
1	
		

A Hydrological Emulator for Global Applications – HE v1.0.0 1	

Yaling Liu1, 2, Mohamad Hejazi1, Hongyi Li3, Xuesong Zhang1, Guoyong Leng1 2	

1Joint Global Change Research Institute, Pacific Northwest National Laboratory, 5825 3	
University Research Court, College Park, Maryland 20740, United States 4	
 5	
2 Department of Earth and Environmental Engineering, Columbia University, New York, NY 6	
10027, United States 7	
 8	
3 Department of Land Resources and Environmental Sciences, Montana State University, 9	
Bozeman, MT 59717, United States 10	
 11	
Correspondence to: Yaling Liu (cauliuyaling@gmail.com)  12	



2	
		

Abstract 13	

While global hydrological models (GHMs) are very useful in exploring water resources and 14	

interactions between the Earth and human systems, their use often requires numerous model 15	

inputs, complex model calibration, and high computation costs. To overcome these challenges, 16	

we construct an efficient open-source and ready-to-use hydrologic emulator (HE) that can mimic 17	

complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, we 18	

construct both a lumped and a distributed scheme of the HE based on the monthly “abcd” model 19	

to explore the tradeoff between computational cost and model fidelity.  Model predictability and 20	

computational efficiency were evaluated in simulating global runoff from 1971-2010 with both 21	

the lumped and distributed schemes. The results are compared against the runoff product from 22	

the widely-used Variable Infiltration Capacity (VIC) model. Our evaluation indicates that the 23	

lumped and distributed schemes present comparable results regarding annual total quantity, 24	

spatial pattern and temporal variation of the major water fluxes (e.g., total runoff, 25	

evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the 26	

annual total runoff from either of these two schemes and the VIC is >0.96), except for several 27	

cold (e.g., Arctic, Interior Tibet), dry (e.g., North Africa) and mountainous (e.g., Argentina) 28	

regions. Compared against the monthly total runoff product from the VIC (aggregated from daily 29	

runoff), the global mean Kling-Gupta efficiencies are 0.75 and 0.79 for the lumped and 30	

distributed schemes, respectively, with the distributed scheme better capturing spatial 31	

heterogeneity. Notably, the computation efficiency of the lumped scheme is two orders of 32	

magnitude higher than the distributed one, and seven orders more efficient than the VIC model. 33	

A case study of uncertainty analysis for the world’s sixteen basins with top annual streamflow is 34	

conducted using 100,000 model simulations, and it demonstrates the lumped scheme’s 35	
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extraordinary advantage in computational efficiency. Our results suggest that the revised lumped 36	

“abcd” model can serve as an efficient and acceptable HE for complex GHMs and is suitable for 37	

broad practical use, and the distributed scheme is also an efficient alternative if spatial 38	

heterogeneity is of more interest.   39	
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1 Introduction 40	

A global hydrological model (GHM) is an effective tool to understand how water moves 41	

between soil, plants and the atmosphere. In terms of spatial discretization, hydrological models 42	

can be classified into: 1) lumped models treating one basin as a homogeneous whole and 43	

disregarding spatial variations, such as the Sacramento Soil Moisture Accounting Model 44	

(Burnash et al., 1973); and 2) distributed models where the entire basin is divided into small 45	

spatial units (e.g., square cells or triangulated irregular network) to capture spatial variability, 46	

such as the PCRaster Global Water Balance (Van Beek and Bierkens, 2009)  and the WASMOD-47	

M (Widén-Nilsson et al., 2007). For simplicity, models with division of one basin into separate 48	

areas or sub-basins are also categorized as distributed ones here. The corresponding 49	

predictability and computational efficiency of GHMs may vary from model to model, due to 50	

difference in complexity and structure. Recent years have seen rapid progress in GHMs. They 51	

are widely used in assessing the impacts of climate change and land surface changes on the water 52	

cycle (Alcamo and Henrichs, 2002; Arnell and Gosling, 2013; Liu et al., 2013; Liu et al., 2014; 53	

Nijssen et al., 2001a), exploring spatial and temporal distribution of water resources (Abdulla et 54	

al., 1996; Alkama et al., 2010; Bierkens and Van Beek, 2009; Gerten et al., 2005; Tang et al., 55	

2010), examining how human activities alter water demand and water resources (De Graaf et al., 56	

2014; Döll et al., 2009; Hanasaki et al., 2008; Liu et al., 2015; Rost et al., 2008; Vörösmarty et 57	

al., 2000), and investigating the interactions between human activities and water availability by 58	

incorporating GHM with integrated assessment models (Kim et al., 2016).  59	

 Applying GHMs usually requires miscellaneous inputs, high computational costs, and a 60	

complex calibration process. These challenges stand out in practical situations, especially when 61	

the computational resources are limited. For instance, sensitivity analysis and uncertainty 62	
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quantification are often needed for decision making, but the users usually cannot afford to run a 63	

large number of simulations with many GHMs like the VIC (also categorized as land surface 64	

model (LSM)) due to their high computational expense (Oubeidillah et al., 2014). Another 65	

situation is when the users seek reasonable estimates of water resources with minimal efforts 66	

rather than acquiring highly accurate estimates through expensive inputs of time and efforts. For 67	

example, when users seek to explore the hydroclimatology of a region and its long-term water 68	

balance (Sankarasubramanian and Vogel, 2002), then GHMs with fine spatial (e.g., 1/8 degree) 69	

and temporal resolution (e.g., hourly)  are not necessarily needed. In this case, simple models 70	

that possess reasonable predictability and are computationally efficient tend to be more suitable. 71	

In addition, some studies have shown that GHMs/LSMs are sometimes outperformed by simple 72	

empirical statistical models (Abramowitz, 2005; Abramowitz et al., 2008; Best et al., 2015), 73	

suggesting that some GHMs/LSMs may underutilize the information in their climate inputs and 74	

that model complexity may undermine accurate prediction. This also indicates the potential 75	

advantages of simple model over complex GHMs/LSMs. Thus, constructing simple models that 76	

can emulate the dynamics of more complex and computational expensive models (e.g., 77	

GHMs/LSMs) is warranted. 78	

The motivation of this work arises from the need to construct a hydrological emulator 79	

(HE) that can efficiently mimic the complex GHMs to address the abovementioned issues for 80	

practical use, which provides the opportunity of speeding up simulations at the cost of 81	

introducing some simplification. We develop a HE that is easy-to-use and efficient for any 82	

interested groups or individuals to assess water cycle at basin/regional/global scales. This HE 83	

possesses the following features: 1) minimum number of parameters; 2) minimal climate input 84	

that is easy to acquire; 3) simple model structure; 4) reasonable model fidelity that captures both 85	
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the spatial and temporal variability; 5) high computational efficiency; 6) applicable in a range of 86	

spatial scales; and 7) open-source and well-documented.   87	

To achieve our goal of identifying a suitable HE, we have explored many hydrological 88	

models to find one that may meet our needs. We start with a simple baseline model characterized 89	

by mean seasonal cycle; i.e., the inter-annual mean value for every calendar day (Schaefli & 90	

Gupta, 2007). Among others, we also explore the “abcd” model because: 1) it is widely-used 91	

and proven to have reasonable predictability (Fernandez et al., 2000; Martinez and Gupta, 2010; 92	

Sankarasubramanian and Vogel, 2002; Sankarasubramanian and Vogel, 2003; Thomas, 1981; 93	

Vandewiele and Xu, 1992; Vogel and Sankarasubramanian, 2003); 2) it uses a monthly time step 94	

and requires less computational cost than daily or hourly models; 3) it has solid physical basis 95	

hence has potential to be extended to other temporal scales (Wang and Tang, 2014); 4) it requires 96	

minimal and easily-available inputs; 5) it only involves 4-7 parameters; and 6) it can simulate 97	

variables of interest such as recharge, direct runoff and baseflow that many other simple models 98	

can’t simulate  (Vörösmarty et al., 1998) .  This study marks the first time that the “abcd” based 99	

model is applied globally, and also the first time the predictability and computational efficiency 100	

for both the lumped and distributed schemes are evaluated. Below we describe the baseline and 101	

the “abcd” models and data in Section 2; and we present the evaluation of the two models, 102	

discuss their appropriateness of serving as a HE in Section 3; finally, in Section 4 we summarize 103	

this work with concluding remarks.  104	

 105	

2 Methods and data 106	

2.1 Model description  107	
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We examine two simple models – baseline and the “abcd” model (both lumped and 108	

distributed scheme) in order to identify a suitable one for serving as a HE.  109	

2.1.1 Baseline model 110	

 Following the work of Schaefli & Gupta (2007), we explore a baseline model 111	

characterized by the inter-annual mean value for every calendar day, i.e., climatology. In this 112	

study, the baseline model is based on monthly climatology runoff, which comes from a model 113	

simulation product – i.e., the runoff product from the Variable Infiltration Capacity (VIC) model 114	

(Leng et al. 2015). Specifically, we first calculate grid-level inter-annual mean value for each of 115	

the 365 calendar days from daily runoff of the benchmark product during 1971-2010 (see Section 116	

2.3.2), and then aggregate daily climatology runoff to monthly climatology runoff at grid-level. 117	

The baseline model here uses monthly climatology runoff for prediction.  For example, if the 118	

climatology runoff for July in one grid cell is 100 mm mon-1, then the prediction of total runoff 119	

for July of every year in that specific grid cell is 100 mm mon-1.  120	

 121	

2.1.2 The “abcd” model 122	

The monthly “abcd” model was first introduced by Thomas (1981) to improve the national 123	

water assessment for the U.S., with a simple analytical framework using only a few descriptive 124	

parameters. It has been widely used across the world, especially for the U.S. (Martinez and 125	

Gupta, 2010; Sankarasubramanian and Vogel, 2002; Sankarasubramanian and Vogel, 2003). The 126	

model uses potential evapotranspiration (PET) and precipitation (P) as input. The model defines 127	

four parameters a, b, c, and d that reflect regime characteristics (Sankarasubramanian and Vogel, 128	

2002; Thomas, 1981) to simulate water fluxes (e.g., evapotranspiration, runoff, groundwater 129	

recharge) and pools (e.g., soil moisture, groundwater). The parameters a and b pertain to runoff 130	
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characteristics, and c and d relate to groundwater. Specifically, the parameter a reflects the 131	

propensity of runoff to occur before the soil is fully saturated. The parameter b is an upper limit 132	

on the sum of evapotranspiration (ET) and soil moisture storage. The parameter c indicates the 133	

degree of recharge to groundwater and is related to the fraction of mean runoff that arises from 134	

groundwater discharge. The parameter d is the release rate of groundwater to baseflow, and thus 135	

the reciprocal of d is the groundwater residence time. Snow is not part of the original “abcd” 136	

model, which may result in poor performance of the model in cold regions where snow 137	

significantly affects the hydrological cycle. The work of Martinez and Gupta (2010) has added 138	

snow processes into the original “abcd” model, where the snowpack accumulation and snow 139	

melt are estimated based on air temperature.  Their work indicated that incorporation of the snow 140	

processes in the monthly “abcd” model has significantly improved model performance in snow-141	

covered area in the conterminous United States (see Figure 4 in Martinez and Gupta (2010)). 142	

In this study, we adopt the “abcd” framework from Martinez and Gupta (2010) (Fig. 1); 143	

meanwhile, we make three modifications to suit the needs of a HE for global applications. First, 144	

in order to enhance the model efficiency with as least necessary parameters as possible, instead 145	

of involving three tunable snow-related parameters in the calibration process, we set the values 146	

for two of the parameters (i.e., temperature threshold above or below which all precipitation falls 147	

as rainfall or snow) from literature (Wen et al., 2013) and only keep one tunable parameter m – 148	

snow melt coefficient (0 < m < 1). Second, we introduce the baseflow index (BFI) into the 149	

calibration process to improve the partition of total runoff between the direct runoff and baseflow 150	

(see Section 2.4). Third, other than the lumped scheme as previous studies used, we first explore 151	

the values of model application in distributed scheme with a grid resolution of 0.5 degree. The 152	
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detailed model descriptions and equations are presented in the Appendix A, and the descriptions 153	

and ranges of model parameters are listed in Table 1. 154	

 155	

2.2 Model structure 156	

In terms of the “abcd” model, we evaluate both the lumped and distributed model 157	

schemes, although most previous applications of the model are conducted in a lumped scheme 158	

(Bai et al., 2015; Fernandez et al., 2000; Martinez and Gupta, 2010; Sankarasubramanian and 159	

Vogel, 2002; Sankarasubramanian and Vogel, 2003; Vandewiele and Xu, 1992; Vogel and 160	

Sankarasubramanian, 2003). In the lumped scheme, each of the 235 river basins is lumped as a 161	

single unit, and each of the data input (see Section 2.3.1) is the lumped average across the entire 162	

basin, and thus all the model outputs are lumped as well. In terms of the distributed one, however, 163	

each 0.5-degree grid cell has its own data inputs, and likewise, the model outputs are simulated 164	

at the grid-level. Although the two schemes differ in the spatial resolution of their inputs and 165	

outputs, their within-basin parameters are uniform. We use basin-uniform rather than grid-166	

specific parameters for the distributed scheme for two reasons: 1) to enhance computational 167	

efficiency; and 2) to avoid drastically different parameters for neighboring grid cells that may be 168	

unrealistic. Note that lateral flows between grid cells and basins are not included at this stage for 169	

the “abcd” model. For the baseline model, as documented in Section 2.1.1, every 0.5-degree grid 170	

cell of each basin has its own monthly climatology runoff estimates for each of the 12 calendar 171	

months.  172	

 173	

2.3 Data 174	

2.3.1 Climate data 175	
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The climate data needed for the “abcd” model only involve monthly total precipitation, 176	

monthly mean, maximum and minimum air temperature. The data we use is obtained from 177	

WATCH (Weedon et al., 2011), spanning the period of 1971-2010, and it is 0.5-degree gridded 178	

global monthly data. The climate data is used for model simulation over the global 235 major 179	

river basins (Kim et al., 2016). Additionally, we use the Hargreaves-Samani method (Hargreaves 180	

and Samani, 1982) to estimate potential evapotranspiration (PET), which is a required input for 181	

the “abcd” model, and it needs climate data of mean, maximum and minimum temperatures for 182	

the calculation.  183	

 184	

2.3.2 Benchmark runoff product  185	

In this study, the “abcd” model is tested for its ability to emulate the naturalized 186	

hydrological processes of a reference model since the “true” naturalized hydrological processes 187	

are unknown. The “perfect model” approach is well adopted in climate modeling studies where 188	

one model is treated as “observations” while the others are tested for their ability to reproduce 189	

“observations” (Murphy et al., 2004; Tebaldi and Knutti, 2007). Here, we use the process-based 190	

VIC model as the “perfect model”, which was also driven by the WATCH climate forcing.  191	

The VIC runoff product here is a global simulation with a daily time step and spatial 192	

resolution of 0.5 degree for the period of 1971-2010, and the VIC daily runoff is aggregated to 193	

monthly data to be consistent with the temporal scale of the “abcd” model. The VIC model 194	

settings used in this study are based on the University of Washington VIC Global applications 195	

(http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Datasets/Datasets.shtml). The sub-196	

grid variability of soil, vegetation and terrain characteristics are represented in sub-grid area-197	

specific parameter classifications. Soil texture and bulk densities are derived by combining the 198	



11	
	

World Inventory of Soil Emission Potentials database (Batjes, 1995) and the 5-min digital soil 199	

map of the world from the Food and Agricultural Organization (FAO, 1998). Based on the work 200	

of (Cosby et al., 1984), the remaining soil properties (e.g. porosity, saturated hydraulic 201	

conductivity and unsaturated hydraulic conductivity) are derived. Vegetation type data are 202	

obtained from the global land classification of (Hansen et al., 2000). Parameters including the 203	

infiltration parameter, soil layer depths and those governing the baseflow function were 204	

calibrated for major global river basins and transferred to the global domain as documented in 205	

(Nijssen et al., 2001b), based on which Zhang et al. (2014) and Leng et al. (2015) conducted 206	

additional calibrations in the China domain. In this study, the VIC model was forced by WATCH 207	

climate forcing at the daily time step (Weedon et al., 2011), based on the calibrated parameters 208	

from Nijssen et al. (2001b), Zhang et al., (2014) and Leng et al., (2015). The simulated runoff 209	

used in this study has recently been validated globally within the framework of the Inter-Sectoral 210	

Impact Model Intercomparison Project and shows reasonable performance compared to other 211	

hydrological models (Hattermann et al., 2017; Krysanova and Hattermann, 2017).  212	

The VIC runoff product (Hattermann et al., 2017; Leng et al., 2015) is then used as a 213	

benchmark for calibrating and validating the “abcd” model due to two reasons. First, VIC runoff 214	

has been evaluated across many regions of the globe and is proved to be reasonably well 215	

(Abdulla et al., 1996; Hattermann et al., 2017; Maurer et al., 2001; Nijssen et al., 1997; Nijssen 216	

et al., 2001b). Second, the simulated monthly runoff by the “abcd” model is more representative 217	

of “natural conditions” because human activities (e.g., reservoir regulations and upstream water 218	

withdrawals) are currently not represented in the model. Thus it tends to be more reasonable to 219	

compare the simulated runoff against the VIC natural runoff product rather than comparing 220	

against observed streamflow data from stream gauges (Dai et al., 2009; Wilkinson et al., 2014). 221	
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Despite potential bias in the VIC runoff product, using it as a benchmark here is to demonstrate 222	

the capability of the HE developed in this work to mimic complex GHMs. Furthermore, the 223	

application of the HE is not tied to the VIC model and should be able to emulate other GHMs. 224	

The VIC runoff product compares well to other products (see Fig. S1, S2), including the 225	

University of New Hampshire/Global Runoff Data Centre (UNH/GRDC) runoff product (Fekete 226	

and Vorosmarty, 2011; Fekete et al., 2002) and the global streamflow product (Dai et al., 2009). 227	

The scatterplot pattern of the VIC long-term annual runoff product vs. the GRDC product 228	

(GRDC, 2017) matches well with that of the UNH/GRDC runoff vs. the GRDC product 229	

(streamflow is transferred to the same unit as runoff via dividing by the basin area), which means 230	

the behavior of the VIC runoff product is similar to that of the UNH/GRDC product. Further, the 231	

correlation coefficient of the VIC and the UNH/GRDC long-term annual runoff is as high as 0.83 232	

across the global 235 basins (Fig. S2). This suggests the reasonableness of VIC runoff product, 233	

because the UNH/GRDC runoff is calibrated with the GRDC observations. At the same time, the 234	

discrepancies between the VIC runoff products and the streamflow products (Fig. S2) may be 235	

attributed to human activities, such as reservoir regulations and upstream water withdrawals, 236	

which are not embedded in the runoff but reflected in the streamflow. This is because the VIC 237	

model simulates runoff at natural conditions, and then a stand-alone routing model can be used to 238	

route these flows downstream (Nijssen et al., 2001b). The routing model may account for human 239	

activities such as water extractions and reservoir operations (Haddeland et al., 2014). However, 240	

here we use the VIC runoff under natural conditions as the benchmark product, which explains 241	

the discrepancies between the VIC runoff and observed streamflow products.  242	

Uncertainties arising from the runoff process in the VIC model should be acknowledged. 243	

Implementation of different runoff generation schemes (e.g. TOPMODEL) within the same 244	
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modeling framework is an alternative that can be adopted in the future to explore the uncertainty 245	

range. A recent inter-model comparison study shows that the VIC model falls within the range of 246	

large model ensembles (Hattermann et al. 2017). Notably, groundwater and its interaction with 247	

river and land surface are not represented in the model. Thus, the model may not be able to fully 248	

capture the hydrologic responses in areas where lateral flow and the three way streamflow-249	

aquifer-land interactions are important. Further, vegetation dynamics and water management that 250	

may affect runoff are not considered in the model simulations. Nonetheless, the use of the HE 251	

documented here is not tied to the VIC, and it could be used to emulate other GHMs of interest. 252	

 253	

2.4 Model calibration 254	

Typically, most applications of the “abcd” model utilize single-objective optimization for 255	

total runoff (or streamflow) during the calibration process to minimize the difference between 256	

measured and simulated streamflow (Bai et al., 2015; Martinez and Gupta, 2010; 257	

Sankarasubramanian and Vogel, 2002). While this may lead to a good fit for simulated total 258	

runoff, however, it may result in inappropriate partition of total runoff between direct runoff and 259	

baseflow. To improve the accuracy of the simulated total runoff and the partition between direct 260	

runoff and baseflow, we introduce the baseflow index (BFI) into the objective function.  261	

Unlike the baseline model, the “abcd” model requires a calibration step for reasonable 262	

parameterization so as to enable good prediction. As mentioned above, we incorporate BFI into 263	

the objective function during the calibration process. On one side, we maximize Kling-Gupta 264	

efficiency (KGE) (Gupta et al., 2009), which is used as a metric to measure the accuracy of the 265	

simulated total runoff relative to the VIC benchmark runoff. The KGE is defined as the 266	
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difference of unity and the Euclidian distance (ED) from the ideal point, thus we maximize KGE 267	

through minimizing the ED. The KGE and ED are calculated as follows (Gupta et al., 2009): 268	

1KGE ED= −          (1) 269	

2 2 2( 1) ( 1) ( 1)ED r α β= − + − + −        (2) 270	

so

s s

Covr
σ σ

=
⋅

          (3) 271	

s

o

σα σ=           (4) 272	

s

o

µβ µ=           (5) 273	

where r, α, β, and Covso are relative variability, bias, correlation coefficient, and covariance 274	

between the simulated and observed values (here we treat the VIC runoff as the observed), 275	

respectively; µ and σ represent the mean and standard deviation (subscript “s” and “o” stand for 276	

simulated and observed values). On the other side, we also nudge the simulated BFI towards the 277	

benchmark BFI (here we treat the benchmark BFI as the observed) – the mean BFI of the four 278	

products from (Beck et al., 2013). Then, the objective function is as follows:  279	

min( ( ))obs simED abs BFI BFI+ −        (6) 280	

where min stands for minimizing the value in the parenthesis, abs represents absolute value, ED 281	

is the Euclidian distance between the simulated and observed total runoff (Gupta et al., 2009),  282	

BFIobs and BFIsim are the observed and simulated BFI, respectively. Here we treat the benchmark 283	

runoff from the VIC and BFI from Beck et al. (2013) as observed values. We then minimize the 284	

objective function for parameter optimization by utilizing a Genetic Algorithm (GA) routine 285	

(Deb et al., 2002). Note that for the distributed model scheme, we aggregate the grid-level total 286	
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runoff estimates to basin-level and then nudge it toward basin-level benchmark total runoff 287	

during the calibration process.   288	

 289	

2.5 Model simulations 290	

To evaluate the predictability and efficiency of the baseline and the “abcd” model so as 291	

to identify a suitable one to serve as a HE, we have conducted a series of simulations. 292	

Specifically, for the baseline model, no simulations are needed as it uses inter-annual mean value 293	

for each month – 12 monthly values – as prediction, so we just replicate the 12 monthly runoff 294	

for 1971-2010 and for each of the global 235 basins, and then compare against the benchmark 295	

runoff product. For the “abcd” model, two sets of model simulations across the global 235 basins 296	

are conducted, with one set for calibration and the other one for validation, for both the lumped 297	

and distributed model schemes. For the first set, we run the model for each basin for the period 298	

of 1971-1990 to get basin-specific parameters by using the GA approach (see Section 2.4). For 299	

the second set, using the parameters identified in the first set of simulation, we run the model for 300	

the period of 1991-2010 to validate the model predictability and also evaluate the computational 301	

efficiency. Model inputs and outputs in the distributed scheme are at a spatial resolution of 0.5-302	

degree, whereas those in the lumped scheme are all in lumped single unit for each basin. All 303	

model simulations are conducted in a monthly time step. Note that broad users can run the 304	

identified HE for global 235 basins, or for as many basins as they want for either scheme, as all 305	

the related basin-specific input data and calibrated parameters for both schemes are open-source.  306	

 307	

3 Results and discussions 308	

3.1 Comparison of performances between the baseline and the “abcd” model  309	
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Generally, we find baseline model performs worse than the “abcd” model (Fig. 2). The 310	

baseline model exhibits a lower global mean KGE value (0.61) than the lumped and distributed 311	

schemes of the “abcd” model (0.75 and 0.79, respectively). In addition, our analysis indicates 312	

that the incorporation of BFI into the objective function leads to a significant improvement in the 313	

partition of total runoff between direct runoff and baseflow (Fig. 3, Fig. S4), without 314	

compromising predictability for total runoff, i.e., the global mean KGE values for modeled total 315	

runoff with or without the incorporation of BFI are almost the same (0.75 vs 0.76). Specifically, 316	

for the case of involving both the total runoff and BFI in the objective function, the correlation 317	

efficiencies (r) between the long-term annual benchmark and modeled direct runoff, and between 318	

benchmark and modeled baseflow from the lumped scheme across global basins are both 0.98 319	

(Fig. 3), which are much higher than those of 0.86 and 0.72 in the case of only involving the total 320	

runoff in the objective function (Fig. S4). Given the superiority of the “abcd” model over the 321	

baseline model, we focus in the following sections on evaluating the predictability and 322	

computational efficiency of the “abcd” model and its potential to serve as a HE.  323	

 324	

3.2 Evaluation of model predictability  325	

In terms of total runoff, we find the lumped and distributed schemes are comparably 326	

capable in simulating long-term mean annual quantity, temporal variations and spatial patterns 327	

for the vast majority of river basins globally (Fig. 3-5, Fig. S3). Estimates of long-term mean 328	

annual total runoff from both the lumped and distributed schemes match very well with that of 329	

VIC total runoff across the 235 basins, with a correlation coefficient (r) of higher than 0.96, for 330	

both the calibration and validation period (Fig. 3). Similarly, the basin-level estimates of long-331	

term mean annual direct runoff and baseflow also match well with those of the VIC across the 332	
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globe, for both schemes and both periods (Fig. 3). This suggests both schemes possess the 333	

capability in partitioning total runoff.  334	

Furthermore, both schemes display good capability in capturing the seasonal variations of 335	

the total runoff for both the calibration and validation period (Fig. 4, Fig. S5). Meanwhile, 336	

although the spatial patterns of annual total runoff from the lumped scheme present a general 337	

match with that of the VIC, it does not reflect the spatial variations inside a basin that is however 338	

captured by the distributed scheme (Fig. 5). Likewise, overall much lower percentage differences 339	

between the modeled runoff from the distributed scheme and the VIC runoff product than those 340	

between the VIC and the lumped one further corroborate the significantly better performance of 341	

the distributed scheme (Fig. S6). Both schemes still show large percentage differences in some 342	

dry (e.g., North Africa) or cold regions (e.g., Tibet Plateau). This is because the runoff there is at 343	

a low magnitude and thus small changes in runoff will lead to large percentage differences. 344	

Therefore, the distributed scheme provides overall slightly higher KGE (Fig. 6), with a global 345	

mean KGE value of 0.79 as compared to 0.75 for the lumped scheme (Fig. 2).  346	

To ensure good model predictability for the major water fluxes, we also evaluate the 347	

modelled ET estimates. The modelled ET compares reasonably well with the VIC ET product as 348	

well as with the mean synthesis of the LandFlux-EVAL ET product (Mueller et al., 2013), 349	

displaying similar spatial variations (Fig. S7). Likewise, the distributed “abcd” scheme tends to 350	

have better capability in presenting spatial heterogeneity than the lumped one. In addition, the 351	

percentage differences between our modeled ET and the VIC ET product further confirm that the 352	

distributed scheme significantly outperforms the lumped one (Fig. S8), with much lower 353	

differences from the VIC ET product, although discrepancies still exist in some extremely cold 354	

(e.g., Greenland) or dry regions (e.g., North Africa), which is because small differences in ET 355	
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will lead to large percentage difference in those regions with low ET. Further, given the changes 356	

in basin-scale monthly soil moisture is relatively small, precipitation should approximate the sum 357	

of ET and runoff according to the water mass balance, the good predictability of seasonality in 358	

runoff as illustrated in Fig. 4 also reflects similar performance for ET.  359	

The distributed scheme appears to outperform the lumped scheme in term of goodness-360	

of-fit, especially in some cold (e.g., Arctic, Northern European, Interior Tibet) and in some dry 361	

(e.g., North Africa) regions (Fig. 6). This is possibly because distributed inputs can reflect basin-362	

level heterogeneity, and thus better capture the characteristic of the hydrological conditions in 363	

those regions. However, both schemes do not perform well in the southern end of the Andes 364	

Mountains (Fig. 6). This may be attributed to the complex land surface characteristics in that 365	

mountainous area, which cannot be resolved due to the coarse spatial resolution. Moreover, the 366	

distributed scheme seems not performing very well in some cold regions (Fig. 6), which is 367	

possibly due to lack of representation for permafrost in the model. 368	

Previous studies investigating the credibility of lumped and distributed hydrological 369	

models indicate that, in many cases, lumped models perform comparably or just as well as 370	

distributed models (Asadi, 2013; Brirhet and Benaabidate, 2016; Ghavidelfar et al., 2011; 371	

Michaud and Sorooshian, 1994; Obled et al., 1994; Reed et al., 2004; Refsgaard and Knudsen, 372	

1996; YAO et al., 1998). However, distributed models may have advantages for predicting 373	

runoff in ungauged watersheds (Reed et al., 2004; Refsgaard and Knudsen, 1996), for capturing 374	

spatial distribution of runoff due to heterogeneity in rainfall patterns or in land surface (Downer 375	

et al., 2002; Paudel et al., 2011; YAO et al., 1998). Our results on the predictability of lumped 376	

and distributed “abcd” model are in line with previous findings in the literature. 377	
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The good agreement between our modelled water fluxes, including total runoff, direct 378	

runoff, baseflow and ET, and the benchmark products provides confidence in the capability of 379	

both the lumped and distributed schemes in estimating temporal and spatial variations in major 380	

water fluxes across the globe. In addition, to identify a suitable HE, the required computation 381	

cost is another key factor as detailed below. 382	

 383	

3.3 Evaluation of computational efficiency  384	

 While the performance of model predictability is comparable for the lumped and 385	

distributed schemes as elucidated above, great disparities still exist for runtime of the two 386	

schemes and the VIC model (Table S1). Take the Amazon basin that covers a total number of 387	

2002 0.5-degree grid cells as an example, it takes 11.05 minutes for model calibration via the GA 388	

method for the distributed scheme but only 0.16 minute for the lumped one. Similar disparity is 389	

also found for model simulation with calibrated parameters, with runtime of 0.03 and 3.20 390	

seconds for a 1000-year simulation of the Amazon basin for the lumped and distributed schemes, 391	

respectively. However, according to the authors’ experience, it will take ~1 week for the VIC 392	

model to accomplish the same job, which is far more computationally expensive. In general, the 393	

computational efficiency of the lumped scheme is two orders of magnitudes higher than the 394	

distributed one, although that of the distributed one is still much higher than the VIC (~five 395	

orders of magnitude) and many other GHMs and LSMs. Note that all of the simulations here are 396	

conducted on the Pacific Northwest National Laboratory (PNNL)’s Institutional Computing (PIC) 397	

Constance cluster using 1 core (Intel Xeon 2.3 GHz CPU) with the same configuration. 398	

 399	

3.4 Potential application of the “abcd” model as a hydrological emulator 400	
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The good predictability and computational efficiency of both the distributed or lumped 401	

schemes as elucidated in Sections 3.2 and 3.3 suggest its suitability for serving as HEs that can 402	

efficiently emulate complex GHMs (e.g., the VIC or others). The source codes, input data, basin-403	

specific parameters across the globe for both the lumped and distributed schemes are open-404	

source and well-documented, which will make the HE ready to use and facilitate their wide and 405	

easy use with minimal efforts.  406	

The choice of either the distributed or lumped scheme as HE depends on the user’s 407	

specific needs. There is a tradeoff between the model predictability and computational efficiency. 408	

While the distributed scheme tends to better capture the spatial heterogeneity of water fluxes and 409	

can produce grid-level outputs that lumped scheme cannot, it incurs higher computational cost 410	

than the lumped scheme. For applications that aim to strike a balance between predictability and 411	

computation cost, such as practical assessment of water resources, or estimation of water supply 412	

for integrated assessment models (IAMs), or quantification of uncertainty and sensitivity 413	

analyses, it would be reasonable to employ the lumped scheme as a HE. The lumped scheme is 414	

especially advantageous due to its minimal calibration and computational cost, parsimonious 415	

efforts for model implementation, and reasonable fidelity in estimating major water fluxes (e.g., 416	

runoff, ET). For users from the IAM community, the lumped scheme might be sufficiently 417	

suitable for their needs since 1) the lumped scheme can operate at the same spatial resolution at 418	

which IAMs typically balance water demands and supplies (Edmonds et al., 1997; Kim et al., 419	

2006; Kim et al., 2016), and 2) the inherent uncertainty of the lumped scheme is likely 420	

comparable or even overshadowed by the intrinsic uncertainty of IAMs (Kraucunas et al., 2015; 421	

O’Neill et al., 2014). Similarly, for users who aim to conduct uncertainty and sensitivity analyses, 422	

the high computational efficiency of the lumped scheme allow the users to emulate the 423	
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hydrological model of interest (e.g., GHMs, LSMs) and then run a large number of simulations 424	

to conduct their uncertainty and sensitivity analysis (Scott et al., 2016). Therefore, the high 425	

computational efficiency makes the lumped scheme more appealing as a HE in these cases. 426	

However, if the research questions hinge on the gridded estimates, or emphasize the spatial 427	

heterogeneity of the water fluxes or pools, it would be more desirable to deploy the distributed 428	

scheme as a HE instead. For example, a follow-up work is coupling the distributed scheme of the 429	

HE with a widely-used IAM, the Global Change Assessment Model (GCAM, Edmonds et al., 430	

1997), and then using the coupled model to investigate the impacts of a variety of land use 431	

policies on global water scarcity, where the HE is used to estimate grid-level runoff globally 432	

under different land use policies. 433	

While many studies indicate that basin runoff generation is sensitive to factors such as 434	

physical characteristics, spatiotemporal variability in storage distribution and forcing input, 435	

evidence also show that basin response can be captured using a handful of parameters (Hsu et al., 436	

1995; Young and Parkinson, 2002). In this study, the lumped scheme of the HE ignores the 437	

spatiotemporal variability in basin characteristics by averaging the input forcing data; 438	

consequently, the associated responses in within-basin runoff or ET variations cannot be 439	

captured. In contrast, the distributed scheme presents a better performance in capturing 440	

spatiotemporal variability of runoff and ET with use of the same input data, and without 441	

increasing the number of parameters. Thus, the use of the distributed scheme is preferred when 442	

the tradeoff in the computational efficiency is not a constraining factor.  443	

 Moreover, a combination of a top-down approach (Sivapalan et al., 2003) and a multi-444	

objective approach to model evaluation (Gupta et al., 1998) could be used to explore internal 445	

basin behavior, wherein the top-down approach would start from a simple structure and then 446	
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progressively expand based on its caveats in reproducing overall basin behavior [e.g., 447	

Jothityangkoon et al., 2001]. In this study we adopt a similar framework, by starting from a 448	

baseline model and then expanding to the “abcd” model with snow representation, also by 449	

incorporating the baseflow index into the objective function to exert a multi-objective approach. 450	

Our assessment indicates that a baseline model characterized by mean seasonal cycle still holds a 451	

promise in predicting runoff at basins with small variability in basin characteristics, such as 452	

basins of Ob, Lena, Yenisey, Siberia and Mackenzie in the Arctic area, where the baseline model 453	

yields KGE values of greater than 0.90 from our evaluation. Further, while Martinez and Gupta 454	

(2010) indicated that the incorporation of the snow component and an additional snow parameter 455	

into the original “abcd” model has greatly improved model performance in snow-prevailed 456	

regions, areas without prevailing snow (e.g., tropical zone) could still utilize the original version 457	

of the “abcd” model to keep the model as parsimonious as possible without compromising model 458	

predictability. In addition, although our results reveal that incorporation of baseflow index into 459	

the objective function generally improves the model performance in partitioning of runoff 460	

between direct runoff and baseflow, simply employing a single-objective approach (i.e., only 461	

involving total runoff) also works well for some basins such as North Interior Africa and Interior 462	

Australia. Thus, the single-objective approach is also acceptable for those basins with the 463	

advantage of simplicity without compromise in performance. In short, according to specific basin 464	

characteristics and the research needs, suitable model complexity and number of parameters 465	

could be identified by following abovementioned scenarios, such that either the baseline model 466	

or a reduced format of the HE (e.g., without snow representation or single-objective) could be 467	

potentially utilized with the merits of simplicity, reasonable predictability and computational 468	

efficiency, rather than adopting the full format of the HE. Future research can extend this work 469	
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by systematically investigating the role of different levels of inputs, parameters, and model 470	

complexity on model performance in different basins across the globe. 471	

Based upon our open-source HE and the validated basin-specific parameters across the 472	

globe, researchers can easily investigate the variations in water budgets at the basin/ 473	

regional/global scale of interest, with minimum requirements of input data, efficient computation 474	

performance and reasonable model fidelity. Likewise, researchers can utilize the framework of 475	

the HE with any alternative input data, or recalibrate the HE to emulate other complex GHMs or 476	

LSMs of interest, to meet their own needs. 477	

 478	

3.5 Case study for uncertainty analysis 479	

To demonstrate the capability of the examined “abcd” model serving as a HE, we use the 480	

lumped scheme to conduct parameter-induced uncertainty analysis for the runoff simulation at 481	

the world’s sixteen river basins with top annual flow (Dai et al. 2009). Specifically, for each of 482	

the sixteen basins, we first apply ±10% change to each of the five calibrated parameters (a, b, c, 483	

d, m) to compose varying ranges; note that we just truncate the range to those valid in Table 1 if 484	

the ±10% change exceeds the valid range. Then we randomly sample the five parameters from 485	

corresponding ranges for 100,000 times (i.e., 100,000 combinations of parameters). After that, 486	

we run the lumped scheme 100,000 times for each basin with the 100,000 combinations of 487	

parameters to examine the parameter-induced uncertainty in total runoff. The uncertainty 488	

analysis indicates that most basins are robust to changes in parameters, other than the Tocantins, 489	

Congo and La Plata (Fig. 7). In other words, for basins Congo and La Plata, slight changes in 490	

parameters may lead to large changes in runoff estimates. Then the uncertainty in the calibrated 491	

parameters for the two basins may lead to large bias in the simulated runoff, which may more or 492	
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less explain why modeled runoff for the two basins tend to have higher biases than other basins 493	

(Fig. 4). Notably, the 100,000 times of simulations only takes ~80 seconds on a Dell Workstation 494	

T5810 with one Intel Xeon 3.5 GHz CPU, which demonstrates the extraordinary computational 495	

efficiency of the lumped scheme and its advantage for serving as a HE. 496	

 497	

4 Conclusions 498	

 Toward addressing the issue that many global hydrological models (GHMs) are 499	

computationally expensive and thus users cannot afford to conduct a large number of simulations 500	

for various tasks, we firstly construct a hydrological emulator (HE) that possesses both 501	

reasonable predictability and computation efficiency for global applications in this work.  Built 502	

upon the widely-used “abcd” model, we have adopted two snow-related parameters from 503	

literature rather than tuning them for parameter parsimony, and also have improved the partition 504	

of total runoff between the direct runoff and baseflow by introducing baseflow index into the 505	

objective function of the parameter optimization. We then evaluate the appropriateness of the 506	

model serving as an emulator for a complex GHM – the VIC, for both the lumped and distributed 507	

model schemes, by examining their predictability and computational efficiency.  508	

In general, both distributed and lumped schemes have comparably good capability in 509	

simulating spatial and temporal variations of the water balance components (i.e., total runoff, 510	

direct runoff, baseflow, evapotranspiration). Meanwhile, the distributed scheme has slightly 511	

better performance than the lumped one (e.g., capturing spatial heterogeneity), with mean Kling-512	

Gupta efficiency of 0.79 vs. 0.75 across global 235 basins, and also it provides grid-level 513	

estimates that the lumped one incapable of. Additionally, the distributed scheme performs better 514	

in extreme climate regimes (e.g., Arctic, North Africa) and Europe. However, the distributed one 515	
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incurs two more orders of magnitudes of computation cost than the lumped one. A case study of 516	

uncertainty analysis with 100, 000 simulations for each of the world’s sixteen basins with top 517	

annual streamflow further demonstrates the lumped scheme’s extraordinary advantage in terms 518	

of computational efficiency. Therefore, the lumped scheme could be an appropriate HE – 519	

reasonable predictability and high computational efficiency. At the same time, the distributed 520	

scheme could be a suitable alternative for research questions that hinge on grid-level spatial 521	

heterogeneity. Finally, upon open-sourcing and well-documentation, the HE is ready to use and it 522	

provides researchers an easy way to investigate the variations in water budgets at a variety of 523	

spatial scales of interest (e.g., basin, region or globe), with minimum requirements of efforts, 524	

reasonable model predictability and extraordinary computational efficiency.   525	
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Code and/or data availability 526	

The hydrological emulator (HE) is freely available on the open-source software site 527	

GitHub (https://github.com/JGCRI/hydro-emulator/). We have released the version of the 528	

specific HE v1.0.0 referenced in this paper on https://github.com/JGCRI/hydro-529	

emulator/releases/tag/v1.0.0, where the source code (written in Matlab), all related inputs, 530	

calibrated parameters and outputs for each of the global 235 basins, as well as the user’s manual 531	

are available. In addition, the HE documented here has been translated into Python and is being 532	

incorporated into Xanthos (Li et al., 2017), which is an open-source global hydrologic model that 533	

allows users to run different combinations of evapotranspiration, runoff, and routing models. The 534	

HE will be the default runoff model used in Xanthos 2.0 and will be available on GitHub 535	

(https://github.com/JGCRI/xanthos).    536	
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Appendix A: Descriptions and equations of the “abcd” model 537	

The abcd model was first introduced by (Thomas, 1981), and Martinez and Gupta 538	

(Martinez and Gupta, 2010) added snow processes into the model. In this work, we adopted the 539	

snow scheme in Martinez and Gupta (2010): 540	

  0     minrain
iT T<  541	

iSnow =  
minrain
i

i rain snow

T TP
T T

−
×

−
  minsnow rain

iT T T< <    (1) 542	

  iP     min snow
iT T<  543	

 544	

1i i i iSP SP SNM Snow−= − +         (2) 545	

 546	

  0      min snow
iT T<  547	

iSNM =  
min

1( )
rain

i
i i rain snow

T TSP Snow m
T T−

−
+ × ×

−
 minsnow rain

iT T T< <   (3) 548	

  1( )i iSP Snow m− + ×    minrain
iT T<  549	

 550	

where iP , iSP , iSNM  and iSnow  are total precipitation, snowpack storage, snowmelt and the 551	

precipitation as snowfall at time step i, respectively, rainT (or snowT ) stands for the temperature 552	

threshold above (or below) which all precipitation falls as rainfall (or snow),  and min
iT is the 553	

minimum temperature at time step i, and the parameter m is the snowmelt coefficient. Rather 554	

than keeping the three parameters rainT , snowT and m, we adopt the rainT  value of 2.5 °C  and 555	

snowT  value of 0.6 °C  (Wen et al., 2013) and thus only keep one snowmelt-related parameter m 556	
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in the model, in order to alleviate the computation load during the parameter optimization 557	

process.  558	

The model defines two state variables “available water” and “evapotranspiration 559	

opportunity”, denoted as Wi and Yi, respectively. The Wi is defined as: 560	

1i i i iW SM Rain SNM−= + +         (4) 561	

where 1iSM −  is soil moisture at the beginning of time step i, iRain and iSNM  are rainfall and 562	

snowmelt during period i.  563	

Yi stands for the maximum water that can leave the soil as evapotranspiration (ET) at 564	

period i, and it is defined as below: 565	

i i iY ET SM= +          (5) 566	

where iET  is the actual ET at time period i and iSM  is soil moisture at the end of time step i. 567	

Further, Yi  has a non-linear relationship with Wi as: 568	

2( ) /
2 2
i i

i i
W b W bY W b a
a a
− −

= − − ×        (6) 569	

where a and b are parameters detailed in Section 2.1.2.  570	

Allocation of Wi  between iET and iSM is estimated by assuming that the loss of soil 571	

moisture by ET will be proportional to potential evapotranspiration (PET) as:  572	

dS SMPET
dt b

= − ×          (7) 573	

where PET is calculated by using the Hargreaves-Samani method (Hargreaves and Samani, 574	

1982). 575	

After integrating the above differential equation and assuming Si-1 = Yi, iSM can be derived as: 576	

exp( )i
i i

PETSM Y b
−= ×         (8) 577	
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Then, iET  can be calculated through equation (2).  578	

 In the model framework, i iW Y−  is the sum of the groundwater recharge (RE) and direct 579	

runoff (Qd), and the allocation is determined by the parameter c: 580	

( )i i iRE c W Y= × −          (9) 581	

(1 ) ( )d i iQ c W Y= − × −          (10) 582	

The baseflow from the groundwater (GW) pool is modeled as: 583	

b iQ d GW= ×           (11) 584	

where d is a parameter reflecting the release rate of groundwater to baseflow. Then the total 585	

runoff ( tQ ) is the sum of the direct runoff and baseflow: 586	

t d bQ Q Q= +           (12) 587	

The iGW  is the sum of groundwater storage at the end of last time step and the groundwater 588	

recharge minus the baseflow, and iGW  is derived as: 589	

1

1
i i

i
GW REGW

d
− +=
+

         (13) 590	

Then, all the water fluxes and pools are solved.  591	
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Figure Caption 813	

Figure 1 Schematic diagram of the “abcd” model, with enhancements of snow and partition of 814	

total runoff between direct runoff and baseflow. 815	

Figure 2 Kling-Gupta efficiency of the simulated basin-level total runoff across the global 235 816	

basins (lump = lumped, dist = distributed, cal = calibration, the x-axis labels of “lump_cal” or 817	

“dist_cal” represent lumped/distributed scheme during calibration period). 818	

Figure 3 Comparison of basin-specific long-term annual total runoff, direct runoff and baseflow 819	

estimates from both the lumped and distributed “abcd” model schemes against VIC products, 820	

across global 235 basins and for the calibration period of 1971-1990 and validation period of 821	

1991-2010. The labels are denoted as combination of model scheme and period, where lump and 822	

dist stand for lumped and distributed model scheme, cal and val represent the calibration and 823	

validation period, respectively. These denotations remain the same for all figures in this work. 824	

Note that the basin-level VIC baseflow is derived by multiplying the gridded VIC long-term 825	

annual total runoff and the mean of the four gridded baseflow index products from Beck et al. 826	

(2014), and then aggregating from grid-level to basin-level. The basin-level VIC direct runoff is 827	

then calculated by subtracting baseflow from the total runoff.  828	

Figure 4 Time series of basin-specific total runoff (Qtotal) from the VIC product, the lumped and 829	

distributed “abcd” schemes for the world’s sixteen river basins with top annual flow (Dai et al. 830	

2009) during 1981-1990 (part of the calibration period 1971-1990). KGEl and KGEd stand for 831	

KGE value for the lumped and distributed scheme, respectively.  832	

Figure 5 Spatial patterns of long-term annual total runoff (mm yr-1) during 1971-1990 across 833	

global 235 basins: a) VIC runoff product; b) total runoff estimates from the lumped “abcd” 834	
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scheme (lump = lumped); and c) total runoff estimates from the distributed “abcd” scheme (dist 835	

= distributed). 836	

Figure 6 The spatial pattern of Kling-Gupta efficiency (KGE) for the total runoff estimates of 837	

the global 235 basins for the calibration period of 1971-1990: a) the lumped “abcd” scheme; and 838	

b) the distributed “abcd” scheme. 839	

Figure 7 Parameter-induced uncertainty in total runoff for the world’s sixteen river basins with 840	

top annual flow. The green line stands for simulated total runoff using the calibrated parameters, 841	

and the gray area represents the spread derived from variations in parameters.   842	
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Table 1 Parameters description and ranges for the “abcd” model (the parameters a,c,d and m are 
dimensionless, and the unit for parameter b is mm) 

 

	

parameter description range references 

a Propensity of runoff to occur before the soil 
is fully saturated 

0-1 
 (Alley, 1984; Martinez 
and Gupta, 2010; 
Sankarasubramanian 
and Vogel, 2002; 
Vandewiele and Xu, 
1992)  

b Upper limit on the sum of evapotranspiration 
and soil moisture storage 

0-4000 

c Degree of recharge to groundwater 0-1 

d Release rate of groundwater to baseflow 0-1 

m Snow melt coefficient 0-1  (Wen et al., 2013) 


