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 15 

Abstract 16 

This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and 17 

clouds can be removed by parameter tuning in the present-day simulation of a climate model 18 

in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used a low-19 

resolution version of the Model for Interdisciplinary Research on Climate version 5 20 

(MIROC5) Atmosphere-Ocean General Circulation Model (AOGCM) and compared the 21 

output of a perturbed parameter ensemble (PPE) experiment in the pre-industrial control 22 

setting with satellite observation data. The model biases and the parametric uncertainty of the 23 

biases are evaluated with respect to TOA radiation and clouds. We used the output of the PPE 24 

experiment without flux adjustment, which is consistent with the experimental design of the 25 

CMIP5. The results indicate that removing or changing the sign of the biases by parameter 26 

tuning alone is difficult. Especially, the cooling bias of the shortwave cloud radiative effect in 27 

low latitudes could not be removed, neither in the zonal mean nor at each latitude–longitude 28 
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grid point. The bias was related to the overestimation of both cloud amount and cloud optical 1 

thickness, which could not be removed by the parameter tuning either. However, they could 2 

be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the 3 

cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic 4 

was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of 5 

ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the 6 

benefit of PPE experiments which provide useful information regarding effectiveness and 7 

limitations of parameter tuning. 8 

 9 

1 Introduction 10 

The climate models used in Coupled Model Inter-comparison Project phase 5 (CMIP5) still 11 

exhibit significant biases in simulating present-day top-of-atmosphere (TOA) radiation, as in 12 

CMIP3 (Flato et al. 2013). The biases are especially large in the component of the shortwave 13 

cloud radiative effect (SCRE), namely the difference in shortwave radiation between all-sky 14 

and clear-sky values. The SCRE represents the radiative effect of clouds, which cool the 15 

climate system by reflecting shortwave radiation. Compared with satellite observations, 16 

however, the cooling effect of the SCRE tends to be overestimated over low-latitude oceans 17 

and underestimated over the Southern Ocean, suggesting that the models still have difficulties 18 

in simulating clouds in these regions (Nam et al. 2012, Bodas-Salcedo et al. 2014). Previous 19 

studies suggest that such biases in radiation and clouds might affect the simulated climate in 20 

remote regions or distort the cloud feedback in future projections (Trenberth and Fasullo 2010, 21 

Ceppi et al. 2012). Therefore, alleviating the biases by developing climate models is 22 

important. 23 

There are two factors, which might contribute to the biases in climate simulated by the 24 

models: (a) inappropriate model structures, namely, equations representing the physical 25 

processes or spatial resolution of the model; and (b) inappropriate parameter values, which are 26 

specified in the equations. We therefore attempt to alleviate the biases by modifying the 27 

factors (a) and (b) within the plausible range during the model development process. 28 

How much of the existing biases can be explained by the second factor (b)? In other words, 29 

how much of the biases can be removed by modifying only specified parameter values 30 

(parameter tuning)? This issue is important when discussing the model development strategy 31 

because it helps to decide which factor, (a) or (b), should be given a priority to efficiently 32 
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reduce the biases. If all biases can be explained by factor (b), the priority for parameter tuning 1 

would be high. In this case, removing the biases is relatively simple because parameter tuning 2 

is generally much easier than modifying the model structures. On the contrary, if most of the 3 

biases cannot be explained by factor (b), modifying model structures should be given a high 4 

priority. 5 

A Perturbed Parameter Ensemble (PPE) experiment with a climate model is useful when 6 

discussing the above issue. In the PPE experiment, we can create different versions of a 7 

climate model in a systematic and comprehensive way by modifying the specified parameter 8 

values in the model within a plausible range (Murphy et al. 2004). If we evaluate the biases 9 

by comparing present-day climate with observation data in each version of the PPE models, 10 

we should be able to evaluate parametric uncertainty, namely, the inter-model difference of 11 

the biases due to parameter settings. This inter-model difference would also provide a 12 

measure regarding how much of the biases can be removed by parameter tuning only. 13 

The benefit of PPE experiments, as discussed above, has been illustrated in previous studies. 14 

For example, Zhang et al. (2012) conducted a PPE experiment with an Atmosphere General 15 

Circulation Model (AGCM) and evaluated the performance of cloud simulations compared 16 

with satellite observations over various tropical regions. The results indicate that the model 17 

performance in simulating clouds is sensitive to parameter tuning. Yokohata et al. (2012) 18 

focused on different PPE experiments conducted with an Atmosphere-Ocean GCM 19 

(AOGCM), two Atmosphere-Slab ocean GCMs (ASGCMs), and an AGCM and evaluated the 20 

model performance in simulating the cloud radiative effect at TOA compared with 21 

observations. They found that the sensitivity of the model biases to parameter tuning varies 22 

widely among different regions. In the PPEs analyzed in the study, however, the sea surface 23 

temperature (SST) bias was suppressed by applying flux adjustment at the sea surface in both 24 

AOGCM and ASGCM. 25 

In the present study, we attempt to better understand the parametric uncertainty of TOA 26 

radiation and cloud biases by using the PPE output of an AOGCM without flux adjustment. 27 

There is an advantage in using the AOGCM without flux adjustment because climate 28 

projections in the CMIP5 Multi-Model Ensemble (MME) are conducted with AOGCMs 29 

without flux adjustment and the biases of such AOGCMs are therefore directly relevant for 30 

future projections using CMIP5 (Flato et al. 2013). If we suppress the SST biases in the 31 

AOGCMs by applying flux adjustment, the TOA radiation and cloud biases in which we are 32 
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interested might be obscured. In addition, the parametric uncertainty of the biases might be 1 

overestimated if we apply flux adjustment because it allows us to include AOGCMs with 2 

large radiative imbalance at the TOA as valid samples in the PPE, while such models are not 3 

used for future projections in the CMIP5 MME. 4 

When evaluating biases in the simulated clouds, we use output of the Cloud Feedback Model 5 

Inter-comparison Project (CFMIP) Observation Simulator Package (COSP), which is 6 

incorporated in the AOGCM. The COSP is diagnostic software that processes the GCM 7 

outputs, such as the cloud amount, and simulates the signals that would be retrieved by 8 

satellites if the model-generated clouds existed in the real world (Bodas-Salcedo et al. 2011). 9 

It increases the chances that the difference between the model output and observation reflects 10 

real biases in the model simulation rather than observational limitations. Therefore, COSP has 11 

been widely used in previous studies, which evaluate clouds simulated by the CMIP5 MME. 12 

The studies indicate that the optical thickness of the simulated clouds tends to be 13 

overestimated compared with the observation, as in the CMIP3 (Klein et al. 2013, Nam et al. 14 

2012, Zhang et al. 2005). In the present study, we evaluate the parametric uncertainty of this 15 

"too thick (bright) bias" by analyzing the COSP output of the PPE experiment and discuss 16 

how much of the bias can be removed by parameter tuning only. 17 

Section 2 describes the AOGCM, design of the PPE experiment, and observation data used 18 

for the evaluation. In Section 3, we identify the biases in the TOA radiation and clouds and 19 

discuss the parametric uncertainty of the biases. We then focus on clouds over low-latitude 20 

oceans to examine if the "too thick bias" can be controlled by parameter tuning. In addition, 21 

we discuss which tuning parameters are effective in controlling the TOA cloud radiative 22 

effect. Finally, we summarize the conclusions and discuss their implications for the 23 

effectiveness and limitations of parameter tuning in Section 4. 24 

 25 

2 Models and Methods 26 

2.1 Design of the Perturbed Parameter Ensemble 27 

We compared the output of the PPE experiment using the AOGCM in the pre-industrial 28 

control setting with the observation to evaluate the model biases. We used the Model for 29 

Inter-disciplinary Research on Climate version 5 (MIROC5) AOGCM. The atmospheric 30 

component has a horizontal resolution of T42 (~2.8°) with 40 vertical levels. The ocean 31 
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component is COCO4.5 with a horizontal resolution of ~1° and 49 vertical levels in addition 1 

to a bottom boundary layer. The model is the low-resolution version of the MIROC5 2 

AOGCM, which is used in CMIP5 with a higher resolution of T85 (~1.4°) in the atmosphere 3 

(Watanabe et al. 2010). We confirmed that the low-resolution version ran stably and did not 4 

suffer from significant climate drift in the pre-industrial control experiment without flux 5 

adjustment when the standard setting of the tuning parameters was specified. The model could 6 

also reproduce the characteristic biases of the TOA radiation and clouds of the T85 version 7 

used in CMIP5. 8 

We should note that perturbing specified values of tuning parameters might increase the net 9 

radiation imbalance at TOA when conducting PPE with an AOGCM in the pre-industrial 10 

control setting, which leads to a gradual change in climate different from the initial state 11 

(climate drift). Such a change would make the definition of the control climate difficult. In 12 

addition, the simulated climate might not be a valid example of pre-industrial control 13 

simulations. Applying flux adjustment at the sea surface would help to suppress the climate 14 

drift by reducing the SST biases. However, it might also cover up the biases in the TOA 15 

radiation and clouds, which are sensitive to the SST. What we need here is both stable climate 16 

and SST biases, as indicated in the CMIP5 pre-industrial control experiments. Therefore, we 17 

used the output of the PPE experiment conducted in Shiogama et al. (2012), following the 18 

Suppressed Imbalance Sampling (SIS) method, in the present study. The SIS is a method to 19 

subsample members of the PPE with a small imbalance in the TOA radiation and thus with 20 

small climate drift. This enables us to study stable climates of the PPE without applying flux 21 

adjustment. Other methods analogous to the SIS have been discussed in Jackson et al. (2012) 22 

and Yamazaki et al. (2013). 23 

The details of the SIS method are described in Shiogama et al. (2012). For reference, we also 24 

present the summary in the following. First, we select ten tuning parameters, which are 25 

considered important to the radiative forcing of CO2 doubling, climate feedback, and climate 26 

sensitivity (Table 1). The selection is based on the results of sensitivity experiments using the 27 

atmospheric component of MIROC5, which shows that perturbing the ten parameters has 28 

large impact on the radiative forcing and climate feedback compared to other tuning 29 

parameters. The selected ten parameters are related to cumulus convection, cloud, turbulence, 30 

aerosol, and land surface processes. The maximum and minimum values of the parameters are 31 

determined by expert judgement so that the parameters are within the plausible range, namely, 32 
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they are consistent with the observation and current understanding of the climate system. 1 

Values of the ten parameters are then selected from the maximum to minimum ranges and 2 

randomly paired to produce 5000 samples of ten dimensional vectors, following Latin 3 

Hypercube Sampling. Each vector corresponds to a set of input values for the ten tuning 4 

parameters. We further select 56 members from the 5000 samples so that the TOA radiative 5 

imbalance of the selected members is close to that of the standard model. The TOA radiative 6 

imbalance of the 5000 samples is estimated using the output of a PPE separately conducted 7 

using the atmospheric component of MIROC5. The number of subsampled members, namely 8 

56, is determined by the computational resources available. Note that the number increased 9 

from 35 in the previous study by Shiogama et al. (2012). Finally, we create 56 members of the 10 

MIROC5 AOGCM by specifying different members of the ten dimensional vectors for the 11 

model as input values for the tuning parameters. 12 

We ran the 56 members of the model for 30 years with the pre-industrial control setting and 13 

confirmed that the changes in the simulated surface air temperature from the initial state 14 

(climate drift) were small. This was expected because the TOA radiative imbalance is close to 15 

that of the standard model. Years 1–10 of the simulation were considered to be a spin-up 16 

period during which the simulated climate adjusted to the modified tuning parameters. The 17 

output from years 11–30 was averaged to make a climatology. The model biases were defined 18 

as the difference of the climatology from observation data. 19 

The observation data used for the model evaluation originate in the period of 1983-2010 20 

(Table 2). Therefore, the model output from the historical simulation of the same period is 21 

appropriate for comparison with the observation. However, conducting the historical 22 

simulation requires an extension for more than 150 years after the pre-industrial control 23 

simulation of 30 years. This means more than 6-fold increase in computational cost, which we 24 

are not able to cover. Therefore, we decided to use the pre-industrial control simulation as a 25 

surrogate for the historical simulation, assuming that the former reproduces the biases in the 26 

latter, regarding TOA radiation and clouds. This assumption is supported by other simulation 27 

results. For example, we compared biases in the historical simulation with those in the pre-28 

industrial control simulation using MIROC5 with the horizontal resolution of T85 (~1.4°). We 29 

confirmed that the TOA radiation and cloud biases in the two simulations were similar to each 30 

other (not shown). 31 
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 7 

2.2 Observation data 1 

Table 2 summarizes the observation data which are compared with the model output. They 2 

all are monthly mean data. We defined the model biases referring to multiple observations, 3 

namely three for TOA radiation and two for the cloud amount; therefore, the observation 4 

uncertainty can be taken into account. The biases are considered robust if they are commonly 5 

seen with respect to multiple observations. The observation data for TOA radiation are 6 

derived from CERES-EBAF (Loeb et al. 2009), ERBE-S9 (Barkstrom 1984), and ISCCP-FD 7 

(Zhang et al. 2004). The data for the cloud amount are from GCM simulator-oriented ISCCP 8 

cloud product (Pincus et al. 2012, Rossow et al. 1996) and CALIPSO-GOCCP (Chepfer et al. 9 

2010). The cloud amount data of the ISCCP are custom-built daytime-only monthly averages, 10 

which are available from the CFMIP-OBS website 11 

(http://climserv.ipsl.polytechnique.fr/cfmip-obs). We first referred to the observation data to 12 

calculate the monthly climatology for the period in Table 2. We then interpolated the data 13 

linearly to the horizontal resolution of T42 and used them to calculate the difference from the 14 

model output. 15 

When evaluating biases of clouds simulated by MIROC5 AOGCM, we used the output of 16 

the satellite simulation software COSP (version 1.2.2), which was implemented in the model; 17 

COSP includes software simulating satellite observations of ISCCP (Klein and Jakob 1999; 18 

Webb et al. 2001) and CALIOP lidar (Chepfer et al. 2008). We compared the cloud amount 19 

identified by the ISCCP simulator with the GCM simulator-oriented ISCCP cloud product and 20 

the one determined with the CALIOP lidar simulator with the CALIPSO–GOCCP data. We 21 

confirmed that the ISCCP simulator was implemented properly in the MIROC5 AOGCM 22 

following Zelinka et al. (2012), which means, we calculated the total sum of the cloud amount 23 

from the ISCCP simulator for all cloud top pressure and optical thickness bins and confirmed 24 

that the sum is consistent with the "native" cloud amount identified in MIROC5 AOGCM. 25 

Note that optically thin clouds with tau < 0.3 are not included in this comparison because the 26 

available "native" cloud amount does not include such clouds. 27 

 28 

3 Parametric uncertainty of the TOA radiation bias 29 

First, we present the outline of the TOA radiation bias of the MIROC5-PPE by discussing 30 

the global annual mean values in Figure 1. The biases in the net radiation are small (Figure 31 

1a), which means that the values of all PPE members are within the range of the three 32 
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observations and near the zero net radiation with no imbalance, indicated by the dashed line. 1 

This was expected because we selected these members when designing the PPE following the 2 

SIS method. If we focus on the components of the TOA radiation, however, we notice larger 3 

biases compared with the net radiation (Figures 1b,c). The largest biases appear in the SCRE; 4 

the biases range from -11.8 W/m2 to -5.8 W/m2. All PPE members are more than 3.0 W/m2 5 

smaller than either one of the three observations. Therefore, parameter tuning enables us to 6 

reduce the bias from -11.8 W/m2 to -5.8 W/m2 by as much as 50 percent; however, we cannot 7 

totally remove it or change its sign. The shortwave clear-sky component (SWclr) also exhibits 8 

large biases in which all PPE members are larger than either one of the three observations. 9 

Therefore, we cannot change the sign of the bias by parameter tuning only. 10 

Next, we discuss the characteristics of the radiation bias on a smaller spatial scale, as shown 11 

by the zonal annual mean in Figure 2. We especially focus on the cloud radiative effect, 12 

which illustrates the biases related to clouds. The negative SCRE biases, as observed in the 13 

global mean (Figure 1c), are mostly attributable to the biases in low latitudes (Figure 2a). In 14 

those latitudes, all PPE members are outside the range of the three observations. Therefore, 15 

the bias cannot be eliminated or change the sign by parameter tuning, although it can be 16 

reduced by ~30 percent. In the Arctic, on the other hand, the inter-model difference among 17 

the PPE members tends to be larger compared with other latitudes; hence, the observations lie 18 

within the PPE spread. Here, the SCRE bias can be eliminated or change the sign by 19 

parameter tuning. The biases of the Longwave Cloud Radiative Effect (LCRE) appears to be 20 

small in most latitudes (Figure 2b). At least one of the PPE members is within the range of the 21 

three observations. 22 

The characteristics on an even smaller spatial scale are illustrated by the geographical 23 

distribution of the annual mean cloud radiative effect biases in Figures 3a and b. We used 24 

CERES–EBAF as the observation because it measures the radiative fluxes more directly than 25 

the ISCCP–FD and it also has various advantages over the ERBE–S9 such as scene 26 

identification (Wielicki et al. 1996, Loeb et al. 2009). We confirmed that similar results were 27 

obtained when using ISCCP–FD or ERBE-S9 (not shown). 28 

The negative SCRE bias in the low latitudes, as observed in the zonal mean plot (Figure 2a), 29 

appears pronounced over the oceans, exceeding -40 W/m2 in large areas (Figure 3a). We also 30 

notice positive biases in middle to high latitudes over the Southern Ocean, northwestern part 31 

of Eurasia, and northeastern part of North America. They exceed 5 W/m2 in some places. On 32 
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the other hand, if we measure the parametric uncertainty of the SCRE bias using the standard 1 

deviation among the PPE members, we notice that the uncertainty does not exceed 4 W/m2 in 2 

most areas (Figure 3c). Therefore, removing or changing the sign of the SCRE bias at each 3 

grid point by parameter tuning only is difficult. This can be confirmed by the fractions of the 4 

PPE members, which have positive biases (Figure 3e). The fraction is 0 (blue) or 1 (orange) in 5 

most areas on the globe, namely, all PPE members have the same SCRE bias sign. Parameter 6 

tuning plays only a limited role in reducing the SCRE bias; especially, the sign of the bias 7 

cannot be changed. An exception is the Arctic. Here, the SCRE bias is smaller than 5 W/m2 8 

and the standard deviation of the bias ranges from 6–8 W/m2 (Figures 3a,c). Therefore, the 9 

biases of the PPE members can be either positive or negative, which is indicated by the green 10 

colour in Figure 3e. Here, we can change the sign of the SCRE bias by parameter tuning. 11 

The LCRE bias is smaller than the SCRE bias (Figures 3a,b). It is smaller than 20 W/m2 in 12 

most areas. However, the standard deviation of the LCRE bias is even smaller (Figure 3d), 13 

less than 5 W/m2, except for the limited area in the tropics. Therefore, we cannot change the 14 

sign of the LCRE bias by parameter tuning. This is illustrated by the fractions of the PPE 15 

members, which have positive biases (Figure 3f). They are 0 (blue) or 1 (orange) in most 16 

places including the Arctic. 17 

 18 

4 Parametric uncertainty of the cloud bias 19 

To better understand the origin of the cloud radiative effect bias, we examine the 20 

geographical distribution of the cloud amount bias in Figure 4. In the following, we present 21 

results for the boreal summer season when the cloud amount bias is most pronounced in the 22 

Hawaiian Trade Cumulus Region, which we discuss later in this section. The cloud amount is 23 

overestimated over the Pacific and Atlantic in low latitudes (Figures 4a,b), which contributes 24 

to the negative SCRE bias, as shown in Figure 3a. The overestimation is a robust feature; it 25 

exists with respect to both ISCCP and CALIPSO observations. In addition, all members of the 26 

PPE have positive biases in those regions (Figures 4c,d). Therefore, the biases cannot be 27 

removed by parameter tuning. We should note here that the multi-model mean ISCCP cloud 28 

amount (tau > 1.3) from the CFMIP1 and CFMIP2 ensembles does not show such positive 29 

bias in low latitudes (Klein et al. 2013). Therefore, the bias might be a problem specific to the 30 

MIROC5 AOGCM. 31 
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The cloud amount bias can be decomposed into the contributions from different cloud top 1 

pressure and optical thickness bins, as illustrated for the Hawaiian Trade Cumulus Regions 2 

(15-35N, 160E-140W) in Figure 5. The region of focus is indicated by the black square in 3 

Figure 4b. 4 

The MIROC5-PPE tends to overestimate optically thick clouds (tau > 3.6) and underestimate 5 

optically thin clouds (tau < 3.6) compared with the ISCCP observation (Figures 5a,b,c). The 6 

contribution of the former outweighs that of the latter, which leads to the overestimation of 7 

the cloud amount. The overestimation is especially large in low-top clouds (pc > 680). The 8 

clouds of the MIROC5-PPE are biased towards optically thick clouds compared with the 9 

observation, which also contributes to the negative SCRE bias. 10 

We further examined the signs of the cloud biases for each bin of the cloud top pressure and 11 

optical thickness categories. The fraction of the positive biases within the PPE members is 0 12 

(blue) or 1 (orange) in 36 out of 42 bins (Figure 5d); all PPE members have the same cloud 13 

bias sign in most (85%) of the cloud top pressure and optical thickness bins. Therefore, 14 

removing the "too thick bias" by parameter tuning only is considered difficult in this model. 15 

The overestimation of both the cloud amount and optical thickness ("too thick bias") 16 

contributes to the negative SCRE bias. To illustrate the importance of the "too thick bias" for 17 

the SCRE bias, we plot the relationship between the SCRE and low-top cloud amount in 18 

Figure 6. Note that we selected data of low-top clouds, which are not overlapped by middle-19 

top or high-top clouds in the figure; hence, the SCRE is not affected by clouds other than the 20 

low-top clouds, which prevail in the Hawaiian Trade Cumulus Region. The figure shows that 21 

SCRE negatively increases as the low-top cloud amount increases in both the observation and 22 

MIROC5-PPE. However, the MIROC5-PPE shows a negatively larger SCRE compared with 23 

the observation. It is larger by ~30 W/m2, even if the models have the same cloud amount as 24 

the observation, which indicates that the optical thickness of low-top clouds is overestimated 25 

in the MIROC5-PPE. The above-mentioned characteristics are common to all PPE members 26 

and the observation is outside the range of the PPE. This again indicates that we cannot 27 

remove the "too thick bias" by parameter tuning only. 28 

 29 
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5 Characteristics of different tuning parameters 1 

The results presented so far illustrate the difficulties in removing the TOA radiation and 2 

cloud biases by parameter tuning. At the same time, however, we also learned that parameter 3 

tuning enables us to control the model biases to some extent, demonstrating its benefit for 4 

model development. For example, the global mean SCRE bias can be reduced by as much as 5 

50% by tuning only (Figure 1c). To obtain the desired effects by parameter tuning, we need to 6 

understand the characteristics of different tuning parameters. Therefore, in the following, we 7 

briefly describe the regions in which the tuning parameters in Table 1 control the model 8 

biases, focusing on the CRE. 9 

We calculated the regression coefficients of the CRE on different tuning parameters for each 10 

latitude–longitude grid point, referring to the 56 members of the PPE, and plotted the 11 

geographical distribution of the coefficients in Figures 7 and 8. In addition, we calculated the 12 

regression of the ISCCP cloud properties (cloud amount, cloud optical thickness, and cloud 13 

top pressure) on the tuning parameters. The results are shown in the Appendix Figures A1, A2, 14 

and A3. Note that the tuning parameters were normalized to the range of 0.0 to 1.0; thus, the 15 

coefficients indicate the responses of the CRE and clouds to increase in the tuning parameters 16 

from minimum to maximum values in Table 1. 17 

The tuning parameters, which are especially effective in controlling the shortwave CRE, are 18 

wcbmax and albice; wcbmax and albice can change the SCRE by more than 10 W/m2 over 19 

low-latitude oceans and the Arctic, respectively (Figures 7a,j). 20 

The parameter wcbmax is the maximum cumulus updraft velocity at the cloud base. 21 

Increasing the parameter leads to an increase in the cloud amount over low-latitude oceans 22 

(Figure A1a), which would increase the shortwave reflection by clouds and contribute to the 23 

negative increase in the SCRE, as indicated by the blue colour in Figure 7a. Indeed, the 24 

geographical distribution of the changes in the cloud amount and SCRE are similar to each 25 

other, which is consistent with the above-mentioned argument (Figures A1a, 7a). 26 

Albice is the albedo of ice and snow. Increasing the parameter leads to an increase in the 27 

clear-sky albedo in high latitudes covered with ice and snow, which also decreases the albedo 28 

contrast between the clear- and all-sky components. Because the SCRE is proportional to this 29 

albedo contrast, it approaches zero by definition. Indeed, the SCRE shows a positive increase 30 

in high latitudes, as indicated by the red colour in Figure 7j, which is consistent with the 31 

above-mentioned argument. In addition, increasing the albice leads to the decrease in cloud 32 
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amount and cloud optical thickness in the Arctic (Figures A1j, A2j), which is also consistent 1 

with the change in SCRE (Figure 7j). 2 

We confirmed in Figures 2a and 3e that the parametric uncertainty of the SCRE bias is 3 

exceptionally large in the Arctic compared with other latitudes. In the Arctic, albice is the 4 

most effective parameter controlling the SCRE based on Figure 7. We therefore surmise that 5 

the large uncertainty in the SCRE bias is mainly caused by perturbing the albice. 6 

In addition to the wcbmax and albice, other parameters, such as clmd, vicec, b1, alp1, and 7 

ucmin, have a considerable impact on the SCRE (Figures 7c,d,e,g,i). Tuning these parameters 8 

leads to changes in the SCRE, which are consistent with the changes in the cloud amount or 9 

cloud optical thickness or in both of them (Figures A1, A2). To reduce the negative SCRE 10 

bias in low-latitude oceans, as shown in Figure 3a, the tuning of wcbmax, clmd, vicec, and b1 11 

would be effective. On the other hand, the impact of tuning precz0, faz1, and tnuw would be 12 

relatively small. 13 

Focusing on the longwave CRE, we find that the most effective parameters are wcbmax and 14 

vicec; wcbmax and vicec can change the LCRE by more than 10 W/m2 in low latitudes 15 

(Figures 8a,d). 16 

Increasing the wcbmax leads to changes in the cloud top pressure, which decreases in 17 

tropical Africa, western tropical Pacific, and the South Pacific Convergence Zone, while it 18 

increases in the subtropics, especially around South and Southeast Asia (Figure A3a). The 19 

decrease (increase) in the cloud top pressure would lead to a decrease (increase) in the cloud 20 

top temperature and upward longwave radiation, which would contribute to the increase 21 

(decrease) in the greenhouse effect of clouds and the LCRE. The geographical distribution of 22 

the changes in the cloud top pressure and LCRE are similar to each other, which is consistent 23 

with the above-mentioned argument (Figures A3a,8a). 24 

The vicec parameter is a factor for the icefall speed. Increasing the parameter causes the 25 

increase in the icefall speed, decrease in the cloud amount (Figure A1d), and increase in the 26 

cloud top pressure (Figure A3d). Such changes of the cloud properties would contribute to the 27 

decrease of the greenhouse effect of clouds, which is consistent with the decrease in LCRE, as 28 

shown in Figure 8d. 29 

 30 
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6 Conclusions and Discussion 1 

To discuss how much of the biases in the TOA radiation and clouds can be removed by 2 

parameter tuning in the present-day simulation with a climate model of the CMIP5 generation, 3 

we used a low-resolution version of the MIROC5 AOGCM and compared the output of the 4 

PPE experiment in the pre-industrial control setting with satellite observation data. We 5 

evaluated the biases in the TOA radiation and clouds and quantified the parametric 6 

uncertainty of the biases. We used the output of the PPE experiment without flux adjustment, 7 

which is consistent with the experimental design of the CMIP5. The results indicate that 8 

removing or changing the sign of the biases by parameter tuning only is difficult. Especially, 9 

the cooling bias of the SCRE in low latitudes could not be removed, neither in the zonal mean 10 

nor at each latitude–longitude grid point. The bias was related to the overestimation of both 11 

the cloud amount and cloud optical thickness, which could not be removed by parameter 12 

tuning either. However, they could be alleviated by tuning parameters such as the maximum 13 

cumulus updraft velocity at the cloud base. On the other hand, the bias of the SCRE in the 14 

Arctic was sensitive to parameter tuning. It could be removed by tuning parameters such as 15 

the albedo of ice and snow both in the zonal mean and at each grid point. 16 

The results of the present study have implications for the future development of MIROC. 17 

Parameter tuning has only a limited capability of controlling the SCRE biases over low-18 

latitude oceans and the Southern Ocean in MIROC5. Therefore, modifying the model 19 

structure should be given a high priority to effectively alleviate the biases. The results 20 

underline the importance of improving parameterizations based on cloud process studies. In 21 

MIROC5, the overestimation of the low-top cloud amount over low-latitude oceans is 22 

accompanied by the dry bias in the free troposphere above low-top clouds, suggesting that 23 

vertical mixing in the lower troposphere, such as that caused by shallow convection, is 24 

insufficient. On the other hand, the SCRE bias in the Arctic can be fully controlled by tuning 25 

the albedo of snow and ice in the current model structure. However, we expect that the albedo 26 

will be predicted or diagnosed with a more physically-based parameterization in the future 27 

rather than being specified as a tuning parameter, which would make the tuning of the SCRE 28 

more difficult. 29 

The present study also has implications for the inter-model difference in the CRE simulated 30 

by the CMIP5 MME. The SCRE and LCRE simulated by the CMIP5 MME show a large 31 

inter-model spread. The spread is larger than that in MIROC5-PPE; therefore, the observation 32 
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data are within the range of the CMIP5 ensemble members for both the global mean and zonal 1 

mean values (Dolinar et al. 2015, Flato et al. 2013). This large spread in CMIP5 MME stems 2 

from the inter-model difference in both the model structure and specified parameter settings. 3 

The results of the present study indicate that specified parameter settings can explain only a 4 

small part of the inter-model spread in CMIP5 MME, suggesting that most of the spread is 5 

attributable to the difference in the model structure. This is consistent with the view that 6 

modifying the model structure is important to alleviate the biases in SCRE and LCRE. 7 

However, we should note that the results of the model evaluation presented here depend on 8 

the design of the PPE experiment. For example, we restricted the number of the perturbed 9 

parameters to ten and that of the PPE members to 56 based on the amount of available 10 

computational resources. If we increased the number of the perturbed parameters and PPE 11 

members, the inter-model difference of the TOA radiation and cloud biases might be larger 12 

than that of the present study. The importance of the PPE design to obtain large inter-model 13 

spread is illustrated by Yamazaki et al. (2013) who conducted a PPE experiment with an 14 

AOGCM, HadCM3. They perturbed 33 parameters to create 20000 members in the PPE 15 

experiment. Although they subsampled the PPE members so that the TOA radiation balance is 16 

close to the observation, as was done by Shiogama et al. (2012), they showed that the inter-17 

model difference of the climate sensitivity is larger than that of MIROC5-PPE or CMIP MME. 18 

The choice of the model used for the PPE experiment is another important factor. If we 19 

employed a model other than MIROC5, the biases in the TOA radiation and clouds would be 20 

notably different from what we presented. Klein et al. (2013) reported that the bias of having 21 

too many optically thick clouds has been reduced from CFMIP1 to CFMIP2 MME, with the 22 

best models having eliminated this bias. If we used a model with a very small bias in optically 23 

thick clouds, we might be able to change the sign of the bias by parameter tuning only. 24 

Therefore, the dominance of structure-oriented bias as illustrated by the MIROC5-PPE does 25 

not necessarily indicate unimportance of the parameter-oriented bias in general, as the latter is 26 

a function of the former. 27 

Another issue is whether we should include models with a large TOA radiation imbalance in 28 

the PPE members. We did not include such models because they are not used for future 29 

projections in the CMIP5 MME. However, such models could also be included in the PPE if 30 

we applied flux adjustment at the sea surface to suppress climate drift, which might increase 31 

the parametric uncertainty of the biases compared with the present study. For example, 32 
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Yamazaki et al. (2013) reported that the parametric uncertainty of the climate sensitivity 1 

increases by adopting models with a large TOA radiation imbalance in their PPE experiment 2 

using HadCM3 AOGCM. Collins et al. (2006) also conducted a PPE experiment using 3 

HadCM3 AOGCM with flux adjustment. They showed that the parametric uncertainty of the 4 

TOA shortwave radiation in the global and annual mean is ~20 W/m2, which is much larger 5 

than the results in the present study. 6 

Whether the main conclusions in the present study are affected by the uncertainty in the PPE 7 

design is a subject of future studies. Based on a previous study, however, we speculate that 8 

removing the SCRE cooling bias over subtropical oceans by parameter tuning only might be 9 

difficult, even if we increased the PPE members by applying flux adjustment. Yokohata et al. 10 

(2012) evaluated the SCRE bias of PPE experiments under present climate conditions using 11 

an AOGCM and two ASGCMs with flux adjustment and an AGCM with prescribed SST. 12 

They reported that the cooling bias appears over subtropical oceans in almost all PPE 13 

members. This result is consistent with the idea that Suppressed Imbalance Sampling adopted 14 

in the present study is not the only reason for the robustness of the SCRE cooling bias, which 15 

cannot be removed by parameter tuning. 16 

As discussed above, the obtained results of the PPE experiment are specific to the model and 17 

experimental design. Whether the results are applicable to other models or PPE experiments 18 

remains uncertain. However, the present study illustrates the benefit of PPE experiments, 19 

which provide useful information regarding the model development strategy, namely, the 20 

effectiveness and limitations of parameter tuning. Based on the results of the present study, a 21 

parameterization for shallow convection was implemented in MIROC6 to alleviate the cloud 22 

bias over low-latitude oceans. Conducting PPE experiments with the future versions of 23 

MIROC is advisable to update our knowledge on the parametric uncertainty, which depends 24 

on the model structure; PPE experiments without flux adjustment using AOGCMs other than 25 

MIROC5 would also be useful to evaluate the biases in the simulated present climates, which 26 

are relevant for future projections in the CMIP5 MME. 27 

 28 

7 Code and data availability 29 

Source code of MIROC5, associated with this study is available to those who conduct 30 

collaborative research with the model users under licence from copyright holders. For further 31 

information on how to obtain the code please contact the corresponding author. The data from 32 
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the model simulations and observations used in the analyses are available from the 1 

corresponding author upon request. 2 

 3 

Appendix A: Impact of parameter tuning on ISCCP cloud properties 4 

The regression coefficients of the ISCCP cloud properties (cloud amount, cloud optical 5 

thickness, and cloud top pressure) on tuning parameters are shown here to help readers 6 

interpret the CRE changes in Figures 7 and 8. 7 

 8 
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Table 1. List of physics parameters that were varied in the MIROC5-PPE. 1 

Name Category Description Standard Min Max 

wcbmaxa Cumulus Maximum cumulus updraft velocity at cloud 
base (m/s) 

1.7 0.7 2.8 

precz0a Cumulus Base height for cumulus precipitation (m) 500 200 1000 

clmda Cumulus Entrainment efficiency (ND) 0.51 0.4 0.6 

vicecb Cloud Factor for ice falling speed (m0.474/s) 38 25 40 

b1c Cloud Berry parameter (m3/kg) 0.09 0.07 0.11 

faz1d Turbulence Factor for PBL overshooting (ND) 1.5 1 3 

alp1d Turbulence Factor for length scale LT (ND) 0.23 0.16 0.3 

tnuwc Aerosol Timescale for nucleation (s) 18000 14400 21600 

ucminc Aerosol Minimum cloud droplet number (liquid) (m-3) 2.5×107 2.2×107 3.0×107 

albe Surface Albedo of ice and snowf Medium Low High 
a Chikira and Sugiyama (2010) 2 

b Wilson and Ballard (1999) 3 

c Takemura et al. (2005, 2009) 4 

d Nakanishi and Niino (2004) 5 

e Takata et al. (2003) and Watanabe et al. (2010) 6 

f “alb” indicates a collection of eight parameters corresponding to the albedo of ice and snow over sea and land 7 

 8 

Table 2. Observation data used for the model evaluation. All data are monthly means. 9 

Variable Dataset Period References 

Top-of-atmosphere 
radiative fluxes 

CERES-EBAF March 2000–October 2005 Loeb et al. (2009) 

 ERBE-S9 January 1985–December 1989 Barkstrom (1984) 

 ISCCP-FD January 1986–December 1990 Zhang et al. (2004) 

Cloud fraction GCM simulator-oriented 
ISCCP cloud product 

July 1983–June 2008 Pincus et al. (2012), 
Rossow et al. (1996) 

 CALIPSO-GOCCP June 2006–December 2010 Chepfer et al. (2010) 

 10 

 11 

 12 
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Figure 1. 

TOA radiation bias in the global annual mean for (a) net, (b) longwave and shortwave, (c) 

longwave clear-sky, shortwave clear-sky, longwave CRE, and shortwave CRE 

components. The biases are with respect to the average of three observational data, 

namely, ERBE-S9, ISCCP-FD, and CERES-EBAF. The net radiation of zero with no 

TOA imbalance is indicated by the dashed line in (a). The unit is W/m2 and the signs are 

positive downward. 
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Figure 2. 

TOA radiation in the zonal annual mean for the (a) shortwave CRE and (b) longwave CRE 

components. The unit is W/m2 and the signs are positive downward. 
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Figure 3. 

TOA radiation bias in the annual mean for the (a) shortwave CRE and (b) longwave 

CRE components. The biases are for the ensemble mean of MIROC5-PPE with 

respect to CERES-EBAF. Standard deviation of the TOA radiation bias among the 

PPE ensemble members for the (c) shortwave CRE and (d) longwave CRE. Fraction 

of the PPE ensemble members, which have positive signs of the TOA radiation bias, 

for the (e) shortwave CRE and (f) longwave CRE. 
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Figure 4. 

Cloud amount bias in the July mean with respect to the (a) CALIPSO and (b) ISCCP 

observations. The biases are for the ensemble mean of MIROC5-PPE. Fraction of the 

PPE ensemble members, which have positive signs of the cloud amount bias, with 

respect to (c) CALIPSO and (d) ISCCP observation. 
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Figure 5. 

ISCCP cloud amount of the July mean for the Hawaiian Trade Cumulus Region (15–

35N, 160E–140W), indicated by the black square in Figure 4b, for different categories 

of the cloud top pressure (PC) and cloud optical thickness (TAU). Each panel is for (a) 

ISCCP observation, (b) MIROC5-PPE ensemble mean, (c) model bias, namely (b) 

minus (a), and (d) fraction of the PPE ensemble members with positive bias. 
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Figure 6. 

Relationship between the non-overlapped low cloud amount and shortwave CRE of 

the July mean for the Hawaiian Trade Cumulus Region. 
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Figure 7. 

Regression coefficient of the annual mean TOA shortwave CRE on the tuning 

parameters calculated with the 56 samples of the MIROC5-PPE. The definition of the 

tuning parameters is shown in Table 1. The tuning parameters are normalized to the 

range of [0,1]. The black curves indicate the threshold of the statistical significance 

with 5% level. 
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Figure 8. 

Regression coefficient of the annual mean TOA longwave CRE on the tuning 

parameters calculated using the 56 samples of the MIROC5-PPE. The definition of the 

tuning parameters is shown in Table 1. The tuning parameters are normalized to the 

range of [0,1]. The black curves indicate the threshold of the statistical significance 

with 5% level. 
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Figure A1. 

Regression coefficient of the annual mean ISCCP cloud amount on the tuning 

parameters calculated using the 56 samples of the MIROC5-PPE. The definition of the 

tuning parameters is shown in Table 1. The tuning parameters are normalized to the 

range of [0,1]. The black curves indicate the threshold of the statistical significance 

with 5% level. 
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Figure A2. 

Regression coefficient of the annual mean ISCCP cloud optical thickness on the 

tuning parameters calculated using the 56 samples of the MIROC5-PPE. The 

definition of the tuning parameters is shown in Table 1. The tuning parameters are 

normalized to the range of [0,1]. The black curves indicate the threshold of the 

statistical significance with 5% level. 
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Figure A3. 

Regression coefficient of the annual mean ISCCP cloud top pressure on the tuning 

parameters calculated using the 56 samples of the MIROC5-PPE. The definition of the 

tuning parameters is shown in Table 1. The tuning parameters are normalized to the 

range of [0,1]. The black curves indicate the threshold of the statistical significance 

with 5% level. 
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