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Abstract. Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of 12 

vegetation has been incorporated into the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling 13 

System. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced 14 

streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity 15 

of the flow and wave dynamics to vegetation parameters using Sobol’ indices and a least squares polynomial approach referred 16 

to as Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol’ indices and 17 

provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol’ indices 18 

shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and to 19 

a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity 20 

analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter 21 

space for future observational and modeling work. 22 

1 Introduction 23 

The presence of aquatic vegetation (e.g., mangroves, salt marshes, and seagrass meadows) provides several ecological benefits 24 

including nutrient cycling, habitat provision, and sediment stabilization (Costanza et al., 1997). Vegetation provides habitat 25 

for many species of epiphytes, invertebrates, and larval and adult fish (Heck et al., 2003). Seagrass meadows reduce sediment 26 

resuspension, thereby stabilizing bottom sediment, increasing light penetration, and improving water clarity in a positive 27 

feedback loop (Carr et al., 2010). In addition, aquatic vegetation provides coastal protection by absorbing wave energy 28 

(Wamsley et al., 2010).  29 
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One approach to implement the influence of aquatic vegetation on circulation is by increasing the bottom roughness 30 

coefficient (Ree, 1949; Morin et al., 2000). More recently, the effect of vegetation being studied through parameterization as 31 

form drag as opposed to skin friction in 2-D depth averaged models (Chen et al., 2007; Le Bouteiller and Venditti, 2015). To 32 

account for 3-D vertical structures, estuary-scale models have implemented both mean and turbulent flow impacts of vegetation 33 

(Temmerman et al., 2005; Kombiadou et al. 2014; Lapetina and Sheng, 2015). In addition to impacts on the flow-field, the 34 

presence of vegetation also results in wave attenuation. The decay of wave height over vegetation has been simulated by 35 

enhancing bed roughness (Möller et al., 1999; de Vriend, 2006; Chen et al., 2007). A more physical description of wave 36 

attenuation due to vegetation was developed by Dalrymple et. al (1984), who approximated wave energy loss due to stalks 37 

approximated as cylinders. This approach has been applied in spectral wave models and calibrated against flume experiment 38 

results (Mendez and Lozada, 2004; Suzuki et al., 2012; Wu, 2014; Bacchi et al., 2014). 39 

Recently, Beudin et al. (2017) implemented the effects of vegetation in a vertically varying water column through 40 

momentum extraction and turbulence dissipation and generation using a 3D hydrodynamic model and accounting for wave 41 

dissipation due to vegetation in a spectral wave model. The modeling approach was implemented and tested within the open 42 

source COAWST (Coupled-Ocean-Atmospheric-Wave-Sediment Transport) modeling system that couples hydrodynamic and 43 

wave models (Warner et al, 2010). The vegetation module was based on modifications to the flow field resulting from three-44 

dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy in the hydrodynamics model 45 

(ROMS), along with energy dissipation and resultant hydrodynamic feedback from the wave model (SWAN).  46 

The vegetation module requires the user to input a given set of plant properties (stem density, height, diameter, and 47 

thickness). These vegetation properties can be highly variable depending on the season and environment, yet obtaining a full 48 

set of measurements in realistic settings is impractical. Identifying which properties have the greatest influence on the resulting 49 

flow dynamics can reduce the amount of observational data required to robustly parameterize the model, and/or reduce the 50 

number of runs required in a model ensemble to quantify the uncertainty associated with data gaps. Our study aims to perform 51 

a systematic sensitivity analysis to quantify the effect of changing the vegetation properties on the resulting hydrodynamic 52 

output. The results of the sensitivity analysis can be used to select and rank the most important parameters for calibration. Two 53 

conditions are required for the model to display a significant sensitivity: (1) a sufficient modification of one of the forcing 54 

parameters and (2) a change in the leading terms of the dynamic equations of the model. While modifying the forcing 55 

parameters by a sufficient amount is required, the modification should remain within the natural range of variability of the 56 

parameters.  57 

Several mathematical techniques have been utilized to perform sensitivity analysis. Bryant (1987) applied scaling 58 

analysis to an idealized domain and forcing and found that closure parameters such as vertical diffusivity and wind stress curl 59 

were important controlling factors in thermohaline circulation. Bastidas et al. (1999) used multicriteria methods to find the 60 

sensitivity of land surface scheme models that couple biosphere-atmosphere interactions. The input variables (such as 61 

precipitation, air temperature and humidity etc.) predict the evolution of soil skin temperature, soil moisture, etc.  The input 62 

parameters obtained from the sensitivity analysis of the model showed consistency with physical properties for two different 63 
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field sites and helped identifying insensitive parameters that led to an improvement in model description. Fennel et al. (2001) 64 

incorporated adjoint methods to perform sensitivity studies to refine ecological model parameters such that the underlining 65 

model can be applied to a wider range of conditions. Mourre et al. (2008) performed multiple simulations based on realistic 66 

variation of a forcing field to calculate the influence of model parameters on sea surface salinity. The metric used to measure 67 

the sensitivity was based on RMS difference between the reference and modified model parameter. The results showed that 68 

lateral salt diffusivity had the strongest impact on surface salinity model response. Rosero et al. (2009) investigated the 69 

sensitivity of three different versions of a land satellite model (Noah LSM) applied to nine different sites based on different 70 

conditions (soil, vegetation, and climate). They utilized the Monte Carlo method to generate the first order Sobol’ indices 71 

(Sobol’, 1993), to estimate the model sensitivity. The results showed that the optimal parameter values differed varied between 72 

different versions of the models and for different sites along with quantifying the nature of interactions between parameters. 73 

One of the challenges associated with a Monte Carlo approach to computing the Sobol’ indices is the large number of model 74 

evaluations required for approximating conditional variance.  75 

All these studies highlight various approaches to perform sensitivity analysis. Saltelli et al. (2008) provided a 76 

comparison of different sensitivity analysis methodologies and the optimal setup for specific combinations of parameters and 77 

model.  Ultimately, the choice of sensitivity analysis methodology depends on multiple factors such as the computational cost 78 

of running the model, the characteristics of the model (e.g., nonlinearity), the number of input parameters, and/or the potential 79 

interactions between parameters. Saltelli et al. (2008) described variance-based techniques as providing the most complete and 80 

general pattern of sensitivity for models with a limited number of parameters, such as the vegetation module in COAWST. 81 

Sobol’ indices, as a form of variance-based sensitivity analysis, provide a decomposition of the variance of a model into 82 

fractions that can be assigned to inputs or combinations of inputs. However, techniques involving the estimation of Sobol’ 83 

indices (such as Monte Carlo methods) are expensive.  84 

To reduce the computational cost and have desirable accuracy, techniques that involve approximating the global 85 

response of the model with a polynomial, and then using its coefficients to estimate the Sobol’ indices can be utilized (Sudret, 86 

2008). In this paper, we use a set of least squares polynomial tools based on subsampling to estimate our global polynomial 87 

response (Seshadri et al., 2017a). Then, the coefficients of the polynomial are used to compute the Sobol' indices. These tools 88 

are implemented in the open source package Effective Quadratures Method (EQ) (Seshadri et al., 2017b), and our current work 89 

provides one of the first applications of this methodology to quantify sensitivity of input parameters in coastal models. 90 

Therefore, the goal of the present work is to take advantage of the EQ method to provide Sobol’ indices that quantify the  91 

sensitivity of the flow and wave dynamics to vegetation parameters in COAWST model. The paper is organized as follows: 92 

the methods are discussed in section 2, including the numerical model with vegetation model (COAWST), Effective 93 

Quadratures method to estimate Sobol’ indices, and simulation design; in section 3 we present the results of sensitivity analysis 94 

from various simulations; in section 4 we discuss the impact of these results; and finally in section 5 we summarize our work 95 

and outline areas of future research.   96 

  97 
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2 Methods  98 

2.1 COAWST implementation of vegetation model parameterization  99 

Beudin et al. (2017) implemented a hydrodynamic-vegetation routine within the open-source COAWST numerical 100 

modeling system. The COAWST framework utilizes ROMS (Regional Ocean Modeling System) for hydrodynamics and 101 

SWAN (Simulating WAves Nearshore) for modeling waves coupled via the Model Coupling Toolkit (MCT) (Warner et al., 102 

2008).  103 

ROMS (Regional Ocean Modeling System) is a three-dimensional, free surface, finite-difference, terrain-following 104 

model that solves the Reynolds-Averaged Navier-Stokes equations using the hydrostatic and Boussinesq assumptions 105 

(Haidvogel et al., 2008). The transport of turbulent kinetic energy and generic length scale are computed with a generic length 106 

scale (GLS) two-equation turbulence model. SWAN (Simulating WAves Nearshore) is a third-generation spectral wave model 107 

based on the action balance equation (Booij et al., 1999). The effect of submerged aquatic vegetation in ROMS is to extract 108 

momentum, add wave-induced streaming, and generate turbulence dissipation. Similarly, the wave dissipation due to 109 

vegetation modifies the source term of the action balance equation in SWAN. Sub-grid scale parameterizations account for 110 

changes due to vegetation in the water column extending from the bottom layer to the height of the vegetation in the flow 111 

model, while SWAN accounts for wave dissipation due to vegetation at the seafloor. The parameterization of SWAN to account 112 

for wave dissipation implemented by Suzuki et al. 2012 has the same effect as energy dissipation.  113 

The parameterizations used to implement the effect of vegetation in both ROMS and SWAN models are mentioned 114 

in Table 1 and detailed in Beudin et al. (2017). The coupling between the two models occurs with an exchange of water level 115 

and depth averaged velocities from ROMS to SWAN and wave fields from SWAN to ROMS after a fixed number of time 116 

steps (Fig. 1). The vegetation properties are separately input in the two models at the beginning of the simulations. 117 

 118 

2.2 Method for Sensitivity Analysis: Polynomial Least Squares 119 

Polynomial techniques are ubiquitous in the field of uncertainty quantification and model approximation. They estimate the 120 

response of some quantity of interest with respect to various input parameters using a global polynomial. From the coefficients 121 

of the polynomial the mean, variance, skewness, and higher order statistical moments can be calculated (see Smith 2014; 122 

Geraci et al. 2016). In this paper, our interest lies in statistical sensitivity metrics called first order Sobol’ indices (Sobol’, 123 

1993) that are derived from the conditional variances of the parameters of the model. These indices are the same in number as 124 

the input parameters to the model and quantitatively rank the input parameters based on their contribution to the resultant 125 

model output. Thus, model output is more sensitive to parameters that exhibit higher first order Sobol’ index value. Second 126 

order and third order Sobol’ indices may also be computed. The sum of the first, second, and third order Sobol’ indices should 127 

sum to unity, therefore if the first order indices are themselves close to unity, it indicates the higher order interaction between 128 

model input parameters is weak.  129 
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In this paper, the first order indices are computed from a global polynomial model using Effectively Subsampled 130 

Quadratures Method (ESQM v5.2; Seshadri et al., 2017b). There are two attributes to any data-driven polynomial model: the 131 

choice of the polynomial basis and the strategy for estimating the coefficients of the polynomial. The basis used in Effective 132 

Quadratures are orthogonal polynomials; i.e. orthogonal with respect to the weight of the input parameter. For example, if one 133 

of the input parameters is prescribed with a Gaussian distribution, then a Hermite orthogonal polynomial basis would be used; 134 

likewise for a uniform distribution, Legendre polynomials are used. In the current work, a uniform distribution is assumed for 135 

the input parameter space. The rationale behind selecting polynomials that are orthogonal with respect to the input weight is 136 

that it reduces the number of model evaluations required for estimating statistical moments. Details on the exponential 137 

convergence in moments when matching the orthogonal polynomial with its corresponding weight can be found in Xiu et al. 138 

(2002).  139 

The coefficients for the polynomial expansion are typically approximated using an integral over the input parameter 140 

space using quadrature rules. When the number of input parameters is greater than one, tensor grid or sparse grid based 141 

quadrature rules may be used to approximate these integrals. However, the cost of tensor grids grows exponentially with 142 

dimension, i.e., a four-point quadrature rule in three dimensions has 53 points, in four dimensions has 54 points and so on. 143 

While some alleviation can be obtained using sparse grids, in this paper a more efficient sampling technique is used: effectively 144 

subsampled quadratures (abbreviated to Effective Quadratures).  145 

The method of Effective Quadratures determines points for approximating the integral by subsampling well-chosen 146 

points from a tensor grid, and evaluating the model at those subsamples. These well-chosen points are obtained via a QR 147 

column pivoting heuristic (Seshadri et al. 2017a). Once the coefficients are estimated, the Sobol’ indices can be readily 148 

computed (Sudret 2008). 149 

 150 

2.3 Range of input vegetation properties for sensitivity analysis 151 

Prior to performing the simulations for estimating Sobol’ indices described above, a range of vegetation inputs that would 152 

impact the model response needs to be chosen. Kennish et al. (2013) constrained annual variation of three of the four vegetation 153 

properties (stem density, height, diameter) based on Zostera marina growth in the Barnegat Bay-Little Egg Harbor estuary. 154 

The thickness of Z. Marina is selected to be an order of magnitude lesser than its diameter based on Lakrum et al., 2007. Based 155 

on this, the range of the vegetation model inputs evaluated is as follows:   156 

1. Stem density (𝑛𝑣)= [38.2 - 250.4] stems/m2. 157 

2. Height  (𝑙𝑣) = [0.16 – 0.32] m.  158 

3. Diameter  (𝑏𝑣) = [1.0 – 10.0] mm. 159 

4. Thickness (𝑡𝑣) = [0.1 – 1.0] mm. 160 

For the sensitivity analysis, a combination of these ranges of inputs (Table 2) is chosen to configure different simulations in 161 

an idealized test case, described below. In addition to these four vegetation properties, the vegetative model requires an input 162 

of drag coefficient (𝐶𝐷) in the flow model and the wave model. However, variations on 𝐶𝐷 are unlikely to be measured in the 163 
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field and thus users could rely on the published literature for an appropriate choice based on the type, shape, and flexibility of 164 

the vegetation under study.   165 

 166 

2.4 Test case configuration 167 

An idealized rectangular model domain of 10 km by 10 km with a 3 m deep basin is chosen. The grid is 100 by 100 in the 168 

horizontal (100 m resolution) and has 60 vertical sigma-layers (uniformly distributed) leading to 0.05 m resolution in the 169 

vertical. The vertical resolution of 0.05 m allows a plant height of 0.27 m to be distributed over 6 vertical layers while the 170 

shortest height is restricted to 2 vertical layers. A square patch of vegetation (1 km by 1 km) is placed in the middle of the 171 

domain. The ROMS barotropic and baroclinic time steps are respectively 0.05 s and 1 s, while the SWAN time step and the 172 

coupling interval between ROMS and SWAN are 10 min. The friction exerted on the flow by the bed is calculated using the 173 

SSW bbl in the bottom boundary layer formulation (Warner et al., 2008). The bottom boundary layer roughness is increased 174 

by the presence of waves that produce enhanced drag on the mean flow (Madsen, 1994; Ganju and Sherwood, 2010). The 175 

vegetative drag coefficients (𝐶𝐷) in the flow model and the wave model are set to 1 (typical value for a cylinder at high 176 

Reynolds number). The bed roughness is set to z0=0.05 mm, which corresponds to a mixture of silt and sand (Soulsby, 1997). 177 

The turbulence model selected is the 𝑘 − 𝜀 scheme (Rodi, 1984). 178 

The model is forced by oscillating the water level on the northern edge with a tidal amplitude of 0.5 m and a period 179 

of 12 h. Waves are also imposed on the northern edge with a height of 0.5 m, directed to the south (zero angle), with a period 180 

of 2 s. The test case setup is similar to the one used by Beudin et al., (2017). The test case setup is simulated for 2 days to 181 

obtain a tidally steady state solution. These simulations require 40 CPU hours on Intel Xeon(R) X5650 2.67 GHz processors 182 

running on 24 parallel processors.  183 

 184 

2.5 Choice of COAWST model response to vegetation inputs   185 

The output parameters used to investigate the vegetation model sensitivity are chosen to reflect the first order effects of 186 

vegetation on the hydrodynamics and waves. The results for the model response are computed for the last tidal cycle (a total 187 

of 3 tidal cycles are required for achieving steady state). The presence of vegetation affects the output parameters in different 188 

physical ways (Table 1) as:  189 

1. Wave energy dissipation: Vegetation dissipates wave energy by reducing wave height, increasing wavelength, and reducing 190 

wave steepness.  191 

2. Kinetic energy: A drag force is generated by plants. This leads to a decrease in kinetic energy within and behind the 192 

vegetation patch.  193 

3. Water level: As the wave energy (and momentum) flux decreases due to bottom friction, the mean water level increases to 194 

balance the decrease in wave and kinetic energy. The flow decelerates in front of the patch and in the wake of the patch while 195 

it accelerates around the edges of the patch, leading to a water level gradient.  196 
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4. Turbulent kinetic energy (TKE):  Reduced turbulent kinetic energy in front and within the patch. The enhancement of TKE 197 

inside the boundary layer is not captured with the current resolution. 198 

The response impact to change in the inputs during each simulation is computed by calculating the percentage 199 

difference of model response for each simulation from the minimum value of all the simulations. The model response is 200 

obtained in and around the vegetation patch and averaged over the last tidal cycle. The change in model response of water 201 

level is computed by finding the maximum water level difference in and around the vegetation patch. In addition, the variability 202 

of model response with given vegetation inputs in different simulations is calculated through standard deviation of model 203 

response in and around the vegetation patch over the last tidal cycle. The standard deviation in TKE is depth averaged to 204 

provide a 2-D field. 205 

 206 

3 Results 207 

3.1 Setting up simulations with different vegetation inputs 208 

Using the range of input parameters described above (section 2.3), and assuming all the inputs are uniformly distributed over 209 

their ranges, a matrix of design of experiment values (Table 2) was determined using Effective Quadratures. A total of 15 210 

simulations were found to be required, corresponding to the number of coefficients in a 4D polynomial with a maximum order 211 

of 2. In general, the number of coefficients n, is given by the formula 212 

n = (
d + o

d
), 213 

where d is the number of dimensions and o is the maximum order (assuming it is isotropic across all dimensions).  214 

 215 

3.2 Model response from all the simulations  216 

The 15 simulations (parameter choice of each simulation in Table 2) are performed to provide model response from the four 217 

chosen output variables.  218 

1. Wave dissipation: The percentage change in wave dissipation from all simulations relative to the minimum value of wave 219 

dissipation varied between 75 and 600% (Fig. 3(a)). Simulation 2, which includes the combination of smallest stem density 220 

(𝑛𝑣= 62.1 stems/m2) and shortest height (0.174m), incurred the least wave dissipation, while simulation 3, which involved the 221 

combination of greatest stem density (𝑛𝑣= 226.5 stems/m2) and tallest height (0.295 m), resulted in greatest wave dissipation. 222 

The greatest amount of variability in wave dissipation occurs in front of the vegetation patch (Fig. 4), where the greatest 223 

amount of wave energy is dissipated due to the presence of the vegetation patch. 224 

2. Kinetic energy: The percentage change in kinetic energy from all simulations relative to the minimum kinetic energy varied 225 

between 5.0 and 34.0 % (Fig. 3b). Simulation 8, performed with an intermediate value of stem density along with the largest 226 

values of height, diameter, and thickness, results in the least amount of kinetic energy (lowest velocities).  Simulation 2 causes 227 

the least amount of extraction of momentum with a combination of smallest plant stem density, height, and diameter values, 228 

resulting in the greatest kinetic energy in and around the vegetation patch. The variability in kinetic energy from all the 229 
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simulations is observed at a cross section along the vegetation patch (Fig. 5). Variability is observed throughout the water 230 

column where the vegetation patch exists. Similar to the variability in wave dissipation, the greatest amount of variability 231 

occurs in front of the vegetation patch. The region of maximum variability occurs at a distance of (0.25 – 1.25) m above bed.   232 

3. Water level: The percentage change in maximum water level difference from all simulations relative to the minimum of the 233 

maximum water level difference varied between 3.0 and 18.0 % (Fig. 3c). The minimum water level gradient is obtained from 234 

simulation 13 that includes a combination of plant inputs (𝑛𝑣 = 62.1 stems/m2 (minimum), 𝑙𝑣 = 0.174 m (intermediate), 235 

diameter=6 mm (minimum), and 𝑡𝑣= 0.3 mm (minimum). Simulations 2, 6, and 11 also give relatively low values of water 236 

level gradient. Simulations 2 and 6 both involve the smallest plant stem density values (i.e. 𝑛𝑣= 62.1 stems/m2). On the other 237 

hand, simulation 8 (𝑛𝑣=144.3 stems/m2, 𝑙𝑣= 0.3 m (maximum),𝑏𝑣=9 mm, and 𝑡𝑣= 0.9 mm) accounts for the greatest value of 238 

maximum water level difference. The variability in water level (Fig. 6) is highest around the lobes of the vegetation patch 239 

where the water level adjusts owing to changes in velocity around the patch. Behind the vegetation patch, the variability  240 

increases as the water level adjusts to the change in flow conditions.  241 

4. Turbulent Kinetic Energy (TKE): The percentage change in TKE from all simulations relative to the minimum TKE varied 242 

between 0.5 and 10.0 % (Fig. 3d). Simulation 8 (combination of plant 𝑛𝑣= 144.3 stems/m2, 𝑙𝑣= 0.3 m, 𝑏𝑣= 9 mm and 𝑡𝑣= 0.9 243 

mm) gives the greatest amount of TKE, similar to what was observed with kinetic energy change. The smallest value of TKE 244 

is obtained in and around the vegetation patch in simulation 2 with a combination of plant inputs (𝑛𝑣 = 62.1 stems/m2, 𝑙𝑣 = 0.2 245 

m, 𝑏𝑣= 3 mm, and 𝑡𝑣 = 0.6 mm). Simulation 2 causes the least amount of dissipation of turbulence with a combination of 246 

smallest plant stem density, height and diameter. The variability in TKE peaks occurs in front of the vegetation patch (Fig. 7) 247 

where the different simulations dissipate turbulence to substantially different degrees. The changes in turbulence mixing caused 248 

by the presence of the vegetation patch are close to zero inside the patch (all simulations dissipate similar amounts of 249 

turbulence).  250 

 251 

3.3 Quantifying sensitivity using Sobol’ Indices  252 

Following the variability in model response from different simulations, the sensitivity to input vegetation parameters can be 253 

quantified with the use of first order Sobol’ indices that are obtained by taking advantage of the Effective Quadratures 254 

approach. Sobol’ indices are individually computed for all the model responses. The first order Sobol’ indices for all the model 255 

responses (Table 3) add up to more than 0.9. This results indicates they account for 90% of the variability in model response 256 

for the given vegetation property inputs, and the variability captured by second order and third order indices is relatively low. 257 

The model is most sensitive (Table 3) to plant stem density (𝑛𝑣) and height (𝑙𝑣) over the range of parameters considered; these 258 

two inputs account for over 80% of the sensitivity to all model outputs. The vegetation diameter (𝑏𝑣) accounts for 12-15 % of 259 

model sensitivity to kinetic energy, water level change, and turbulent kinetic energy. Thickness (𝑡𝑣) showed the least impact 260 

on all the chosen model outputs.  261 

 262 

 263 
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4 Discussion  264 

4.1 Variability in model response from sensitivity analysis 265 

From the different simulations performed during sensitivity analysis, there is a great amount of variability in front of the 266 

vegetation patch in wave dissipation, KE, and TKE (Figs. 4, 5 and 7). This is a result of large amount of wave dissipation and 267 

flow deceleration in front of the vegetation patch. The cross-sectional plane of the domain illustrates that the variability in KE 268 

occurs throughout the water column (Fig. 5), highlighting the 3-D impact of vegetation inputs. Interestingly, the greatest 269 

amount of variability in KE (Fig. 5) occurs at distance above the bed between 0.4 – 1.3 m at y = 5.6 km, while the maximum 270 

vegetation height in all the simulations is 0.3 m. This result indicates that variation in vegetation height results in the greatest 271 

amount of KE variability above the vegetation patch. The variability in water level change is large around the lobes and behind 272 

the vegetation patch (Fig. 6). The variability in these regions is because the change in local flow velocity is adjusted by a 273 

change in water level around the vegetation patch. This is further confirmed by observing the variation in velocity profiles 274 

with depth (Fig. 8a) at a particular time instance during flood tide. Simulation 8 results in the lowest velocity of 0.06 m/s while 275 

simulation 2 results in the peak flood velocity of 0.11 m/s. Consequently, the gradient of velocity with respect to depth is 276 

greatest at all depths for simulation 8 while least for simulation 2 (Fig. 8b). The gradient reaches a maximum value at the 277 

bottom layer.  278 

 279 

4.2 Understanding vegetation parameterization to interpret Sobol’ Indices  280 

The parameterizations involving extraction of momentum, turbulence production, and turbulence dissipation are directly 281 

affected by vegetation stem density (𝑛𝑣), diameter (𝑏𝑣), and thickness (𝑡𝑣) (Table 1).  Because these mechanistic processes 282 

occur at the blade scale, the dependence on vegetation height (𝑙𝑣) is implicitly included in the parameterizations. Sobol’ indices 283 

provide quantifiable information and show that vegetation height, stem density, and diameter (in decreasing order of 284 

importance) are pertinent in accurately computing kinetic energy (KE), turbulent kinetic energy (TKE), and water level. An 285 

accurate representation of KE and TKE has direct ramifications on estimating sediment transport while water level estimates 286 

can affect storm surge predictions.   287 

The high sensitivity of wave dissipation to vegetation stem density highlights the need of accurate density 288 

representation to attain wave attenuation estimates, especially in open coasts. SWAN computes wave dissipation due to 289 

vegetation as a bottom layer effect. Therefore, the height of the vegetation does not affect wave dissipation to the same extent 290 

as other model outputs: KE, TKE, and water level. In addition, the equation representing the wave dissipation process in 291 

SWAN is independent of vegetation thickness, thus corresponding to the lowest Sobol’ index. Vegetation thickness only 292 

appears in the turbulence dissipation term (Table 1) modifying the turbulence length scale has the least effect on any of the 293 

model responses.   294 

  295 

4.3 Linear curve fitting to complement Effective Quadratures based sensitivity analysis 296 
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  To complement the results of the Sobol’ indices calculation, linear fits to the data are conducted. The main parameter 297 

contributing to the wave dissipation variability is the stem density explaining over 80% of the variability (R2=0.81). The least 298 

squared fit to wave dissipation that included all parameters combined explains 98% of the variability. When fitting models, it 299 

is possible to increase the explained variance by using more complex fitting models adding parameters, but doing so may result 300 

in over-fitting. The Bayesian Information Criterion (BIC; Schwarz, 1978; Aretxabaleta and Smith, 2011) provides a non-301 

subjective metric for the best fit by penalizing over-parameterization. BIC resolves over-fitting by introducing a penalty term 302 

for the number of parameters in the model. For wave dissipation, the BIC approach identified a fit based exclusively on density 303 

as the model that best match the data while preventing over-fitting. The selection of density as the single most relevant 304 

parameter is consistent with the Sobol’ indices result (Table 3). 305 

The kinetic energy variability is also associated with stem density changes, but the percentage of explained variability 306 

(42%) is smaller than for wave dissipation. Diameter and height also contributed to changes in kinetic energy. The combination 307 

of stem density, height, and diameter provided the optimal fit of the data (selected by minimizing BIC) and explained 89% of 308 

variability in kinetic energy. Similar results were obtained for TKE with density explaining 45% of the variability but the 309 

combination of stem density, height, and diameter providing the optimal fit to TKE (selected by minimizing BIC) and 310 

explained 87% of the variability. The model response of water level variability is also best explained by a combination of stem 311 

density, height, and diameter (96% of water level variance explained). Thickness was not correlated with wave dissipation, 312 

kinetic energy or TKE and only contributed to water level gradient variability. 313 

 314 

4.4 Limitations of the current sensitivity methodology  315 

The model configuration chosen includes vegetation covering a small fraction of the water column to allow for proper wave 316 

dissipation. Many species of seagrass have a larger vertical footprint and can also exhibit much higher shoot densities. The 317 

goal of the study is to provide estimates on the relative importance of the different parameters through a robust sensitivity 318 

approach. The current work assumed rigid vegetation blades, while the model is capable of including flexible vegetation by 319 

altering the blade scale. The expected effect of flexible blades would be to reduce the relative importance of vegetation length 320 

(𝑙𝑣) on the model outputs. In addition, the present work assumes a constant drag coefficient for cylindrical vegetation shape; 321 

the influence of a variability drag coefficient can be a subject of a future sensitivity study. Other model parameters such as 322 

vertical and horizontal resolution, mixing parameterization, and wave and hydrodynamic forcings will also affect model 323 

results, but were beyond the scope of the current study. 324 

5 Conclusions 325 

The coupled wave-flow-vegetation module in the COAWST modeling system provides a tool to study vegetated flows in 326 

riverine, lacustrine, estuarine, and coastal environments. The resulting flow field in the presence of vegetation depends on its 327 

properties, including vegetation stem density, height, diameter, and thickness. The sensitivity of the hydrodynamic and wave 328 

conditions to changes in vegetation parameters is investigated. The sensitivity analysis helps in understanding the 329 
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multiparameter/multiresponse of various interactions within the model. We use an existing tool that formulates the Effective 330 

Quadratures method to quantify the sensitivity of plant input properties for the vegetation module in COAWST model. The 331 

decomposition of the variance of the model solution given by the Sobol’ indices is assigned to plant parameters. 332 

 The method of using Sobol’ indices to quantify sensitivity can be computationally expensive. One of the goals of 333 

this work is to demonstrate a robust, practical, and efficient approach for the parameter sensitivity analysis. We show that the 334 

approach of using Effective Quadratures method to select a parameter space that is consistent with physical understanding 335 

significantly reduces the computational time required to obtain the Sobol’ indices.   336 

The evaluation of Sobol’ indices shows that the input values of plant stem density, height and to a lesser degree, 337 

diameter are consequential in determining kinetic energy, turbulent kinetic energy and water level changes. Meanwhile, the 338 

wave dissipation is mostly dependent on the variation in plant density.  339 

The sensitivity analysis for the vegetation model in COAWST presented herein provides guidance for observational 340 

and modelling work by allowing future efforts to focus on constraining the most influential inputs without having to explore 341 

the entire parameter space. An accurate representation of processes causing kinetic energy and turbulent kinetic energy leads 342 

to enhanced understanding of sediment processes while accurate water level computations help to predict coastal flooding 343 

caused by storm surge. Similarly, wave attenuation measurements in open coasts are better understood with a correct 344 

representation of wave dissipation. In the future, we intend to perform a similar sensitivity analysis with the inclusion of a 345 

biological model that will affect plant growth, thus allowing a time dependence of model input and response.  In addition, the 346 

influence of vegetation on sediment transport will be explored. As model complexity increases with more parameters 347 

representing additional processes, input parameter sensitivity is required for the model to be applied on practical applications. 348 

 349 

6 Code availability 350 

The Effective Quadratures methodology is an open source Python based tool designed to perform sensitivity analysis for a 351 

given physical system. The instructions to install the code along with all the open source files for this tool are detailed here: 352 

https://github.com/Effective-Quadratures/Effective-Quadratures. For any further inquiries about the Effective Quadratures 353 

methodology, please contact the corresponding author Dr. P. Seshadri (ps583@cam.ac.uk).  354 

The COAWST model is an open source coupled hydrodynamics and wave model containing vegetation effects mainly 355 

coded in Fortran 77. This model provided the physical setting to perform the sensitivity analysis. The code is available from 356 

https://coawstmodel-trac.sourcerepo.com/coawstmodel_COAWST after registration via email with  J. C. Warner 357 

(jcwarner@usgs.gov).  358 

 359 

7 Data availability  360 

The model output from various simulations used to perform sensitivity analysis in this study are available 361 

at: http://geoport.whoi.edu/thredds/catalog/clay/usgs/users/tkalra/senstivity_study/catalog.html. The link contains a 362 

“README.txt” file that explains how the folder is organized to contain model output. 363 

https://github.com/Effective-Quadratures/Effective-Quadratures
https://coawstmodel/
http://trac.sourcerepo.com/coawstmodel_COAWST
mailto:jcwarner@usgs.gov
http://geoport.whoi.edu/thredds/catalog/clay/usgs/users/tkalra/senstivity_study/catalog.html
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 501 

 502 

 503 

 504 

Process Equation 𝑛𝑣 𝑙𝑣 𝑏𝑣 𝑡𝑣 

Extraction of 

Momentum 
𝐹𝑑,𝑣𝑒𝑔,𝑢 =

1

2
𝐶𝐷𝑏𝑣𝑛𝑣𝑢√𝑢2 + 𝑣2 

𝐶𝐷 = Plant drag coefficient 

u,v = Horizontal velocity components at each vertical level 

 

X  X  

Turbulence Production 

 

Uittenbogaard (2003) 

𝑃𝑣𝑒𝑔 = √(𝐹𝑑,𝑣𝑒𝑔,𝑢𝑢)
2

+ (𝐹𝑑,𝑣𝑒𝑔,𝑣𝑣)
2
 

 

X  X  

Turbulence Dissipation 

 

Uittenbogaard (2003) 

𝐷𝑣𝑒𝑔 = 𝑐2
𝑃𝑣𝑒𝑔

𝜏𝑒𝑓𝑓
  

𝜏𝑒𝑓𝑓  =  min (𝜏𝑓𝑟𝑒𝑒 , 𝜏𝑣𝑒𝑔) 

𝜏𝑓𝑟𝑒𝑒 =
𝑘

𝜀
 

𝜏𝑣𝑒𝑔 = (
𝐿2

𝑐𝑘
2𝑃𝑣𝑒𝑔

)

1 3⁄

 

 

𝐿(𝑧) = 𝑐𝑙 (
1 − 𝑏𝑣𝑡𝑣𝑛𝑣

𝑛𝑣

)
1 2⁄

 

𝑃𝑣𝑒𝑔= Turbulence Production 

𝜏𝑓𝑟𝑒𝑒  = Dissipation time scale of free turbulence 

𝑘 = Turbulent kinetic energy 

𝜀 = Turbulence dissipation 

𝜏𝑣𝑒𝑔 = Dissipation time scale of free turbulence 

𝑐𝑘 = (𝑐𝜇
0)

4
≃ 0.09 

𝐿 = typical length scale between the plants 

𝑐𝑙 = Lift coefficient of order unity 

X  X X 
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 Wave Dissipation 

 

Mendez and Losada   

(2004) 

Dalrymple et al. (1984) 

𝑆𝑑,𝑣𝑒𝑔 = √
2

𝜋
𝑔2𝐶�̃�𝑏𝑣𝑛𝑣 (

�̃�

�̃�
)

3

 

𝑠𝑖𝑛ℎ3(�̃�𝑙𝑣) + 3 𝑠𝑖𝑛ℎ(�̃�𝑙𝑣)

3�̃�𝑐𝑜𝑠ℎ3(�̃�ℎ)
√𝐸𝑡𝑜𝑡𝐸(𝜎, 𝜃) 

𝐶�̃� = Bulk drag coefficient 

�̃�  = Mean wave number 

  �̃� = Mean wave frequency 

ℎ  = Water depth 

𝐸𝑡𝑜𝑡 = Total wave energy 

𝐸 = Wave energy at frequency 𝜎 and direction 𝜃 

X X X  

Wave induced 

streaming 

 

Luhar et al., 2010 

𝐹𝑠,𝑣𝑒𝑔 =
𝑆𝑑,𝑣𝑒𝑔,𝑡𝑜𝑡 �̃�

𝜌0 �̃� 
 

     𝑆𝑑,𝑣𝑒𝑔,𝑡𝑜𝑡 = Total wave energy dissipation 

  �̃� = Mean wave number 

  �̃� = Mean wave frequency 

𝜌0 = Reference density of seawater  

 X                    X X  

Table 1: Processes in ROMS and SWAN to model the presence of vegetation. The different input parameters (stem 505 

density, 𝒏𝒗;  𝒉eight, 𝒍𝒗; diameter, 𝒃𝒗; and thickness, 𝒕𝒗) affecting model wave and hydrodynamics are included. 506 

 507 
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 527 

 528 

 529 

 530 

 531 

 532 

       Stem density (stems/m2) 

𝑛𝑣 

Height (m) 

𝑙𝑣 

Diameter (mm) 

𝑏𝑣  

Thickness (mm) 

 𝑡𝑣 

1. 144.3   0.24  6.0 0.6 

2. 62.1 0.17 3.0 0.6 

3. 226.5 0.3 6.0 0.3 

4. 144.3   0.17 9.0 0.9 

5. 144.3   0.3 3.0 0.9 

6. 62.1 0.3 6.0 0.3 

7. 226.5 0.17 6.0 0.3 

8. 144.3   0.3 9.0 0.9 

9. 144.3   0.24  9.0 0.3 

10. 226.5 0.24  6.0 0.9 

11. 144.3   0.24  3.0 0.3 

12. 62.1 0.24  6.0 0.9 

13. 62.1 0.17 6.0 0.3 

14. 62.1 0.24  9.0 0.6 

15.  144.3   0.17 3.0 0.9 

 533 

      Table 2: Plant property input combination for different simulations during sensitivity analysis. 534 
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 545 

 546 

 Plant Stem 

Density 

𝑛𝑣 

   Plant Height 

𝑙𝑣 

     Plant Diameter 

𝑏𝑣 

    Plant Thickness 

𝑡𝑣 

Wave dissipation 0.68 0.24 0.032 0.01 

Kinetic energy 0.36 0.44 0.12 0.03 

Maximum water level change 0.38 0.43 0.15 0.01 

Turbulent kinetic energy 0.35 0.42 0.12 0.03 

 547 

Table 3: Sobol Indices for all the outputs. 548 
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 574 

  575 

Figure 1: Schematic showing the vegetation module implementation in COAWST model (Figure adapted from Beudin 576 

et. al, 2017) 577 
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 582 

 583 

Figure 2: Schematic showing the idealized domain (Not drawn to scale) 584 

(a) Plan view and (b) Cross-sectional view. 585 
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 587 
Figure 3: Percentage change from minimum for the four impact parameters: a) wave dissipation; b) kinetic energy; 588 

c) maximum water level change (WL); and d) Turbulent Kinetic Energy (TKE). 589 
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 607 

 608 

Figure 4: Standard deviation from wave dissipation (W m-2) in presence of vegetation (Plan view). The area of the 609 

vegetation patch is highlighted in the middle of the domain. 610 
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 625 

Figure 5: Standard deviation in kinetic energy (cm2 s-1) in presence of vegetation (cross-sectional view).  626 
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 643 

 644 
Figure 6: Standard deviation in water level in presence of vegetation (plan view). The area of the vegetation patch is 645 

highlighted in the middle of the domain. 646 
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 654 

 655 
Figure 7: Standard deviation in Turbulent Kinetic Energy (TKE) (cm2 s-1) in presence of vegetation (plan view). The 656 

area of the vegetation patch is highlighted in the middle of the domain. 657 
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 659 
 660 

Figure 8: (a) Velocity (m s-1) profile and (b) Vertical gradient (s-1) of velocity profile varying with depth in front of the 661 

vegetation patch at a particular time instance during flood for different simulations. 662 
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