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Abstract. The high-latitude regions of the northern hemisphere are a nexus for the interaction between land surface physical

properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary

significance – those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest – are vulnerable

to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to in-

crease with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface5

models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations

in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hy-

drology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently-developed fire module. Outputs from
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ORCHIDEE-MICT, when forced by two climate input data sets, are extensively evaluated against: (i) temperature gradients

between the atmosphere and deep soils; (ii) the hydrological components comprising the water balance of the largest high-

latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical

data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model

sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent.5

Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to

the high-latitude terrestrial environment.
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1 Introduction

In the high latitudes, the complex coupling between soil thermal and hydraulic processes, snowpack properties, and plant and

soil carbon pools is of great importance. Snow accumulation and freezing of soil water lead to a net storage of water from

October to April. Through the processes of snow melt and the onset of soil thaw in spring, water is made available for plant

uptake and growth. Simultaneously however, much of this is ‘lost’ as runoff to rivers, causing peak discharge rates in May-June25
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(Yang et al., 2003) and the flooding of large flatland areas from May to September (Papa et al., 2008; Biancamaria et al., 2009).

In summertime, the peak in incident solar radiation causes a temperature maximum that increases water evaporative demand

on the land surface. Many boreal and Arctic regions thus have a negative water balance in summer (Schulze et al., 1999), which

may impose powerful constraints on plant growth. Siberian and Canadian boreal forests have thus been shown to experience

water stress, with ratios of surface sensible to latent heat flux of up to ~2 (Jarvis et al., 1997; Baldocchi et al., 1997; Schulze5

et al., 1999) causing further heating of the near-surface atmosphere.

These large seasonal shifts of the high-latitude water balance – how water input from precipitation is shared between changes

of water storage in snow, ice and soil moisture, and balanced against losses from evapotranspiration, sublimation and river

discharge – can now be better assessed and evaluated using state-of-the-art observation datasets. In addition, in terms of

realistic process representation, land surface models (LSMs) focusing on high-latitude phenomena require the inclusion of the10

following non-exhaustive series of pivotal hydrological and biogeochemical interactions:

1- A representation of permafrost physics and seasonal freeze-thaw cycles, which determine the soil hydrologic and thermal

budgets and the volume and timing of lateral water flows to rivers.

2- The impact of winter snow acting as an insulating ‘barrier’ between soils and overlying air from Autumn to early Spring.

These have subsequent effects on soil temperature and water content, feeding back onto snow thickness itself.15

3- The seasonal mediation of plant water availability via snowmelt water, transpiration losses and the depth of the permafrost

table (active layer thickness), which in turn determine the availability of the lateral water flows that feed rivers in the warmer

months.

4- The limitations on plant productivity and biomass due to acute climatic conditions in high-latitude regions. These primar-

ily involve biotically prohibitive cold temperatures from Autumn to late Spring, low soil moisture in dry-summer regions, and20

fire events, caused by hot and dry conditions.

5- The buildup of large soil carbon stocks under cold conditions through the slow burial of organic matter in the permafrost

via cryoturbation and sedimentary soil formation processes (e.g. Hugelius et al., 2013; Tarnocai et al., 2009).

6- Feedbacks between high soil carbon concentrations and profiles of soil temperature, water and permafrost carbon content

(e.g. Lawrence and Slater, 2008; Decharme et al., 2016).25

We represent the above processes in an updated version of the ORCHIDEE LSM (ORganizing Carbon and Hydrology in

Dynamic EcosystEms), known as ORCHIDEE-MICT (aMeliorated Interactions between Carbon and Temperature), which we

describe in this study. Since the comprehensive description of the model ORCHIDEE by Krinner et al. (2005), the model went

through major modifications and improvements; we present here the major ones linked to high-latitude processes. ORCHIDEE-

MICT is evaluated over the last two to three decades (depending on the variable) against empirically generated datasets. Against30

these, we are able to evaluate model performance regarding the distribution of permafrost and the effect of snow on soil thermics

(mechanisms 1 and 2); the different components of the water cycle over a wide range of high-latitude basins (mechanism 3);

plant primary productivity as constrained by high-latitude conditions (mechanisms 3 and 4), and replication of soil carbon

stocks and feedback dynamics (mechanisms 5 and 6).
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2 ORCHIDEE model overview

The starting point for our updated land surface model (ORCHIDEE-MICT) is ORCHIDEE-TRUNK revision 3976. As detailed

in Section 3, its description of soil temperature and vertical water transport dynamics is based on coupled diffusion equations

with identical vertical discretization (Wang et al., 2016a), and includes soil freezing, its effect on water infiltration, and phase

change-induced heat sources and sinks in the soil column (Gouttevin et al., 2012b). The snow model described by Wang5

et al. (2013) is incorporated in this version, where snow is discretized into three layers of variable thickness, conductivity

and density, accounting for snow liquid water content (Boone and Etchevers, 2001). In terms of large-scale hydrology, a river

routing scheme including floodplains and their dynamics (d’Orgeval et al., 2008; Guimberteau et al., 2012) is coupled to

simulated grid-cell runoff (Section 3.2), permitting the calculation of ‘natural’ river discharge (i.e. in the absence of dams or

human water withdrawals).10

The carbon cycle model includes half-hourly photosynthesis (GPP), daily allocation of GPP assimilates to autotrophic res-

piration and 8 plant biomass pools (foliage, roots, above/below-ground sapwood and heartwood, fruits and carbon reserves),

and prognostic phenology (Botta et al., 2000). These pools are characterized by different turnover times, mortality rates and

subsequent litter and soil carbon decomposition rates. Litter carbon is funneled between structural and metabolic fractions, and

soil carbon between active, slow and passive pools, following Parton et al. (1987).15

The model divides vegetation into 13 plant functional types (PFTs). Each PFT follows the same suite of equations but with

PFT-specific parameter values and phenology functions (Krinner et al., 2005). PFT fractions are assigned to three soil tiles

corresponding to bare soil, short vegetation (grass and crop PFTs) and forests (all tree PFTs). The soil moisture budget of

each soil tile is calculated separately, but different PFTs in the same soil tile interact as they share the same soil moisture

source. While transpiration is calculated separately for each PFT, and soil moisture for each soil tile, the energy budget of a20

grid cell with multiple PFTs is calculated using the area-weighted average of those PFTs. This in turn defines mean grid-cell

land surface temperature, giving the upper boundary condition for the vertically discretized soil thermal module.

Temperature, water and carbon interactions described in ORCHIDEE revision 3976 are summarized in Fig. 1 by the black

arrows. Air temperature and humidity impact phenology, photosynthesis, autotrophic respiration and the water and heat fluxes

comprising the surface energy budget. Soil moisture in the root zone modulates photosynthesis and transpiration, which de-25

pends on wilting point and field capacity. In ORCHIDEE revision 3976, while soil carbon decomposition is impacted by soil

water and temperature, soil carbon stocks themselves exert no feedback on the soil physical state.

The key model developments presented here in ORCHIDEE-MICT (v8.4.1) thus include the feedback effects of soil organic

carbon (SOC) concentration on both soil thermic and soil water dynamics (Fig. 1, red arrows). Because these SOC-affected soil

physics alter the above and below-ground components of the carbon cycle, as well as plant transpiration via hydraulic stress,30

we can expect complex indirect effects on the energy, water and carbon budgets (Fig. 1). Note that in the simulations here,

soil thermal and hydrological modules read a prescribed observational SOC map (NCSCD in permafrost regions and HWSD

in non-permafrost regions) instead of the prognostically simulated SOC, to exclude the impact of bias in the carbon cycle

module, for the purpose of model evaluation for present-day in this study. Note that several other updates were implemented
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in ORCHIDEE-TRUNK (revision 3976) and passed to ORCHIDEE-MICT (v8.4.1), including a revised background albedo

based on satellite observations, and updates of photosynthesis scheme. These will be described in an upcoming paper for the

ORCHIDEE-TRUNK (version close to revision 3976) that will be used for CMIP6 exercise. In the following, we describe the

parameterizations that define ORCHIDEE-MICT (v8.4.1).

3 High-latitude processes in the initial ORCHIDEE version5

3.1 Soil freezing and snow processes

The soil freezing scheme developed by Gouttevin et al. (2012a) describes phase changes of soil water, simulating the latent

heat exchanges involved in the freezing and melting of soil water, and subsequent changes in thermal and hydrological ground

properties. Soil heat conductivity and heat capacity are dependent on soil ice content. The hydraulic conductivity of the soil

is parameterized according to its liquid water content and decreases with the frozen soil fraction. Heat transfer through the10

soil column is represented by a one-dimensional heat conduction equation, with latent heat acting as a source or sink term

(Gouttevin et al., 2012a), in the following function:

c
∂T
∂t

=
∂

∂z

(
λ
∂T
∂z

)
+ ρice L

∂θice
∂t

(1)

where c is volumetric soil heat capacity (JK–1 m–3); T is soil temperature (K); λ is soil thermal conductivity (Jm–1 s–1 K–1);

ρice is ice density (kgm–3); L is latent heat of fusion (Jkg–1); θice is volumetric ice content (m3 m–3); t is time (s) and z is depth15

(m). In ORCHIDEE-MICT, this equation is discretized on the 32 vertical layers of the model with a total soil depth of 38 m

(Fig. S1). Note that the soil hydrology has only 11 layers up to 2 m, so the volumetric contents of water and ice below 2 m take

the values of the bottom layer (i.e. the 11th layer).

Snowpack is represented by a 3-layer snow model of intermediate complexity, as described in Wang et al. (2013). This

scheme was implemented to resolve the energy and water budgets inside the snowpack, accounting for thawing and refreezing20

of liquid water. The snow model produces prognostic snow temperature, density and SWE for the 3 snow layers. Modifications

were recently implemented to represent snowpack sub-grid scale variability. A snow cover fraction over the grid cell was

introduced as a function of SWE. This was used for improving albedo and surface temperature estimates. Although this snow

cover fraction was calculated for glacier and vegetated-surface areas separately, it is not dependent on the vegetation cover.

Additional modifications were implemented (uniformization of the energy budget calculation, update of the snow-covered25

vegetation albedo...) and will be described in the upcoming CMIP6 ORCHIDEE paper as mentioned in Section 2.

3.2 Soil hydrology and river routing

ORCHIDEE simulates soil water fluxes and storage through a multi-layer soil hydrology scheme described by de Rosnay et al.

(2000, 2002) and Campoy et al. (2013). Soil moisture is redistributed in the column by solving the Richards equation for vertical
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unsaturated flow under the effect of root uptake. The hydraulic conductivity and diffusivity depend on soil moisture, following

the Mualem-van Genuchten model (Mualem, 1976; Van Genuchten, 1980), and using parameters defined by Carsel and Parrish

(1988). These variables depend on the dominant soil texture in each grid-cell, based on the 12 USDA texture classes provided

at the 0.08° resolution from Reynolds et al. (2000). For frozen soils, the decrease of the hydraulic conductivity (Gouttevin

et al., 2012a) reduces infiltration into the soil and drainage, and increases surface runoff. The 2m soil column is divided into5

11 layers, with layer thickness increasing geometrically with depth (Fig. S1). The saturated hydraulic conductivity is modified

according to the scheme in d’Orgeval et al. (2008). This decreases exponentially below a top-30 centimeter depth boundary to

account for increased soil compaction, as suggested by Beven and Germann (1982), and increases above that boundary towards

the soil surface due to the enhanced infiltration capacity afforded by vegetative roots, whose presence increases soil porosity

in the root zone (Beven, 1984). The canopy throughfall rate and soil hydraulic conductivity govern the partitioning between10

surface runoff and soil infiltration. This partitioning involves a time-splitting procedure inspired by Green and Ampt (1911),

describing the propagation of the wetting front. The second physical factor contributing to total runoff is free gravitational

drainage at the bottom of the soil.

The runoff routing module (Polcher, 2003; Ngo-Duc et al., 2005; Guimberteau et al., 2012) aggregates surface runoff and

drainage produced at a 30-minute time step to calculate daily flow between grid cells and discharge to the ocean. Grid cells are15

subdivided into basins in which water is transferred through a series of linear reservoirs along the drainage network, derived

from a 0.5 degree resolution data set (Vörösmarty et al., 2000; Oki et al., 1999). In a given basin, a ‘slow’ reservoir collects

drainage water, while a ‘fast’ reservoir collects surface runoff, each with different linear response timescales. Corresponding

outflows are transferred to the stream reservoir of the downstream basin. The process is fully detailed in Guimberteau et al.

(2012).20

The routing scheme includes a parameterization of floodplains (d’Orgeval et al., 2008; Guimberteau et al., 2012), the max-

imum extent of which is prescribed by the GLWD (Global Lakes and Wetlands Database) map (Lehner and Döll, 2004). In

grid-cells with flooded areas, river discharge from upstream basins is diverted to a floodplain reservoir, which then feeds a

delayed return flow back to the stream reservoir of the basin.

4 New processes and parameterizations25

4.1 Soil carbon discretization

In ORCHIDEE-MICT, the three soil carbon pools (active, slow and passive) share a common 32-layer discretization scheme as

that of soil temperature, to a maximum depth of 38 m. Carbon inflows to the soil pools from decomposed litter are partitioned

along this depth using an exponential function that corresponds to the prescribed PFT root profile. Decomposition of soil carbon

is calculated at each layer as a function of soil temperature, moisture, and texture (Koven et al., 2009; Zhu et al., 2016). Vertical30
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mixing of soil carbon due to cryoturbation (mixing of soil layers induced by repeated freeze-thaw cycles) and bioturbation are

accounted for by adding a diffusion term in the soil carbon equation:

∂Ci (z, t)
∂t

= Ii(z, t) – gi(z, t)Ci(z, t) + D
∂C2

i (z, t)
∂z2 (2)

where Ci(z, t) is carbon content of pool i at depth z and time t (gCm–3); Ii(z, t) is carbon input (gCm–3 d–1); gi(z, t) is

decomposition rate (d–1); D is diffusive mixing rate, set as 10–3 m2 yr–1 through the active layer and decreases linearly to zero5

at 3 m in permafrost regions, to represent cryoturbative mixing (Koven et al., 2009), and set as 10–4 m2 yr–1 above 2 m in

non-permafrost regions to represent bioturbation (Koven et al., 2013).

4.2 SOM-dependent soil thermal and hydraulic parameters

Soil organic matter (SOM) significantly modifies soil thermal and hydraulic properties. SOM lowers thermal conductivity

and increases heat capacity (e.g. Lawrence and Slater, 2008; Decharme et al., 2016), and increases soil porosity, which in10

turn increase saturated hydraulic conductivity and available water capacity (e.g. Hudson, 1994; Morris et al., 2015). As a

consequence, the presence of SOM modulates heat transfer from the surface through the soil column, typically leading to

cooler soil temperature during summer. SOM-effected increases in soil water holding capacity also enhances plant available

water and thus primary productivity (Krull et al., 2004) and transpiration. SOM impacts on soil thermics and hydraulics have

previously been parameterized in the global LSMs CLM (Lawrence and Slater, 2008), JULES (Chadburn et al., 2015b) and15

ISBA (Decharme et al., 2016). In ORCHIDEE, SOM thermal insulation was previously investigated by Koven et al. (2009)

but its parameterization was imbedded in a prior model version which employed bucket-type soil hydrology. This however,

is not applicable to ORCHIDEE-MICT, which uses a new vertically discretized hydrology scheme and its coupling with the

thermal module. In addition, the Koven et al. (2009) study did not include SOM effects on soil hydraulic properties, which are

addressed in ORCHIDEE-MICT and described in detail below.20

Thermal conductivity and heat capacity

By default, soil thermal conductivity and heat capacity in ORCHIDEE are calculated in each soil layer as empirical functions

of the 12 USDA soil texture classifications (see Table S1) and soil water and ice contents, following Wang et al. (2016a):

λi = Keiλi,sat + (1 – Kei)λi,dry (3)

with:25

λi,sat = λ(1–θi,sat)
i,solid λ

(
θi,sat

θi,liq
θi,liq+θi,ice

)
liq λ

(
θi,sat

θi,ice
θi,liq+θi,ice

)
ice (4)
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ci = ci,dry + θi,liq cliq + θi,ice cice (5)

where λi,sat and λi,dry are saturated and dry thermal conductivities for layer i; λliq and λice are thermal conductivities of

liquid water and ice, equaling to 0.57 and 2.2 respectively (Wm–1 K–1); λi,solid is thermal conductivity of soil solids (see Table

S1); cliq and cice are heat capacities of liquid water and ice, equaling to 4.18106 and 2.11106 respectively (JK–1m–3); cdry is

dry soil heat capacity depending on soil texture; θi,sat is volumetric moisture content at saturation (porosity), and it varies with5

soil textures; θi,liq and θi,ice are prognostic volumetric liquid water and ice contents (m3 m–3) that are computed by the soil

hydrology model; Kei is the Kersten number given by:

For unfrozen soils:

Kei =


log10(Sr) + 1

0.7 log10(Sr) + 1

0

if


Sr > 0.1

0.05 < Sr ≤ 0.1

Sr ≤ 0.05

(6)

with:10

Sr =
θi
θi,sat

(7)

For frozen soils:

Kei = Sr (8)

where Sr is the degree of saturation.

To account for the impacts of organic carbon on soil thermal properties in ORCHIDEE-MICT, we follow Lawrence and15

Slater (2008) in assuming that soil physical properties are weighted averages of mineral soil (as the default values in standard

ORCHIDEE) and pure organic soil, with the organic soil fraction fi,soc calculated as:

fi,soc = min
(

1,
ρi,soc
ρsoc,max

)
(9)

where ρi,soc is the carbon content for layer i (kgCm–3), derived from observation-based soil organic carbon map from

NCSCD (Hugelius et al., 2013) in permafrost regions and from HWSD (FAO, 2012) in non-permafrost regions, after linear20
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vertical interpolation from their original soil horizons to fit ORCHIDEE-MICT vertical layers; ρsoc,max equals to 130kgCm–3, a

typical soil carbon density of peat (Lawrence and Slater, 2008). Therefore, the red-colored parameters in Eqs. 3-7 are calculated

as:

Pi =
(
1 – fi,soc

)
Pmineral + fi,soc Psoc (10)

where Pi represents different properties λi,dry , λi,solid , ci,dry , and θi,sat . The values of Pmineral for each soil texture and Psoc5

are listed in Table S1. Note that here we followed Lawrence and Slater (2008) to use linear weighting organic and mineral soil

properties, while in some other models like JULES (Chadburn et al., 2015a) and ISBA (Decharme et al., 2016), soil thermal

conductivities are calculated as geometric averages of organic and mineral soils, consistent with the treatment for soil water

and ice (Eq. 4). The geometric averaging method increases the effect of the organic fraction compared to arithmetic averages,

and would be tested in ORCHIDEE-MICT in future developments.10

Available water capacity

Plant available water capacity, defined as the difference in the amount of water held by each soil layer between field capacity

(θfc) and permanent wilting point (θwp), determines the capacity of the soil to store and supply water for plants and is therefore

an important aspect of soil fertility (Hudson, 1994). For mineral soils in ORCHIDEE, θfc and θwp are derived from measure-

ments of the soil matric potential at field capacity and wilting point, based on the soil water retention curve described by van15

Genuchten equation (Van Genuchten, 1980):

θ =
(θsat – θr)[

1 + (α (–Ψ))n](1– 1
n

) + θr (11)

where ψ is soil matric potential (kPa), and ψ = –33kPa (or -10 kPa for the three sandy soils, see Table S2) corresponds to

field capacity θfc, while ψ = –1500kPa corresponds to wilting point θwp for all textures; θr is the residual volumetric water

content (m3 m–3); α and n are empirical fitting coefficients, with their values for different soil textures listed in Table S2.20

SOC has been shown to significantly increase water retention (Rawls et al., 2003). To parameterize this SOM effect, we

assume that θr and the coefficients in Eq. 11 do not change with carbon content, while porosity θsat increases with organic

carbon (Eq. 10). Therefore, both θfc and θwp increase under higher carbon contents, but θfc increases faster, resulting in a

higher available water capacity (Fig. S2), consistent with the patterns observed in Hudson (1994).

4.3 Reformulation of soil hydric stress above the permafrost table25

It is known that reduced soil moisture availability decreases the rate of photosynthesis, but the parameterization of this pho-

tosynthetic stress differs amongst models (Medlyn et al., 2015). ORCHIDEE-MICT lacks a fully mechanistic plant hydraulic
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structure that calculates plant internal water movement via constraints from water potential (ψ) and conductance of roots,

stems and leaves. Instead, a stress factor, which ranges from 0 to 1, is calculated based on the relative moisture content at

each soil layer. This factor is applied to stomatal conductance and mesophyll conductance, as well as the maximum RuBisCO

activity rate (Vcmax) and maximum electron transport rate (Jmax), in order to account for experimentally observed effects of

drought on stomatal and non-stomatal photosynthetic limitation (Zhou et al., 2014). The stress factor (γ) of water limitation is5

calculated as:

γi =
θi – θwp

θwp + ρ
(
θfc – θwp

) (12)

γ =
∑11

i=1 γi wi (13)

where γi is relative moisture content at each soil layer i, bounded between 0 and 1; ρ represents the fraction above which

photosynthesis rate is not limited by soil moisture, and is set at 0.8; wi is the weighting factor for each layer.10

In the initial version of ORCHIDEE, the profile of wi was assumed to be constant over time, although differed between tree

and grass PFTs, with the highest value at 1.5 m depth for trees and 0.37 m depth for grasses. We considered this description

inappropriate for the high latitudes, and in particular for permafrost regions, where trees develop shallow and lateral roots above

the permanently frozen layer (Kajimoto et al., 2003). Thus, in ORCHIDEE-MICT, wi is modified to be a dynamic profile which

optimizes plant water use, in a manner inspired by the representation given in Beer et al. (2007):15

wi =
γi∑11
i=1 γi

(14)

where if layer i is below modeled active layer thickness, wi is set to zero, and the remaining w are re-normalized to one.

4.4 Fires

The prognostic fire module SPITFIRE (SPread and InTensity of FIRE), which has been previously integrated to and calibrated

for a standard version of ORCHIDEE (Thonicke et al., 2010; Yue et al., 2014), was merged into ORCHIDEE-MICT. Ignitions20

were re-calibrated using the GFED4s data set (http://www.globalfiredata.org/data.html) by using region-specific scaling factors

(see Table S3) and the exclusion of cropland fires to ensure that simulated mean annual burned area for 1997-2013 was equal

to that of the GFED4s data set. Note that this method only calibrated for mean annual regional burned area, and that simulated

latitudinal distributions and grid cell spatial patterns of burned area and fire carbon emissions, and their interannual and seasonal

variabilities, could be still compared with observation-based data. Deforestation and peatland fires are not explicitly simulated,25

10
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but as both fire types rely on suitable weather conditions to occur, which could be partly captured by SPITFIRE (Yue et al.,

2015), model simulations are expected to partially include these fire types.

5 Simulation protocol, forcing and evaluation data sets

5.1 Simulation protocol and forcings

5.1.1 Simulation set-up5

Two separate runs using different climate forcing input data – CRUNCEP v7 (hereafter CRUNCEP) and GSWP3 – were

performed with ORCHIDEE-MICT for the terrestrial Northern Hemisphere (> 30°N) at 1° spatial resolution. Both sets of runs

encompass the 20th and beginning of 21st century, and were preceded by separate spin-ups for each climate dataset, forced

by fixed pre-industrial conditions of atmospheric CO2 (286 ppm) and vegetation map. The dynamic vegetation model is de-

activated throughout both runs. In order to accumulate soil organic carbon in the model, which requires substantial computing10

time before reaching near-equilibrium in the presence of the slow mixing processes described in Section 4.1, the spin-up

procedure comprised three steps: 1) The full ORCHIDEE-MICT model was forced by looped climate fields over the period

1960-1990 for 100 years to reach equilibria for soil temperature, soil moisture, vegetation productivity, soil carbon inputs

from dead plants, etc. We used the 1960-1990 loop, instead of pre-industrial climate, to approximate the higher Holocene

temperatures relative to the ‘pre-industrial’ period that have been reconstructed in Marcott et al. (2013); 2) A soil carbon sub-15

model was run for 20,000 years, forced by the outputs from the preceding step; 3) The full ORCHIDEE-MICT model was run

for 100 years, forced by looped 1901-1920 climate data, to approach to the pre-industrial equilibrium for physical variables,

carbon fluxes, and fast carbon pools. A final transient simulation from 1861 to 2007 (using 1901-1920 climate loop for the

period 1861-1900 due to the lack of climate forcing before the 20th century) was then run from the last year of spin-up stage

3, forced by historical climate forcing and land cover maps, and rising CO2 concentrations, as detailed below.20

5.1.2 Atmospheric forcing datasets

The use of two different forcing datasets represents a first step in documenting atmospheric forcing based uncertainty in model

output. Runoff has been shown for instance to be particularly affected by differences in precipitation from different datasets

(Fekete et al., 2004; Biancamaria et al., 2009), and by the methods to partition total precipitation volumes between rainfall and

snowfall during the cold season (Haddeland et al., 2011). The bias of meteorological driver also impacts the carbon budget25

(Zhao et al., 2012). A description of the two datasets used follows.

GSWP3 v0

This 3-hourly 0.5° global forcing product (1901-2007) was developed for the third phase of GSWP3 (http://hydro.iis.u-tokyo.

ac.jp/GSWP3/). It is based on the 20th Century Reanalysis (20CR) version 2 performed with the NCEP land-atmosphere model

(Compo et al., 2011). 20CR was dynamically downscaled to T248 (0.5°) resolution using the Global Spectral Model (GSM)30

11

http://hydro.iis.u-tokyo.ac.jp/GSWP3/
http://hydro.iis.u-tokyo.ac.jp/GSWP3/
http://hydro.iis.u-tokyo.ac.jp/GSWP3/


by data assimilation using the spectral nudging technique (Yoshimura and Kanamitsu, 2008). Bias correction for precipitation,

temperature and longwave and shortwave downward radiations were made using GPCC v6 (Global Precipitation Climatology

Centre), CRU TS v3.21 (Climate Research Unit), and SRB (Surface Radiation Budget) datasets, respectively. Precipitation was

partitioned into rainfall and snowfall referring to the ratio of the downscaled 20CR, and wind induced undercatch correction

(Motoya et al., 2002) were applied separately. We upscaled the GSWP3 forcing for 1° spatial resolution.5

CRUNCEP v7

This 6-hourly 0.5° global forcing product (1901-2015) is a combination of the annually-updated CRU TS v3.24 monthly cli-

mate dataset (New et al., 2000) and NCEP reanalysis (Kalnay et al., 1996). The latter is only used to generate diurnal and daily

anomalies added to CRU TS monthly means, after bi-linear interpolation to the 0.5° resolution of CRU, except for the precip-

itation which were linearly interpolated. A threshold of 0°C in 2-m temperature were used to partition the precipitation into10

rainfall and snowfall in the CRUNCEP forcing. Rainfall, cloudiness, relative humidity and temperature are taken from the CRU

while the others fields (pressure, longwave radiation, windspeed) were directly derived from NCEP (see more details at: https:

//vesg.ipsl.upmc.fr/thredds/fileServer/store/p529viov/cruncep/readme.html). We upscaled the forcing to a 1° spatial resolution

dataset, which can be found at https://vesg.ipsl.upmc.fr/thredds/catalog/store/p529viov/cruncep/V7_1901_2015/catalog.html.

5.1.3 Vegetation and soil texture map15

The ESA CCI Land Cover map (Bontemps et al., 2013) was used to produce the PFT map for ORCHIDEE. The ESA CCI

land cover product is given by 3 maps at a 300 m spatial resolution, corresponding to the years 2010, 2005 and 2000. These

maps were derived from the interpretation of MERIS full and reduced resolutions and SPOT-Vegetation time series. Land

cover was classified according to the 22 classes used in the UN-LCCS (land cover classification system) scheme, which was

translated into PFT fractions used in ORCHIDEE, following the cross-walking method presented by Poulter et al. (2011, 2015).20

Historical land use maps from the Harmonized Global Land Use dataset (Chini et al., 2014) were incorporated to reconstruct

PFT fractions since 1860, following Peng et al. (2017), which will be detailed in the upcoming ORCHIDEE-TRUNK paper for

CMIP6.

For soil texture, we use the 12 USDA texture classes provided at a global 0.08° resolution from Reynolds et al. (2000) and

upscaled these to the resolution of the atmospheric dataset (1°x1°). Only the dominant texture type for a grid cell is used at the25

1° resolution for defining soil hydraulic parameters (Carsel and Parrish, 1988) in ORCHIDEE-MICT.

5.2 Evaluation datasets

The selected datasets used to evaluate ORCHIDEE-MICT are summarized in Table 1 and described in Appendix. For the water

budget evaluation, we selected six Arctic river basins (Fig. 2b) which are important contributors to total Arctic Ocean river

inflow: the four largest Eurasian Arctic basins (Ob, Yenisei, Lena and Kolyma), the Mackenzie basin in northwestern Canada30

and the Yukon basin in Alaska. The four Eurasian basins (with the smaller Pechora and the Severnaya Dvina basins) drain about
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two-thirds of the Eurasian Arctic landmass (Peterson et al., 2002), while the Mackenzie is the largest North American river

bringing freshwater to the Arctic Ocean (Woo and Thorne, 2003). We also evaluated the Volga basin (Fig. 2b), which is subject

to snowfall events during the year but is not underlain by permafrost, in order to compare results with the high-permafrost

Arctic basins (Fig. 2a and Table S4).

6 Evaluation of the atmosphere-snow-soil continuum5

In the following, we analyze model performance in replicating the transfer of heat from atmosphere to deep soils. This is done

by evaluation against measured temperature gradients, starting from snow depth controls on winter ∆T, followed by evaluation

of surface (skin) temperature in summer, and the temperature gradients between the near-surface and deeper soils.

6.1 Snow insulation controls on the temperature gradient between air and topsoil

6.1.1 Snow depth10

ORCHIDEE-MICT correctly captures the spatial distribution of maximum monthly average snow depth (Fig. 3a,b), and the

seasonal decrease of snow depth from March to June (Fig. 3c), but modeled snow depth strongly depends on the atmospheric

forcing used. GSWP3 climate forcing tends to produce a larger maximum snow depth than CRUNCEP, greater than those

observed in all Northern regions, especially over boreal Europe (BOEU) (Fig. 3c). This shows that uncertainty from climate

forcing data is as large as the model bias compared with observations, making it difficult to attribute a model bias to a particular15

component of the snow model. However, the rate of sublimation in winter (Pomeroy et al., 1998) and the prescribed albedo

value of fresh snow have been shown to be critical in determining the peak value and phase of both snow depth and SWE

(Wang et al., 2015b).

6.1.2 Snow conductivity and snow density

Mean snow density and mean snow thermal conductivity are computed at the month of maximum snow depth over the 1981-20

2007 period as weighted averages over the three snow layers. Gouttevin et al. (2012b) report density values of 200kgm–3

for taïga and 330kgm–3 for tundra and conductivity values of 70mWm–1 K–1 for taïga and 250mWm–1 K–1 for tundra, from

Sturm and Johnson (1992) and Domine et al. (2010). These higher values over tundra were attributed to snow compaction

by wind. This process is not modeled in ORCHIDEE-MICT and we thus simulate similarly high values of conductivity for

both biomes (Fig. S3): approximating tundra with C3 grass PFT between 55 and 85°N, and taïga with the boreal forests PFTs25

between 45 and 70°N and considering only grid cells with a fraction of the dominant biome above 0.6. The model yields a

mean snow conductivity of 266 ± 203 (GSWP3) and 219 ± 197 (CRUNCEP) mWm–1 K–1 for tundra compared to 221 ± 113

(GSWP3) and 182 ± 100 (CRUNCEP) mWm–1 K–1 for taïga and a mean density of 269 ± 102 (GSWP3) and 239 ± 103

(CRUNCEP) kgm–3 for tundra and of 233 ± 67 (GSWP3) and 207 ± 63 (CRUNCEP) kgm–3 for taïga. Note that a recent

study (Domine et al., 2016) suggests for tundra a complex structure with depth-hoar developing at the base of snowpack during30
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the course of the snow season, causing conductivities as low as 20mWm–1 K–1 in late winter, whereas snow-compacted upper

layers have conductivities of 200 to 300mWm–1 K–1, more comparable to ORCHIDEE-MICT.

6.2 Summer land surface temperature

ORCHIDEE-MICT overestimates summer (June-August) LST of about 1.36°C when forced by GSWP3 (Fig. 4b) and 0.49°C

by CRUNCEP (Fig. 4c). The bias is larger in northern and southern Siberia, where it can reach 4°C. These differences may be5

linked to the overall underestimation of ET (see Fig. 11). This is further addressed in the Discussion (Section 10).

6.3 Soil temperature

The simulated spatial patterns of mean annual topsoil (0.2 m) temperature generally reproduce the observed gradient along a

southwest-northeast transect in Siberia (Fig. 5a,b). However, the CRUNCEP-forced simulation results are colder than those

from the GSWP3 ones as well as relative to observations in the permafrost region (Fig. 5a,b), mainly driven by a strong cold10

bias in CRUNCEP-based winter soil temperatures (Fig. 5c,d).

During winter, the snowpack acts as an insulating layer above soil surface, reducing soil heat loss. Snow thus causes a large

positive temperature gradient (∆T), which is controlled by both snow depth and snow thermal properties, such as thermal

conductivity, density and albedo. Generally, the model underestimates snow insulation in the early (Nov to Jan) and late (Feb

to Apr) cold seasons for the same snow depth, as compared to observations (Fig. 6). This indicates that relatively congruent15

wintertime soil temperatures in the GSWP3-forced simulation in permafrost regions (Fig.5c) may be due to a bias compensation

from overestimated snow depth (Fig. 3) and underestimated snow thermal insulation.

A prominent component of the ∆T / snow depth relationship observed at Russian stations (black in Fig. 6) is the signif-

icantly lower insulation during the late cold season, probably due to snow compaction and densification leading to higher

snow conductivity (Decharme et al., 2016). This differential sensitivity of ∆T to snow depth between the two periods is ef-20

fectively captured by ORCHIDEE-MICT, despite small modeled negative ∆T values (i.e. topsoil colder than air) compared to

observations at the termination of the snow season, when snow depth is diminished (< 20 cm).

Summer soil temperatures are higher in the GSWP3-forced simulation relative to those of CRUNCEP, and warmer than

observations from the Russian meteorological stations in continuous permafrost region by 1~2 °C on average at 0.8 and 1.6

m depths (Fig. 5c,d). Spatially however, the bias in peak summer soil temperature varies for different regions, with a large25

warm bias for the Lena basin below 0.8 m, and some cold bias for the further eastern sites (Fig. S4). This is consistent with

the overestimation of ALT for Yakutia (Fig. S5) compared to the empirically-derived map by Beer et al. (2013) (see Section

6.4). Differences between the two simulations in summertime soil temperatures may be partly driven by warmer GSWP3

land skin temperatures during summer (Fig. 4) than CRUNCEP. In addition, the cold bias in winter soil temperatures in the

CRUNCEP-forced simulation might be carried over to summer via soil thermal inertia. This would partly offset the warm bias30

in CRUNCEP land surface temperatures during summer (Fig. 4c).
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6.4 Active layer thickness and permafrost area

Figure 7a,b shows the simulated spatial pattern of ALT, as calculated from modeled soil temperatures using a linear inter-

polation between soil layers to locate the first depth that remains frozen (below 0°C) year-round. Compared with CALM

observations, in which most of the sites have ALT <1m, the GSWP3-forced model generally overestimates ALT by more than

1 m (also see Fig. S5 which compares modeled ALT of Yakutia, East Siberia with the map of Beer et al., 2013), whereas5

CRUNCEP-forced output shows relatively better agreement with the observations. Apart from the uncertainty induced by

climate forcing, the model-data mismatch may also arise from scale differences for the organic carbon content that is used

to calculate soil physical properties for each grid cell. As mentioned in Section 4.2, the empirical SOC map from NCSCD

(Hugelius et al., 2013) is prescribed for permafrost regions in the soil thermal and hydrological modules, which is upscaled

by the model to the target spatial resolution (1° by 1° in this study). These SOC values thus do not represent the site-level10

soil conditions, aside from the uncertainty of the NCSCD database itself. To further investigate this impact, we conducted

additional simulations for the sites that provide explicit organic layer thicknesses (in total 69 sites), forced by CRUNCEP. In

these runs, we assumed pure organic soil, i.e. fi,SOC in Eq. 9 equaling to one, for the soil layers above the site-specific organic

layer thickness, while kept the SOC concentration unchanged below this thickness, i.e. from NCSCD. Note that the moss layer,

vegetation mat, and/or organic root zone as described in some sites were all summed to derive a total organic layer thickness.15

The other configurations including climate forcing and soil texture were the same as the regional simulation. The result is

displayed in Fig. S6, showing significantly shallower ALTs simulated by these site runs which better match the observations

(Fig. S6a), with different magnitudes of ALT reductions among the sites (Fig. S6b).

For simulated permafrost extent, two typical definitions of permafrost in LSMs, one defined as ALT less than 3 m to give

“near surface” permafrost (e.g. Koven et al., 2013), the other defined if any of the soil layers stay frozen (e.g. Ekici et al., 2014;20

Burke et al., 2017b), produce quite different permafrost extents (Fig. 7c,d). This result highlights that the intercomparison

of permafrost areas among different LSMs with differing soil vertical discretizations may include uncertainties brought by

the arbitrarily chosen definition, whereas evaluation and comparison directly for soil temperatures and ALT should be more

robust. A qualitative comparison against the empirical IPA (International Permafrost Association) permafrost map (Brown

et al., 2002) shows better agreement for CRUNCEP compared to GSWP3-forced output, since CRUNCEP-forced simulation25

general matches the distribution of continuous permafrost using the former definition, while GSWP3-forced simulation seems

to underestimate permafrost extent (Fig. 7c,d). This is consistent with the deeper simulated ALT under GSWP3 climate forcing.

7 Evaluation of large-scale water storage and fluxes

Simulated water budget components are evaluated over selected northern basins (Fig. 2b), most of which are underlain by

permafrost (e.g. Lena, Kolyma), with the exception of the warmer Volga. The Ob and Yenisei catchments have contrasting30

north-south precipitation and temperature regimes, with attendant impacts on Arctic Ocean discharge and sub-basin scale

water budgets. Here, only basin-scale averages are discussed.
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7.1 Total terrestrial water storage change

A realistic phase and amplitude of TWS is simulated with both forcing datasets, although peak-to-peak amplitude is slightly

overestimated in the Volga, Yenisei and Kolyma basins under GSWP3 input and the seasonal amplitude underestimated in the

Yukon with both forcings, and in the Mackenzie and Lena with CRUNCEP forcing (Fig. 8). The positive temporal trend of

TWS in the Ob, Lena and Kolyma basins is captured well by ORCHIDEE-MICT, where it reflects upward precipitation trends5

(not shown). In general, the GRACE TWS is well captured by ORCHIDEE-MICT with both forcings, at the seasonal scale and

for the 5-year trends, except in the Yukon basin where observed TWS decreases are not reproduced in our simulations, with

no precipitation decrease in the GSWP3-forced model. The Yukon TWS decline is likely due to glacier melt in the northwest

Cordillera (Wang et al., 2015a). As glaciers are not represented in ORCHIDEE-MICT, the model does not capture these TWS

trends. Note that groundwater storage changes related to the development of closed and open taliks (Muskett and Romanovsky,10

2009) which contribute to existing TWS trends – increasing storage in the Lena and Yenisei, decreasing it in the Mackenzie

basin, and no change in the Ob – are not modeled either in ORCHIDEE-MICT. Despite this, the model reproduces observed

trends in these basins.

7.2 Snow related processes controlling land water storage in the cold season

The modeled seasonal cycle of the SWE and length of the snowmelt period are in agreement with observations (Fig. 9),15

suggesting a good parameterization of the snowmelt and sublimation processes. Yet, results differ strongly according to forcing

inputs. In basins with a large permafrost fraction (Yukon, Lena and Kolyma) and, to a lesser extent, in the Mackenzie, Ob and

Yenisei basins, SWE is underestimated throughout the year compared to GlobSnow data when ORCHIDEE-MICT is forced

by CRUNCEP, and it is significantly larger in the GSWP3-forced simulation (in the Volga basin, the SWE is overestimated

in the two simulations). This is due to the low basin-specific snowfall rate in CRUNCEP forcing compared to GSWP3 (Fig.20

S12), which is probably the result of the criterion used to partition rainfall and snowfall in CRUNCEP, and strongly affects

the simulation of snow depth and SWE (Loth et al., 1993; Wen et al., 2013). By contrast, the GSWP3-forced model captures

the early winter SWE accumulation in these basins. In spring, the SWE is systematically overestimated except over the Lena,

whose seasonal cycle is well reproduced by ORCHIDEE-MICT. This corresponds to an excessive persistence of the snow

cover, which may be explained by the absence of hysteresis in the snow depletion curve relating the snow cover extent and25

the SWE (e.g. Magand et al., 2014). In the Yenisei and the Mackenzie basins, the SWE in winter is closer to observations

with the GSWP3 forcing, with the exception of springtime values, which are better under CRUNCEP forcing. In basins where

permafrost area is near-zero (Ob and Volga), the SWE from CRUNCEP-forced simulation is closer to Globsnow than those

from GSWP3, in which SWE is overestimated in winter and spring. This is related to the large difference in snowfall over these

basins between the two forcings (Fig. S12).30
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7.3 Soil moisture

In the topsoil

Seasonal evolution of topsoil moisture (first 2 cm) is compared to the ESA-CCI-SM product over the seven basins (Fig. 10a).

Liquid soil moisture values from the model are used for the comparison because ESA-CCI-SM product measures only the

topsoil moisture when temperature is above 0°C. Because of scaling issues (the satellite product is rescaled to the 10 cm top5

layer of NOAH model, as already noted, but is more representative of a thinner soil layer of about 2 cm), the comparison was

performed on relative liquid soil moisture values after normalization with their respective standard deviation. The observed

seasonal moisture variations are well captured by ORCHIDEE-MICT with both forcings over the seven basins (Fig. 10a). The

maximum values occur in summer, in contrast to lower latitudes, because of the thawing processes occurring in summer. The

local minimum simulated in summer in the Volga and Ob basins is underestimated, suggesting a too slow infiltration front of10

the water in the top soil layers of the model. Thus, less water in the root zone is available for transpiration which is found to be

underestimated when compared to GLEAM (see Fig. 11b). Compared to observations, a more rapid increase (decrease) of the

modeled topsoil moisture in spring during snow melt (in fall) is found in the Yukon and Mackenzie basins, related to a more

rapid thawing (freezing) of the top soil.

In the root zone15

The soil water deficit is of primary importance during spring and summer in the high latitudes because of its potential impacts

on the vegetation transpiration, leading to a surface temperature increase and a reduction in the productivity. Yet, a soil water

comparison between GLEAM and ORCHIDEE-MICT is difficult because of differences in soil depth, which in GLEAM

varies with vegetation cover, but is fixed at 2 m in ORCHIDEE-MICT. Moreover, the fraction of soil tile of short vegetation

and forests used in the two products is not the same. We therefore normalize the relative root soil moisture (Fig. 10b) by its20

standard deviation to compare the dynamic of the soil moisture rather than the total amount of water in the soil. The intensity

of water uptake by the roots of the vegetation in summer is generally well simulated by the model in both simulations. In basins

underlain by permafrost, except in the Lena basin, water uptake is delayed by one month for both forcing sets, while the rate of

decrease in root soil moisture is underestimated for GSWP3-forced output only. The similarity in output in this respect, despite

very different SWE, highlights the low impact of the latter on the root soil moisture, and further underscores how the snowmelt25

differential is lost through runoff rather than being available for vegetation.

7.4 Evapotranspiration and component fluxes

The amplitude of the ET seasonal cycle is generally well captured by the model in most basins, when compared to the GLEAM

product, despite a systematic underestimation by ORCHIDEE-MICT, whichever the input forcing (Fig. 11a). The disparity

between modeled peak ET and GLEAM data is reduced under GSWP3 forcing in the Yukon, and under CRUNCEP forcing in30

the Yenisei and Lena. ET increase is underestimated in spring and early summer for both forcings, except in the Volga basin.
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This is consistent with modeled LAI increasing too late in spring (see Fig. 13) which could be due, at least partially, to an

excessive persistence of the snow cover in spring. In autumn, the timing of the decrease in ET is reproduced by both forcings.

Model biases with respect to GLEAM data in the sublimation, soil evaporation and transpiration components of ET are shown

in Fig. 11b. In all basins, sublimation bias in simulations forced by GSWP3 is ~0 in winter, in agreement with GLEAM. By

contrast, CRUNCEP forced simulations slightly overestimate sublimation in early spring across basins with the exception of the5

Volga. These results are consistent with SWE underestimation (except in the Volga) (Fig. 9) and higher downward shortwave

radiation (Fig. S14) that results when CRUNCEP forcing is used. The general underestimation of summer ET by ORCHIDEE-

MICT in the Yukon, Mackenzie and Kolyma basins is explained mainly by a too low transpiration despite bare soil evaporation

being slightly over-estimated (Fig. 11b). When forced by CRUNCEP data, ORCHIDEE-MICT overestimates interception loss

in all basins but the Kolyma and Yukon, which is consistent with CRUNCEP LAI overestimation (see Fig. 13).10

7.5 River discharge

By comparing the two simulations, it is clear that the meteorological forcing exerts a significant influence on the simulated

river discharge (Fig. 12): GSWP3 leads to systematically higher river discharge than CRUNCEP, which is perfectly consistent

with the SWE biases (Fig. 9). In a majority of basins, GSWP3-forced simulations better capture the seasonal cycle of observed

discharge than CRUNCEP-forced ones, especially in the Yukon and the eastern Siberian basins, where the discharge is strongly15

underestimated under CRUNCEP forcing (between 60% in the Yenisei and 83% in the Yukon).

A first feature of the nival regime characterizing the studied high-latitude basins is the occurrence of low flows in winter,

when water is frozen in the snowpack, soils, and river ice. This is well simulated by ORCHIDEE-MICT, despite a small

underestimation in the Yukon, Mackenzie and Yenisei. Naturalized river discharge is available in the latter, and lower in winter

than GRDC values, which reflects the effect of reservoir operations. The winter discharge simulated by ORCHIDEE-MICT in20

the Yenisei is closer to the naturalized estimates, as the model does not account for artificial reservoirs. No natural lakes are

simulated by ORCHIDEE-MICT, which may contribute to the winter discharge underestimation, especially for the Mackenzie

which includes massive lakes (Great Slave, Great Bear, and Athabasca).

The nival regime of the studied basins is also characterized by peak flow in late spring, which is broadly captured by the

ORCHIDEE-MICT simulations, even if the magnitude of peak flow is strongly biased in some cases, with a strong link to the25

forcing used and the SWE biases. As an example, the Volga is the only river where both peak flow and SWE are overestimated

with both forcing, and closer to river discharge observations under CRUNCEP forcing. In this human-altered basin, the absence

of the simulation of water withdrawals for irrigation in the model can explain the peak flow overestimation.

An almost systematic weakness of the simulated hydrographs is the underestimation of river discharge during summer

and fall, which is very strong with both forcing in the Yukon, Mackenzie, Lena and Kolyma, and to a lesser extent in the30

Yenisei. This makes discharge closer to observations during the second half of the year under GSWP3 than under CRUNCEP,

particularly in the Ob. This summer-fall underestimation propagates to underestimated annual mean discharge in a majority

of basins (reaching -25 and -30% under GSWP3 in the Lena and Kolyma rivers) despite the overestimation of peak flows.

Eventually, the discharge underestimation found in summer and fall, and on annual means in many basins, is not coherent with
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the low simulated ET compared to GLEAM data. Yet, according to Wang et al. (2015a), biases in precipitation and ET datasets,

that are used to evaluate the models, are source of errors for the water imbalances found in the northern high-latitude basins.

These river discharge results highlight deficiencies in the model representation of water infiltration in frozen soils, which

appear to be too drastic in their prevention of snowmelt infiltration under conditions of frozen topsoils. Alternative parame-

terizations of these dynamics are underway. For example, infiltration of meltwater into frozen soil could be permitted when5

accounting for sub-grid scale variability of topsoil freezing and drying which would enhance infiltration (Gray et al., 2001).

Other perspectives are the improvement of the floodplain parameterization in ORCHIDEE-MICT (Lauerwald et al., 2017) and

the inclusion of natural lakes and artificial reservoirs.

8 Evaluation of the leaf area index, gross and net CO2 fluxes

8.1 Leaf area index10

According to the two evaluation products, the seasonal cycle of LAI (Fig. 13) is similar across the basins, with values near

zero during winter, and a maximum in summer. There is a consistent phasing of seasonal LAI between the two evaluation

datasets, however maximum LAI in GIMMS is systematically higher than in GLASS. In all the basins, the LAI simulated by

ORCHIDEE-MICT has a phase delay of up to one month compared to both products. This is due to a delay in the start of

the growing season, which may be related to excessive persistence of the snow cover (Fig. 9). The phenological models in15

ORCHIDEE (detailed in MacBean et al., 2015, Appendix A) do not explicitly take into account this influence, unlike what is

done in Van Wijk et al. (2003), who model the link of the start of the tussock tundra growing season to the soil thaw at 10-cm

depth. However there is a first indirect link between the snow cover and the vegetation phenology through air temperature,

which influences both the start of the growing season, determined in ORCHIDEE using growing degree days (GDD)-based

phenological models for deciduous species, and the start of the snowmelt season. There is a second indirect link through20

snowmelt. While there is still a large amount of snow, the soil surface temperature is kept at zero degree Celsius or below

and the soil cannot thaw. Only when snowmelt occurs and when the snow fraction is small enough, will the soil start thawing,

thus increasing soil liquid water content. This impacts the start of the growing season for grasses and crops, which use both a

GDD and a soil moisture thresholds, and also reduces water stress, thus favoring photosynthesis for all PFTs. Note here that

ORCHIDEE-MICT is prone to overestimate the timing of senescence (MacBean et al., 2015). This is true in particular for25

conifers, for which the model lacks an explicit senescence inception model. Except in the Yukon and the Mackenzie basins,

the maximum LAI simulated by ORCHIDEE-MICT lies between the two satellite product estimates. Winter LAI of ~1.0

are overestimated in the Yukon, Mackenzie, Ob and Yenisei basins, however observations show values around zero. Given

that these basins are covered by a larger fraction of evergreen forests compared to the others, these simulated values look

reasonable. The mismatch with the observations could be explained here by data errors, the assessment of solar reflectance30

from space in winter in the high latitudes being less reliable.
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8.2 Gross (GPP) and net (NPP) primary productivity

8.2.1 Spatial distribution and seasonal cycle of GPP

GPP in the high latitudes is co-limited by cold temperatures, constraining the duration of the growing season, and by summer

water stress (Schulze et al., 1999) in northern Canada and Siberian boreal forests, for which the water balance is usually

negative at this time. The simulated spatial pattern of GPP in Eurasia and North America is close to the MTE-GPP dataset (Fig.5

14). Values lower than MTE-GPP were simulated in Eastern Siberia under the GSWP3 forcing, mainly due to water stress

(see also underestimated biomass for eastern Siberia in Figs. 20). The seasonal GPP cycle in Fig. 14 (lower panel) is generally

accurate with respect to observations at the scale of large boreal regions; however peak GPP is strongly overestimated for

boreal North America (BONA).

Interestingly, comparing GPP forced by the two climate datasets shows higher values by CRUNCEP than by GSWP3 (Fig.10

14), despite a generally lower precipitation in CRUNCEP (Fig. S13). This could be explained by the higher specific air humidity

during summer in CRUNCEP than in GSWP3 (Fig. S16). A low air humidity increases the atmospheric vapor pressure deficit

(VPD) and the leaf to air vapour pressure difference; plants then partially close the stomata to constrain a potentially fast

transpiration (Oren et al., 1999; McAdam and Brodribb, 2015), which leads to reduced photosynthetic rate. The photosynthesis

module in ORCHIDEE largely follows Yin and Struik (2009) in which stomata conductance decreases with an increasing VPD,15

thus is able to simulate a lower GPP under dry air conditions. A recent study (Novick et al., 2016) showed that, between the two

factors that impact plant water stress, i.e. soil moisture supply and atmospheric demand for water (reflected by VPD), the latter

limits evapotranspiration to a greater extent than the former in relatively wet forested ecosystems. In spite of its importance, the

effect of VPD on vegetation productivity has been far less studied than soil water availability (Konings et al., 2017), warranting

further investigations in both observations and land surface models.20

8.2.2 Spatial distribution of NPP and site level comparison

The distribution of NPP for both ORCHIDEE-MICT simulations is compared to forest site data from Campioli et al. (2015)

(Fig. 15), in which NPP measurements are collocated with GPP (118 sites in total north of 30°N). Despite no sampling from

Western Russia and Siberia, the model is able to reasonably capture NPP gradients in BONA and BOEU. In temperate forests

of western Europe and eastern US, modeled NPP is too low (see also Fig. 16b for warm sites), possibly due to high water stress25

in ORCHIDEE-MICT (see below).

Considering only the 52 sites that were selected (as described in Appendix C3), we computed the distributions of GPP and

NPP by 5 °C mean annual temperature bins for the sites, the MTE-GPP and MODIS-NPP products, and for the ORCHIDEE-

MICT simulations. We plot the 95th percentiles of these distributions in Fig. 16, which arguably defines an upper envelope for

temperature-limited GPP and NPP (see Fig. 3 of Luyssaert et al., 2007), and allows us to evaluate the spatial sensitivity of GPP30

and NPP to mean annual temperature. The behavior of all products is similar to the sensitivities derived from site observations,

with a strong positive relationship between GPP, NPP and mean annual temperature over the range -10 to 10°C. ORCHIDEE-

MICT then captures the decrease of GPP (NPP) at warmer sites but underestimate the values above 5°C. Global gridded data
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products generated independently from the Campioli et al. (2015) dataset exhibit sensitivities comparable to those derived from

local sites, whereas modeled GPP and NPP saturate for temperatures above 10°C, indicating water stress dominant controls.

The local measurements and the global observations products give similar median CUE values (51% and 49% respectively)

and first and third quartiles whereas the model gives a narrower distribution range, with higher median values (57% for GSWP3

and 53% for CRUNCEP) (Fig. 17).5

8.3 Spatial distribution of burned area and fire emissions

The spatial distribution of burned area is largely reproduced by ORCHIDEE-MICT, with a higher fraction of burned area in

central Eurasia, and a decrease in burned area toward higher latitudes (Fig. 18). For the GSWP3 simulation, modeled total

burned area over the period 1997-2007 (in the unit of Mhayr–1) is smaller than GFED4s for BONA (1.7 vs. 2.2 in GFED4s),

and higher for BOEU (8.1 vs. 5.0) and BOAS (16.1 vs. 10.4). Modelled spatial distribution of natural fire emissions has greater10

discrepancies with respect to evaluation data than burned area, bearing in mind that GFED4s data is based on a biosphere model

(CASA), not observations. Higher emissions in eastern Eurasia are reproduced by ORCHIDEE-MICT. However, modelled

emissions are overestimated for central Eurasia and underestimated in boreal America, with respect to GFED4s. As a result,

regional carbon emissions (in the unit of TgCyr–1) in ORCHIDEE-MICT are lower than in GFED4s for BONA (20 vs. 48),

much higher for BOEU (45 vs. 6), and in good agreement for BOAS (104 vs. 111). One possible reason for the discrepancy15

in BOEU is the lack of forest management and fire suppression measures in ORCHIDEE-MICT, leading to higher simulated

burned area and carbon emissions than in GFED4s. Changing the climate forcing from GSWP3 to CRUNCEP yields a smaller

burned area (Fig. 18 b and c). Because the reduction of burned area mainly occurs in grassland, the impact on carbon emission

is small.

Carbon emissions peak in summer for both GFED4s and ORCHIDEE-MICT for BONA and BOEU (Fig. S7d,e). However,20

for BONA the fire season starts one month later in ORCHIDEE-MICT (Fig. S7a). For BOAS and BOEU, there are stronger

discrepancies in seasonal carbon emission (Fig. S7e,f). In particular, ORCHIDEE-MICT fails to account for the April peak

in carbon emissions. A possible explanation for the missing April emissions in ORCHIDEE-MICT may be the late timing of

snowmelt (Fig. 9) and the delayed spring increase in LAI (Fig. 13). This would cause an unavailability of fuel in spring time.

Changing the climate forcing from GSWP3 to CRUNCEP has only a very small effect on burned area and carbon emission25

seasonality.

8.4 Seasonal cycle of NEE

Monthly NEE from inversions, originally provided at the spatial resolution of each transport model, was aggregated at the

scale of the 3 high-latitude sub-regions (Fig. 2a). Spatially averaged NEE is expected to be more consistent between different

inversions at coarser spatial scale, given the sparseness of atmospheric CO2 stations and differences in transport models.30

Nevertheless, the seasonal cycle of NEE is generally consistently estimated by the two inversions in each sub-region, although

Jena CarboScope estimates generally higher seasonal NEE amplitude, and in BOEU NEE from CAMS peaks one month earlier

than Jena CarboScope (Fig. 19). Simulated seasonal NEE (defined as GPP minus autotrophic and heterotrophic respiration, fire
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emissions and emissions from LUC) magnitude and evolution is very similar in both simulations and, in general, ORCHIDEE-

MICT was able to reproduce the timing and magnitude of the transition between winter release and spring NEE uptake, despite

a later onset of spring uptake for all three boreal sub-regions, and a smaller peak summer NEE for BOAS.

Since the timing of NEE uptake in Spring and release in Autumn is well constrained in the inversions from the observed

periodical drawdown and buildup of CO2 at atmospheric stations, the modeled delayed onset of Spring uptake is consistent5

with the ~1-month lag between ORCHIDEE-simulated and satellite-observed LAI in Fig. 13 (and ET in Fig. 11a) in the basins

of the three sub-regions. Even though GPP is overestimated in BONA during spring and summer (Fig. 14), the resulting NEE

gives a slightly weaker uptake.

Modeled autumn and winter emissions (positive NEE) from soil respiration are well reproduced in the BOEU sub-region,

even though the release is overestimated in autumn and underestimated in winter. The underestimation of NEE from October to10

March in BONA and BOAS suggests that cold season respiration in soils is underestimated in the model. This may be because:

(i) decomposition in the model is cut off at T = -1°C, whereas observations suggest it can be sustained well below the freezing

point in liquid films of soil pores (Schaefer and Jafarov, 2016); and (ii) insufficient snow insulation of soils (see Fig. 6); and

(iii) the lack of the carbon cycle of mosses and lichens which could have respiration under winter low temperatures (Atanasiu,

1971). This suggests that we should either allow decomposition below the freezing point, perhaps to account for heat produced15

in the soil by microbial decomposition (Zimov et al., 1993; Hollesen et al., 2015), improve the snow insulating, prescribe an

organic layer of insulating topsoil (e.g. mosses, O-horizons observed in boreal forests, see O’Donnell et al., 2011) into the

thermal module, or explicitly represent the moss/lichen plants including their carbon cycle and physical effects (Porada et al.,

2016; Druel et al., 2017).

NEE discrepancies may be related to the different seasonal contributions of evergreen and deciduous trees to GPP and LAI20

(Fig. S9), as well as to the relative sensitivity of heterotrophic respiration, autotrophic respiration and disturbances to the

warming (cooling) at the beginning of the growing season (winter).

9 Evaluation of carbon stocks

9.1 Biomass

Consistent with the LAI and GPP results, the simulation forced by CRUNCEP shows higher forest biomass carbon densities25

than the GSWP3 simulation (Fig. 20). The two simulations, however, exhibit similar patterns, which reproduce the general

spatial pattern of observed biomass, being higher in western and eastern regions of North America, with a declining gradient

across Eurasia from the west to the east. However, in general, the model tends to overestimate carbon density in regions of

observed high carbon density (e.g., Northwestern Europe and European Russia, eastern North America, Korean Peninsula and

Japan). The model also misplaced the region of the highest biomass density in Northwestern Europe and European Russia30

rather than Central Europe as shown by the observation data. Likewise, the model estimates extremely large biomass in eastern

North America, especially by CRUNCEP forcing, which almost doubles the observed amount. For the rest of the study region,
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simulated carbon density is slightly lower than observations, by around 5–25MgCha–1. The two observation data sets show

considerable similarities.

Both model output and observation data are subject to the spatial uncertainties introduced by the use of satellite-derived

land cover maps. We thus used the forest cover map as prescribed in the model for both data sets, and calculated latitudinal

averages to compare with model results (Fig. S8). GSWP3-forced model output agrees well with observations averaged over5

the whole study region, while CRUNCEP-forced output overestimates biomass at all latitudes (Fig. S8a). For the sub-regions,

the overestimation of biomass in BONA is consistent with that of GPP (Fig. 14), while biomass is more overestimated in BOEU

compared with GPP, probably because of the lack of forest management and forest age structure for Europe. Comparing the

two model results, CRUNCEP-forced biomass is much higher than GSWP3-forced biomass, which cannot solely be explained

by the higher GPP by CRUNCEP (Fig. 14), indicating a bias in the allocation scheme in ORCHIDEE. As detailed in Krinner10

et al. (2005), the photosynthates are partitioned into leaves, roots, sapwood, and carbohydrate reserve, dependent on soil

moisture etc. If LAI is above a PFT-specific maximum value, carbon will not be allocated to leaves but to the sapwood, which

slowly converts to heartwood. Therefore, a higher LAI forced by CRUNCEP leads to more carbon allocation to the wood for

some areas, the turnover time of which is much longer than leaves. A new allocation scheme based on the pipe model was

implemented in another branch of ORCHIDEE (Naudts et al., 2015), which provides a physiologically meaningful relationship15

between foliage, roots, and wood. This would be incorporated in ORCHIDEE-MICT in the future developments. Simulated

total forest biomass for the whole domain is 95 PgC under GSWP3 forcing (165 PgC under CRUNCEP), close to estimates

from forest inventory data in Pan et al. (2011) of 92.1 PgC. Somewhat lower estimates are derived by Avitabile et al. (2016)

and Thurner et al. (2014), of 73 and 84 PgC, respectively.

9.2 Soil carbon20

SOC stocks simulated by the model fit to some extent the spatial pattern from observed inventory data, including that of

NCSCD’s permafrost region near-surface SOC density (Fig. 21), but generate lower values than those from ISRICSoilGrids in

BONA and BOAS. ORCHIDEE-MICT tends to underestimate SOC density in deep soils below ~1m. This underestimation is

maybe because the model does not include the sedimentation of soils that characterized peat formation during the Holocene, nor

simulation of loess carbon or yedoma deposits during the last glacial period (Zimov et al., 2009; Zhu et al., 2016). Further, spin25

up was performed with the coarse approximating assumption that Holocene climate is equal to recent climate. Nevertheless,

it is important to note that ISRICSoilGrids and NCSCD products also have important dissimilarities in overlapping regions

suggesting that high systematic uncertainties exist in boreal and Arctic SOC inventories. We also observe that modeled SOC

stocks are rather dependent on climate forcing inputs, particularly for BONA and BOAS (Fig. 21). Higher stocks are produced

under CRUNCEP forcing, mainly due to the higher primary productivity and therefore higher inputs to SOC associated with30

this forcing data.
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10 Discussion

The model performances against datasets being documented in previous sections, we focus here on key mechanisms expected

from a “high-latitude” model: 1) the conversion of winter snow and ice storage into a peak river discharge in spring, 2)

the ability to capture the rectification of the seasonal amplitude of air temperature through the insulating snowpack and its

attenuation at depth in the soil profile, and 3) the ability to reproduce the large scale gradients of carbon input to ecosystems5

from GPP and NPP and its further partitioning into live biomass and SOC pools driving soil heterotrophic respiration.

10.1 Conversion of winter water storage to spring and summer river discharge

We have shown that the model simulated very different river discharge values according to the atmospheric forcing used. The

spatial distribution estimate of winter snowfall in high latitudes in climate datasets is very difficult. The first reason is the low

density of meteorological stations, in particular in the CRU data (Burke et al., 2013), which leads to lower total precipitation in10

winter and spring (November to April) in CRUNCEP compared to GSWP3 forcing (Fig. S13). Another well known reason is the

difficulty to catch snowfall in a gauge, because of its lower density; the wind prevents the snowfall from being vertical, leading

to systematic undercatch (Yang et al., 2005). Then, the way the total precipitation is partitioned into rainfall and snowfall in the

atmospheric forcing can also change the SWE in winter and spring. The threshold of 0°C in 2-m temperature, used to partition

the precipitation in the CRUNCEP forcing, can lead to very different results compared to the physical partitioning performed15

within the dynamical downscaling for the GSWP3 forcing. In the Yukon and Kolyma basins, the proportion of snowfall to total

precipitation in winter and spring being 100% in both forcings, the precipitation partitioning has no influence in these basins.

By contrast, the proportion of snowfall to total precipitation in winter and spring largely differs between the two forcings in

the other basins, in particular in the Volga (77% in GSWP3 and 53% in CRUNCEP), Ob (84% and 72%), Yenisei (87% and

80%) and Lena (96% and 89%) basins.20

We can assume that most of the forcing-related bias in SWE is converted into a river discharge bias in spring. Regressing

the spring (April to June) river discharge bias for each forcing against the bias of SWE during the pre-melt season (February to

March), over the same period of spring discharge and pre-melt season than Rawlins et al. (2007), shows that across the seven

basins, 69% of the spatial variance of the bias of the spring flow is explained by the SWE bias during the pre-melt season

(Fig. 22). With GSWP3 forcing, the positive ratio of pre-melt SWE bias to spring flow bias ranges between 7 and 97% in25

the different basins (Table S5). With the CRUNCEP forcing, this range is from 9 to 34%. In some basins such as the Ob or

the Mackenzie with CRUNCEP or the Lena with GSWP3, the errors in spring discharge cannot be evidently related to the

SWE bias (negative ratio). This can be explained by the periods chosen for spring and pre-melt which are not necessarily the

same for all basins, in particular in the Ob, Mackenzie and Lena, the rivers for which the advance of simulated peak flow is

the largest. The higher sublimation in the end of winter with CRUNCEP compared to GSWP3 (Fig. 11b), probably related30

to higher downward shortwave radiation and lower specific air humidity in CRUNCEP (Figs. S14 and S16 respectively), also

contributes to the reduced spring discharge between the two simulations (Fig. 12). Over the Lena basin, higher soil evaporation

together with higher interception loss (Fig. 11b), which is coherent with higher LAI (Fig. 13), lead to higher ET in summer with
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CRUNCEP (Fig. 11a), which reduces the spring discharge compared to GSWP3 (Fig. 12). The excessive persistence of the

snow cover can explain the delay of the LAI increase occurrence in the simulations, which may in turn contribute to too early

simulated peak flow, also coupled to floodplain buffering. The Yukon, Mackenzie, Ob and Lena rivers have large floodplain

areas and wetlands (and, in the Yukon and Mackenzie basins, lakes that enhance the floodplain buffer) that retain snowmelt

water (Ringeval et al., 2012), and should attenuate the peak discharge in spring and sustain a significant summer discharge.5

The ORCHIDEE-MICT model uses a predefined floodplain map from GLWD (Lehner and Döll, 2004), but flooded area data

products (e.g. Prigent et al., 2016) show that wider areas are flooded in these catchments in spring, suggesting that better

discharge could be obtained by connecting these larger floodplains and wetlands to the river routing scheme. This highlights

complex potential interactions between the snow, vegetation, and river discharge dynamics, the overall results of which remain

highly uncertain.10

10.2 Seasonal rectification of soil temperature in the atmosphere-snow-soil continuum

A realistic modeling of soil temperature in cold regions requires not only a good soil thermal scheme, but also a good parame-

terization of snow insulation processes which strongly modulate soil temperatures during winter, as well as a realistic soil-plant

hydrology which affects heat transfer in the air-soil interface during summer through ET, and in spring and autumn through

latent heat uptake and release. Therefore, a better understanding and evaluation of model behaviors call for an integrated15

examination of all these elements.

In this study, we showed that biases in modeled winter soil temperatures (Fig. 5) are connected with biases in snow depth

(Fig. 3), while error compensations seem to exist in terms of snow depth and snow thermal conductivity. Model forced by the

GSWP3 climate forcing, which has higher snowfalls than CRUNCEP forcing (Fig. S12), produces significantly larger snow

depth and warmer winter soil temperatures than by CRUNCEP. However, the diagnosis from the relationship between ∆T and20

snow depth, which reveals the model’s intrinsic parameterization of snow insulation irrespective of snow depth, shows similar

patterns with both GSWP3 and CRUNCEP forcings (Fig. 6). The model can generally capture the broad characters in the

∆T-snow depth relationship, including the different ∆T regimes for different periods of the snow season, yet underestimates

the insulation given the same snow depth, compared to observations. This indicates an overestimation of effective thermal

conductivity of snow. In the snow module of ORCHIDEE-MICT, snow compaction is parameterized such that snow density25

increases due to the weight of the overlying snow, while the top layer of snow keeps relatively low-density due to fresh

snowfall; thermal conductivity of snow then evolves with time and depth, calculated as a non-linear function of snow density

(Wang et al., 2013). Recent field measurements for Arctic snow, however, show that the formation of a thin layer of soft depth

hoar at the base of snowpack, with its low thermal conductivity around 0.025Wm–1 K–1 which is ten times smaller than the

intermediate snow layers, significantly re-shapes the vertical profile of snow thermal conductivity (Domine et al., 2016). It is30

therefore important to account for such complex metamorphic conditions of snowpack, especially in Arctic/sub-Arctic regions,

in order to better model the soil thermal regime in permafrost regions.

Soil temperature during the thawing season is a key driver for microbial decomposition of soil organic carbon in the high

latitudes; hence its realistic representation is crucial in modeling carbon cycle in permafrost regions. ORCHIDEE-MICT pro-
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duces reasonable summer-time soil temperature and ALT in general, but significant discrepancies exist between the results of

the model forced by the two climate forcings (Figs. 5 and 7). As the monthly mean gridded air temperature of GSWP3 and

CRUNCEP forcings are almost identical (Fig. S11), both coming from the CRU data, the differences in the two results are

mainly induced by other meteorological fields. A model intercomparison study (Peng et al., 2016) has reported that the surface

incident longwave radiation is one of the dominant drivers of soil temperature trends in LSMs. Indeed, GSWP3 forcing has5

a systematically higher downward longwave radiation than CRUNCEP (Fig. S15), partly explaining the higher land skin and

soil temperatures and deeper ALT with GSWP3 than with CRUNCEP forcing (Figs. 4, 5 and 7). What’s more, the interactions

with hydrology and vegetation also play an important role. The higher ET in Siberian permafrost regions with CRUNCEP than

with GSWP3 forcing (Fig. 11a), which is probably driven by the higher LAI in the same regions (Fig. 13), leads to more cool-

ing for the land surface through latent heat release. Besides, the strong cold bias in winter soil temperatures with CRUNCEP10

forcing affects summer temperature through thermal inertia, especially for the deeper soils below topsoil. All these elements

are interconnected, again highlighting the importance of synthetic evaluation of different yet related model aspects to improve

our understanding of the system.

Previous land surface modeling studies have shown the critical role of organic matter in soil thermodynamics in permafrost

regions (e.g. Lawrence et al., 2008; Chadburn et al., 2015b), while different parameterizations of such effects are implemented15

in different models. Most of the recent models, like CLM (Lawrence et al., 2008), JULES (Chadburn et al., 2015a), ISBA

(Decharme et al., 2016), and ORCHIDEE-MICT in this study, assume weighted combinations of organic soil and mineral

soil in the calculation of soil physical parameters for each soil layer in the model. This structure is more flexible than a

fixed thickness of organic layer or moss layer as the implementation in JSBACH (Ekici et al., 2014), since the former could

approximate the latter by assuming 100% organic soil above the prescribed thickness. Note that for the insulating effect of20

moss/lichen layer, the same values of thermal properties to that of the organic soil are usually used in recent models (Chadburn

et al., 2015a; Porada et al., 2016). In this study, however, we did not apply a fixed moss layer in the thermal module for the

regional simulations, due to the lack of a gridded map for moss/lichen ground covers especially on the boreal forest floor, and

to the lack of a representation for dynamic moss/lichen coverage as in JULES (Chadburn et al., 2015a) and JSBACH (Porada

et al., 2016). This could partly explain the regionally overestimated ALT compared to the empirical map for Yakutia (Fig. S5).25

An explicit representation for non-vascular plants in ORCHIDEE (Druel et al., 2017) has been worked in parallel with this

study at the moment, but would be incorporated in ORCHIDEE-MICT in the future developments.

10.3 Ability of ORCHIDEE-MICT to simulate northern land carbon fluxes and pools

Figure 23 shows the land carbon fluxes and pools modeled and derived from observations (datasets used in the text) in the model

domain > 30°N. Modeled estimates encompass the range of observations excepted for the deep SOC pool where the model30

underestimates SOC. The same figures for each northern region are given in Fig. S10. At the regional level, model-observed

agreement still holds.

Arguably, the main variables that should be well simulated for a high-latitude land ecosystem model regarding future carbon-

cycle climate feedbacks (Koven et al., 2013; Burke et al., 2017a) are the carbon stocks in biomass, litter and soils. In this respect,
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ORCHIDEE-MICT performs generally well for biomass with GSWP3 forcing, including the latitudinal profile, showing a

peak between 50 and 60°N, despite the simple constant background mortality used for forest (Krinner et al., 2005) in a region

where harsh climate is known to induce mortality events. Note that the DGVM version of ORCHIDEE-MICT has a climate

and PFT dependent mortality (Zhu et al., 2015) which was adjusted to reproduce the distribution of vegetation types, but it

was not activated in this study aiming to reproduce observed stocks from an observed vegetation map. The inclusion of climate5

dependent fires adds another factor of mortality in this study. From simulated burned area and fire induced biomass suppression,

we calculated that fires add a mortality of 0.4% yr–1 of biomass in BONA, 0.3% yr–1 in BONEU and 0.6% yr–1 in BOAS,

compared to the fixed background mortality rates of 1.25%. Thus fire is a non negligible component of biomass mortality,

controlling the modeled turnover of forest biomass (Thurner et al., 2016). Interestingly, ORCHIDEE-MICT can reproduce

the latitudinal gradient of biomass stocks well, even in warmer regions where NPP is lower than observed (compare Figs.10

20 and 15b). This suggests a possible error compensation with too small mortality and NPP in the southern boreal forests.

Lack of representation of forest management, and under-representation of other natural disturbances (insect, wind, etc.) could

collectively contribute to an overall underestimation of biomass turnover. Carvalhais et al. (2014) reported an average turnover

of 53.5 years for boreal forests, using extrapolated global soil database and satellite-derived biomass and GPP estimations.

Their estimation of the turnover time integrates both biomass and soil C. Given a longer soil carbon turnover than biomass,15

the biomass turnover of boreal forests should be smaller than 53.5 years. While ORCHIDEE-derived turnover is between 54

(adding together fire and background mortality) and 80 years (assuming only a 1.25% background mortality) with a lower

boundary close to Carvalhais et al. (2014), given that forest fires impact only a small fraction of forests each year (0.1–3% on

annual basis), the ultimate turnover time in the model could be much longer than Carvalhais et al. (2014). The last factor for

overestimation of biomass is that ORCHIDEE represents a mature forest state everywhere due to lack of age structure in the20

model, whereas in reality disturbances and management have led to forest age younger than a mature one.

Regarding SOC, it is critical for carbon climate feedbacks that models can simulate the large current SOC stocks of the high

latitudes. This is a particularly difficult problem since frozen high-latitude SOC was formed during the Pleistocene (Yedoma)

or the Holocene (peat and tundra soils) through processes that are not incorporated as routine in current models, despite efforts

in this direction, e.g. Zhu et al. (2016) for Yedoma and Kleinen et al. (2012) and Spahni et al. (2011) for Holocene peat25

deposits. The incorporation of slow forming high-latitude carbon deposits also requires climate history for deeper past periods.

In order to reproduce the burial of SOC below the active layer, the strategy followed in ORCHIDEE-MICT is inspired from

Koven et al. (2009) who used a diffusion equation to move carbon in the permafrost where no decomposition occurs. Other

studies (Koven et al., 2013; Burke et al., 2017a) further limited the rate of decomposition of SOC at depth, to reproduce the

lack of oxygen inhibiting decomposition. It should be noted also that the decomposition scheme of SOC is still based on30

Parton et al. (1988) as classically done in land surface models (Friedlingstein et al., 2006). Different approaches were proposed

in models focusing only on SOC decomposition (Wutzler and Reichstein, 2008; Manzoni and Porporato, 2009) based on

different assumptions (substrate driven, decomposer driven, etc.), but no clear consensus emerged up to date to revise the SOC

decomposition scheme in land surface models (Luo et al., 2016). Here we argue that key to the simulation of a high and realistic

SOC stock is the correct representation of soil thermics, illustrated in Fig. 5. A detailed study of the sensitivity of modeled35
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SOC to soil thermics during the spin-up phase will be presented in a follow up study but we already found comparing SOC

with CRUNCEP and GSWP3 climate forcings, the latter giving warmer soil temperature profiles, that SOC is indeed lower in

GSWP3. Overall, the simulated circumboreal SOC stocks are comparable with NCSD observations (Fig. 21). This suggests

that simulating the formation of frozen carbon with a diffusion-related burial process gives a good performance for the model,

although the too stiff profile of SOC (Fig. 21) indicates that a further inhibition of respiration in deep horizons could improve5

the modeled vertical distribution. Other processes that would tend to make the vertical profile of SOC more uniform with

depth is the omission of interactions between SOM and the physical soil environment (Doetterl et al., 2015; Tipping et al.,

2016). Modeled SOC is too low in regions covered by peat (lowland Hudson Bay, Ob northern and central basin) and Yedoma

(Northeastern Siberia and Alaska) (Fig. 21), suggesting that adding these two SOC formation processes should further improve

the modeled SOC patterns in longitude, and that in non-peat and non-Yedoma regions, there is no significant model bias for10

SOC.

Second, for research related to biophysical vegetation-climate feedbacks and understanding the current variability of the

carbon cycle, having a correct seasonal representation of GPP, NPP and of the related plant transpiration is a critical requirement

for a LSM. The phase of simulated LAI in spring lags satellite observations, in particular for BONA and BOAS sub-regions

(Fig. 13). We argued that this lag is related to the late persistence of the snow cover. However a recent work (Chadburn et al.,15

2017) shows a late onset even in the absence of snow persistence on site simulations by ORCHIDEE. This calls for a revisit

of the phenology-related thresholds in the high-latitudes, perhaps by introducing new PFTs (arctic C3 grass and shrub, and

non-vascular plants), with their separate set of parameters calibrated, to better represent Arctic vegetation and their phenology

(Druel et al., 2017). There is also a lag of GPP (Fig. 14), and of ET (Fig. 11a), but of smaller length (~15 days) compared to

the lag of LAI. In order to further analyze why the lag of GPP (and ET) in spring is shorter than the one of LAI, we represent20

separately monthly GPP and LAI for deciduous and evergreen PFTs (Fig. S9). The phase of GPP coincides with that of LAI

in deciduous, whereas GPP increases in spring as soil thaw faster and earlier than LAI for evergreens. Thus, it is the modeled

spring decoupling between GPP and LAI in evergreen forest that explains the phase bias of GPP being smaller than that of

LAI. Note that evergreen trees GPP is modeled to increase rapidly in early spring ORCHIDEE-MICT, even if the model has an

inhibition of Vcmax when previous monthly air temperature remains below -4°C (Krinner et al., 2005) to reproduce impaired25

photosynthesis observed in conifers, a physiological measure to avoid frost damage of photosystems (Leinonen, 1996; Tanja

et al., 2003).

Peak summer GPP is overestimated in BONA and BOEU sub-regions compared to MTE-GPP (Fig. 14) and mean GPP is

underestimated at southern sites in W. Europe and US where T > 7°C (Fig. 16a). We checked that underestimated GPP at

warmer sites and in Eastern Siberia for the deciduous needle-leaved forest PFT (Larch) is due to an overestimation of water30

stress in summer by the model, since ET is also lower than observed at all the warmer sites. Without the dynamic root allocation

to optimize water use in the root zone (see Section 4.3), GPP in Eastern Siberia would be even lower compared to MTE-GPP

(not shown). Last, regarding the timing of GPP decrease in autumn, ORCHIDEE-MICT shows good performances (Fig. 14)

despite the lack of an explicit senescence model for conifers.
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Interestingly the reasonable seasonal phase of simulated GPP (Fig. 14) can be contrasted with the larger lag of spring NEE

uptake compared to inversions results (Fig. 19). This may be partly explained by the underestimated GPP at the beginning of

the growing season (Fig. 14), and also by a possible too big soil respiration in spring. The moss/lichen surface coverage could

be over 70% under the vast boreal forests (Porada et al., 2016), but we did not prescribe an additional moss layer in the regional

simulations, which could lead to a too early thawing of the soil in spring.5

The connection between modeled GPP and carbon pools takes place through NPP and its allocation to interconnected pools

of variable turnovers. Of critical importance is thus the ability of the model to reproduce CUE which defines the ratio of

NPP to GPP, i.e. carbon available for ecosystem pools. Piao et al. (2010) showed that CUE of forest decrease from 0.5 to

0.3 between 10°C and -10°C, due to higher maintenance needs of trees e.g. to recover from cavitation in spring or maintain

tissues during the cold-season period. While mean CUE is correctly simulated (Fig. 17), ORCHIDEE-MICT does not capture10

its observed decrease towards colder temperatures (data not shown), possibly because allocation and NPP are not driven by

sink considerations (Körner, 2003; Fatichi et al., 2014) and thus too much GPP is used to make NPP at colder temperatures.

11 Conclusions

This study has described the inclusion of parameterizations which link soil carbon content and its decomposition rates with per-

mafrost physics and hydrology in the ORCHIDEE-MICT land surface model. The effects of soil organic matter on soil thermal15

and hydraulic properties are incorporated. The model was evaluated against temperature gradients between the atmosphere and

deep soils, and reasonable captured active layer thickness, northern permafrost extent, and soil carbon stocks and profiles. We

have shown that the simulated water balance components and their seasonal transition between cold season storage, mostly in

solid form, and warm season loss are comparable to observations. Naturally, there remains significant room for improvement.

The model appears to underestimate evapotranspiration and overestimate surface temperatures, particularly in the southern20

portion of the boreal zone. Simulated phenology shows generally a delay in the onset of growing season. And the snow module

underestimates the thermal insulation of snow. Through the use of two different climate forcing datasets across all diagnostic

variables, we found that for a large number of these, the variation in output arising from choice of a forcing was as large as

the discrepancy between model and observations. This raises a caution flag against ‘over-calibrating’ the parameters of a LSM

to match measured quantities in the presence of large biases in climate input datasets. One critical aspect of forcing data in25

this respect is the partitioning of precipitation between snowfall and rainfall, which appears to produce a large difference in

modeled snow mass and depth. Future improvements of the ORCHIDEE-MICT model include the need for a better floodplain

parameterization (Lauerwald et al., 2017) and a better representation of floodplain areas and wetland effects on river discharge.

Including an explicit senescence inception model in ORCHIDEE-MICT may contribute to correct the excessive persistence

of LAI during the fall, or even winter in the Yukon and Mackenzie basins. The subgrid-scale representation of permafrost30

hydrology in discontinuous permafrost areas may be necessary, as might a more realistic description of the slow processes that

accumulate carbon in the soil (peat, yedoma, erosion) on very long time scales.
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12 Appendix

Appendix A: Evaluation datasets for the water budget

A1 Total terrestrial water storage

The change of total terrestrial water storage (TWS) is an integrated measure of the ability of a LSM to partition the cold season

storage of water as snow and ice, and its decrease from losses to downstream river discharge, plant and soil evapotranspiration,5

and soil moisture increase. Alkama et al. (2010) showed with the ISBA-TRIP model that seasonal variations in TWS over high-

latitude basins resulted primarily from snow accumulation in the cold season, despite a wintertime underestimation of TWS

values. Decreasing soil moisture contributed to a small decrease in springtime TWS, while exports with riverflow increased

dramatically during the snowmelt period. The GRACE (Gravity Recovery And Climate Experiment) satellite mission permits

estimation of monthly TWS variations through measurements of the Earth’s gravitational field. Three solutions, at 1° resolution,10

based on spherical harmonic coefficients (Release 05), are obtained by different processing centers: CSR (Center for Space

Research), JPL (Jet Propulsion Laboratory) and GFZ (GeoForschungsZentrum Potsdam) and provided in the GRACE Tellus

dataset (Swenson and Wahr, 2006; Swenson, 2012; Landerer and Swenson, 2012). We use the ensemble mean of these solutions

to reduce uncertainty in GRACE data (Sakumura et al., 2014). To compare TWS simulated by ORCHIDEE-MICT to GRACE

data over the common time period between the two meteorological forcing data sets and GRACE data (July 2003-December15

2007), we summed the water stocks simulated by ORCHIDEE-MICT, i.e., soil moisture, snowpack, water on the canopy and

water stored for the routing reservoirs. In each grid cell, the corresponding 5-year average is removed from the 2003–2007

time series of TWS output from ORCHIDEE-MICT. The comparison of simulated TWS with GRACE data over seven basins

in this study (Fig. 2b) is statistically satisfactory given large surface areas occupied by these basins (> 400,000 km² (see Table

S4), Swenson et al., 2003).20

A2 Snow water mass

The GlobSnow v2.0 SWE dataset is based on a data-assimilation approach combining space-borne passive radiometer data

(SMMR, SSM/I and SSMIS) with data from ground-based synoptic weather stations. The record provides SWE information

on a daily, weekly and monthly basis, at a spatial resolution of approximately 25 km (in EASE-Grid format) and applies to

non-mountainous regions of the northern hemisphere, excluding glaciers and Greenland. The product is based on the SWE25

retrieval methodology developed by Pulliainen (2006) complemented by a time-series melt-detection algorithm (Takala et al.,

2009). A complete description of its methodology is given in Takala et al. (2011). SWE estimates are complemented with

uncertainty data at the grid cell scale. This work uses monthly-averages of original daily data, interpolated to a 1° grid for

appropriate comparison with ORCHIDEE-MICT output.
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A3 Evapotranspiration (split into components)

The Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011) estimates the daily terrestrial ET rate

and its components (transpiration, bare-soil evaporation, open-water evaporation, interception loss and sublimation), as well

as root-zone soil moisture, at a spatial resolution of 0.25°. It is driven by microwave remote sensing observations and uses

satellite soil moisture to constrain potential evaporation rate. The latter is computed with the equation of Priestley and Taylor5

(1972), which is based on air temperature and net radiation. In the GLEAM v3 product (Martens et al., 2017), representation

of evaporative stress has been improved by the use of microwave vegetation optical depth as a proxy for vegetation water

content. Other improvements include the use of satellite based SWE, reanalysis air temperature and radiation, and a multi-

source precipitation product. GLEAM v3 contains three sub-versions: Version v3.0a is an assimilated product derived from

satellite observations and multiple reanalysis climate forcing, while v3.0b and v3.0c are purely satellite-based products. As the10

latter two do not provide full coverage of high-latitude regions (only 50°S – 50°N), the v3.0a, which covers the period 1980-

2014, is used in our study. We use monthly-averages of original daily data, interpolated to a 1° grid for appropriate comparison

with ORCHIDEE-MICT output.

A4 River discharge

We use two river discharge databases, one global and another exclusively covering Siberia: The Global Runoff Data Centre15

(GRDC) product is a global database which collected river discharge data from nearly 7800 stations in 156 countries for the

[maximum] period 1807-2017. We use one gauging station per river, the closest to the mouth of the river. For Siberia, we also

use daily river discharge at the 3 gauges in three large Siberian rivers (the Ob, Yenisei and Lena) which have been reconstructed

(naturalized discharge) to exclude the human impact from the data. This has been performed by using the Hydrograph Routing

Model (HRM) developed at the University of New Hampshire (USA) in collaboration with the Arctic and Antarctic Research20

Institute (Russia) (Shiklomanov and Lammers, 2009). We use monthly-averages of original daily data.

A5 Top-soil moisture

The global ESA CCI SM product (v2.2) provides daily soil moisture (in volumetric units m3 m–3), at a spatial resolution of

25 km with quality flags specifying potential sources of errors linked to the presence of water bodies, dense vegetation, snow

or frozen soils in the pixel area. Three datasets are provided based on different combinations of active and passive satellite25

sensors. In this work, we used the combined active and passive product which covers the whole period from November 1978

to December 2014. The product results from the merging of soil moisture estimations inversed from two types of instruments

and two methodologies: passive microwave radiometers (SMMR, SSM/I, TMI, AMSR-E, AMSR2 and WindSat) using the

methodology developed by Owe et al. (2008) and active microwave instruments (ERS-1&2 and ASCAT) using the algorithm

developed by TU-Wien (Wagner et al., 1999; Bartalis et al., 2007). These two records were first rescaled together and merged30

with topsoil (10 cm) soil moisture simulations of the GLDAS-NOAH LSM using a CDF-matching approach. Data accuracy

was estimated against in-situ measurements (Dorigo et al., 2015) to 0.05m3 m–3.
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A6 Root-zone soil moisture

The GLEAM root-zone soil moisture v3.0a database (Martens et al., 2017) is based on both satellite observations and reanalysis

data. It is a mixture of soil water content of three soil tiles: bare soil (0-10cm), herbaceous (0-100cm) and tall vegetation (0-

250cm). The tile fractions are static and derived from MODerate resolution Imaging Spectroradiometer (MODIS) Global

Vegetation Continuous Fields product (MOD44B, Hansen et al. 2005). Obviously, it is hard to compare the ORCHIDEE soil5

moisture with the GLEAM root-zone soil moisture directly not only due to the mismatch of defined soil tile depth but also

due to the difference of soil tile fractions. Thus we implement the comparison after normalization of the relative soil moisture

values with their respective standard deviation, following Koster et al. (2009).

Appendix B: Evaluation datasets for air-to-soil temperature continuum

B1 Snow depth10

Realistically simulating snow depth is one of the prerequisites for accurately modeling soil thermal dynamics, particularly in

winter. Daily snow depth in-situ data (1975-2005) from 524, 72, 528, 128 and 528 stations in Europe, Canada, USA, Russia

and China were obtained from European Climate Assessment & Dataset (ECA&D), the National Climate Data and Information

Archive of Environment Canada, the United States Historical Climatology Network (USHCN), the Russian Research Institute

of Hydrometeorological Information—World Data Center (RIHMI-WDC) (Bulygina et al., 2011), and the National Meteo-15

rological Information Center of the China Meteorological Administration (Peng et al., 2010), respectively. Monthly averages

were calculated when more than 2/3 of daily snow depth data were available.

B2 Surface soil temperature

The soil temperature product used here (André et al., 2015) resulted from the use of combined passive microwave and thermal

infrared data to estimate land surface temperature (LST), during summer snow-free periods (snow-covered pixels are masked)20

in the northern high latitudes. The product is based on the use of SSM/I-SSMIS 37GHz measurements at both vertical and

horizontal polarizations and is provided on a 25 km resolution EASE grid at a one-hour time step for the period 2000-2011.

LST retrievals are based on the assumption of a relationship between surface emissivities at both polarizations (Royer and

Poirier, 2010) which was calibrated at pixel scale using cloud-free independent LST data from MODIS instruments. The

SSM/I-SSMIS and MODIS data were synchronized by fitting a diurnal cycle model built on skin temperature with reanalysis25

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). This product was evaluated at local and

circumpolar scales against MODIS LST, and the results show a mean Root Mean Square Error (RMSE) of the order of 2.5 K.

B3 In-situ air and soil temperatures

Simultaneous measurements of snow depth, near-surface air temperature and top soil (at 20 cm depth) temperature from

Russian meteorological stations (Bulygina et al., 2011; Sherstiukov, 2012) are used to evaluate the thermal insulating effect30
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of snow during winter, by comparing the relationships between snow depth and the air-to-topsoil temperature gradient (∆T)

(Wang et al., 2016b). This dataset includes monthly mean values at 268 sites for the period 1980-2000.

B4 Active-layer thickness

The Circumpolar Active Layer Monitoring (CALM) network’s in-situ data set was used to evaluate modeled soil active layer

thickness. The CALM network aims to observe the response of near-surface permafrost and the active layer to climate change5

over long time scales. Thaw depth is measured at the end of the thawing season, so that it should be comparable to the maximum

active layer thickness in the model. Before comparing to ORCHIDEE-MICT, the data from 221 sites were averaged from 1990

to 2015.

In addition, we used the active layer thickness map derived by Beer et al. (2013) over Yakutia at a spatial resolution of

0.5°. It is based on regional surveys of landscapes and permafrost conditions in Yakutia during the time period 1960–1987.10

The gridded datasets can be accessed at the PANGAEA repository. Values of active layer thickness (ALT) in this region range

between 0.3 m north of 70°N to 3 m south of 65°N. Uncertainty increases with ALT and is highest (up to 1m) in the south

because of the occurrence of discontinuous and sporadic permafrost landscapes.

Appendix C: Evaluation datasets for leaf area, carbon stocks and fluxes

C1: Leaf Area Index15

The Leaf Area Index (LAI) can be derived from satellite measurements, using reflectance measurements and land cover maps.

Comparing the seasonal cycle of the satellite products with simulated LAI gives information on the appropriateness of the

phenology modules. The amplitude of the cycle is also informative with respect to several photosynthetic parameters (e.g.

maximum carboxylation rate Vcmax or specific leaf area).

GIMMS20

The Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g dataset is derived from Advanced Very High Resolution

Radiometers (AVHRR) measurements. It is more specifically computed from the GIMMS Normalized Difference Vegetation

Index (NDVI) 3g, using a neural network and the International Geosphere Biosphere Programme (IGBP) land cover classes

(Zhu et al., 2013). The 1/12 degree files cover 30 years from July 1981 to December 2011, at a bi-weekly resolution. They

were aggregated at a 1.0° spatial resolution on the model grid, to enable comparisons of the time-series and maps.25

GLASS

The Global Land Surface Products (GLASS) LAI product (Liang and Xiao, 2012) is built from AVHRR reflectances over the

period 1982-1999 and then from MODIS data over 2000-2012 (Collection 5). The processing is also based on a neural network

and the 8 biomes of the MODIS land cover type 3 (Xiao et al., 2014). The files are available at a spatial resolution of 0.05°

with an 8-day frequency and were aggregated at 1.0° spatial resolution.30
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C2: NEE from atmospheric inversions

We use estimates of NEE (here the net land-atmosphere CO2 fluxes excluding fossil fuel CO2 emissions) from two atmospheric

inversions where NEE is optimized at the resolution of a global atmospheric transport model each month to match observed

CO2 concentration gradients from a global network of ground based stations. The inversions are the Copernicus Atmosphere

Monitoring Service (CAMS) inversion system (Chevallier et al., 2010) and the Jena CarboScope (Rödenbeck, 2005).5

The inversion from CAMS uses atmospheric CO2 concentration observations from a total of 132 sites covering the period

1979-2015 and includes all sites being added to the network though time, combined with the LMDZ INCA atmospheric

transport model and prior information about fossil-fuel CO2 emissions (from EDGAR3.2 FastTrack 2000 database) as well as

land/ocean-atmosphere fluxes, to minimize a cost function in order to calculate NEE. Here we use the latest version (15r4), in

which monthly fluxes are calculated at 1.875° x 3.75° lat/lon resolution.10

The Jena CarboScope atmospheric inversion uses the same set of atmospheric CO2 observation sites available during the

temporal observation period (1996-2015) referred to as Jena s96. Jena CarboScope inversion uses fossil fuel emissions from

EDGAR 4.2 and the TM3 global atmospheric transport models. Here we use monthly NEE from the latest version of Jena s96

(v3.8), which is provided at 3.8° x 5.0° lat-lon resolution.

C3: Site-level GPP and NPP observations15

In-situ GPP and NPP measurements

While there are several NPP datasets especially for forest (e.g. Cannel et al., 1992; Olson et al., 2001; Michaletz et al., 2014),

few provide both GPP and NPP at the same locations. We used a recent database of in situ co-located GPP and NPP measure-

ments (Campioli et al., 2015), which is an extension of the Luyssaert et al. (2007) database for forests. The database consists

of 131 sites, for which annual NPP obtained from biometric measurements and associated uncertainties are provided. The20

criteria employed by Campioli et al. (2015) for selecting the sites was the availability of methodologically independent and

site-specific estimates of NPP and GPP. Carbon Use Efficiency (CUE) was calculated at each site by taking the ratio of NPP to

GPP. Site-level biomes are classified as one of tundra, boreal peatlands, marshes, forests, grasslands or croplands. To study the

temperature sensitivity of GPP and NPP, we selected only sites northward of 30°N, where model grid cells were representative

of both the vegetation type and meteorological conditions observed at each site. We thus restricted the selection to sites whose25

IGBP vegetation type had a corresponding fraction greater than 0.5 in the grid cell of ISLSCP II MODIS IGBP Land Cover

product (Friedl et al., 2010). Site-years where the absolute difference between local and the Mean Annual Temperature (MAT)

of the GSWP3 or the CRUNCEP climate forcing fields was higher than 4 degrees were discarded. As no information was given

about the time-period of site NPP and GPP observations in Campioli et al. (2015), we compared them to mean values of the

model over the period 2000-2007. The subset of selected sites consisted then in 52 sites out of 131 in the full dataset.30
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C4: Gridded GPP and NPP observation-based data

GPP

In addition to GPP from sites, we used the monthly gridded GPP observation-based product Model Ensemble Tree GPP (MTE-

GPP) from Jung et al. (2009, 2011) from year 1982 to 2010. This product is the result of a statistical model that combines

measurements at FLUXNET sites with geospatial information from satellite remote sensing (fAPAR) and meteorological data.5

MTE-GPP is obtained as the median from an ensemble of the 25 best model trees out of an initial set of 1000 and the Mean

Absolute Deviation (MAD) of the ensemble is used to define the uncertainty of MTE-GPP, which is also provided as a monthly

gridded product. This uncertainty estimate was mentioned by Jung et al. (2011) to be underestimated as compared to the true

RMSE. That is why we consider the RMSE from the cross-validation sites as an estimate of uncertainty. The RMSE of mean

MTE-GPP at cross validation sites is 270gCm–2 yr–1. At global scale and over the period 1982-2008, the mean MTE-GPP is10

933± 46gCm–2 yr–1 and the total is 119± 6GtCyr–1, the uncertainties being derived from the MAD of the MTE (Jung et al.,

2011).

NPP

We use the MOD17A3.005 global annual NPP model driven by satellite observations from the NASA Land Processes Dis-

tributed Active Archive Center, at 1 km resolution and aggregated to the 1° grid of the model over the period 2000-2010. Yearly15

MODIS NPP is computed from yearly and daily components. Among the daily components, MODIS GPP is based upon a LUE

model:

GPP = E ∗ fAPAR ∗PAR (15)

where PAR is the Photosynthetically Active Radiation, fAPAR the fraction of absorbed PAR and E is the radiation conversion

efficiency. E depends on vegetation type and on meteorological conditions (temperature, Vapor Pressure Deficit (VPD)). PAR,20

temperature and VPD used in MOD17A3.005-NPP are from the NASA Data Assimilation Office (DAO) and fAPAR is a

MODIS product (Knyazikhin et al., 1998). A daily Maintenance Respiration (MR) was computed for leaves (l) and fine roots

(fr), using the LAI MODIS product (Knyazikhin et al., 1998). On a yearly basis, MR was computed for livewood (lw) and

Growth Respiration (GR) for leaves, fine roots, livewood and deadwood (dw). These respirations were computed using a

biome-specific parameter look-up table, derived from the BIOME-BGC terrestrial biosphere model (Heinsch et al., 2003). This25
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set of parameters was recalibrated for the MOD17A3.005-NPP collection 5 (Zhao et al., 2005). Yearly MODIS-NPP was thus

computed as follows (Running et al., 2004):

NPP =

∑
days

[GPP – MR(l) – MR(fr)]

 – MR(lw) – GR(l) – GR(fr) – GR(lw) – GR(dw) (16)

Turner et al. (2006) evaluated MODIS NPP at nine sites representing various biomes, using local meteorological, LAI and

above ground NPP measurements as inputs for the BIOME-BGC model to derive NPP over a 25 km² area. They showed5

globally no bias but NPP was underestimated at the most productive sites (attributed to a negative bias of E) and overestimated

at low productivity sites (attributed to a positive bias of MODIS fAPAR). Zhao et al. (2005) evaluated MODIS NPP against

the Ecosystem Model-Data Intercomparison (EMDI) global database of NPP measurements (Olson et al., 2001) and found

a good agreement except for tropical forests (spatial R2 = 0.77). Zhao et al. (2006) estimated the sensitivity of the MODIS

NPP product to the use of different meteorological reanalysis input data, showing differences at global scale up to more than10

20PgCyr–1, with the largest differences in the tropics.

C5: Soil carbon inventories

NCSCD

The Northern Circumpolar Soil Carbon Database quantifies storage of organic carbon in soils of the northern circumpolar

permafrost region, comprising four depths up to 3m (0-30cm, 30-100cm, 100-200cm and 200–300 cm) (Hugelius et al., 2013).15

Total SOC storage in the 0-2m and 0-3m depth ranges in northern permafrost soils are estimated to be 827±108 and 1035±150

PgC respectively.

ISRICSoilGrids

ISRICSoilGrids is a global soil information database with spatial predictions for a selection of soil properties, at 1 km resolution

and six depths, up to a maximum of 2m ( 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm). About 110,000 soil20

profiles were used to generate the product, using statistical models based on climatic and biomass indices, lithology, and

taxonomic mapping units (Hengl et al., 2014). The gridded maps of soil organic carbon mass fraction, soil bulk density, and

volumetric fraction of coarse fragments was used to calculate SOC density in the unit of kgCm–2 to be comparable with model

output (see Eq. 6 in Hengl et al., 2014). However, we found in this product a systematic overestimation of bulk density for

organic-rich soils, which is similar to the issue found in the HWSD database (Köchy et al., 2015). Therefore, we followed the25

adjusting method in Köchy et al. (2015) to correct bulk density for histosols and other soils with organic carbon mass fraction

larger than 3%. This adjustment decreases total SOC stock in northern permafrost regions (the same domain as NCSCD) in the

0-2m depth range from the original 1724 PgC to 1177 PgC, which we considered acceptable though higher than NCSCD.

36



C6: Biomass carbon stocks

Two forest biomass datasets are used to evaluate simulated forest biomass. The first is that from Avitabile et al. (2016), which,

at a spatial resolution of 0.01°, merges two tropical aboveground forest biomass (AGB) datasets from Saatchi et al. (2011) and

Baccini et al. (2012) with northern hemisphere volumetric forest stock growth data from Santoro et al. (2015). The second

forest biomass dataset from Thurner et al. (2014) is given at a spatial resolution of 0.01° for 2010 and confined to the northern5

hemisphere (30°N–80°N). This is derived from the Santoro et al. (2011) forest standing stock data. The two datasets were re-

gridded to 1° resolution for comparison with model output. The Avitabile et al. (2016) AGB was converted into total biomass,

assuming a constant AGB to total biomass ratio of 0.8 and divided by two to obtain total biomass carbon, under the assumption

that the carbon content of dry biomass is 50%. Liu et al. (2015) synthesized ratios of aboveground to total biomass for different

forest biomes in temperate and boreal regions and found that they range between 0.76 and 0.84 according to regional forest10

inventory assessments. Our uniform 0.8 factor for converting the Avitabile et al. (2016) data thus yields a potential error of

~5% in inferred total biomass carbon, which is within the reported data uncertainties given by Avitabile et al. (2016). Simulated

equivalent total forest biomass carbon over the period 2000–2007 was compared with observations.

C7: Burned area and fire emissions

We compared the simulated burned area and fire carbon emission with the Global Fire Emissions Database (GFED4s) data set,15

which is based on the GFED modeling framework (van der Werf et al., 2010). The GFED4s burned area data is derived from

the MODIS sensor data that is then complemented by specific algorithms to retrieve “small fires” (Randerson et al., 2012).

Emissions are computed from a combination of burned area with the revised Carnegie-Ames-Stanford-Approach biogeochem-

ical model (CASA-GFED, described in van der Werf et al., 2010), that provides an estimation of fuel loads and combustion

completeness. GFED4s data is provided at a 0.25° spatial resolution with a monthly time-step for 1997–2015.20

Cropland fires are not yet implemented in the ORCHIDEE-MICT model, but are included in the GFED4s dataset. In order to

compare the simulation with GFED4s, it was necessary to correct the simulated burned area for the omission of cropland fires.

To do so, we computed for each grid cell the fraction of existing natural PFTs (i.e. all non-cropland PFTs), and divided the

simulated burned area in each grid cell by this value. For carbon emissions, the GFED4s dataset provides separate emissions

data for cropland and natural fires. In this way, we were able to simply remove cropland fire emissions from GFED for25

comparison with ORCHIDEE-MICT output.
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Dataset Variable Resolution Period URL References

Evaluation datasets for water budget

GRACE TWS 1° Jul. 2003-Dec. 2007 http://grace.jpl.nasa.gov Swenson and Wahr, 2006; Swenson, 2012

Landerer and Swenson, 2012

GlobSnow Snow water mass 25 km 1979-2013 www.globsnow.info Takala et al. (2009)

GLEAM v3.0a Evapotranspiration 0.25° 1980-2014 http://www.gleam.eu Miralles et al. (2011)

GRDC River discharge - 1981-2007 http://www.bafg.de/GRDC/EN/Home/homepage_node.html -

Naturalized discharge River discharge - 1981-2007 http://www.r-arcticnet.sr.unh.edu/ObservedAndNaturalizedDischarge-Website Shiklomanov and Lammers (2009)

ESA CCI SM v2.2 Top-soil moisture 25 km Nov. 1978-Dec. 2014 http://esa-soilmoisture-cci.org -

GLEAM v3.0a Root-zone soil moisture 0.25° 1980-2014 http://www.gleam.eu Martens et al. (2017)

Evaluation datasets for air-to-soil temperature continuum

ECA&D Snow depth - 1975-2005 http://ecad.knmi.nl/dailydata/predefinedseries.php -

National Climate Data and Snow depth - 1975-2005 http://climate.weather.gc.ca/historical_data/search_historic_data_e.html -

Info. Archive of Env. Canada

USHCN Snow depth - 1975-2005 http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html -

RIHMI-WDC Snow depth - 1975-2005 - Bulygina et al. (2011)

National Meteo. Info. Snow depth - 1975-2005 - Peng et al. (2010)

Center of the China

Meteo. Admin.

- Surface soil temperature 25km 2000-2011 http://doi.pangaea.de/10.1594/PANGAEA.833409 André et al. (2015)

- In-situ air and - 1980-2000 - Sherstiukov (2012)

soil temperatures

CALM Active-layer thickness - 1990-2015 - -

For Yakutia Active-layer thickness - 1960-1987 doi:10.1594/PANGAEA.808240 Beer et al. (2013)

Evaluation datasets for leaf area, carbon stocks and fluxes

GIMMS Leaf Area Index 0.08° Jul. 1981 to Dec. 2011 http://nasanex.s3.amazonaws.com/AVHRR/GIMMS/LAI3G Zhu et al. (2013)

GLASS Leaf Area Index 0.05° 1982-2012 http://glcf.umd.edu/data/lai Liang and Xiao (2012)

CAMS NEE 1.875° x 3.75° 1979-2015 https://apps- test.ecmwf.int/datasets/data/cams-ghg-inversions Chevallier et al. (2010)

Jena s96 v3.8 NEE 3.8° x 5.0° 1996-2015 http://www.bgc-jena.mpg.de/CarboScope/?ID=s96_v3.8 Rödenbeck (2005)

- GPP - Not known - Campioli et al. (2015)

MTE-GPP GPP 0.5° 1982-2010 - Jung et al. (2009, 2011)

- NPP - Not known - Campioli et al. (2015)

MOD17A3.005 NPP 1 km 2000-2010 - -

NCSCD Soil carbon inventories 0.01° - http://bolin.su.se/data/ncscd/netcdf.php Hugelius et al. (2013)

ISRICSoilGrids Soil carbon inventories 1 km - doi:10.5879/ecds/00000001 Hengl et al. (2014)

- Biomass carbon stocks 0.01° - - Avitabile et al. (2016)

- Biomass carbon stocks 0.01° - http://www.biomasar.orghttp://www.bgc-jena.mpg.de/geodb/projects/Home.php Thurner et al. (2014)

GFED4s Burned area 0.25° 1997-2015 http://www.globalfiredata.org/data.html van der Werf et al. (2010)

and fire emissions

Table 1. List of the data sets used for the ORCHIDEE-MICT evaluation, with their references, the original spatial resolution, and period of
availability
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Figure 1. Temperature, water and carbon interactions in the initial version of ORCHIDEE (black), and processes included in ORCHIDEE-
MICT in this study (red). Note that in the simulations in this study, the soil thermics and hydrology modules read a prescribed observation-
based soil carbon map (see Eq. 9), which is independent of the prognostically simulated SOC by the carbon module, thus the two red arrows
here are dashed lines.

Figure 2. (a) The three high-latitude sub-regions used in this study, including boreal North America (BONA), boreal Europe (BOEU) and
boreal Asia (BOAS), following McGuire et al. (2016). Blue and red lines indicate the extent of continuous permafrost and all permafrost
categories respectively, according to the IPA permafrost map (Brown et al., 2002). (b) The seven high-latitude basins selected for this study
with the gauge stations (red circles on the map, more information in Table S4).

54



Figure 3. Maximum monthly snow depth (m) simulated (background maps) with (a) GSWP3 and (b) CRUNCEP forcings compared to
observations (color filled circles), averaged over the period 1975-2005. (c) Monthly mean seasonal snow depth (m) from observation and the
two simulations, averaged over the observation sites in the three high-latitude sub-regions (shown in Fig. 2a).
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Figure 4. (a) Observed mean summer (JJA) land surface temperature (°C) and bias in the (b) GSWP3 and (c) CRUNCEP-forced simulation,
averaged over the period 1996-2007.
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Figure 5. Mean annual soil temperature at 0.2 m depth (°C) in the (a) GSWP3 and (b) CRUNCEP-forced simulation (background maps),
compared to the site observations (color filled circles), averaged over the period 1981-2000. Monthly mean seasonal soil temperatures at
different depths (°C) in the (c) GSWP3 and (d) CRUNCEP-forced simulation, compared with the observation, averaged over the 51 sites
in continuous permafrost region (according to the IPA map) and over the period 1981-2000. The spatial patterns of maximum monthly soil
temperature are also shown in Fig. S4.

Figure 6. Relationship between ∆T (soil temperature at 20 cm depth minus air temperature) and snow depth (cm) over the period 1981-2000,
for site-level observations (black), and for model results (red) (9612 site-month values in total), forced by (a) GSWP3 and (b) CRUNCEP.
Circles and squares are medians of 5 cm snow depth bins, representing early (Nov, Dec, Jan) and late (Feb, Mar, Apr) snow season respec-
tively. Upper and lower bars indicate the 25th and 75th percentiles of each bin. The size of circles/squares indicates frequency of occurrence
in each bin.
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Figure 7. Active layer thickness (ALT in m) from the (a) GSWP3 and (b) CRUNCEP-forced simulation (background maps), compared to the
observed ALT from the CALM network (color filled circles), averaged over the period 1990-2007. Permafrost extent from the (c) GSWP3
and (d) CRUNCEP-forced simulation according to two different definitions (yellow and red lines) on top of the IPA permafrost map (Brown
et al., 2002).
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Figure 8. Interannual monthly variation and trend (line) of TWS (mm) simulated with the two forcings compared to GRACE data over the
seven basins (see Fig. 2b), for the period July 2003-December 2007.

Figure 9. Monthly mean seasonal SWE (mm) simulated with the two forcings compared to Globsnow over the seven basins (see Fig. 2b),
averaged over the period 1981-2007.
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Figure 10. Monthly mean seasonal relative (a) topsoil (-) and (b) root soil moisture (-), both normalized by their multi-year standard
deviation, simulated with the GSWP3 and CRUNCEP forcings over the seven basins (see Fig. 2b), averaged over the period 1981-2007.
The results are compared with (a) satellite-derived observations from ESA CCI and (b) the GLEAM data driven model assimilated against
satellite data.
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Figure 11. (a) Monthly mean seasonal evapotranspiration (mmd–1) simulated with the two forcings compared to GLEAM data-driven model
over the seven basins (see Fig. 2b), averaged over the period 1981-2007. (b) Seasonal bias of ET components (mmd–1) averaged over the
same period, with the GSWP3 (solid line) and CRUNCEP (dashed line) forcings.
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Figure 12. Monthly mean seasonal river discharge (m3 s–1) simulated with the two forcings compared to observed non-naturalized (GRDC)
and the Siberian naturalized river discharge dataset at the gauge stations of the seven basins (see Fig. 2b), averaged over the period 1981-2007.

Figure 13. Monthly mean seasonal LAI (-) simulated with the two forcings compared to GIMMS and GLASS products over the seven basins
(see Fig. 2b), averaged over the period 1981-2007.
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Figure 14. (a) Simulated annual GPP (gCm–2 day–1) from the two climate forcings, compared to the data-driven MTE-GPP, averaged over
the period 2000-2007. (b) Monthly mean seasonal GPP (gCm–2 day–1) simulated with the two forcings compared to MTE-GPP over the
three high-latitude sub-regions (shown in Fig. 2a), averaged over the same period.
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Figure 15. Mean annual NPP (gCm–2 yr–1) simulated with (a) GSWP3 and (b) CRUNCEP forcings (background maps) compared to the site
observations (color filled circles), on averaged over the period 2000-2007.

Figure 16. 95th percentiles of mean annual (a) GPP (gCm–2 yr–1) and (b) NPP (gCm–2 yr–1) distributions per temperature bins of 5°C for
in situ measurements, the gridded MTE-GPP (MODIS-NPP) product sampled at the sites location and the two simulation results, averaged
over the period 2000-2007.
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Figure 17. Mean annual CUE (%) over the 52 Campioli sites, averaged over the period 2000-2007. The first black boxplot is computed using
the local estimations of the Campioli et al. (2015) database and the second one (global observations) using MODIS-NPP and MTE-GPP. The
red boxplots uses the values of the two simulations. For each boxplot the median value is the short horizontal bar within the rectangle, whose
bottom and top sides illustrate the 25th and 75th percentiles of the distribution, while the vertical segments link those sides to the points
representing respectively the minimum and maximum values.
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Figure 18. (a-c) Mean annual fractional burned area (%) from (a) satellite observation in GFED4s and (b) GSWP3 and (c) CRUNCEP-forced
simulations. (d-f) Mean annual carbon emissions from natural fires (gCm–2 yr–1) from (d) satellite observation in GFED4s and (e) GSWP3
and (f) CRUNCEP-forced simulations, averaged over the period 1997-2007. The burned area fraction simulated from ORCHIDEE-MICT is
corrected for the omission of cropland fires in the simulation.
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Figure 19. Monthly mean seasonal net land-atmosphere CO2 fluxes (NEE in PgCmonth–1) from the GSWP3 and CRUNCEP-forced simu-
lations compared to atmospheric inversions, over the three high-latitude sub-regions (shown in Fig. 2a), averaged over the period 2000-2007.
The grey shaded areas corresponds to the standard deviation of the monthly values for each inversion. Note that a negative sign in NEE
corresponds to CO2 uptake from the atmosphere, and a positive sign to release to the atmosphere.

Figure 20. Total forest biomass carbon density (MgCha–1) from the (a) GSWP3 and (b) CRUNCEP-forced simulations compared with
satellite-derived observation products from (c) Avitabile et al. (2016) and (d) Thurner et al. (2014), averaged over the period 2000-2007.
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Figure 21. Soil organic carbon from the GSWP3 and CRUNCEP-forced simulations compared with the two inventory datasets NCSCD
(Hugelius et al., 2013) and ISRICSoilGrids, averaged over the period 2000-2007. (a) Spatial distribution (kgCm–2). (b) Vertical profiles
(kgCm–3) averaged over the three high-latitude sub-regions (shown in Fig. 2a). Since NCSCD does not encompass the whole domain, only
grid cells with available data in NCSCD are averaged for BONA and BOAS so that the four vertical profiles are comparable; while for
BOEU, NCSCD is not shown as it has few data in this sub-region.
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Figure 22. Scatter plot of the pre-melt SWE bias (m3 s–1) defined as the difference between simulated and observed values during the pre-
melt season (between February and March) vs. the spring river discharge bias (total discharge at the mouth of the river between April and
June) (m3 s–1), averaged over the period 1981-2007. Each number corresponds to one basin: 1: Yukon, 2: Mackenzie, 3: Volga, 4: Ob, 5:
Yenisei, 6: Lena and 7: Kolyma (see Fig. 2b). One color represents the result with one atmospheric forcing.

Figure 23. Annual mean land carbon fluxes (PgCyr–1) and pool sizes (PgC), averaged over the terrestrial domain higher than 30°N, for
the period 2000-2007. The red numbers are the results of the model forced by (left) GSWP3 and (right) CRUNCEP. The black numbers are
from observation-based estimates used in the text : NPP from MODIS (NTSG), fire emissions from (left) GFED4s and (right) GFAS datasets,
harvest fluxes include crop harvest and wood product decay in the model (for simplicity the change in wood product pools is not represented),
NEE from the two atmospheric inversions (left) Jena CarboScope and (right) CAMS, forest biomass from (left) Avitabile et al. (2016) and
(right) Thurner et al. (2014), soil carbon from NCSCD (Hugelius et al., 2013) in permafrost regions and HWSD in non-permafrost regions.
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