
Response Letter 

 

Title:  A Hydrological Emulator for Global Applications – HE v1.0.0 

Geoscientific Model Development Journal: 

We would like to thank the Editor and the referees for their detailed review of our manuscript and 

their positive feedback, constructive suggestions and criticisms. The responses to the Referees’ comments 

are shown in blue font below. All the line numbers indicated refer to the main text of the revised manuscript 

(clean version without tracking changes).  

 

Editor’s comments: 

--------------------------------------------------------------------------------  

 

In my role as Executive editor of GMD, I would like to bring to your attention our Editorial version 1.1: 

http://www.geosci-model-dev.net/8/3487/2015/gmd-8-3487-2015.html 

This highlights some requirements of papers published in GMD, which is also available on the GMD 

website in the ‘Manuscript Types’ section: 

http://www.geoscientific-model-development.net/submission/manuscript_types.html 

From your abstract and introduction I understand that you describe the newly developed Hydrological 

Emulator and evaluate its results. Therefore your paper is not an "Evaluation paper" but a "Development 

and Technical paper" and thus the criteria of this paper type are applied. 

These are in particular: 

Comment 1: "The main paper must give the model name and version number (or other unique identifier) 

in the title." 

Response 1: We thank the Editor for all the comments and for allowing us to revise the manuscript. We 

will change the “Manuscript type” to “Development and Technical paper” during our submission of the 

revision, and we have added model name and version number in the title: 

“A Hydrological Emulator for Global Applications – HE v1.0.0” 

 

Comment 2: "All papers must include a section, at the end of the paper, entitled ’Code availability’. 

Here, either instructions for obtaining the code, or the reasons why the code is not available should be 

clearly stated. It is preferred for the code to be uploaded as a supplement or to be made available at a data 

repository with an associated DOI (digital object identifier) for the exact model version described in the 

paper. Alternatively, for established models, there may be an existing means of accessing the code 



through a particular system. In this case, there must exist a means of permanently accessing the precise 

model version described in the paper. In some cases, authors may prefer to put models on their own 

website, or to act as a point of contact for obtaining the code. Given the impermanence of websites and 

email addresses, this is not encouraged, and authors should consider improving the availability with a 

more permanent arrangement. After the paper is accepted the model archive should be updated to include 

a link to the GMD paper." 

Therefore please provide a version number and preferably the acronym used within the article (HE). 

Additionally, we strongly recomment to make the exact code version, your article refers to, available via a 

permanent archive providing a DOI (e.g. Zenodo). 

 

Response 2: We have tried our best to meet the journal requirements in terms of code availability. First, 

we have created a repository in the open-source software site GitHub (https://github.com/JGCRI/hydro-

emulator/) to make the hydrological emulator freely available. We have released the version of the 

specific HE v1.0.0 referenced in this paper on https://github.com/JGCRI/hydro-

emulator/releases/tag/v1.0.0, where the source code (written in Matlab), all related data inputs and 

outputs, as well as the detailed Readme file are available. The repository is maintained by our 

organization, the Joint Global Change Research Institute (JGCRI), and long-term commitment for 

maintaining the repository is a standard practice. For example, both Le Page et al. (2016) and Hartin et al. 

(2015) published in Geoscientific Model Development (GMD) provided their codes on the GitHub site 

maintained by JGCRI (https://github.com/JGCRI/). Second, there is an ongoing effort to incorporate the 

hydrological emulator developed in this study to Xanthos (Li et al., 2017, 

https://github.com/JGCRI/xanthos), which is an open-source global hydrologic model, and the code for 

the HE referenced in this paper will also be freely available in the next version of Xanthos.   

We have clarified it in the “Code and/or data availability” section as follows:   

“The hydrological emulator (HE) is freely available on the open-source software site GitHub 

(https://github.com/JGCRI/hydro-emulator/). We have released the version of the specific HE v1.0.0 

referenced in this paper on https://github.com/JGCRI/hydro-emulator/releases/tag/v1.0.0, where the 

source code (written in Matlab), all related inputs, calibrated parameters and outputs for each of the 

global 235 basins, as well as the detailed Readme file are available.” 
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Reviewers' Comments to Author: 

Reviewer 1 

--------------------------------------------------------------------------------  

The manuscript by Liu et al. addresses the interesting issue of model complexity needed for global 

hydrological simulations. They present a new simulation tool based on the existing abcd model, and show 

that their simulations show a fair performance when compared with simulations from the VIC model. 

While I am generally supportive of work aimed at finding optimum model complexities, I feel the current 

study will need additional work to further show and quantify the benefits of the current code. At the 

moment, the main message seems to be that a low-dimensional model can produce positive correlations at 

the monthly timescale with another model, and that the runtime of the simple model is shorter. Both 

findings are not particularly new, and, in my view, they are not enough to merit publication. The 

suggested benefits of a simpler model (the possibility of focussing on uncertainty and spatial 

heterogeneity) might be true, but none of this is actually shown in the paper and no model or code is 

presented that takes full advantage of these suggested benefits. I believe the authors should present more 

work in this direction before the manuscript can be accepted for publication in GMD. My main concerns 

are the following:  

 

Comment 3: The motivation for choosing the abcd model is poor. Many simple models exist, and no 

objective criteria were used to select this particular model. The authors could have started with a simpler 

version, and adding components/complexity until a pre-defined threshold performance was reached. This 

would have made the selection less arbitrary. How does the modelled runoff for instance compare to a 

baseline “model” which is simply the monthly P−PET? The choice for the abcd model should be 

motivated better, but preferably a more systematic approach should be taken.  

 

Response 3: We have clarified the motivation for choosing the “abcd” model in lines 85-96: 

 

“To achieve our goal of identifying a suitable HE, we have explored many hydrological models to find 

one that may meet our needs. We start with a simple baseline model characterized by mean seasonal 

cycle; i.e., the inter-annual mean value for every calendar day (Schaefli & Gupta, 2007). Among others, 

we also explore the “abcd” model because: 1) it is widely-used and proven to have reasonable 

predictability (Fernandez et al., 2000; Martinez and Gupta, 2010; Sankarasubramanian and Vogel, 

2002; Sankarasubramanian and Vogel, 2003; Thomas, 1981; Vandewiele and Xu, 1992; Vogel and 

Sankarasubramanian, 2003); 2) it uses a monthly time step and requires less computational cost than 

daily or hourly models; 3) it has solid physical basis hence has potential to be extended to other temporal 

scales (Wang and Tang, 2014); 4) it requires minimal and easily-available inputs; 5) it only involves 4-7 

parameters; and 6) it can simulate variables of interest such as recharge, direct runoff and baseflow that 

many other simple models can’t simulate  (Vörösmarty et al., 1998).”  

 

Further, in lines 137-146, we have described the modifications we have made to the “abcd” model: 

 

“In this study, we then adopt the “abcd” framework from Martinez and Gupta (2010) (Fig. 1); 

meanwhile, we make three modifications to suit the needs of a HE for global applications. First, in order 

to enhance the model efficiency with as least necessary parameters as possible, instead of involving three 

tunable snow-related parameters in the calibration process, we set the values for two of the parameters 

(i.e., temperature threshold above or below which all precipitation falls as rainfall or snow) from 

literature (Wen et al., 2013) and only keep one tunable parameter m – snow melt coefficient (0 < m < 1). 

Second, we introduce the baseflow index (BFI) into the calibration process to improve the partition of 

total runoff between the direct runoff and baseflow (see Section 2.4). Third, other than the lumped scheme 

as previous studies used, we first explore the values of model application in distributed scheme with a 

grid resolution of 0.5 degree.” 



 

We have also enhanced our analysis according to the referee’s suggestions in terms of a simpler model in 

Comment 3 and 6. Specifically, we have added a baseline model to better justify the appropriateness of 

constructing the hydrological emulator (HE) based on the “abcd” model. We have added the descriptions 

for the baseline model in lines 107-114: 

 

“2.1.1 Baseline model 

 Following the work of Schaefli & Gupta (2007), we explore a baseline model characterized by 

the inter-annual mean value for every calendar day, i.e., climatology. In this study, we adapt the baseline 

model to monthly scale by first calculating inter-annual mean value for every calendar day from daily 

runoff of the benchmark product during 1971-2010 (see Section 2.3.2), and then aggregating daily runoff 

to monthly runoff. The model uses climatology for prediction, for example, if the inter-annual mean runoff 

for July in the Amazon basin is 100 mm mon-1, then the prediction of total runoff for July of every year is 

100 mm mon-1.” 

 

We have also added the comparison of performances between the baseline and the “abcd” model in lines 

287-301 to elaborate its superiority over the baseline model: 

 

“Generally, we find baseline model performs worse than the “abcd” model (Fig. 2). The baseline model 

exhibits a lower global mean KGE value (0.61) than the lumped and distributed schemes of the “abcd” 

model (0.75 and 0.79, respectively). In addition, our analysis indicates that the incorporation of BFI into 

the objective function leads to significant improvement in the partition of total runoff between direct 

runoff and baseflow (Fig. S4), without compromising predictability for total runoff, i.e., the global mean 

KGE values for modeled total runoff with or without the incorporation of BFI are almost the same (0.75 

vs 0.76). Specifically, for the case of involving both the total runoff and BFI in the objective function, the 

correlation efficiencies (r) between the long-term annual benchmark and modeled direct runoff, and 

between benchmark and baseflow from the lumped scheme across global basins are 0.97 and 0.96, 

respectively, which are much higher than those of 0.86 and 0.72 in the case of only involving the total 

runoff in the objective function (Fig. S4).  

Given the superiority of the “abcd” model over the baseline model, we focus in the following 

sections on evaluating the predictability and computational efficiency of the “abcd” model and its 

potential to serve as a HE.” 

 



 
 

Figure 2. Kling-Gupta efficiency of the simulated basin-level total runoff across the global 235 basins 

(lump = lumped, dist = distributed, cal = calibration, the x-axis labels of “lump_cal” or “dist_cal” 

represent lumped/distributed scheme during calibration period). 
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Comment 4: The notion that simple models can do a good job in describing the output of more complex 

models is not new. In particular, Gab Abramovic has written numerous papers on this topic. This work 

should be considered and used in the interpretation/motivation.  

 

Response 4: We thank the referee for pointing out the useful references. We have added relevant papers 

of Gab Abramovic in the Introduction section (lines 69-75) to better justify our work of exploring a 

simple model: 

 

“In addition, some studies have shown that GHMs/LSMs are sometimes outperformed by simple empirical 

statistical models (Abramowitz, 2005; Abramowitz et al., 2008; Best et al., 2015), suggesting that some 

GHMs/LSMs may underutilize the information in their climate inputs and that model complexity may 

undermine accurate prediction. This also indicates the potential advantages of simple model over 

complex GHMs/LSMs. Thus, constructing simple models that can emulate the dynamics of more complex 

and computational expensive models (e.g., GHMs/LSMs) is warranted.”  
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Comment 5: The motivation for the study is weak. In the current work, the authors only show a single 

application of their model (at grid and basin scales) and argue this is a good alternative to more complex 

models. But why not use the output of these complex models directly if the main goal is a best assessment 



of monthly average predictions of water balance partitioning? Such (multi-model) output is readily 

available at the global scale and does not require the running of even a simple model. Of course a simple 

model can be used for sophisticated uncertainty assessment (important advantage), but the authors did not 

yet do any work in this direction. This should be part of a revised version.  

 

Response 5: The main merit of a hydrological emulator (HE) is its capability of emulating complex global 

hydrological models (GHMs). Multi-model projects, such as ISI-MIP, do provide outputs like global 

runoff, but the available products are still very limited. The HE developed in this study provide an easy-

to-use and open-source tool for the community to emulate GHMs of interest and simulate any scenarios of 

interest with reasonable predictability and high computational efficiency, which is a capability that is 

computationally prohibitive for multi-model projects using GHMs. Some related explanation has been 

added in lines 215-218: 

“Despite potential bias in the VIC runoff product, using it as a benchmark here is to demonstrate the 

capability of the HE developed in this work to mimic complex GHMs. Furthermore, the application of the 

HE is not tied to the VIC model and should be able to emulate other GHMs.” 

 

We also have clarified the usage of the HE in lines 399-404: 

“Based upon our open-source HE and the validated basin-specific parameters across the globe, 

researchers can easily investigate the variations in water budgets at the basin/ regional/global scale of 

interest, with minimum requirements of input data, efficient computation performance and reasonable 

model fidelity. Likewise, researchers can utilize the framework of the HE with any alternative input data, 

or recalibrate the HE to emulate other complex GHMs or LSMs of interest, to meet their own needs.” 

 

Further, we have followed the reviewer’s suggestion and have conducted an uncertainty analysis (UA) to 

demonstrate the advantage of the HE. We have added the UA in Section 3.5 as follows: 

 

“3.5 Case study for uncertainty analysis 

To demonstrate the capability of the examined “abcd” model serving as a HE, we use the lumped scheme 

to conduct parameter-induced uncertainty analysis for the runoff simulation at the world’s sixteen river 

basins with top annual flow (Dai et al. 2009). Specifically, for each of the sixteen basins, we first apply 

±10% change to each of the five calibrated parameters (a, b, c, d, m) to compose varying ranges; note 

that we just truncate the range to those valid in Table 1 if the ±10% change exceeds the valid range. Then 

we randomly sample the five parameters from corresponding ranges for 100,000 times (i.e., 100,000 

combinations of parameters). After that, we run the lumped scheme 100,000 times for each basin with the 

100,000 combinations of parameters to examine the parameter-induced uncertainty in total runoff. The 

uncertainty analysis indicates that most basins are robust to changes in parameters, other than the 

Tocantins, Congo and La Plata (Fig. 7). In other words, for basins Congo and La Plata, slight changes in 

parameters may lead to large changes in runoff estimates. Then the uncertainty in the calibrated 

parameters for the two basins may lead to large bias in the simulated runoff, which may more or less 

explain why modelled runoff for the two basins tend to have higher biases than other basins (Fig. 4). 

Notably, the 100,000 times of simulations only takes ~80 seconds on a Dell Workstation T5810 with one 

Intel Xeon 3.5 GHz CPU, which demonstrates the extraordinary computational efficiency of the lumped 

scheme and its advantage for serving as a HE.” 

 



 
Figure 7 Parameter-induced uncertainty in total runoff for the world’s sixteen river basins with top annual 

flow. The green line stands for simulated total runoff using the calibrated parameters, and the gray area 

represents the spread derived from variations in parameters. 
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Comment 6: The choice for the VIC model is poorly motivated. While I agree that some studies have 

shown that VIC produces positive NSE scores against observations, many of these studies evaluated their 

results at very course time resolutions at which nearly any model would show a good performance (in 

particular because at monthly timescales the seasonal cycle dominates, which is easy to reproduce). The 

VIC model will generally not work well when evaluated at hourly or daily timesteps, even when 

calibrated. Related to this point is the issue of temporal resolution. It can be questioned whether nonlinear 

processes such as snow accumulation and melt can be modelled at a monthly timestep and at course 

spatial scales (see Melsen et al., Hydrol. Earth Syst. Sci. doi:10.5194/hess-20-1069- 2016). In order to 

show that this is indeed possible, the authors should show that their model is able to outperform a baseline 

model consisting of, for instance, a mean seasonal cycle (as in Schaefli & Gupta, Hydrol. Process. 21, 

2075–2080). 

 



Response 6: We agree with the reviewer about the performance of the VIC at fine time-steps (e.g., 

hourly). The essential point of this work is not to emulate VIC, but using VIC as an example to 

demonstrate the HE developed in this study could be used to emulate any global hydrological models 

(GHMs) of interest. We have clarified this in lines 215-218: 

 

“Despite potential bias in the VIC runoff product, using it as a benchmark here is to demonstrate the 

capability of the HE developed in this work to mimic complex GHMs. Furthermore, the application of the 

HE is not tied to the VIC model and should be able to emulate other GHMs.” 

 

Due to the requirement of high computational efficiency in addition to reasonable predictability, daily or 

sub-daily time step is not suitable for the HE, so we use monthly time step. In terms of the processes such 

as snow accumulation and melt, Martinez and Gupta (2010) have shown that the incorporation of snow 

processes in the monthly “abcd” model significantly improves the model performance in regions with 

snow cover. This is why we adopt the “abcd” version with the snow module (Martinez and Gupta 2010) 

in this study. We have clarified this in lines 132-136: 

 

“The work of Martinez and Gupta (2010) has added snow processes into the original “abcd” model, 

where the snowpack accumulation and snow melt are estimated based on air temperature.  Their work 

indicated that incorporation of the snow processes in the monthly “abcd” model has significantly 

improved model performance in snow-covered area in the conterminous United States (see Figure 4 in 

Martinez and Gupta (2010)).” 

 

Other than that, we have followed the reviewer’s suggestions and have added a baseline model in this 

work to reveal the superiority of the adopted “abcd” model over the baseline model, for details please see 

the Response 3. 
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Reviewers' Comments to Author: 

Reviewer 2 

--------------------------------------------------------------------------------  

 

 

In this study, the authors use a simple hydrological model “abcd” to emulate the behavior of more 

complex models (e.g. VIC). They modify the abcd model by including the baseflow index to better 

represent the partition of total runoff into direct runoff and baseflow. They present a lumped and a 

distributed version of the model, which are calibrated using the GA technique. They apply the model on 

global scale and compare the results against VIC simulations. Based on the results, they provide 

recommendations on the use of different versions of the model. Although the model used is not new and 

the concept of simplified emulator is an established one, however, the global-scale application of the 

model and its assessment over multiple basins across globe make it an interesting study. A simple and 

computationally efficient emulator that can work well on global scale is useful for several applications. 



I think the manuscript at its current stage needs some more work. Some additional analyses need to be 

added. Therefore, I suggest moderate revisions for the manuscript before it is accepted in GMD. 

Following are my comments:  

Comment 7: How reliable are the VIC simulations? Calibration of VIC can significantly change its 

streamflow outputs. So what type of simulations are used in this case for the comparison purpose? How 

were the soil and vegetation parameters calibrated/selected? All these points need to be discussed in 

greater details.  

Response 7: The VIC runoff product (Hattermann et al., 2017; Leng et al. 2015) is used as a benchmark in 

this study, and its use is merely to demonstrate the capability of the hydrological emulator (HE) 

developed in this work to mimic complex global hydrological models (GHMs). Despite the potential bias 

in the VIC product, it does not affect the key findings of this work about the capability of the HE. We 

have added detailed descriptions about the VIC simulations in lines 186-206: 

“The VIC runoff product here is a global simulation with a daily time step and spatial resolution of 0.5 

degree for the period of 1971-2010, and the VIC daily runoff is aggregated to monthly data to be 

consistent with the temporal scale of the “abcd” model. The VIC model settings used in this study are 

based on the University of Washington VIC Global applications 

(http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Datasets/Datasets.shtml). The sub-grid 

variability of soil, vegetation and terrain characteristics are represented in sub-grid area-specific 

parameter classifications. Soil texture and bulk densities are derived by combining the World Inventory of 

Soil Emission Potentials database (Batjes, 1995) and the 5-min digital soil map of the world from the 

Food and Agricultural Organization (FAO, 1998). Based on the work of Cosby et al. (1984), the 

remaining soil properties (e.g. porosity, saturated hydraulic conductivity and unsaturated hydraulic 

conductivity) are derived. Vegetation type data are obtained from the global land classification of Hansen 

et al. (2000). Parameters including the infiltration parameter, soil layer depths and those governing the 

baseflow function were calibrated for major global river basins and transferred to the global domain as 

documented in Nijssen et al. (2001b), based on which Zhang et al. (2014) and Leng et al. (2015) 

conducted additional calibrations in the China domain. In this study, the VIC model was forced by 

WATCH climate forcing at the daily time step Weedon et al. (2011), based on the calibrated parameters 

from Nijssen et al. (2001b), Zhang et al. (2014) and Leng et al. (2015). The simulated runoff used in this 

study has recently been validated globally within the framework of the Inter-Sectoral Impact Model 

Intercomparison Project and shows reasonable performance compared to other hydrological models 

(Hattermann et al., 2017; Krysanova and Hattermann, 2017).” 

 

Further, we compared the VIC product to other products to corroborate its appropriateness. The 

comparison is presented in lines 219-229: 

“The VIC runoff product also compares well to other products (see Fig. S1, S2), including the 

UNH/GRDC runoff product (Fekete and Vorosmarty, 2011; Fekete et al., 2002) and the global 

streamflow product (Dai et al., 2009). The scatterplot pattern of the VIC long-term annual runoff product 

vs. the streamflow product matches well with that of the UNH/GRDC runoff vs. the streamflow product 

(streamflow is transferred to the same unit as runoff via dividing by the basin area). Further, the 

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Datasets/Datasets.shtml


correlation coefficient of the VIC and the UNH/GRDC long-term annual runoff is as high as 0.83 across 

the global 235 basins. This suggests the reasonability of VIC runoff product, because the UNH/GRDC 

runoff is calibrated with the GRDC observations. At the same time, the discrepancies between the VIC 

runoff products and the streamflow products (Fig. S2) may be attributed to human activities, such as 

reservoir regulations and upstream water withdrawals, which are not embedded in the runoff but 

reflected in the streamflow.” 
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Comment 8: How did VIC perform in the extreme climate regions, for example, in snow dominated 

catchments? This issue needs to be addressed properly. Maybe you can explore the following cases: Case-

1: If both emulator (E) and model (M) are matching the observations (O) well then that’s great. There 

could be some sub-cases for this case: (i) Both emulator and model match the observations well but from 

different directions (M – O – E). For example, they might have opposite (positive/negative) bias errors 

but the absolute values of the errors could be close. (ii) The model is matching the observations well and 



the emulator is matching the model well, all in one direction (O – M – E). (iii) The emulator is matching 

well both the model and the observations, but in different directions (M – E – O). Case-2: If none of them 

are matching the observations well but their own outputs match each other, then too, I think an emulator 

is serving its purpose in a way (although not quite useful). Case-3: If the emulator is matching the 

observations well but the model isn’t then that’s an interesting finding. Case-4: If the model is matching 

the observations well but the emulator isn’t then there is a problem. Therefore, this needs to be explored 

in greater depth.  

Response 8: We thank the referee for the detailed comments regarding the comparison between the VIC 

model and the hydrological emulator (HE). The essential point of this work is to deliver an open-source 

and easy-to-use hydrological emulator that can be used for emulating global hydrological models (GHMs) 

of interest. VIC is used as an example GHM in this study to demonstrate the capability of the HE to 

emulate complex and computationally expensive GHMs (see also Response 6). Exploring the sources of 

differences between the performance of the VIC and the HE is outside the focus of this work, and it 

would be incorporated in our future work. 

 

Comment 9: At seasonal time scales, the model performance is expected to be better. It would be crucial 

to also check the results on daily time scale. Maybe you can produce a set of time series plots, scatter 

plots, and spatial contour plots for daily level, as done for the seasonal case.  

Response 9: We agree with the reviewer on the better performance of monthly time scale than that of 

daily, however, due to the needs of high computational efficiency for the hydrological emulator (HE), it is 

simulated at monthly time step and a daily time series comparison is not even feasible in this case. 

Comment 10: Figure 3: Any idea why there are those biases in the lower streamflow values? Is there any 

location-specific pattern of these biases?  

Response 10: From the uncertainty analysis we added in Section 3.5 (see also Figure 7), it shows basins 

like Congo and La Plata are not as robust as other basins to changes in parameters – slight changes in 

parameters may lead to large changes in runoff estimates. Then the uncertainty in the calibrated 

parameters for the two basins may lead to large bias in the simulated runoff.  We have added discussions 

in lines 415-421: 

“The uncertainty analysis indicates that most basins are robust to changes in parameters, other than the 

Tocantins, Congo and La Plata (Fig. 7). In other words, for basins Congo and La Plata, slight changes in 

parameters may lead to large changes in runoff estimates. Then the uncertainty in the calibrated 

parameters for the two basins may lead to large bias in the simulated runoff, which may more or less 

explain why modelled runoff for the two basins tend to have higher biases than other basins (Fig. 4).” 

 

Comment 11: Line 113: Which one’s the other parameter you adopt the value of? 

Response 11: We adapt two snow-related parameters from literature, and make the other one – snow melt 

coefficient – tunable during the calibration process, it has been clarified in lines 139-143: 



“in order to enhance the model efficiency with as least necessary parameters as possible, instead of 

involving three tunable snow-related parameters in the calibration process, we set the values for two of 

the parameters (i.e., temperature threshold above or below which all precipitation falls as rainfall or 

snow) from literature (Wen et al., 2013) and only keep one tunable parameter m – snow melt coefficient 

(0 < m < 1).” 

References: 

Wen, L., Nagabhatla, N., Lü, S., Wang, S.-Y., 2013. Impact of rain snow threshold temperature on snow 

depth simulation in land surface and regional atmospheric models. Adv. Atmos. Sci., 30(5): 1449-1460. 

 

Comment 12: Line 200: Did you try different weights on the two objectives?  

Response 12: No, we use the same weights for the two objectives as we believe the two objectives are 

equally important. 

 

Comment 13: Line 290: In order to do a fair comparison, VIC and the two versions of the models should 

be run on the same computer, preferably with good configuration.  

Response 13: Yes, we have clarified this in lines 365-367: 

“Note that all of the simulations here are conducted on the Pacific Northwest National Laboratory 

(PNNL)’s Institutional Computing (PIC) Constance cluster using 1 core (Intel Xeon 2.3 GHz CPU) with 

the same configuration.” 

 

Comment 14: Figure S1: I am not sure if you can say that all of them are comparing well. The 

discrepancies/mismatches should be clearly discussed in the manuscript. You are only showing the 

correlations here. What about the bias error?  

Response 14: We thank the referee for the concern. Figure S1 is to illustrate the relationship of VIC and 

UNH/GRDC runoff product with streamflow measurements at gauge stations, and the similar scatter 

patterns between the upper and lower panel indicates the similarity of the two runoff products. This 

analysis is to reveal the appropriateness of the VIC runoff product as a benchmark product in this work. 

The discrepancies between runoff products and streamflow measurements are induced from the ignorance 

of river routing, reservoir regulations and upstream water withdrawals in the simulated runoff products. 

This has been recognized in the main text (lines 226-229): 

“At the same time, the discrepancies between the VIC runoff products and the streamflow products (Fig. 

S2) may be attributed to human activities, such as reservoir regulations and upstream water withdrawals, 

which are not embedded in the runoff but reflected in the streamflow.” 

 However, exploring the sources and magnitudes of the discrepancies among them is outside the focus of 

this study. 



 

Comment 15: X-axis marks are missing for the first two subplots of Figure S1. Use same axis for the 

scatter plots in Figure 2.  

Response 15: The X-axis marks for Figure S1 have been fixed. For the previous Figure 2 (currently 

Figure 3 in the revised manuscript), we use different axis for total runoff, direct runoff and baseflow is 

because they have different magnitude, and this may make the figure and scatter points more discernable.  

 

Comment 16: My comments about the manuscript: Writing: The manuscript is very well written. I don’t 

have any suggestions on this part. Figures: Figures look good. Increase the legend in Figure 3. Tables: 

Table 2 can go to the supplementary materials. 

Response 16: We have increased the legend in the previous Figure 3 (currently Figure 4 in the revised 

manuscript) and moved Table 2 to the supplementary materials as suggested. 
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Abstract 10 

While global hydrological models (GHMs) are very useful in exploring water resources and 11 

interactions between the Earth and human systems, their use often requires numerous model 12 

inputs, complex model calibration, and high computation costs. To overcome these challenges, 13 

we construct an efficient open-source and ready-to-use hydrologic emulator (HE) that can mimic 14 

complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, We we 15 

then constructed both a lumped and a distributed scheme of the HE based on the monthly “abcd” 16 

model to explore the tradeoff , for users’ choice – minimalbetween computational cost and with 17 

reasonable model fidelity, or heavier computational load with better predictability.  Model 18 

predictability and computational efficiency were evaluated in simulating global runoff from 19 

1971-2010 with both the lumped and distributed schemes. The results are compared against the 20 

runoff product from the widely-used Variable Infiltration Capacity (VIC) model. Our evaluation 21 

indicates that the lumped and distributed schemes present comparable results regarding  annual 22 

total quantity, spatial pattern and temporal variation of the major water fluxes (e.g., total runoff, 23 

evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the 24 

annual total runoff from either of these two schemes and the VIC is >0.96), except for several 25 

cold (e.g., Arctic, Interior Tibet), dry (e.g., North Africa ) and mountainous (e.g., Argentina) 26 

regions. Compared against the monthly total runoff product from the VIC (aggregated from daily 27 

runoff), the global mean Kling-Gupta efficiencies are 0.75 and 0.79 for the lumped and 28 

distributed schemes, respectively, with the distributed one scheme better capturing spatial 29 

heterogeneity. Notably, the computation efficiency of the lumped scheme is two orders of 30 

magnitude higher than the distributed one, and seven orders more efficient than the VIC model. 31 

A case study of uncertainty analysis for the world’s sixteen basins with top annual streamflow is 32 
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conducted using 100,000 model simulations, and it demonstrates the lumped scheme’s 33 

extraordinary advantage in computational efficiency. Our results suggest that the revised lumped 34 

“abcd” model can serve as an efficient and acceptable HE for complex GHMs and is suitable for 35 

broad practical use, and the distributed scheme is also an efficient alternative if spatial 36 

heterogeneity is of more interest.   37 
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1 Introduction 38 

A global hydrological model (GHM) is an effective tool to understand how water moves 39 

between soil, plants and the atmosphere. In terms of spatial discretization, hydrological models 40 

can be classified into: 1) lumped models treating one basin as a homogeneous whole and 41 

disregarding spatial variations, such as the Sacramento Soil Moisture Accounting Model 42 

(Burnash et al., 1973); and 2) distributed models where the entire basin is divided into small 43 

spatial units (e.g., square cells or triangulated irregular network) to capture spatial variability, 44 

such as the PCRaster Global Water Balance (Van Beek and Bierkens, 2009)  and the WASMOD-45 

M (Widén-Nilsson et al., 2007). For simplicity, models with division of one basin into separate 46 

areas or sub-basins are also categorized as distributed ones here. The corresponding 47 

predictability and computational efficiency of GHMs may vary from model to model, due to 48 

difference in complexity and structure. Recent years have seen rapid progress in GHMs. They 49 

are widely used in assessing the impacts of climate change and land surface changes on the water 50 

cycle (Alcamo and Henrichs, 2002; Arnell and Gosling, 2013; Liu et al., 2013; Liu et al., 2014; 51 

Nijssen et al., 2001a),  exploring spatial and temporal distribution of water resources (Abdulla et 52 

al., 1996; Alkama et al., 2010; Bierkens and Van Beek, 2009; Gerten et al., 2005; Tang et al., 53 

2010), examining how human activities alter water demand and water resources (De Graaf et al., 54 

2014; Döll et al., 2009; Hanasaki et al., 2008; Liu et al., 2015; Rost et al., 2008; Vörösmarty et 55 

al., 2000), and investigating the interactions between human activities and water availability by 56 

incorporating GHM with integrated assessment models (Kim et al., 2016).  57 

 Applying GHMs usually requires miscellaneous inputs, high computational costs, and a 58 

complex calibration process. These challenges stand out in practical situations, especially when 59 

the computational resources are limited. For instance, sensitivity analysis and uncertainty 60 
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quantification are often needed for decision making, but the users usually cannot afford to run a 61 

large number of simulations with many GHMs like the VIC (also categorized as land surface 62 

model (LSM)) due to their high computational expense (Oubeidillah et al., 2014). Another 63 

situation is when the users seek reasonable estimates of water resources with minimal efforts 64 

rather than acquiring highly accurate estimates through expensive inputs of time and efforts. For 65 

example, when users seek to explore the hydroclimatology of a region and its long-term water 66 

balance (Sankarasubramanian and Vogel, 2002), then GHMs with fine spatial (e.g., 1/8 degree) 67 

and temporal resolution (e.g., hourly)  are not necessarily needed. In this case, GHMs simple 68 

models that possess reasonable predictability and are computationally efficient tend to be more 69 

suitable. In addition, some studies have shown that GHMs/LSMs are sometimes outperformed by 70 

simple empirical statistical models (Abramowitz, 2005; Abramowitz et al., 2008; Best et al., 71 

2015), suggesting that some GHMs/LSMs may underutilize the information in their climate 72 

inputs and that model complexity may undermine accurate prediction. This also indicates the 73 

potential advantages of simple model over complex GHMs/LSMs. Thus, constructing simple 74 

models that can emulate the dynamics of more complex and computational expensive models 75 

(e.g., GHMs/LSMs) is warranted. 76 

The motivation of this work arises from the need to construct a hydrological emulator 77 

(HE) that can efficiently mimic the complex GHMs to address the abovementioned issues for 78 

practical use, which provides the opportunity of speeding up simulations at the cost of 79 

introducing some simplification. We develop a HE that is ready-to-use and efficient for any 80 

interested groups or individuals to assess water cycle at basin/regional/global scales. This HE 81 

possesses the following features: 1) minimum number of parameters; 2) minimal climate input 82 

that is easy to acquire; 3) simple model structure; 4) reasonable model fidelity that captures both 83 
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the spatial and temporal variability; 5) high computational efficiency; 6) applicable in a range of 84 

spatial scales; and 7) open-source and well-documented.   85 

To achieve our goal of identifying a suitable HE, we have explored many hydrological 86 

models to find one that may meet our needs. We start with a simple baseline model characterized 87 

by mean seasonal cycle; i.e., the inter-annual mean value for every calendar day (Schaefli & 88 

Gupta, 2007). Among others, we also explore the “abcd” model because: 1) it is widely-used 89 

and proven to have reasonable predictability (Fernandez et al., 2000; Martinez and Gupta, 2010; 90 

Sankarasubramanian and Vogel, 2002; Sankarasubramanian and Vogel, 2003; Thomas, 1981; 91 

Vandewiele and Xu, 1992; Vogel and Sankarasubramanian, 2003); 2) it uses a monthly time step 92 

and requires less computational cost than daily or hourly models; 3) it has solid physical basis 93 

hence has potential to be extended to other temporal scales (Wang and Tang, 2014); 34) it 94 

requires minimal and easily-available inputs; 45) it only involves 4-7 parameters; and 56) it can 95 

simulate variables of interest such as recharge, direct runoff and baseflow that many other simple 96 

models can’t simulate  (Vörösmarty et al., 1998) it can estimate several variables of interest to a 97 

wide range of users (e.g., total runoff, baseflow, direct runoff, groundwater recharge, 98 

evapotranspiration). For the first time we apply  This study marks the first time that the “abcd” 99 

based model is applied globally, and also the first time the predictability and computational 100 

efficiency for both the lumped and distributed schemes are evaluated. Below we describe the 101 

baseline and the “abcd” models and data in Section 2; and we present the evaluation of the two 102 

models, discuss their appropriateness of serving as a HE in Section 3; finally, in Section 4 we 103 

summarize this work with concluding remarks.  104 

 105 

2 Methods and data 106 
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2.1 Model description  107 

We examine two simple models – baseline and the “abcd” model (both lumped and 108 

distributed scheme) in order to identify a suitable one for serving as a HE.  109 

2.1.1 Baseline model 110 

 Following the work of Schaefli & Gupta (2007), we explore a baseline model 111 

characterized by the inter-annual mean value for every calendar day, i.e., climatology. In this 112 

study, we adapt the baseline model to monthly scale by first calculating inter-annual mean value 113 

for every calendar day from daily runoff of the benchmark product during 1971-2010 (see 114 

Section 2.3.2), and then aggregating daily runoff to monthly runoff. The model uses climatology 115 

for prediction, for example, if the inter-annual mean runoff for July in the Amazon basin is 100 116 

mm mon-1, then the prediction of total runoff for July of every year is 100 mm mon-1. 117 

 118 

2.1.2 The “abcd” model 119 

The monthly “abcd” model was first introduced by Thomas (1981) to improve the national 120 

water assessment for the U.S., with a simple analytical framework using only a few descriptive 121 

parameters. It has been widely used across the world, especially for the U.S. (Martinez and 122 

Gupta, 2010; Sankarasubramanian and Vogel, 2002; Sankarasubramanian and Vogel, 2003). The 123 

model uses potential evapotranspiration (PET) and precipitation (P) as input. The model defines 124 

four parameters a, b, c, and d that reflect regime characteristics (Sankarasubramanian and Vogel, 125 

2002; Thomas, 1981) to simulate water fluxes (e.g., evapotranspiration, runoff, groundwater 126 

recharge) and pools (e.g., soil moisture, groundwater). The parameters a and b pertain to runoff 127 

characteristics, and c and d relate to groundwater. Specifically, the parameter a reflects the 128 

propensity of runoff to occur before the soil is fully saturated. The parameter b is an upper limit 129 
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on the sum of evapotranspiration (ET) and soil moisture storage. The parameter c indicates the 130 

degree of recharge to groundwater and is related to the fraction of mean runoff that arises from 131 

groundwater discharge. The parameter d is the release rate of groundwater to baseflow, and thus 132 

the reciprocal of d is the groundwater residence time. Snow is not part of the original “abcd” 133 

model, which may result in poor performance of the model in cold regions where snow 134 

significantly affects the hydrological cycle. The work of Martinez and Gupta (2010) has added 135 

snow processes into the original “abcd” model, where the snowpack accumulation and snow 136 

melt are estimated based on air temperature.  Their work indicated that incorporation of the snow 137 

processes in the monthly “abcd” model has significantly improved model performance in snow-138 

covered area in the conterminous United States (see Figure 4 in Martinez and Gupta (2010)).  139 

In this study, we adopt the “abcd” framework from Martinez and Gupta (2010) (Fig. 1); 140 

meanwhile, we make three modifications to suit the needs of a HE for global applications. First, 141 

in order to enhance the model efficiency with as least necessary parameters as possible,  instead 142 

of involving three tunable snow-related parameters in the calibration process, we set the values 143 

for two of the parameters (i.e., temperature threshold above or below which all precipitation falls 144 

as rainfall or snow) from literature (Wen et al., 2013) and only keep one tunable parameter m – 145 

snow melt coefficient (0 < m < 1). Second, we introduce the baseflow index (BFI) into the 146 

calibration process to improve the partition of total runoff between the direct runoff and baseflow 147 

(see Section 2.24). Third, other than the lumped scheme as previous studies used, we first 148 

explore the values of model application in distributed scheme with a grid resolution of 0.5 149 

degree. The detailed model descriptions and equations are presented in the Appendix A, and the 150 

descriptions and ranges of model parameters are listed in Table 1. 151 

 152 

2.2 Model structure 153 
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In terms of the “abcd” model, we evaluate both the lumped and distributed model 154 

schemes, although most previous applications of the model are conducted in a lumped scheme 155 

(Bai et al., 2015; Fernandez et al., 2000; Martinez and Gupta, 2010; Sankarasubramanian and 156 

Vogel, 2002; Sankarasubramanian and Vogel, 2003; Vandewiele and Xu, 1992; Vogel and 157 

Sankarasubramanian, 2003). In the lumped scheme, each of the 235 river basins is lumped as a 158 

single unit, and each of the climate input (see Section 2.3.1) is the lumped average across the 159 

entire basin, and thus all the model outputs are lumped as well. In terms of the distributed one, 160 

however, each 0.5-degree grid cell has its own climate inputs, and likewise, the model outputs 161 

are simulated at the grid-level. Although the two schemes differ in the spatial resolution of their 162 

inputs and outputs, their within-basin parameters are uniform. We use basin-uniform rather than 163 

grid-specific parameters for the distributed scheme for two reasons: 1) to enhance computational 164 

efficiency; and 2) to avoid drastically different parameters for neighboring grid cells that may be 165 

unrealistic. Note that lateral flows between grid cells and basins are not included at this stage for 166 

the “abcd” model. For the baseline model, as it is derived from the benchmark product (see 167 

Section 2.3.2), which presents runoff estimates in a spatial resolution of 0.5-degree, and thus 168 

every grid cell of each basin has its own inter-annual mean monthly runoff estimates.   169 

 170 

2.3 Data 171 

2.3.1 Climate data 172 

The climate data needed for the “abcd” model only involve monthly total precipitation, 173 

monthly mean, maximum and minimum air temperature. The data we use is obtained from 174 

WATCH (Weedon et al., 2011), spanning the period of 1971-2010, and it is 0.5-degree gridded 175 

global monthly data. The climate data is used for model simulation over the global 235 major 176 
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river basins (Kim et al., 2016). Additionally, we use the Hargreaves-Samani method (Hargreaves 177 

and Samani, 1982) to estimate potential evapotranspiration (PET), which is a required input for 178 

the “abcd” model, and it needs climate data of mean, maximum and minimum temperatures for 179 

the calculation.  180 

 181 

2.3.2 Benchmark runoff product  182 

In this study, the “abcd” model is tested for its ability to emulate the naturalized 183 

hydrological processes of a reference model since the “true” naturalized hydrological processes 184 

are unknown. The “perfect model” approach is well adopted in climate modeling studies where 185 

one model is treated as “observations” while the others are tested for their ability to reproduce 186 

“observations” (Murphy et al., 2004; Tebaldi and Knutti, 2007). Here, we use the process-based 187 

VIC model as the “perfect model”, which was also driven by the WATCH climate forcing.  188 

The VIC runoff product here is a global simulation with a daily time step and spatial 189 

resolution of 0.5 degree for the period of 1971-2010, and the VIC daily runoff is aggregated to 190 

monthly data to be consistent with the temporal scale of the “abcd” model. The VIC model 191 

settings used in this study are based on the University of Washington VIC Global applications 192 

(http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Datasets/Datasets.shtml). The sub-193 

grid variability of soil, vegetation and terrain characteristics are represented in sub-grid area-194 

specific parameter classifications. Soil texture and bulk densities are derived by combining the 195 

World Inventory of Soil Emission Potentials database (Batjes, 1995) and the 5-min digital soil 196 

map of the world from the Food and Agricultural Organization (FAO, 1998). Based on the work 197 

of (Cosby et al., 1984), the remaining soil properties (e.g. porosity, saturated hydraulic 198 

conductivity and unsaturated hydraulic conductivity) are derived. Vegetation type data are 199 
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obtained from the global land classification of (Hansen et al., 2000). Parameters including the 200 

infiltration parameter, soil layer depths and those governing the baseflow function were 201 

calibrated for major global river basins and transferred to the global domain as documented in 202 

(Nijssen et al., 2001b), based on which Zhang et al. (2014) and Leng et al. (2015) conducted 203 

additional calibrations in the China domain. In this study, the VIC model was forced by WATCH 204 

climate forcing at the daily time step (Weedon et al., 2011), based on the calibrated parameters 205 

from Nijssen et al. (2001b), (Zhang et al., 2014) and (Leng et al., 2015). The simulated runoff 206 

used in this study has recently been validated globally within the framework of the Inter-Sectoral 207 

Impact Model Intercomparison Project and shows reasonable performance compared to other 208 

hydrological models (Hattermann et al., 2017; Krysanova and Hattermann, 2017).   209 

The VIC runoff product (Hattermann et al., 2017; Leng et al., 2015) is then used as a 210 

benchmark for calibrating and validating the “abcd” model due to two reasons. First, VIC runoff 211 

has been evaluated across many regions of the globe and is proved to be reasonably well 212 

(Abdulla et al., 1996; Hattermann et al., 2017; Maurer et al., 2001; Nijssen et al., 1997; Nijssen 213 

et al., 2001b). Second, since we have not involved river routing, reservoir regulations and 214 

upstream water withdrawals in the “abcd” model, the simulated monthly runoff is more 215 

representative of “natural conditions”, and as such it tends to be more reasonable to compare the 216 

simulated runoff against the VIC runoff product rather than observed streamflow data from 217 

stream gauges (Dai et al., 2009; Wilkinson et al., 2014). Despite potential bias in the VIC runoff 218 

product, using it as a benchmark here is to demonstrate the capability of the HE developed in this 219 

work to mimic complex GHMs. Furthermore, the application of the HE is not tied to the VIC 220 

model and should be able to emulate other GHMs.  221 
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The VIC runoff product also compares well to other products (see Fig. S1, S2), including 222 

the UNH/GRDC runoff product (Fekete and Vorosmarty, 2011; Fekete et al., 2002) and the 223 

global streamflow product (Dai et al., 2009). The scatterplot pattern of the VIC long-term annual 224 

runoff product vs. the streamflow product matches well with that of the UNH/GRDC runoff vs. 225 

the streamflow product (streamflow is transferred to the same unit as runoff via dividing by the 226 

basin area). Further, the correlation coefficient of the VIC and the UNH/GRDC long-term annual 227 

runoff is as high as 0.83 across the global 235 basins. This suggests the reasonability of VIC 228 

runoff product, because the UNH/GRDC runoff is calibrated with the GRDC observations. At 229 

the same time, the discrepancies between the VIC runoff products and the streamflow products 230 

(Fig. S2) may be attributed to human activities, such as reservoir regulations and upstream water 231 

withdrawals, which are not embedded in the runoff but reflected in the streamflow.  232 

 233 

2.3 4 Model calibration 234 

Typically, most applications of the “abcd” model utilize single-objective optimization for 235 

total runoff (or streamflow) during the calibration process to minimize the difference between 236 

measured and simulated streamflow (Bai et al., 2015; Martinez and Gupta, 2010; 237 

Sankarasubramanian and Vogel, 2002). While this may lead to a good fit for simulated total 238 

runoff, however, it may result in inappropriate partition of total runoff between direct runoff and 239 

baseflow. To improve the accuracy of the simulated total runoff and the partition between direct 240 

runoff and baseflow, we introduce the baseflow index (BFI) into the objective function.    241 

Unlike the baseline model, the “abcd” model requires a calibration step for reasonable 242 

parameterization so as to enable good prediction. As mentioned above, we incorporate BFI into 243 

the objective function during the calibration process. On one side, we maximize Kling-Gupta 244 
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efficiency (KGE) (Gupta et al., 2009), which is used as a metric to measure the accuracy of the 245 

simulated total runoff relative to the VIC benchmark runoff. The KGE is defined as the 246 

difference of unity and the Euclidian distance (ED) from the ideal point, thus we maximize KGE 247 

through minimizing the ED. The KGE and ED are calculated as follows (Gupta et al., 2009): 248 
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where r, α, β, and Covso are relative variability, bias, correlation coefficient, and covariance 254 

between the simulated and observed values (here we treat the VIC runoff as the observed), 255 

respectively; µ and σ represent the mean and standard deviation (subscript “s” and “o” stand for 256 

simulated and observed values). On the other side, we also nudge the simulated BFI towards the 257 

benchmark BFI (here we treat the benchmark BFI as the observed) – the mean BFI of the four 258 

products from (Beck et al., 2013). Then, the objective function is as follows:  259 

min( ( ))obs simED abs BFI BFI   260 

where min stands for minimizing the value in the parenthesis, abs represents absolute value, ED 261 

is the Euclidian distance between the simulated and observed total runoff (Gupta et al., 2009),  262 

BFIobs and BFIsim are the observed and simulated BFI, respectively. Here we treat the benchmark 263 

runoff from the VIC and BFI from Beck et al. (2013) as observed values. We then minimize the 264 

objective function for parameter optimization by utilizing a Genetic Algorithm (GA) routine 265 
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(Deb et al., 2002). Note that for the distributed model scheme, we aggregate the grid-level total 266 

runoff estimates to basin-level and then nudge it toward basin-level benchmark total runoff 267 

during the calibration process.   268 

 269 

2.4 5 Model simulations 270 

To evaluate the predictability and efficiency of the baseline and the “abcd” model so as 271 

to identify a suitable one to serve as a HE, we have conducted a series of simulations. 272 

Specifically, for the baseline model, no simulations are needed as it uses inter-annual mean value 273 

for each month – 12 monthly values – as prediction, so we just replicate the 12 monthly runoff 274 

for 1971-2010 and for each of the global 235 basins, and then compare against the benchmark 275 

runoff product. For the “abcd” model, two sets of model simulations across the global 235 basins 276 

are conducted, with one set for calibration and the other one for validation, for both the lumped 277 

and distributed model schemes. For the first set, we run the model for each basin for the period 278 

of 1971-1990 to get basin-specific parameters by using the GA approach (see Section 2.24). For 279 

the second set, using the parameters identified in the first set of simulation, we run the model for 280 

the period of 1991-2010 to validate the model predictability and also evaluate the computational 281 

efficiency. Model inputs and outputs in the distributed scheme are at a spatial resolution of 0.5-282 

degree, whereas those in the lumped scheme are all in lumped single unit for each basin. All 283 

model simulations are conducted in a monthly time step. Note that broad users can run the 284 

identified HE for global 235 basins, or for as many basins as they want for either scheme, as all 285 

the related basin-specific input data and calibrated parameters for both schemes are open-source.  286 

 287 

3 Results and discussions 288 
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3.1 Comparison of performances between the baseline and the “abcd” model  289 

Generally, we find baseline model performs worse than the “abcd” model (Fig. 2). The 290 

baseline model exhibits a lower global mean KGE value (0.61) than the lumped and distributed 291 

schemes of the “abcd” model (0.75 and 0.79, respectively). In addition, our analysis indicates 292 

that the incorporation of BFI into the objective function leads to significant improvement in the 293 

partition of total runoff between direct runoff and baseflow (Fig. S4), without compromising 294 

predictability for total runoff, i.e., the global mean KGE values for modeled total runoff with or 295 

without the incorporation of BFI are almost the same (0.75 vs 0.76). Specifically, for the case of 296 

involving both the total runoff and BFI in the objective function, the correlation efficiencies (r) 297 

between the long-term annual benchmark and modeled direct runoff, and between benchmark 298 

and baseflow from the lumped scheme across global basins are 0.97 and 0.96, respectively, 299 

which are much higher than those of 0.86 and 0.72 in the case of only involving the total runoff 300 

in the objective function (Fig. S4).  301 

Given the superiority of the “abcd” model over the baseline model, we focus in the 302 

following sections on evaluating the predictability and computational efficiency of the “abcd” 303 

model and its potential to serve as a HE.  304 

 305 

3.1 2 Evaluation of model predictability  306 

In terms of total runoff, we find the lumped and distributed schemes are comparably 307 

capable in simulating long-term mean annual quantity, temporal variations and spatial patterns 308 

for the vast majority of river basins globally (Fig. 23-45). Estimates of long-term mean annual 309 

total runoff from both the lumped and distributed schemes match very well with that of VIC total 310 

runoff across the 235 basins, with a correlation coefficient (r) of higher than 0.96, for both the 311 
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calibration and validation period (Fig. 23). Similarly, the basin-level estimates of long-term 312 

mean annual direct runoff and baseflow also match well with those of the VIC across the globe, 313 

for both schemes and both periods (Fig. 23). This suggests both schemes possess the capability 314 

in partitioning total runoff. Also, we find introduction of BFI into the objective function has 315 

improved the partition of total runoff between direct runoff and baseflow (Fig. S4). Specifically, 316 

for the case of involving both the total runoff and BFI in the objective function (see Section 2.2), 317 

the correlation efficiencies (r) between the long-term annual benchmark and modeled direct 318 

runoff and baseflow from the lumped scheme across global basins are 0.97 and 0.96, 319 

respectively. However, for the case of only involving the total runoff in the objective function, 320 

the r values are 0.86 and 0.72, respectively (See Fig. S4). 321 

Furthermore, both schemes display good capability in capturing the seasonal signals of 322 

the total runoff (Fig. 34). Meanwhile, although the spatial patterns of annual total runoff from the 323 

lumped scheme present a general match with that of the VIC, it does not reflect the spatial 324 

variations inside a basin that is however captured by the distributed scheme (Fig. 45). Therefore, 325 

the distributed scheme provides overall slightly higher KGE (Fig. 4-56), with a global mean 326 

KGE value of 0.79 as compared to 0.75 for the lumped scheme (Fig. S32).  327 

To ensure good model predictability for the major water fluxes, we also evaluate the 328 

modelled ET estimates. The modelled ET compares reasonably well with the VIC ET product as 329 

well as with the mean synthesis of the LandFlux-EVAL ET product (Mueller et al., 2013), 330 

displaying similar spatial variations (Fig. S5). Likewise, the distributed “abcd” scheme tends to 331 

have better capability in presenting spatial heterogeneity than the lumped one. Further, the good 332 

predictability of seasonality in runoff as illustrated in Fig. 4 also reflects similar performance for 333 
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ET, given the runoff and ET are the two major water fluxes in the water mass balance and the 334 

soil moisture changes are negligible over long-term.  335 

The distributed scheme appears to outperform the lumped scheme in term of goodness-336 

of-fit, especially in some cold (e.g., Arctic, Northern European, Interior Tibet) and in some dry 337 

(e.g., North Africa) regions (Fig. 56). This is possibly because distributed inputs can reflect 338 

basin-level heterogeneity, and thus better capture the characteristic of the hydrological conditions 339 

in those regions. However, both schemes do not perform well in the southern end of the Andes 340 

Mountains (Fig. 56). This may be attributed to the complex land surface characteristics in that 341 

mountainous area, which cannot be resolved due to the coarse spatial resolution. Moreover, the 342 

distributed scheme seems not performing very well in some cold regions (Fig. 56), which is 343 

possibly due to lack of representation for permafrost in the model. 344 

Previous studies investigating the credibility of lumped and distributed hydrological 345 

models indicate that, in many cases, lumped models perform comparably or just as well as 346 

distributed models (Asadi, 2013; Brirhet and Benaabidate, 2016; Ghavidelfar et al., 2011; 347 

Michaud and Sorooshian, 1994; Obled et al., 1994; Reed et al., 2004; Refsgaard and Knudsen, 348 

1996; YAO et al., 1998). However, distributed models may have advantages for predicting 349 

runoff in ungauged watersheds (Reed et al., 2004; Refsgaard and Knudsen, 1996), for capturing 350 

spatial distribution of runoff due to heterogeneity in rainfall patterns or in land surface (Downer 351 

et al., 2002; Paudel et al., 2011; YAO et al., 1998), and for predicting flood peaks (Asadi, 2013; 352 

Brirhet and Benaabidate, 2016; Carpenter and Georgakakos, 2006; Krajewski et al., 1991). Our 353 

results on the predictability of lumped and distributed “abcd” model are in line with previous 354 

findings in the literature. 355 
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The good agreement between our modelled water fluxes, including total runoff, direct 356 

runoff, baseflow and ET, and the benchmark products provides confidence in the capability of 357 

both the lumped and distributed schemes in estimating temporal and spatial variations in major 358 

water fluxes across the globe. In addition, to identify a suitable HE, the required computation 359 

cost is another key factor as detailed below. 360 

 361 

3.2 3 Evaluation of computational efficiency  362 

 While the performance of model predictability is comparable for the lumped and 363 

distributed schemes as elucidated above, great disparity exists for runtime of the two schemes 364 

and the VIC model (Table 2S1). Take the Amazon basin that covers a total number of 1990 0.5-365 

degree grid cells as an example, it takes 11.05 minutes for model calibration via the GA method 366 

in the distributed scheme but only 0.16 minute for the lumped one. Similar disparity is also found 367 

for model simulation with calibrated parameters, with runtime of 0.03 and 3.20 seconds for a 368 

1000-year simulation of the Amazon basin for the lumped and distributed schemes, respectively. 369 

However, according to the authors’ experience, it will take ~1 week for the VIC model to 370 

accomplish the same job, which is far more computationally expensive. In general, the 371 

computational efficiency of the lumped scheme is two orders of magnitudes higher than the 372 

distributed one, although that of the distributed one is still much higher than the VIC (~five 373 

orders of magnitude) and many other GHMs and LSMs. Note that all of the simulations here are 374 

conducted on the Pacific Northwest National Laboratory (PNNL)’s Institutional Computing 375 

(PIC) Constance cluster using 1 core (Intel Xeon 2.3 GHz CPU) with the same configuration. 376 

 377 

3.3 4 Potential application of the “abcd” model as a hydrological emulator 378 



19 
 

The good predictability and computational efficiency of both the distributed or lumped 379 

schemes as elucidated in Sections 3.1 2 and 3.2 3 suggest its suitability for serving as HEs that 380 

can efficiently emulate complex GHMs (e.g., the VIC or others). The source codes, input data, 381 

basin-specific parameters across the globe for both the lumped and distributed schemes are open-382 

source and well-documented, which will make the HE ready to use and facilitate their wide and 383 

easy use with minimal efforts.  384 

The choice of either the distributed or lumped scheme as HE depends on the user’s 385 

specific needs. There is a tradeoff between the model predictability and computational 386 

efficiency. While the distributed scheme tends to better capture the spatial heterogeneity of water 387 

fluxes and can produce grid-level outputs that lumped scheme cannot, it incurs heavier 388 

computational cost than the lumped scheme. For applications that aim to strike a balance 389 

between predictability and computation cost, such as practical assessment of water resources, or 390 

estimation of water supply for integrated assessment models (IAMs), or quantification of 391 

uncertainty and sensitivity analyses, it would be reasonable to employ the lumped scheme as a 392 

HE. The lumped scheme is especially advantageous due to its minimal calibration and 393 

computational cost, parsimonious efforts for model implementation, and reasonable fidelity in 394 

estimating major water fluxes (e.g., runoff, ET). For users from the IAM community, the lumped 395 

scheme might be sufficiently suitable for their needs since 1) the lumped scheme can operate at 396 

the same spatial resolution at which IAMs typically balance water demands and supplies 397 

(Edmonds et al., 1997; Kim et al., 2006; Kim et al., 2016), and 2) the inherent uncertainty of the 398 

lumped scheme is likely comparable or even overshadowed by the intrinsic uncertainty of IAMs 399 

(Kraucunas et al., 2015; O’Neill et al., 2014). Similarly, for users who aim to conduct 400 

uncertainty and sensitivity analyses, the high computational efficiency of the lumped scheme 401 
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allow the users to emulate the hydrological model of interest (e.g., GHMs, LSMs) and then run a 402 

large number of simulations to conduct their uncertainty and sensitivity analysis (Scott et al., 403 

2016). Therefore, the high computational efficiency makes the lumped scheme more appealing 404 

as a HE in these cases. However, if the research questions hinge on the gridded estimates, or 405 

emphasize the spatial heterogeneity of the water fluxes or pools, it would be more desirable to 406 

deploy the distributed scheme as a HE instead. 407 

Based upon our open-source HE and the validated basin-specific parameters across the 408 

globe, researchers can easily investigate the variations in water budgets at the basin/ 409 

regional/global scale of interest, with minimum requirements of input data, efficient computation 410 

performance and reasonable model fidelity. Likewise, researchers can utilize the framework of 411 

the HE with any alternative input data, or recalibrate the HE to emulate other complex GHMs or 412 

LSMs of interest, to meet their own needs. 413 

3.5 Case study for uncertainty analysis 414 

To demonstrate the capability of the examined “abcd” model serving as a HE, we use the 415 

lumped scheme to conduct parameter-induced uncertainty analysis for the runoff simulation at 416 

the world’s sixteen river basins with top annual flow (Dai et al. 2009). Specifically, for each of 417 

the sixteen basins, we first apply ±10% change to each of the five calibrated parameters (a, b, c, 418 

d, m) to compose varying ranges; note that we just truncate the range to those valid in Table 1 if 419 

the ±10% change exceeds the valid range. Then we randomly sample the five parameters from 420 

corresponding ranges for 100,000 times (i.e., 100,000 combinations of parameters). After that, 421 

we run the lumped scheme 100,000 times for each basin with the 100,000 combinations of 422 

parameters to examine the parameter-induced uncertainty in total runoff. The uncertainty 423 

analysis indicates that most basins are robust to changes in parameters, other than the Tocantins, 424 
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Congo and La Plata (Fig. 7). In other words, for basins Congo and La Plata, slight changes in 425 

parameters may lead to large changes in runoff estimates. Then the uncertainty in the calibrated 426 

parameters for the two basins may lead to large bias in the simulated runoff, which may more or 427 

less explain why modelled runoff for the two basins tend to have higher biases than other basins 428 

(Fig. 4). Notably, the 100,000 times of simulations only takes ~80 seconds on a Dell Workstation 429 

T5810 with one Intel Xeon 3.5 GHz CPU, which demonstrates the extraordinary computational 430 

efficiency of the lumped scheme and its advantage for serving as a HE. 431 

 432 

4 Conclusions 433 

 Toward addressing the issue that many global hydrological models (GHMs) are 434 

computationally expensive and thus users cannot afford to conduct a large number of simulations 435 

for various tasks, we firstly construct a hydrological emulator (HE) that possesses both 436 

reasonable predictability and computation efficiency for global applications in this work.  Built 437 

upon the widely-used “abcd” model, we have adopted two snow-related parameters from 438 

literature rather than tuning them for parameter parsimony, and also have improved the partition 439 

of total runoff between the direct runoff and baseflow by introducing baseflow index into the 440 

objective function of the parameter optimization. We then evaluate the appropriateness of the 441 

model serving as an emulator for a complex GHM – the VIC, for both the lumped and distributed 442 

model schemes, by examining their predictability and computational efficiency.  443 

In general, both distributed and lumped schemes have comparably good capability in 444 

simulating spatial and temporal variations of the water balance components (i.e., total runoff, 445 

direct runoff, baseflow, evapotranspiration). Meanwhile, the distributed scheme has slightly 446 

better performance than the lumped one (e.g., capturing spatial heterogeneity), with mean Kling-447 
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Gupta efficiency of 0.79 vs. 0.75 across global 235 basins, and also it provides grid-level 448 

estimates that the lumped one incapable of. Additionally, the distributed scheme performs better 449 

in extreme climate regimes (e.g., Arctic, North Africa) and Europe. However, the distributed one 450 

incurs two more orders of magnitudes of computation cost than the lumped one. A case study of 451 

uncertainty analysis with 100, 000 simulations for each of the world’s sixteen basins with top 452 

annual streamflow further demonstrates the lumped scheme’s extraordinary advantage in terms 453 

of computational efficiency. Therefore, the lumped scheme could be an appropriate HE – 454 

reasonable predictability and high computational efficiency. At the same time, the distributed 455 

scheme could be a suitable alternative for research questions that hinge on grid-level spatial 456 

heterogeneity. Finally, upon open-sourcing and well-documentation, the HE is ready to use and it 457 

provides researchers an easy way to investigate the variations in water budgets at a variety of 458 

spatial scales of interest (e.g., basin, region or globe), with minimum requirements of efforts, 459 

reasonable model predictability and appealing computational efficiency.   460 
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Code and/or data availability 461 

The hydrological emulator (HE) is freely available on the open-source software site GitHub 462 

(https://github.com/JGCRI/hydro-emulator/). We have released the version of the specific HE v1.0.0 463 

referenced in this paper on https://github.com/JGCRI/hydro-emulator/releases/tag/v1.0.0, where the 464 

source code (written in Matlab), all related inputs, calibrated parameters and outputs for each of the global 465 

235 basins, as well as the detailed Readme file are available. The code and data are available on the 466 

GitHub open-source software site (). The repository includes the source code (written in Matlab), all 467 

related data inputs and outputs for global 235 basins, and a Readme file.  468 
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Appendix A: Descriptions and equations of the “abcd” model 469 

The abcd model was first introduced by (Thomas, 1981), and Martinez and Gupta (Martinez and 470 

Gupta, 2010) added snow processes into the model. In this work, we adopted the snow scheme in Martinez 471 

and Gupta (2010): 472 
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 482 

where iP , iSP , iSNM  and iSnow  are total precipitation, snowpack storage, snowmelt and the 483 

precipitation as snowfall at time step i, respectively, 
rainT (or 

snowT ) stands for the temperature threshold 484 

above (or below) which all precipitation falls as rainfall (or snow),  and 
min

iT is the minimum temperature 485 

at time step i, and the parameter m is the snowmelt coefficient. Rather than keeping the three parameters 486 

rainT , 
snowT and m, we adopt the 

rainT  value of 2.5 °C  and 
snowT  value of 0.6 °C  (Wen et al., 2013) and 487 

thus only keep one snowmelt-related parameter m in the model, in order to alleviate the computation load 488 

during the parameter optimization process. 489 

  490 
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The model defines two state variables “available water” and “evapotranspiration opportunity”, 491 

denoted as Wi and Yi, respectively. The Wi is defined as: 492 

1i i i iW SM Rain SNM           (4) 493 

where 1iSM   is soil moisture at the beginning of time step i, iRain and iSNM  are rainfall and snowmelt 494 

during period i.  495 

Yi stands for the maximum water that can leave the soil as evapotranspiration (ET) at period i, and 496 

it is defined as below: 497 

i i iY ET SM           (5) 498 

where iET  is the actual ET at time period i and iSM  is soil moisture at the end of time step i. Further, Yi  499 

has a non-linear relationship with Wi as: 500 

2( ) /
2 2

i i
i i

W b W b
Y W b a

a a

 
           (6) 501 

where a and b are parameters detailed in Section 2.1.2.  502 

Allocation of Wi  between iET and iSM is estimated by assuming that the loss of soil moisture by 503 

ET will be proportional to PET as:  504 

dS SM
PET

dt b
            (7) 505 

After integrating the above differential equation and assuming Si-1 = Yi, iSM can be derived as: 506 

exp( )i
i i

PET
SM Y

b


          (8) 507 

Then, iET  can be calculated through equation (2).  508 

 In the model framework, i iW Y  is the sum of the groundwater recharge (RE) and direct runoff 509 

(Qd), and the allocation is determined by the parameter c: 510 

( )i i iRE c W Y            (9) 511 
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(1 ) ( )d i iQ c W Y             (10) 512 

The baseflow from the groundwater (GW) pool is modeled as: 513 

b iQ d GW            (11) 514 

where d is a parameter reflecting the release rate of groundwater to baseflow. Then the total runoff ( tQ ) is 515 

the sum of the direct runoff and baseflow: 516 

t d bQ Q Q            (12) 517 

The iGW  is the sum of groundwater storage at the end of last time step and the groundwater recharge minus 518 

the baseflow, and iGW  is derived as: 519 

1

1

i i
i

GW RE
GW

d

 



         (13) 520 

Then, all the water fluxes and pools are solved. 521 

  522 
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Figure Caption 706 

Figure 1 Schematic diagram of the “abcd” model, with enhancements of snow and partition of 707 

total runoff between direct runoff and baseflow. 708 

Figure 2 Kling-Gupta efficiency of the simulated basin-level total runoff across the global 235 709 

basins (lump = lumped, dist = distributed, cal = calibration, the x-axis labels of “lump_cal” or 710 

“dist_cal” represent lumped/distributed scheme during calibration period). 711 

Figure 2 3 Comparison of basin-specific long-term annual total runoff, direct runoff and 712 

baseflow estimates from both the lumped and distributed “abcd” model schemes against VIC 713 

products, across global 235 basins and for the calibration period of 1971-1990 and validation 714 

period of 1991-2010. The labels are denoted as combination of model scheme and period, where 715 

lump and dist stand for lumped and distributed model scheme, cal and val represent the 716 

calibration and validation period, respectively. These denotations remain the same for all figures 717 

in this work. Note that the basin-level VIC baseflow is derived by multiplying the gridded VIC 718 

long-term annual total runoff and the mean of the four gridded baseflow index products from 719 

Beck et al. (2014), and then aggregating from grid-level to basin-level. The basin-level VIC 720 

direct runoff is then calculated by subtracting baseflow from the total runoff.  721 

Figure 3 4 Time series of basin-specific total runoff (Qtotal) from the VIC product, the lumped and 722 

distributed “abcd” schemes for the world’s sixteen river basins with top annual flow (Dai et al. 723 

2009) during 1981-1990. KGEl and KGEd stand for KGE value for the lumped and distributed 724 

scheme, respectively.  725 

Figure 4 5 Spatial patterns of long-term annual total runoff (mm yr-1) across global 235 basins: 726 

a) VIC runoff product; b) total runoff estimates from the lumped “abcd” scheme (lump = 727 

lumped); and c) total runoff estimates from the distributed “abcd” scheme (dist = distributed). 728 



35 
 

Figure 5 6 The spatial pattern of Kling-Gupta efficiency (KGE) for the total runoff estimates of 729 

the global 235 basins for the calibration period of 1971-1990: a) the lumped “abcd” scheme; and 730 

b) the distributed “abcd” scheme. 731 

Figure 7 Parameter-induced uncertainty in total runoff for the world’s sixteen river basins with 732 

top annual flow. The green line stands for simulated total runoff using the calibrated parameters, 733 

and the gray area represents the spread derived from variations in parameters.   734 
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Table 1 Parameters description and ranges for the “abcd” model (the parameters a,c,d and m are 753 

dimensionless, and the unit for parameter b is mm) 754 

 755 

  756 

paramete

r 

description range references 

a Propensity of runoff to occur before the soil 

is fully saturated 

0-1  (Alley, 1984; Martinez 

and Gupta, 2010; 

Sankarasubramanian 

and Vogel, 2002; 

Vandewiele and Xu, 

1992)  

b Upper limit on the sum of 

evapotranspiration and soil moisture storage 

0-4000 

c Degree of recharge to groundwater 0-1 

d Release rate of groundwater to baseflow 0-1 

m Snow melt coefficient 0-1  (Wen et al., 2013) 
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Table 2 Runtime for model calibration and simulation at Amazon basin for the lumped (lump) 757 

and distributed (dist) “abcd” model scheme, as well as for the VIC model. 758 

 
calibration  1000 years’ simulation  

lump 0.16 min 0.03 s 

dist 11.05 min 3.20 s 

VIC N/A ~ 1 week 

 759 


