the observations is minimized. Note, that (4) corresponds

to the general non-parametric optimization problem (3) if F is the class of all monotonically increasing functions. If we want

to work with monotonically decreasing functions instead, we just need to replace “≤” with “≥” in the monotonicity constraints

or we can apply (4) to −o instead of o and negate the resulting time series.5

The optimization problem (4) can be solved efficiently. The pool adjacent violators (PAV) algorithm (Barlow et al., 1972)

solves it with linear effort, i.e. in less than c ·N computer operations for some constant c and all N . Another possibility is to

use a general optimization tool for convex quadratic programs like, e.g., CPLEX or Matlab quadprog. Clearly, solutions of (4)

provide a lower bound on the optimal model-data misfit for every parametric model that is monotonically increasing.

2.4 Bounds for periodic models10

When simulating periodic systems, the model might (intentionally or un-intentionally) not resolve all frequencies that occur in

the corresponding observational data. Models that resolve low frequencies with respect to data frequency (e.g., NPZD models

that aim to capture the main characteristics of an annual cycle) take a correspondingly limited number of extreme values within

a given time interval, e.g., a seasonal cycle. This situation is sketched in Figure 1. The fact that each segment between two

subsequent extreme values is monotonically increasing/decreasing, allows to apply the methods introduced in Subsection 2.3.15

A corresponding series p1, . . . ,pN of discrete samples has (at most) the same number of local extremes as the model. For

illustration, suppose that the series has exactly two extreme values pj and pk with j < k ∈ [N ] as sketched in the example

in Figure 1. These must be one minimum and one maximum. Assume that the time points j and k are known in advance and
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the minimum appears at position j. Then, an optimal data-fit is a solution of a convex quadratic program similar to (4)

min

N∑
i=1

(pi− oi)2
,

s.t. p ∈ RN ,

pi ≥ pi+1 for i ∈ {1, . . . , j− 1},

pi ≤ pi+1 for i ∈ {j, . . . ,k− 1},

pi ≥ pi+1 for i ∈ {k, . . . ,N − 1},[
pN ≥ p1

]
,

(5)

where the optional last constraint appears, if the considered interval represents a full cycle of a periodic model. This yields a

vector p ∈ RN with entries that decrease up to entry j, then start to increase and which fall after entry k. At the same time this

vector minimizes the deviation from the observational data. The negated solution of (5) applied to−o instead of o is an optimal5

data-fit to observations o that has a maximum at position j and a minimum at position k. Now, if the positions j and k of the

extremes are unknown, repeating the optimizations with o and −o for every j < k ∈ [N ], the best of all results is an optimal

data-fit subject to the property that there are (at most) two local extremes in the time series. Similar to the case of two extremes,

we can consider more than two, say m, extremes. Dealing with all possible combinations of the positions of m extremes would

imply a computational effort of c1 ·m ·N2 operations (c1 constant, N arbitrary), but using a tailored algorithm (Demetriou and10

Powell, 1991) we can calculate a best piece-wise monotonic fit in only c2 ·m ·N2 computer operations.

2.5 Bounds for models with bounded derivatives

The change rates of biogeochemical processes like growth and decay have natural limits. In the presence of noise, observational

data is very likely to exhibit higher variations than a model that is devoted to comparatively slow interactions. In other words,

noise (or unresolved periodic processes with high frequencies and high amplitudes) cannot be well approximated by models15

that mimic processes of lower variation, i.e., models with small changes in a given time step. These processes are characterized

by a small absolute derivative. If we are able to postulate general bounds on the derivatives of a parametric model function ϕ

with respect to time, we can try to utilize this property in order to calculate lower bounds on the optimal misfit of ϕ.

General bounds on the first time-derivative (steepness) of ϕ are given as real numbers Dmin <Dmax such that Dmin ≤
∂ϕ
∂t (s, t)≤Dmax holds for all allowed parameter sets s and time points t. Using the function space F = {Φ : R→ R |Dmin ≤20

Φ′ ≤Dmax} in (3), we obtain a relaxation of the parametric problem (1) that can be expressed as the convex quadratic program
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min

N∑
i=1

(pi− oi)2
,

s.t. p ∈ RN ,

pi + (ti+1− ti)Dmin ≤ pi+1 for i ∈ [N − 1],

pi + (ti+1− ti)Dmax ≥ pi+1 for i ∈ [N − 1].

(6)

A solution of this problem yields a lower model-data misfit bound for all parameter sets s such that ϕ(s, ·) satisfies the

steepness bounds, Dmin ≤ ∂ϕ
∂t (s, t)≤Dmax. Here, we approximated the derivative Φ′(t) by finite differences which yields

Dmin ≤ Φ(ti+1)−Φ(ti)
ti+1−ti ≤Dmax.5

It is also possible to add linear constraints to the QP which consider bounds on higher-order derivatives of ϕ in terms of

higher-order finite differences. For example, the property D2,min ≤ ∂2ϕ
∂t2 (s, t)≤D2,max, s ∈ s, t ∈ [t1, tN ], can be accounted

for with second-order differences by, e.g., posing the (compactly written) constraints

D2,min ≤
pi+2− 2pi+1 + pi

(ti+2− ti)2 ≤D2,max for i ∈ [N − 2].

The knowledge of tight bounds on derivatives of increasing order allows to obtain increasingly tight lower bounds on the10

model-data misfit. However, since bounds on higher-order derivatives are more difficult to derive in practice, we restrict our

studies to steepness bounds.

2.6 Bounds for models with combined properties

Clearly, we can combine model properties into a joint QP, e.g., if the model has both, two local extremes within a window of

interest and bounded steepness. We can apply the combination of (5) and (6) and obtain the joint QP15

min

N∑
i=1

(pi− oi)2
,

s.t. p ∈ RN ,

pi ≥ pi+1 ≥ pi + (ti+1− ti)Dmin

for i ∈ {1, . . . , j− 1}∪ {k, . . . ,N − 1},

pi ≤ pi+1 ≤ pi + (ti+1− ti)Dmax

for i ∈ {j, . . . ,k− 1},[
pN ≥ p1 ≥ pN + (T + t1− tN )Dmin

]
.

(7)

Here, again, j < k are the indices of the unique minimum and the unique maximum, respectively, Dmin < 0 and Dmax > 0 are

the universal lower and upper bounds on the model’s first derivative, and T is the optional period of the model.

Similar to the approach in Subsection 2.4, the optimal solution of (7) applied to o and −o for all j < k ∈ [N ] will provide

the lower bound on the model-data misfit of the parametric model. As an alternative to a QP solver, we can use an extension20
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of the PAV algorithm that additionally considers steepness bounds with monotonic regression (LPAV, Yeganova and Wilbur,

2009) in order to solve (7).

3 Experiments

3.1 Method evaluation

We first aim to examine the extend to which the minimum model-data misfit of a parameterized model can deviate from5

the corresponding minimum misfit of a proposed non-parametric relaxation. Clearly, the difference between both misfits also

depends on the characteristics of the observational data, that is, noise level and data density. We therefore derive statistics about

that dependency using synthetic observations.

3.1.1 Test statistics

We generate the synthetic observations by adding white noise to N discrete samples Φ(ti) of a model function Φ : R−→ R,10

varying both the noise level and the number of samples. Our noise levels will be relative to the range

r := max
i∈[N ]

Φ(ti)− min
i∈[N ]

Φ(ti)

of the model output. As a simple parametric test function we use a cubic polynomial Φ(t) = ϕ(s, t) =
3∑
i=0

sit
i. We simulate

one-year time series of observational data by considering the interval [0,365] and taking N equidistant samples, ti = i
N · 365,

for a polynomial with fix coefficients s∗ (a fixed parametrization), and N ∈ {12,25,50,100,200,300}. We add zero-mean15

white noise N (0, σ) to the time series values using one of 6 different noise levels with standard deviations σ = σ∗ · r, σ∗ ∈
{0.1,0.2,0.3,0.5,0.7,1.0}. Figure 2 shows the exemplary cubic polynomial

Φ(t) = 2 + 0.035 · t− 0.0003 · t2 + 5.592 · 10−7 · t3

and N = 300 synthetic observations oi obtained by adding white noise with standard deviation σ = 0.2 ·r to the corresponding

function values, i.e., oi = Φ(ti) +N (0, 0.2 · r). The figure further shows the minimum root mean squared error data-fit by a20

function that has at most two local extremes as introduced in Subsection 2.4. The related root mean squared error between

the synthetic data and this piece-wise monotonic fit is 0.445. We know that this error cannot be larger than the corresponding

error between the fix polynomial Φ and the data since any cubic polynomial takes at most 2 extremes, too. Indeed, the latter

error is 0.501, which is the root mean square of the white noise we added. By solving a convex optimization problem we can

efficiently identify the coefficients s∗ = (s∗0,s
∗
1,s
∗
2,s
∗
3) of a polynomial Φ∗ =

3∑
i=0

s∗i t
i that provides the best data-fit of all cubic25

polynomials. Unsurprisingly, the re-optimized polynomial Φ∗ differs only slightly from the original one and yields a root mean

squared error of 0.497.

For our statistics about the proposed error assessment methods we are interested in the ratio

q :=
frmse(prel,o)

frmse(ppar,o)
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Figure 2. A cubic polynomial, synthetic observational data generated by adding white noise to 300 equidistant samples of the polynomial,

and a minimum root mean squared error data-fit with regard to the property that no more than 2 extremes are taken.
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Figure 3. The synthetic observational data of Figure 2 and minimum root mean squared error data-fits with regard to a steepness bound

(data-fit (b)) as well as regarding both properties, bounded steepness and the existence of at most 2 extremes (data-fit (c)).

between the lower error bound given by the optimal output of a non-parametric model relaxation prel and the corresponding

data-fit with the original parametric model ppar. In the above example this ratio is qa = 0.445
0.501 = 0.888∼ 89%. We repeat the

calculation of a lower error bound and the corresponding error ratio with two other relaxations assuming only a bounded

model steepness (cf. Subsection 2.5) and a combination of both properties, bounded steepness and the existence of at most 2

(local) extremes (cf. Subsection 2.6), respectively. The results are depicted in Figure 3. Here, for both relaxations we assume a5

maximum model steepness of 0.05 which is approximately 28% more than the maximum steepness of the original polynomial

in the interval [0,365]. The resulting root mean squared errors of the property-based optimal data-fits are 0.442 if only the
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Table 1. Ratios (times 100) between the misfit of the parametric model (cubic polynomial) to synthetic observations (the model output

plus white noise) and the misfit of the corresponding non-parametric regression model. We state the ratios for different noise levels σ and

numbers of samples N . The values in each cell are the range of the ratios over 100 trials followed by their average and standard deviation.

Non-parametric regression was done by (a) only assuming that at most 2 local extremes exist, (b) only assuming a steepness bound of 0.05,

(c) assuming both properties.

property σ
range mean st.dev.

N = 300 N = 200 N = 100 N = 50 N = 25 N = 12

(a)

0.1 82–88 85 1.2 74–85 81 2.2 63–79 71 3.3 36–69 56 6.6 9–58 36 10.2 0–51 12 13.8

0.2 86–92 89 1.1 80–90 86 1.9 70–85 78 3.0 50–79 66 5.9 22–70 50 9.6 0–65 27 15.7

0.3 88–94 91 1.0 83–92 88 1.8 74–87 81 2.8 56–82 71 5.6 24–74 56 9.4 1–70 36 15.2

0.5 90–95 93 0.9 86–94 90 1.6 77–90 84 2.6 60–84 75 5.2 29–80 62 9.4 7–69 44 14.7

0.7 91–96 94 0.9 88–95 91 1.5 79–92 86 2.5 62–86 77 5.2 31–81 64 9.2 13–71 48 14.4

1.0 91–97 95 0.9 89–96 92 1.5 80–93 87 2.5 63–87 78 5.1 34–82 66 8.9 19–75 50 14.0

(b)

0.1 77–84 81 1.4 69–80 75 2.1 51–70 61 3.5 22–52 41 6.4 0–48 16 10.7 0–15 0 1.5

0.2 85–91 88 1.2 79–88 84 1.7 67–81 75 2.9 45–69 60 5.6 12–63 38 10.3 0–42 7 10.2

0.3 88–93 91 1.0 83–91 88 1.5 74–86 81 2.6 54–77 69 5.0 27–69 51 9.1 0–53 19 13.7

0.5 91–95 93 0.9 87–94 91 1.3 81–91 86 2.2 63–84 77 4.4 44–77 64 7.7 0–66 37 14.1

0.7 92–96 95 0.8 89–95 93 1.2 84–93 89 2.0 67–88 82 4.0 52–82 70 6.7 10–72 47 12.9

1.0 94–97 96 0.7 91–96 94 1.1 87–95 91 1.8 71–91 85 3.7 59–86 76 5.8 25–77 57 11.5

(c)

0.1 85–92 89 1.1 80–88 85 1.7 70–83 76 2.8 44–73 61 5.6 15–58 39 9.5 0–51 12 13.8

0.2 89–95 93 1.0 87–93 90 1.4 79–89 84 2.3 59–82 74 4.8 35–72 57 8.2 0–65 31 14.8

0.3 91–96 94 0.9 89–95 92 1.2 82–92 88 2.1 66–86 79 4.4 47–78 66 7.2 1–70 42 13.5

0.5 93–97 96 0.7 92–96 94 1.1 86–95 91 1.8 71–90 84 3.9 54–84 74 6.3 8–78 55 12.0

0.7 94–98 97 0.7 93–97 95 0.9 88–96 92 1.7 73–93 87 3.6 59–87 79 5.7 18–83 62 11.1

1.0 95–99 97 0.6 94–98 96 0.8 90–97 94 1.5 76–94 89 3.3 65–90 83 5.1 29–87 68 10.2

steepness bound is assumed (data-fit (b)) and 0.464 if both properties are assumed (data-fit (c)). The corresponding error ratios

are qb = 0.883 and qc = 0.927, respectively.

To derive robust statistics, we repeat the experiment 100 times using different zero-mean white noise with the same standard

deviation σ. Now, we do the same for all 6×6 combinations of N and σ, i.e., we apply the 3 model relaxations (a), (b), and (c)

with regard to each of the 36 data property assumptions to 100 data sets of corresponding synthetic observations. The results5

are shown in Table 1.

The approach to calculate lower bounds on the model-data misfit by using property-based model relaxations stems from the

intuition that the overall shape of the optimized parametric model and that of the non-parametric relaxation should be similar,
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if the relaxation describes the main properties of the original model well. The amount of similarity is reflected by the ratios

stated in Table 1. Values that are close to 100 percent provide evidence that the parametric model is suitably shaped with

regard to the corresponding general model property assumptions. Here, by construction of the synthetic data, we already know

that the original polynomials are “correctly shaped”. Therefore, the numbers in the table actually reflect the tightness of the

property-based relaxations and serve as an orientation under which circumstances the lower bound approach can succeed.5

We observe that the data must be rather dense in order to reach good error ratios, especially with low levels of noise. This

dependence is plausible because small numbers of observations as well as low levels of noise cause small difference quotients
oi+1−oi
ti+1−ti of the observations. However, the explicit steepness bounds (property (a)) or implicit steepness bounds (property (b))

which we use for the model relaxation must be considerably smaller than the difference quotients in order to provide a lower

bound that is close to the model-data misfit of the optimized parametric model.10

For example, consider a target ratio of 85% that is desired to be reached for all 100 sets of random observations, i.e., the left

(worst case) number in a cell of Table 1 should be greater than 85. For up to N = 50 observations none of our experiments

reaches the 85% in the worst case. For N = 100 it is reached with property (b) and noiselevel 1.0 and with property (c) and

noise levels 0.5, 0.7, 1.0 (multiplied with the range of the underlying true process). Regarding the lowest applied noise level

of 0.1 and property (a), the 85% ratio is never reached in the worst case but only in the average case and only with N = 30015

observations.

3.1.2 A countercheck

Having evidence that the lower bounds on the model-data misfit become tight with sufficiently dense observations, we want to

countercheck if an optimized parametric model that slightly differs from the actual process behind the observational data has a

significantly worse model-data misfit in comparison with its non-parametric relaxation. This time, we generate 300 synthetic20

observations by disturbing the sum of two sine waves

Φ(t) = sin(t) + 0.3 · sin(2t)

and start with a noise level of 10% relative to the range of the function values (σ = 0.1 · r). As the data might be mistaken

as noisy measurements of a single sine process at first glance, we use a general sine model to fit the observations. From the

data, we estimate that both the frequency and the amplitude of the sine are at most 1.2. This implies a maximum steepness of25

1.44 and that the sine model takes no more than 2 extremes in [2,π], that is, according to the above notation, we use a type (c)

model relaxation. Optimization yields a solution with a root mean squared model-data misfit of 0.275 and the corresponding

property-based lower misfit bound 0.2. The data and both model outputs are shown in Figure 4. With regard to the data density,

the ratio qc = 0.727 of both values is not completely convincing and, indeed, one can recognize a “failure in the model shape”.

Now, we suppose the more precise process30

ϕ(s, t) = s1 + s2 · sin(s3(t− s4)) + s5 · sin(s6(t− s7)), (8)

resolving a second sine wave of higher frequency. We further suppose to know general bounds on both amplitudes |s2| ≤ 1.2,

|s5| ≤ 0.35 and on both frequencies |s3| ≤ 1.2, |s6| ≤ 2.2. This implies that the steepness of ϕ is bounded by 1.22+0.35·2.2 =

13
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Figure 4. Synthetic data obtained by adding noise to the function Φ(t) = sin(t) + 0.3 · sin(2t) and the optimized data-fit by a clean sine

wave (parametric model) and its property-based non-parametric relaxation (steepness ≤ 1.44, at most 2 extremes), respectively.
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Figure 5. Synthetic observations as in Figure 4 but optimizing the “correct” parametric model and its property-based non-parametric relax-

ation (steepness ≤ 2.21, at most 4 extremes), respectively.

2.21. From the data, we can expect that the new model with optimized parameters does only take 2 extremes in the interval

[0,2π], too. However, for the given bounds on the frequency and arbitrary parameters the model can take up to 4 extremes.

Consequently, in addition to the steepness bound on the model, at most 4 extremes must be assumed to calculate the lower

error bound on the best possible model-data misfit. Applying both assumptions, (i.e. using model property (c) from above) the

exact optimum value of the model relaxation is ∼ 0.217 while the optimized new parametric model comes down to ∼ 0.1935

providing a clearly better model-data misfit ratio qc = 0.891 than the pure sine model. The optimized parametric model curve

is shown in Figure 5.
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Table 2. Ratios (times 100) between the misfit of the parametric model to synthetic observations (the model output plus white noise) and the

misfit of the corresponding non-parametric regression model. The ratios are given for different noise levels σ and numbers of samples N .

The 4 entries in each cell are the mean ratio of 100 trials, the standard deviation for the pure sine model, and the corresponding values for the

“true” model that uses a sum of two sine waves. Non-parametric regression was done by (a) only assuming that at most 2 (4) local extremes

exist, (b) only assuming a model specific steepness bound (see text), (c) assuming both properties.

property σ
mean (sine) st.dev. (sine) mean (“truth”) st.dev. (“truth”)

N = 500 N = 300 N = 200 N = 100

(a)

0.05 84 1.1 50 1.8 79 1.5 47 2.0 73 2.5 43 2.6 60 3.6 36 3.3

0.1 89 0.9 74 2.0 85 1.2 70 2.2 81 2.2 67 3.1 71 3.2 60 4.2

0.2 92 0.8 88 1.5 89 1.1 85 1.8 86 2.0 82 2.6 78 3.0 76 3.9

(b)

0.05 81 1.1 52 1.8 73 1.7 49 2.0 65 2.5 46 2.4 46 4.1 39 3.3

0.1 88 0.9 77 1.9 83 1.4 74 2.2 78 2.0 71 2.5 65 3.5 65 3.6

0.2 92 0.7 90 1.3 89 1.1 89 1.6 86 1.6 87 1.8 77 2.9 82 2.6

(c)

0.05 88 0.9 55 1.8 84 1.4 52 2.0 78 2.1 50 2.5 65 3.2 44 3.1

0.1 93 0.7 79 1.9 89 1.1 77 2.2 86 1.7 75 2.6 77 2.6 70 3.5

0.2 95 0.6 92 1.3 93 0.9 90 1.6 91 1.4 89 1.8 85 2.2 86 2.6

We repeat the experiment with noise levels of σ = 5% and σ = 20% for different numbers of equidistant observations

N ∈ {500,300,200,100} and for all three property-based model-relaxation types (a), (b) and (c) used in Subsubsection 3.1.1.

Again, we generate 100 different random sets of observations for each combination of σ and N . The results are depicted

in Table 2. The experiments help to identify conditions under which we may distinguish the “truth” from “distortions of the

truth”. Sufficient conditions are given if the misfit ratio for the true parametric model, say q1, is not too small, e.g., q1 ≥ 0.55

but the ratio for a moderate distortion of the true parametric model, say q2, is essentially smaller. Depending on how close q1

is to 1, we may concretize the predicate “essentially smaller” to hold if either of the fractions q1
q2

and 1−q2
1−q1 is convincingly less

than 1, say q1
q2
≤ 0.75 or 1−q2

1−q1 ≤ 0.5. We find that a rather low noise level is necessary to satisfy these conditions. As already

observed in Subsection 3.1, high noise levels σ provide rather tight lower bounds on the minimum attainable model-data misfit

of the “correct model type” if sufficiently many observations are available. Unfortunately, the corresponding lower bounds for10

a less accurate model become similarly close in this case. For properties (b) and (c) and fewer observations, they can even

exceed the lower misfit bounds for the “correct model” since we apply different uniform steepness bounds.

3.2 Application on real-world observations

We now consider a real-world example with the aim to fit chlorophyll observations from the Bornholm Basin in the Baltic Sea

at 55.15 N, 15.59 E, dubbed station BY5. The data were provided by the Swedish Oceanographical Data Center (SHARK)15
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Figure 6. Bornholm seasonal adjusted observation time series of phytoplankton, and data-fits by the considered NPZD-model using the

parameters which were adjusted for global model configuration (red) and optimized parameters for the local model version (blue). The

(black) reference plot is the minimum error data-fit with regard to the properties that no more than 2 extremes are taken and the steepness is

at most 0.14.

at the Swedish Meteorological and Hydrological Institute (SMHI). BY5 was repeatedly sampled during 1962–2009. As there

are long data gaps, we merge all data into a climatological seasonal cycle. To derive phytoplankton (in nitrate units) from

chlorophyll, we use a constant chlorophyll-a to nitrate ratio of 1.59 Chla/mol N. The considered seasonal adjusted time-series

comprises 175 observations of phytoplankton.

We fit a box model of NPZD type to the data. It is based on a model of Oschlies and Garcon (1999). The original version5

was set up and tuned for the global ocean, but we consider a simplified version which is described in detail by Löptien and

Dietze (2015). Its model equations are given in the Appendix and its free parameters and their assumed limits can be found

in Table A1. As there is no temperature dependence in this model version an average temperature of 10 degree Celsius is

assumed for the growth period. Further, the “assimilation efficiency of herbivores” parameter is omitted (implicitly set to 1).

Figure 6 shows the Baltic Sea phytoplankton data set and simulations of the NPZD model simulations (red curve) using the10

parameter values taken from Oschlies and Garcon (1999). As this model-fit appears to be poor, we optimize the parameters

with regard to the Baltic Sea observations (these optimized parameter values are also depicted in Table A1). The result is a

more adequate model output (blue curve) lowering the associated RMSE model-data misfit from 0.896 to 0.717.

Now, we assess our result by lower bounds. Following the procedure outlined at the end of Subsection 2.2, we need to iden-

tify properties of the NPZD model that are satisfied for every credible (allowed) parameter choice and lead to an easily solvable15

surrogate problem. The ideal is to give a mathematical proof of such properties. However, it is justified to postulate a model

property which is based on sound biological experience, even if this property is not satisfied for all feasible combinations of

the parameter values. In this context it is important to note, that the relatively simple model structure of our NPZD-type model

with fixed (non-temperature dependent) rates does not suffice to describe the seasonal cycle after the spring bloom (Fennel
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and Neumann, 2004, page 35ff). Generally, model versions which fit the spring bloom satisfactory do not capture the observed

chlorophyll increase in autumn. We thus assume only two extremes to determine a compatible lower bound. A practical ap-

proach for more complex systems (which are beyond the scope of this contribution) will be to iteratively increase the number

of extremes of the non-parametric model relaxation until the obtained lower bound hardly increases anymore (this approach

will also require quite dense observational data). Using the algorithm of Yeganova and Wilbur (2009), we find that the best5

attainable RMSE misfit between a time series with 2 extremes and our data is σa = 0.557, a first lower error bound for the

applied NPZD model. The corresponding error ratio between this bound and the error of the optimized model is qa = 0.777.

In order to tighten our lower error bound, we additionally postulate a model steepness limit of 0.14, which we justify by the

fact that the optimized model curve has two extremes, a plausible position of its maximum, and a maximal steepness of ∼ 0.1.

The associated best possible data-fit, which we can calculate using the “piecewise monotonic regression” algorithm (Yeganova10

and Wilbur, 2009) in combination with the LPAV algorithm (Demetriou and Powell, 1991) instead of the classical PAV algo-

rithm (black curve in Figure 6) has an RMSE of σc = 0.66 which yields a quite high ratio of qc = σc

0.717 = 0.921. Thus, it is

confirmed that the main portion of the model-data misfit of the optimized NPZD model is not caused by a sub-optimal choice

of the parameter set but by other sources of uncertainty. For the sake of completeness we calculate the best data-fit with regard

to a limited model steepness of 0.14 solely (disregarding its number of extremes), using CPLEX to solve the corresponding15

formulation in terms of a quadratic program (6). In this case, the RMSE is σb = 0.619 and the corresponding error ratio is

qb = 0.864.

Some indication of an even smaller gap between the attained model-data misfit and the globally optimal misfit of the NPZD

model is given by the following additional step. The RMSE error of the calibrated NPZD model is the empirical standard

deviation σ between model simulations and observations. The lower bounds with regard to the general model properties (a),20

(b) and (c), i.e., σa = 0.557, σb = 0.619 and σc = 0.66, are approximately 20%, 22% and 23.5% of the range of the model

output, respectively. Experiments with random noise might help to further assess the quality of our parametric solution. Similar

to the statistics in Subsubsection 3.1.1, Table 1, we generate 100 sets of synthetic observations for each of the 3 standard

deviations σa, σb and σc by simply adding white noise to the model output and calculate the average error of the corresponding

optimal non-parametric data-fit. The obtained average ratios are qa,emp = 0.719, qb,emp = 0.891, and qc,emp = 0.919 which25

is encouragingly close to the respective ratios for the true observations. We have to note, however, that the assumed normal

distribution property is not actually satisfied by the errors between phytoplankton observations and the optimized NPZD model.

4 Discussion

Our aim is to complement research on the calibration of biogeochemical models by calculating lower bounds on their best

attainable model-data misfit. We utilize two general model properties for our purpose; a limited number of extremes and a30

bounded model steepness. We also consider the combination of both properties. The reason to consider such non-parametric

model properties is that they yield efficiently solvable (relaxed) optimization problems whereas optimizing the original para-

metric model is computationally demanding.
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4.1 Applicability

In our experiments (Section 3.1.1), the solitary assumption of a bounded model steepness leads to tight model relaxations (tight

lower error bounds), if enough observational data is available and the steepness bound is chosen to be close to the maximum

steepness of a calibrated model output. The task to derive a maximal bound for the steepness of a respective model output can

be difficult in practice and relies on (1) model equations and (2) observational data. A rigorous mathematical model analysis,5

e.g., considering single model parameters like the maximum growth of phytoplankton, provides maximal limits which are

valid for the entire parameter domain. However — resting on observation-based experience with the modeled processes —

it might be justified to assume a smaller, empirical steepness bound, irrespective of that bound being valid for all permitted

parameters. In Subsection 3.2, we assumed a steepness bound that is ∼ 40% larger than the maximum steepness of the NPZD

model with optimized parameters. In future, we aim to target iterative procedures to derive tight universal (likely time variate)10

model steepness bounds, e.g., using some kind of branch-and-bound approach.

Our second constraint, a limited number of extremes, is generally relatively easy to determine for common, rather smooth

biogeochemical models. An applicable number of extremes can be determined if regression with more extremes does hardly

reduce the misfit anymore. But here one should also keep the model structure in mind. Simple models can be limited in

reproducing specific shapes of the seasonal cycle. Based on the model structure, we assumed only two extremes for our NPZD15

real-world example in Subsection 3.2. Note, however, that assuming 4 extremes yields better fits in this case: the RMSE

decreases from 0.619 to 0.559 without bounding the steepness (from 0.66 to 0.62 with steepness bound). Note that the “low

number of extremes” condition indirectly implies a bounded (average) model steepness, too. In our experiments, the assumption

about the number of extremes resulted in better bounds than the sole assumption of a bounded steepness.

Unsurprisingly, the combination of tight steepness bounds with a limited number of extremes yields even better lower bounds20

on the minimum attainable model-data misfit than both properties separately. However, all our model relaxations require a

rather large number of observations in order to yield convincingly tight bounds (cf. Table 1).

4.2 Generalizations

Our contribution considers the root mean squared error (RMSE) as an objective measure of the model-data misfit because it

eases the task to formulate certain model properties in terms of convex optimization problems and to resort to corresponding25

tailor-made efficient algorithms. However, the suggested model properties also allow to deduce efficiently solvable optimization

problems if other misfit measures are used. For example, the sum absolute error can be dealt with in terms of linear programs

(LPs) by including auxiliary variables and auxiliary linear constraints to express absolute values. Also, the efficient methods

of Demetriou (1995) and Yeganova and Wilbur (2009) (we provide RMSE implementations as article supplements) can be

realized with other misfit measures than RMSE.30

Concerning the number of local extremes, our proof-of-concept experiments are restricted to a maximum of 2 (4) extremes,

according to the properties of the respective parametric models. However, solutions can even be calculated efficiently if the

model output is assumed to take a large maximum number of extremes (Demetriou and Powell, 1991; Demetriou, 1995). As

18



mentioned above, a suitable approach to work with that property is to increase the maximum assumed number of extremes

until the corresponding lower bound on the minimum attainable model-data misfit hardly increases anymore, indicating that

further extremes contribute to fit noise rather than processes of interest.

4.3 Cautionary notes

Contrary to the fact that a small gap between the misfit of some property-based model relaxation and the misfit of the optimized5

original model proves that further parameter calibration is not required, a large gap between both misfits does not necessarily

mean that the calibration of the chosen model is bad nor that the model is a wrong representation of the processes of interest.

Our experiments indicate that a large gap only then tends to serve as an inadequacy proof of a model (calibration) if enough

observations are available. Otherwise, the chosen property-based relaxations might fit observations too well.

On the other hand, a small gap between the optimal misfit of a property-based non-parametric relaxation and the misfit10

of the original parametric model can even be reached with an inappropriate parametric model structure if there is too much

noise in the data. The experiments in Section 3.1.2 are setup to estimate conditions that allow to distinguish the “truth” from

a “moderate distortion of the truth”. With regard to the experimental results in Table 2, a rather low noise level is necessary to

satisfy these conditions.

5 Conclusions15

We presented a concept to prove that a parametric model is well calibrated, i.e., that changes of its free parameters cannot

lead to a much better model-data misfit anymore. The intention is motivated by the fact that calibrating global biogeochemical

ocean models is important but computationally expensive.

Generally, the aim is to determine an optimal parameter set such that a predefined metric of the model-data misfit is minimal.

To keep the number of required expensive model simulations as small as possible, we suggest to calculate “tight” lower bounds20

on the lowest achievable model-data misfit. Our idea is to utilize properties of the original model that are satisfied for all

permitted parameters and lead to easily solvable optimization problems. Here, we focus on two such model properties to derive

our lower bounds on the model-data misfit; a maximum time-derivative and a maximum number of extremes per time unit.

Indeed, our experiments show that the achieved bounds can come quite close to the optimized misfit of the original model

if many observations are available. However, a problem with global observational data (e.g., World Ocean Atlas data) is that it25

is often sparse in time. For example, if we examine annual cycles of periodic processes with monthly observations, our lower

bound approach will only succeed if we overlay (seasonally adjust) measurement data of several years in order to reach the

required data-coverage. Long-term time series from observing platforms like BATS (Steinberg et al., 2001) provide enough

data on the temporal dimension but are limited in space and are only available for certain sites. A suitable global application of

our method to biogeochemical models might be related with dense satellite observations of chlorophyll-a (Volpe et al., 2007;30

Dogliotti et al., 2009).

19



Assuming the error between model output and observations to be Gaussian distributed noise, an obtained lower bound on

the root mean squared error is also a lower bound on the empirical standard derivation σ of the noise. We suggest the following

rule-of-thumb procedure, which is illustrated for a real world example in Subsection 3.2:

1. Optimize the model parameters w.r.t. the corresponding model-data misfit

2. Calculate lower error-bounds on the model-data misfit by using appropriate assumptions about the model properties5

3. Be satisfied if the ratio q between 1 and 2 is close to 1 or

4. Consider the lower bound from 2 to be the standard deviation σ of the noise in the observations and check whether q

corresponds to the empirical ratio qemp that is obtained by adding random noise of level σ to the output of the optimized

parametric model and fitting the obtained synthetic observations with the non-parametric relaxation.

Code availability. Implementations of the applied methods are available on GitHub (Sauerland, 2017). We provide two packages of C++10

sources:

– regressionCPX includes QP formulations and requires the CPLEX solver.

– regression is a subset that does not require CPLEX but only uses QP free and tailored regression algorithms: PAV (Barlow et al.,

1972), LPAV (Demetriou and Powell, 1991), PMR (Yeganova and Wilbur, 2009), and a combination of LPAV and PMR, PMRS.

For compilation, usage, and further notes, we refer to the README files contained in both packages.15

Appendix A: NPZD model parameters and equations

We explicitly state the free parameters and equations of the NPZD type box model that has been studied in Löptien and Dietze

(2015) and is used for our real world example in Subsection 3.2. The prognostic variables are nitrate (N), phytoplankton (P),

zooplankton (Z) and detritus (D) and scaled to units of mmolNm2. The temporal change of the prognostic variables depends

on 10 free parameters outlined in Table A1 and is determined by the following equations20

d

dt
N =−µmax · gl · gN ·P +mPN ·P +mZN ·Z +mDN ·D,

d

dt
P = µmax · gl · gN ·P−mPN ·P−G(P) ·Z−mPD ·P,

d

dt
Z =G(P) ·Z−mZN ·Z−mZD ·Z2,

d

dt
D =mZD ·Z2 +mPD ·P−mDN ·D.

Here, the hyperbolic MM equations gI = PAR
PAR+HPAR

and gN = N
N+HN

describe the limiting effect of light and nitrate concen-25

tration on the nitrate uptake of phytoplankton and

G(P) =
gmax ·P2

P2 +HZ
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Table A1. Parameters of the considered NPZD model with their physical units, allowed ranges, and optimized values.

Parameter Symbol Unit Range Optimized value

Net max. phytoplankton growth rate µnew day−1 0.1–0.9 0.1

Half-sat. const for light HPAR Wm−2 5.0–40.0 24.7832

Half-sat. const for nutrient uptake HN mmolNm−3 0.05–1.2 0.05

Max. grazing/prey-capture rate HZ mmolNm−6 0.2–1.1 0.2

Net max. grazing rate gnew day−1 0.01–1.2 1.2

Phytoplankton loss to N mPN day−1 0.01–0.6 0.01

Zooplankton loss to N mZN day−1 0.01–0.65 0.01

Remineralization rate of Det. mDN day−1 0.02–0.15 0.02

Zooplankton loss to Det. mZD day−1(mmolNm−3)
−1 0.01–0.9 0.507

Phytoplankton loss to Det. mPD day−1 0.01–0.9 0.0191

is a “Holling III-type” term. The maximum growth rate of phytoplankton µmax and the maximum grazing rate of zooplankton

gmax are obtained by substitutions

µnew := µmax−mPN−mPD,

gnew := gmax−mZN,

in order to enforce net phytoplankton growth and net zooplankton grazing by the positive lower limits on µnew and gnew,5

respectively.
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