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Abstract 10	

While global hydrological models (GHMs) are very useful in exploring water resources and 11	

interactions between the Earth and human systems, their use often requires numerous model 12	

inputs, complex model calibration, and high computation costs. To overcome these challenges, 13	

we construct an efficient open-source and ready-to-use hydrologic emulator (HE) that can mimic 14	

complex GHMs at a range of spatial scales (e.g., basin, region, globe). We constructed both a 15	

lumped and a distributed scheme of the HE based on the monthly “abcd” model, for users’ 16	

choice – minimal computational cost with reasonable model fidelity, or heavier computational 17	

load with better predictability.  Model predictability and computational efficiency were evaluated 18	

in simulating global runoff from 1971-2010 with both the lumped and distributed schemes. The 19	

results are compared against the runoff product from the widely-used Variable Infiltration 20	

Capacity (VIC) model. Our evaluation indicates that the lumped and distributed schemes present 21	

comparable results regarding  annual total quantity, spatial pattern and temporal variation of the 22	

major water fluxes (e.g., total runoff, evapotranspiration) across the global 235 basins (e.g., 23	

correlation coefficient r between the annual total runoff from either of these two schemes and the 24	

VIC is >0.96), except for several cold (e.g., Arctic, Interior Tibet), dry (e.g., North Africa ) and 25	

mountainous (e.g., Argentina) regions. Compared against the monthly total runoff product from 26	

the VIC (aggregated from daily runoff), the global mean Kling-Gupta efficiencies are 0.75 and 27	

0.79 for the lumped and distributed schemes, respectively, with the distributed one better 28	

capturing spatial heterogeneity. Notably, the computation efficiency of the lumped scheme is two 29	

orders of magnitude higher than the distributed one, and seven orders more efficient than the 30	

VIC model. Our results suggest that the revised lumped “abcd” model can serve as an efficient 31	
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and acceptable HE for complex GHMs and is suitable for broad practical use, and the distributed 32	

scheme is also an efficient alternative if spatial heterogeneity is of more interest.   33	
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1 Introduction 34	

A global hydrological model (GHM) is an effective tool to understand how water moves 35	

between soil, plants and the atmosphere. In terms of spatial discretization, hydrological models 36	

can be classified into: 1) lumped models treating one basin as a homogeneous whole and 37	

disregarding spatial variations, such as the Sacramento Soil Moisture Accounting Model 38	

(Burnash et al., 1973); and 2) distributed models where the entire basin is divided into small 39	

spatial units (e.g., square cells or triangulated irregular network) to capture spatial variability, 40	

such as the PCRaster Global Water Balance (Van Beek and Bierkens, 2009)  and the WASMOD-41	

M (Widén-Nilsson et al., 2007). For simplicity, models with division of one basin into separate 42	

areas or sub-basins are also categorized as distributed ones here. The corresponding 43	

predictability and computational efficiency of GHMs may vary from model to model, due to 44	

difference in complexity and structure. Recent years have seen rapid progress in GHMs. They 45	

are widely used in assessing the impacts of climate change and land surface changes on the water 46	

cycle (Alcamo and Henrichs, 2002; Arnell and Gosling, 2013; Liu et al., 2013; Liu et al., 2014; 47	

Nijssen et al., 2001a),  exploring spatial and temporal distribution of water resources (Abdulla et 48	

al., 1996; Alkama et al., 2010; Bierkens and Van Beek, 2009; Gerten et al., 2005; Tang et al., 49	

2010), examining how human activities alter water demand and water resources (De Graaf et al., 50	

2014; Döll et al., 2009; Hanasaki et al., 2008; Liu et al., 2015; Rost et al., 2008; Vörösmarty et 51	

al., 2000), and investigating the interactions between human activities and water availability by 52	

incorporating GHM with integrated assessment models (Kim et al., 2016).  53	

 Applying GHMs usually requires miscellaneous inputs, high computation costs, and a 54	

complex calibration process. These challenges stand out in practical situations, especially when 55	

the computation resources are limited. For instance, sensitivity analysis and uncertainty 56	
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quantification are often needed for decision making, but the users usually cannot afford to run a 57	

large number of simulations with many GHMs like the VIC due to their high computational 58	

expense (Oubeidillah et al., 2014). Another situation is when the users seek reasonable estimates 59	

of water resources with minimal efforts rather than acquiring highly accurate estimates through 60	

expensive inputs of time and efforts. For example, when users seek to explore the 61	

hydroclimatology of a region and its long-term water balance (Sankarasubramanian and Vogel, 62	

2002), then GHMs with fine spatial (e.g., 1/8 degree) and temporal resolution (e.g., hourly)  are 63	

not necessarily needed. In this case, GHMs that possess reasonable predictability and are 64	

computationally efficient tend to be more suitable.  65	

The motivation of this work arises from the need to construct a hydrological emulator 66	

(HE) that can efficiently mimic the complex GHMs to address the abovementioned issues for 67	

practical use, which provides the opportunity of speeding up simulations at the cost of 68	

introducing some simplification. We develop a HE that is ready-to-use and efficient for any 69	

interested groups or individuals to assess water cycle at basin/regional/global scales. This HE 70	

possesses the following features: 1) minimum number of parameters; 2) minimal climate input 71	

that is easy to acquire; 3) simple model structure; 4) reasonable model fidelity that captures both 72	

the spatial and temporal variability; 5) high computational efficiency; 6) applicable in a range of 73	

spatial scales; and 7) open-source and well-documented.   74	

To achieve our goal of identifying a suitable HE, we have explored many hydrological 75	

models to find one that may meet our needs. We then construct the HE based on the “abcd” 76	

model out of several reasons: 1) it is widely-used and proved to have reasonable predictability 77	

(Fernandez et al., 2000; Martinez and Gupta, 2010; Sankarasubramanian and Vogel, 2002; 78	

Sankarasubramanian and Vogel, 2003; Thomas, 1981; Vandewiele and Xu, 1992; Vogel and 79	
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Sankarasubramanian, 2003); 2) it uses a monthly time step and requires less computation cost 80	

than daily or hourly models; 3) it requires minimal inputs; 4) it only involves 4-7 parameters; and 81	

5) it can estimate several variables of interest to a wide range of users (e.g., total runoff, 82	

baseflow, direct runoff, groundwater recharge, evapotranspiration). For the first time we apply 83	

the “abcd” based model to the globe, and also for the first time evaluate its predictability and 84	

computational efficiency for both the lumped and distributed schemes, in order to identify a 85	

suitable HE for global applications. Below we describe the model and data in Section 2; and we 86	

present the evaluation of the model, discuss the appropriateness of serving as a HE in Section 3; 87	

finally, in Section 4 we summarize this work with concluding remarks.  88	

 89	

2 Methods and data 90	

2.1 Model description  91	

The monthly “abcd” model was first introduced by Thomas (1981) to improve the 92	

national water assessment for the U.S., with a simple analytical framework using only a few 93	

descriptive parameters. It has been widely used across the world, especially for the U.S. 94	

(Martinez and Gupta, 2010; Sankarasubramanian and Vogel, 2002; Sankarasubramanian and 95	

Vogel, 2003). The model uses potential evapotranspiration (PET) and precipitation (P) as input. 96	

The model defines four parameters a, b, c, and d that reflect regime characteristics 97	

(Sankarasubramanian and Vogel, 2002; Thomas, 1981) to simulate water fluxes (e.g., 98	

evapotranspiration, runoff, groundwater recharge) and pools (e.g., soil moisture, groundwater). 99	

The parameters a and b pertain to runoff characteristics, and c and d relate to groundwater. 100	

Specifically, the parameter a reflects the propensity of runoff to occur before the soil is fully 101	

saturated. The parameter b is an upper limit on the sum of evapotranspiration (ET) and soil 102	
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moisture storage. The parameter c indicates the degree of recharge to groundwater and is related 103	

to the fraction of mean runoff that arises from groundwater discharge. The parameter d is the 104	

release rate of groundwater to baseflow, and thus the reciprocal of d is the groundwater residence 105	

time. Snow is not part of the original “abcd” model, which may result in poor performance of the 106	

model in cold regions where snow significantly affects the hydrological cycle. In this study, we 107	

leverage the work of Martinez and Gupta (2010) which added snow processes into the original 108	

“abcd” model, where the snowpack accumulation and snow melt are estimated based on air 109	

temperature.   110	

We adopt the “abcd” framework from Martinez and Gupta (2010) in this work (Fig. 1); 111	

meanwhile, we make three modifications. First, instead of involving three snow parameters in 112	

the parameterization process, we adapt parameter values for two of the parameters (i.e., 113	

temperature threshold above or below which all precipitation falls as rainfall or snow) from 114	

literature (Wen et al., 2013) and only keep a tunable parameter m – snow melt coefficient (0 < m 115	

< 1), in order to enhance the model efficiency with as least necessary parameters as possible. 116	

Second, we introduce the baseflow index (BFI) into the parameterization process to improve the 117	

partition of total runoff between the direct runoff and baseflow (see Section 2.2). Third, other 118	

than the lumped scheme as previous studies used, we first explore the values of model 119	

application in distributed scheme with a grid resolution of 0.5 degree. The detailed model 120	

descriptions and equations are presented in the Appendix A, and the descriptions and ranges of 121	

model parameters are listed in Table 1. 122	

 123	

2.2 Model structure 124	
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We evaluate predictability and efficiency for both the lumped and distributed “abcd” 125	

model schemes, although most previous applications of the model are conducted in a lumped 126	

scheme (Bai et al., 2015; Fernandez et al., 2000; Martinez and Gupta, 2010; Sankarasubramanian 127	

and Vogel, 2002; Sankarasubramanian and Vogel, 2003; Vandewiele and Xu, 1992; Vogel and 128	

Sankarasubramanian, 2003). In the lumped scheme, each of the 235 river basins is lumped as a 129	

single unit, and each of the climate input (see Section 2.3.1) is the lumped average across the 130	

entire basin, and thus all the model outputs are lumped as well. In terms of the distributed one, 131	

however, each 0.5-degree grid cell has its own climate inputs, and likewise, the model outputs 132	

are simulated at the grid-level. Although the two schemes differ in the spatial resolution of their 133	

inputs and outputs, their within-basin parameters are uniform. We use basin-uniform rather than 134	

grid-specific parameters for the distributed scheme for two reasons: 1) to enhance computational 135	

efficiency; and 2) to avoid drastically different parameters for neighboring grid cells that may be 136	

unrealistic. Note that lateral flows between grid cells and basins are not included at this stage. 137	

 138	

2.3 Data 139	

2.3.1 Climate data 140	

The climate data needed only involve monthly total precipitation, monthly mean, 141	

maximum and minimum air temperature. The data we use is obtained from WATCH (Weedon et 142	

al., 2011), spanning the period of 1971-2010, and it is 0.5-degree gridded global monthly data. 143	

The climate data is used for model simulation over the global 235 major river basins (Kim et al., 144	

2016). Additionally, we use the Hargreaves-Samani method (Hargreaves and Samani, 1982) to 145	

estimate potential evapotranspiration (PET), which is a required input for the model and it needs 146	

climate data of mean, maximum and minimum temperatures for the calculation.  147	

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-113
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 16 June 2017
c© Author(s) 2017. CC BY 3.0 License.



9	
	

 148	

2.3.2 Benchmark runoff data  149	

In this study, the “abcd” model is tested for its ability to emulate the naturalized 150	

hydrological processes of a reference model since the “true” naturalized hydrological processes 151	

are unknown. The “perfect model” approach is well adopted in climate modeling studies where 152	

one model is treated as “observations” while the others are tested for their ability to reproduce 153	

“observations” (Murphy et al., 2004; Tebaldi and Knutti, 2007). Here, we use the process-based 154	

VIC model as the “perfect model”, which was also driven by the WATCH climate forcing. The 155	

simulated daily runoff from the VIC is aggregated to monthly data to be consistent with the 156	

temporal scale of the “abcd” model. The VIC runoff product (Hattermann et al., 2017; Leng et 157	

al., 2015) is then used as a benchmark for calibrating and validating the “abcd” model due to two 158	

reasons. First, VIC runoff has been evaluated across many regions of the globe and is proved to 159	

be reasonably well (Abdulla et al., 1996; Hattermann et al., 2017; Maurer et al., 2001; Nijssen et 160	

al., 1997; Nijssen et al., 2001b). Second, since we have not involved river routing, reservoir 161	

regulations and upstream water withdrawals in the “abcd” model, the simulated monthly runoff 162	

is more representative of “natural conditions”, and as such it tends to be more reasonable to 163	

compare the simulated runoff against the VIC runoff product rather than observed streamflow 164	

data from stream gauges (Dai et al., 2009; Wilkinson et al., 2014). 165	

The VIC runoff product also compares well to other products (see Fig. S1, S2), including 166	

the UNH/GRDC runoff product (Fekete and Vorosmarty, 2011; Fekete et al., 2002) and the 167	

global streamflow product (Dai et al., 2009). The scatterplot pattern of the VIC long-term annual 168	

runoff product vs. the streamflow product matches well with that of the UNH/GRDC runoff vs. 169	

the streamflow product (streamflow is transferred to the same unit as runoff via dividing by the 170	
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basin area). Further, the correlation coefficient of the VIC and the UNH/GRDC long-term annual 171	

runoff is as high as 0.83 across the global 235 basins. This suggests the reasonability of VIC 172	

runoff product, because the UNH/GRDC runoff is calibrated with the GRDC observations. At 173	

the same time, the discrepancies between the VIC runoff products and the streamflow products 174	

(Fig. S2) may be attributed to human activities, such as reservoir regulations and upstream water 175	

withdrawals, have not been embedded in the runoff but are reflected in the streamflow. 176	

 177	

2.3 Model calibration 178	

Typically, most applications of the “abcd” model utilize single-objective optimization to 179	

minimize the difference between measured and simulated streamflow (Bai et al., 2015; Martinez 180	

and Gupta, 2010; Sankarasubramanian and Vogel, 2002). While this may lead to a good fit for 181	

simulated total runoff, however, it will possibly result in inappropriate partition of total runoff 182	

between direct runoff and baseflow (see Section 3.1.2). To improve the accuracy of the 183	

simulated total runoff and the partition between direct runoff and baseflow, we introduce the 184	

baseflow index (BFI) into the objective function. On one side, we maximize Kling-Gupta 185	

efficiency (KGE) (Gupta et al., 2009), which is used as a metric to measure the accuracy of the 186	

simulated total runoff relative to the VIC benchmark runoff. The KGE is defined as the 187	

difference of unity and the Euclidian distance (ED) from the ideal point, thus we maximize KGE 188	

through minimizing the ED. The KGE and ED are calculated as follows (Gupta et al., 2009): 189	

1KGE ED= −          (1) 190	

2 2 2( 1) ( 1) ( 1)ED r α β= − + − + −        (2) 191	

so

s s

Covr
σ σ

=
⋅

          (3) 192	
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s

o

σα σ=           (4) 193	

s

o

µβ µ=           (5) 194	

where r, α, β, and Covso are relative variability, bias, correlation coefficient, and covariance 195	

between the simulated and observed values (here we treat the VIC runoff as the observed), 196	

respectively; µ and σ represent the mean and standard deviation (subscript “s” and “o” stand for 197	

simulated and observed values). On the other side, we nudge the simulated BFI towards the 198	

benchmark BFI (here we treat the benchmark BFI as the observed) – the mean BFI of the four 199	

products from (Beck et al., 2013). Then, the objective function is as follows:  200	

min( ( ))obs simED abs BFI BFI+ −  201	

where min stands for minimizing the value in the parenthesis, abs represents absolute value, ED 202	

is the Euclidian distance between the simulated and observed total runoff (Gupta et al., 2009),  203	

BFIobs and BFIsim are the observed and simulated BFI, respectively. Here we treat the benchmark 204	

runoff from the VIC and BFI from Beck et al. (2013) as observed values. We then minimize the 205	

objective function for parameter optimization by utilizing a Genetic Algorithm (GA) routine 206	

(Deb et al., 2002). Note that for the distributed model scheme, we aggregate the grid-level total 207	

runoff estimates to basin-level and then nudge it toward basin-level benchmark total runoff 208	

during the calibration process.   209	

 210	

2.4 Model simulations 211	

To evaluate the predictability and efficiency of the “abcd” model as a HE, we have 212	

conducted 2 sets of model simulations across the global 235 basins, with one set for calibration 213	

and the other one for validation, for both the lumped and distributed model schemes. For the first 214	
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set, we run the model for each basin for the period of 1971-1990 to get basin-specific parameters 215	

by using the GA approach (see Section 2.2). For the second set, using the parameters identified 216	

in the first set of simulation, we run the model for the period of 1991-2010 to validate the model 217	

predictability and also evaluate the computational efficiency. Model inputs and outputs in the 218	

distributed scheme are at a spatial resolution of 0.5-degree, whereas those in the lumped scheme 219	

are all in lumped single unit for each basin. All model simulations are conducted in a monthly 220	

time step. Note that broad users can run the model for global 235 basins, or for as many basins as 221	

they want for either scheme, as all the related basin-specific input data and calibrated parameters 222	

for both schemes are open-source.  223	

 224	

3 Results and discussions 225	

3.1 Evaluation of model predictability  226	

In terms of total runoff, we find the lumped and distributed schemes are comparably 227	

capable in simulating long-term mean annual quantity, temporal variations and spatial patterns 228	

for the vast majority of river basins globally (Fig. 2-4). Estimates of long-term mean annual total 229	

runoff from both the lumped and distributed schemes match very well with that of VIC total 230	

runoff across the 235 basins, with a correlation coefficient (r) of higher than 0.96, for both the 231	

calibration and validation period (Fig. 2). Similarly, the basin-level estimates of long-term mean 232	

annual direct runoff and baseflow also match well with those of the VIC across the globe, for 233	

both schemes and both periods (Fig. 2). This suggests both schemes possess the capability in 234	

partitioning total runoff. Also, we find introduction of BFI into the objective function has 235	

improved the partition of total runoff between direct runoff and baseflow (Fig. S4). Specifically, 236	

for the case of involving both the total runoff and BFI in the objective function (see Section 2.2), 237	
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the correlation efficiencies (r) between the long-term annual benchmark and modeled direct 238	

runoff and baseflow from the lumped scheme across global basins are 0.97 and 0.96, respectively. 239	

However, for the case of only involving the total runoff in the objective function, the r values are 240	

0.86 and 0.72, respectively (See Fig. S4). 241	

Furthermore, both schemes display good capability in capturing the seasonal signals of 242	

the total runoff (Fig. 3). Meanwhile, although the spatial patterns of annual total runoff from the 243	

lumped scheme present a general match with that of the VIC, it does not reflect the spatial 244	

variations inside a basin that is however captured by the distributed scheme (Fig. 4). Therefore, 245	

the distributed scheme provides overall slightly higher KGE (Fig. 4-5), with a global mean KGE 246	

value of 0.79 as compared to 0.75 for the lumped scheme (Fig. S3).  247	

To ensure good model predictability for the major water fluxes, we also evaluate the 248	

modelled ET estimates. The modelled ET compares reasonably well with the VIC ET product as 249	

well as with the mean synthesis of the LandFlux-EVAL ET product (Mueller et al., 2013), 250	

displaying similar spatial variations (Fig. S5). Likewise, the distributed “abcd” scheme tends to 251	

have better capability in presenting spatial heterogeneity than the lumped one. Further, the good 252	

predictability of seasonality in runoff as illustrated in Fig. 4 also reflects similar performance for 253	

ET, given the runoff and ET are the two major water fluxes in the water mass balance and the 254	

soil moisture changes are negligible over long-term.  255	

The distributed scheme appears to outperform the lumped scheme in term of goodness-256	

of-fit, especially in some cold (e.g., Arctic, Northern European, Interior Tibet) and in some dry 257	

(e.g., North Africa) regions (Fig. 5). This is possibly because distributed inputs can reflect basin-258	

level heterogeneity, and thus better capture the characteristic of the hydrological conditions in 259	

those regions. However, both schemes do not perform well in the southern end of the Andes 260	
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Mountains (Fig. 5). This may be attributed to the complex land surface characteristics in that 261	

mountainous area, which cannot be resolved due to the coarse spatial resolution. Moreover, the 262	

distributed scheme also tends to perform slightly worse in cold regions (Fig. 5), which is 263	

possibly due to lack of representation for permafrost in the model. 264	

Previous studies investigating the credibility of lumped and distributed hydrological 265	

models indicate that, in many cases, lumped models perform comparably or just as well as 266	

distributed models (Asadi, 2013; Brirhet and Benaabidate, 2016; Ghavidelfar et al., 2011; 267	

Michaud and Sorooshian, 1994; Obled et al., 1994; Reed et al., 2004; Refsgaard and Knudsen, 268	

1996; YAO et al., 1998). However, distributed models may have advantages for predicting 269	

runoff in ungauged watersheds (Reed et al., 2004; Refsgaard and Knudsen, 1996), for capturing 270	

spatial distribution of runoff due to heterogeneity in rainfall patterns or in land surface (Downer 271	

et al., 2002; Paudel et al., 2011; YAO et al., 1998), and for predicting flood peaks (Asadi, 2013; 272	

Brirhet and Benaabidate, 2016; Carpenter and Georgakakos, 2006; Krajewski et al., 1991). Our 273	

results on the predictability of lumped and distributed “abcd” model are in line with previous 274	

findings in the literature. 275	

The good agreement between our modelled water fluxes, including total runoff, direct 276	

runoff, baseflow and ET, and the benchmark products provides confidence in the capability of 277	

both the lumped and distributed schemes in estimating temporal and spatial variations in major 278	

water fluxes across the globe. In addition, to identify a suitable HE, the required computation 279	

cost is another key factor as detailed below. 280	

 281	

3.2 Evaluation of computational efficiency  282	
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 While the performance of model predictability is comparable for the lumped and 283	

distributed schemes as elucidated above, great disparity exists for runtime of the two schemes 284	

and the VIC model (Table 2). Take the Amazon basin that covers a total number of 1990 0.5-285	

degree grid cells as an example, it takes 11.05 minutes for model calibration via the GA method 286	

in the distributed scheme but only 0.16 minute for the lumped one. Similar disparity is also found 287	

for model simulation with calibrated parameters, with runtime of 0.03 and 3.20 seconds for a 288	

1000-year simulation of the Amazon basin for the lumped and distributed schemes, respectively. 289	

However, according to the authors’ experience, it will take ~1 week for the VIC model to 290	

accomplish the same job, which is far more computationally expensive. In general, the 291	

computational efficiency of the lumped scheme is two orders of magnitudes higher than the 292	

distributed one, although that of the distributed one is still much higher than the VIC (~five 293	

orders of magnitude) and many other GHMs and land surface models (LSMs).  294	

 295	

3.3 Potential application of the model as a hydrological emulator 296	

The good predictability and computational efficiency of both the distributed or lumped 297	

schemes as elucidated in Sections 3.1 and 3.2 suggest its suitability for serving as HEs that can 298	

efficiently emulate complex GHMs (e.g., the VIC or others). The source codes, input data, basin-299	

specific parameters across the globe for both the lumped and distributed schemes are open-300	

source and well-documented, which will make the HE ready to use and facilitate their wide and 301	

easy use with minimal efforts.  302	

Moreover, the choice of either the distributed or lumped scheme as HE depends on the 303	

user’s specific needs. There is a tradeoff between the model predictability and computational 304	

efficiency. While the distributed scheme tends to better capture the spatial heterogeneity of water 305	
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fluxes and can produce grid-level outputs that lumped scheme cannot, it incurs heavier 306	

computational cost than the lumped scheme. For applications that aim to strike a balance 307	

between predictability and computation cost, such as practical assessment of water resources, or 308	

estimation of water supply for IAMs, or quantification of uncertainty and sensitivity analyses, it 309	

would be reasonable to employ the lumped scheme as a HE. The lumped scheme is especially 310	

advantageous due to its minimal calibration and computational cost, parsimonious efforts for 311	

model implementation, and reasonable fidelity in estimating major water fluxes (e.g., runoff, ET). 312	

For users from the IAM community, the lumped scheme might be sufficiently suitable for their 313	

needs since 1) the lumped scheme operates at the same spatial resolution at which IAMs 314	

typically balance water demands and supplies ( Kim et al., 2016), and 2) the inherent uncertainty 315	

of the lumped scheme is likely comparable or even overshadowed by the intrinsic uncertainty of 316	

IAMs (Kraucunas et al., 2015; O’Neill et al., 2014). Similarly, for users who aim to conduct 317	

uncertainty and sensitivity analyses, the high computational efficiency of the lumped scheme 318	

allow the users to emulate the hydrological model of interest (e.g., GHMs, LSMs) and then run a 319	

large number of simulations to conduct their uncertainty and sensitivity analysis (Scott et al., 320	

2016). Therefore, the high computational efficiency makes the lumped scheme more appealing 321	

as a HE in these cases. However, if the research questions hinge on the gridded estimates, or 322	

emphasize the spatial heterogeneity of the water fluxes or pools, it would be more desirable to 323	

deploy the distributed scheme as a HE instead. 324	

Based upon our open-source HE and the validated basin-specific parameters across the 325	

globe, researchers can easily investigate the variations in water budgets at the 326	

basin/national/regional/global scale of interest, with minimum requirements of input data, 327	

efficient computation performance and reasonable model fidelity. Likewise, researchers can 328	
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utilize the framework of the HE with any alternative input data, or recalibrate the HE to emulate 329	

any complex GHM or LSM of interest, to meet their own needs. 330	

 331	

4 Conclusions 332	

 Toward addressing the issue that many global hydrological models (GHMs) are 333	

computationally expensive and thus users cannot afford to conduct a large number of simulations 334	

for various tasks, we firstly construct a hydrological emulator (HE) that possesses both 335	

reasonable predictability and computation efficiency for global applications in this work.  Built 336	

upon the widely-used “abcd” model, we have adopted two snow-related parameters from 337	

literature rather than tuning them for parameter parsimony, and also have improved the partition 338	

of total runoff between the direct runoff and baseflow by introducing baseflow index into the 339	

objective function of the parameter optimization. We then evaluate the appropriateness of the 340	

model serving as an emulator for a complex GHM –VIC, for both the lumped and distributed 341	

model schemes, by examining their predictability and computational efficiency.  342	

In general, both distributed and lumped schemes have comparably good capability in 343	

simulating spatial and temporal variations of the water balance components (i.e., total runoff, 344	

direct runoff, baseflow, evapotranspiration). Meanwhile, the distributed scheme has slightly 345	

better performance than the lumped one (e.g., capturing spatial heterogeneity), with mean Kling-346	

Gupta efficiency of 0.79 vs. 0.75 across global 235 basins, and also it provides grid-level 347	

estimates that the lumped one incapable of. Additionally, the distributed scheme performs better 348	

in extreme climate regimes (e.g., Arctic, North Africa) and Europe. However, the distributed one 349	

incurs two more orders of magnitudes of computation cost than the lumped one. Therefore, the 350	

lumped scheme could be an appropriate HE – reasonable predictability and high computational 351	
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efficiency. At the same time, the distributed scheme could be a suitable alternative for research 352	

questions that hinge on grid-level spatial heterogeneity. Finally, upon open-sourcing and well-353	

documentation, the HE is ready to use and it provides researchers an easy way to investigate the 354	

variations in water budgets at any spatial scale of interest (e.g., basin, region or globe), with 355	

minimum requirements of efforts, reasonable model predictability and appealing computational 356	

efficiency.   357	
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Code and/or data availability 358	

The code and data are available on the GitHub open-source software site 359	

(https://github.com/JGCRI/hydro-emulator). The repository includes the source code (written in Matlab), 360	

all related data inputs and outputs for global 235 basins, and a Readme file.  361	
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Appendix A: Descriptions and equations of the “abcd” model 362	

The abcd model was first introduced by (Thomas, 1981), and Martinez and Gupta (Martinez and 363	

Gupta, 2010) added snow processes into the model. In this work, we adopted the snow scheme in 364	

Martinez and Gupta (2010): 365	

  0     minrain
iT T<  366	

iSnow =  
minrain
i

i rain snow

T TP
T T

−
×

−
  minsnow rain

iT T T< <    (1) 367	

  iP     min snow
iT T<  368	

 369	

1i i i iSP SP SNM Snow−= − +         (2) 370	

 371	

  0      min snow
iT T<  372	

iSNM =  
min

1( )
rain

i
i i rain snow

T TSP Snow m
T T−

−
+ × ×

−
 minsnow rain

iT T T< <   (3) 373	

  1( )i iSP Snow m− + ×    minrain
iT T<  374	

 375	

where iP , iSP , iSNM  and iSnow  are total precipitation, snowpack storage, snowmelt and the 376	

precipitation as snowfall at time step i, respectively, rainT (or snowT ) stands for the temperature threshold 377	

above (or below) which all precipitation falls as rainfall (or snow),  and min
iT is the minimum temperature 378	

at time step i, and the parameter m is the snowmelt coefficient. Rather than keeping the three parameters 379	

rainT , snowT and m, we adopt the rainT  value of 2.5 °C  and snowT  value of 0.6 °C  (Wen et al., 2013) and 380	

thus only keep one snowmelt-related parameter m in the model, in order to alleviate the computation load 381	

during the parameter optimization process. 382	

  383	
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The model defines two state variables “available water” and “evapotranspiration opportunity”, 384	

denoted as Wi and Yi, respectively. The Wi is defined as: 385	

1i i i iW SM Rain SNM−= + +         (4) 386	

where 1iSM −  is soil moisture at the beginning of time step i, iRain and iSNM  are rainfall and snowmelt 387	

during period i.  388	

Yi stands for the maximum water that can leave the soil as evapotranspiration (ET) at period i, and 389	

it is defined as below: 390	

i i iY ET SM= +          (5) 391	

where iET  is the actual ET at time period i and iSM  is soil moisture at the end of time step i. Further, Yi  392	

has a non-linear relationship with Wi as: 393	

2( ) /
2 2
i i

i i
W b W bY W b a
a a
− −

= − − ×        (6) 394	

where a and b are parameters detailed in Section 2.1.  395	

Allocation of Wi  between iET and iSM is estimated by assuming that the loss of soil moisture by 396	

ET will be proportional to PET as:  397	

dS SMPET
dt b

= − ×          (7) 398	

After integrating the above differential equation and assuming Si-1 = Yi, iSM can be derived as: 399	

exp( )i
i i

PETSM Y b
−= ×         (8) 400	

Then, iET  can be calculated through equation (2).  401	

 In the model framework, i iW Y−  is the sum of the groundwater recharge (RE) and direct runoff 402	

(Qd), and the allocation is determined by the parameter c: 403	

( )i i iRE c W Y= × −          (9) 404	
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(1 ) ( )d i iQ c W Y= − × −          (10) 405	

The baseflow from the groundwater (GW) pool is modeled as: 406	

b iQ d GW= ×           (11) 407	

where d is a parameter reflecting the release rate of groundwater to baseflow. Then the total runoff ( tQ ) is 408	

the sum of the direct runoff and baseflow: 409	

t d bQ Q Q= +           (12) 410	

The iGW  is the sum of groundwater storage at the end of last time step and the groundwater recharge 411	

minus the baseflow, and iGW  is derived as: 412	

1

1
i i

i
GW REGW

d
− +=
+

         (13) 413	

Then, all the water fluxes and pools are solved. 414	

  415	
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Figure Caption 581	

Figure 1 Schematic diagram of the “abcd” model, with enhancements of snow and partition of 582	

total runoff between direct runoff and baseflow. 583	

Figure 2 Comparison of basin-specific long-term annual total runoff, direct runoff and baseflow 584	

estimates from both the lumped and distributed “abcd” model schemes against VIC products, 585	

across global 235 basins and for the calibration period of 1971-1990 and validation period of 586	

1991-2010. The labels are denoted as combination of model scheme and period, where lump and 587	

dist stand for lumped and distributed model scheme, cal and val represent the calibration and 588	

validation period, respectively. These denotations remain the same for all figures in this work. 589	

Note that the basin-level VIC baseflow is derived by multiplying the gridded VIC long-term 590	

annual total runoff and the mean of the four gridded baseflow index products from Beck et al. 591	

(2014), and then aggregating from grid-level to basin-level. The basin-level VIC direct runoff is 592	

then calculated by subtracting baseflow from the total runoff.  593	

Figure 3 Time series of basin-specific total runoff (Qtotal) from the VIC product, the lumped and 594	

distributed “abcd” schemes for the world’s sixteen river basins with top annual flow (Dai et al. 595	

2009) during 1981-1990. KGEl and KGEd stand for KGE value for the lumped and distributed 596	

scheme, respectively.  597	

Figure 4 Spatial patterns of long-term annual total runoff (mm yr-1) across global 235 basins: a) 598	

VIC runoff product; b) total runoff estimates from the lumped “abcd” scheme (lump = lumped); 599	

and c) total runoff estimates from the distributed “abcd” scheme (dist = distributed). 600	

Figure 5 The spatial pattern of Kling-Gupta efficiency (KGE) for the total runoff estimates of 601	

the global 235 basins for the calibration period of 1971-1990: a) the lumped “abcd” scheme; and 602	

b) the distributed “abcd” scheme.  603	
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Figure 1 604	

 605	
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Figure 2 607	

 608	
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Figure 3 610	

 611	
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Figure 4 613	

 614	
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Figure 5 616	
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Table 1 Parameters description and ranges for the “abcd” model (the parameters a,c,d and m are 618	
dimensionless, and the unit for parameter b is mm) 619	

 620	

  621	

parameter description range references 
a Propensity of runoff to occur before the soil 

is fully saturated 
0-1  (Alley, 1984; Martinez 

and Gupta, 2010; 
Sankarasubramanian 
and Vogel, 2002; 
Vandewiele and Xu, 
1992)  

b Upper limit on the sum of evapotranspiration 
and soil moisture storage 

0-4000 

c Degree of recharge to groundwater 0-1 
d Release rate of groundwater to baseflow 0-1 
m Snow melt coefficient 0-1  (Wen et al., 2013) 
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Table 2 Runtime for model calibration and simulation at Amazon basin for the lumped (lump) 622	

and distributed (dist) “abcd” model scheme, as well as for the VIC model. 623	

 calibration  1000 years’ simulation  

lump 0.16 min 0.03 s 

dist 11.05 min 3.20 s 

VIC N/A ~ 1 week 

 624	
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