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Abstract. We develop a prognostic model of Pollen Emissions for Climate Models (PECM) for use within regional 6 

and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type 7 

and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year 8 

annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees 9 

(Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees 10 

(Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as 11 

much as 57% of the variance in pollen phenological dates, and it is used to create a “climate-flexible” phenology 12 

that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is 13 

evaluated in a regional climate model (RegCM4) over the continental United States by prescribing an emission 14 

potential from PECM and transporting pollen as aerosol tracers.  We evaluate two different pollen emissions 15 

scenarios in the model, using:  (1) a taxa-specific land cover database, phenology and emission potential, and (2) a 16 

plant functional type (PFT) land cover, phenology and emission potential.  The simulated surface pollen 17 

concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions.  18 

Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, 19 

although the performance of the simulations in any subregion is strongly related to the land cover representation and 20 

the number of observation sites used to create the empirical phenological relationship.  The taxa-based model 21 

provides a better representation of the phenology of tree-based pollen counts than the PFT-based model, however we 22 

note that the PFT-based version provides a useful and "climate-flexible" emissions model for the general 23 

representation of the pollen phenology over the United States.   24 

  25 
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1 Introduction 26 

Pollen grains are released from plants to transmit the male genetic material for reproduction.  When lofted into the 27 

atmosphere, they represent a natural source of coarse atmospheric aerosols, ranging typically from 15 to 60 µm in 28 

diameter, while sometimes exceeding 100 µm (Cecchi 2014; Sofiev et al. 2014).  In the mid-latitudes, much of the 29 

vegetation relies dominantly on anemophilous, or wind-driven, pollination (Lewis et al. 1983), representing a 30 

closely coupled relationship of pollen emissions to weather and climate. Anemophilous pollinators include woody 31 

plants such as trees and shrubs, as well as other non-woody vascular plants such as grasses and herbs.  Pollen 32 

emissions are directly affected by meteorological (e.g., temperature, wind, relative humidity) and climatological 33 

(e.g., temperature, soil moisture) factors (Weber 2003). Aerobiology studies indicate that after release, pollen can be 34 

transported on the order of ten to a thousand kilometers (Sofiev et al. 2006; Schueler and Schlünzen 2006; 35 

Kuparinen et al. 2007) but there are still large uncertainties regarding emissions and transport of pollen. 36 

Prognostic pollen emissions are useful for the scientific community and public, specifically for forecasting 37 

allergenic conditions or predicting the flow of genetic material.  The interest and growing wealth of knowledge of 38 

allergenic pollen has been recently reviewed by Beggs et al. (2017). To date, most pollen emissions models focus on 39 

relatively short, seasonal time scales and smaller locales for a limited selection of taxa (Sofiev et al. 2013; Liu et al. 40 

2016; R. Zhang et al. 2014). Climatic changes in large-scale pollen distributions are mostly absent from scientific 41 

literature, though multiple studies on phenological changes in the pollen season have been published (Ziska 2016; 42 

Yue et al. 2015; Y. Zhang et al. 2015a). Only recently have regional-scale modeling studies of pollen dispersion 43 

been conducted for Europe, and they have been used to assess the impacts of climate change on airborne pollen 44 

distributions (Sofiev and Prank 2016; Lake et al. 2017). In contrast to most meteorological pollen models, climate 45 

models require long-term (e.g., decadal to century scale) emissions at a range of resolutions covering continental 46 

regions up to the global scale. This distinction in both time and space requires a flexible model that can account for 47 

emissions without taxon-specific emission data (i.e. differentiation between genera or species) and can be used 48 

within aggregated vegetation descriptions, such as plant functional types (PFTs). Given recent interest in airborne 49 

biological particles and their role in climate (Despres et al. 2012; Myriokefalitakis et al. 2017), an emissions model 50 

that captures longer temporal scales and broader spatial scales is key to developing global inventories and 51 

understanding pollen’s role in the climate system. Here we develop a model for use in the climate modeling 52 

community that can be used specifically to simulate pollen emissions on the decadal or centurial time scale for large 53 

regions using conventional climate or Earth system models. 54 

Existing pollen forecasting models are often classified as either process-bsased phenological models or observation-55 

based models (Scheifinger et al. 2013). Process-based phenological models employ a parameterization of plant 56 

physiology and climatic conditions (e.g., relating the timing of flowering to a chilling period, photoperiod, or water 57 

availability). Pollen season phenology in an anemophilous species is inherently connected to its environment via 58 

relationships in the growing season dynamics (e.g. bud burst and temperature, (Fu et al. 2012)), and many models 59 

apply the same techniques to flowering as for bud burst (Chuine et al. 1999). This approach to phenology could be 60 

suited to climate models, given its flexibility for adaptive phenological events and regional-scale studies. Typically, 61 

these types of phenological models are taxa specific as well as regionally dependent, e.g., Betula in Europe or 62 
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ragweed in California (Sofiev et al. 2013; Siljamo et al. 2013; R. Zhang et al. 2014).  These models are usually 63 

calibrated to local data only even though distinct geographic differences exist for pollen phenology. Thus, such 64 

models may not perform equally well in other locations. Though process-based models draw a connection between 65 

an atmospheric state variable, i.e. temperature, and pollen emissions, at least three parameters are required for 66 

optimization and they are susceptible to overfitting (Linkosalo et al. 2008). While some process-based models may 67 

be scaled up to larger regions while maintaining appreciable accuracy (García-Mozo et al. 2009),  such models are 68 

generally not practical for implementation in larger-scale climate modeling with regional climate models (RCMs) 69 

and global climate models (GCMs) because sufficient land cover data is not available at the appropriate taxonomic 70 

level.   71 

In contrast to process-based models, observation-based methods determine the phenology of vegetation with 72 

statistical-empirical approaches (e.g., relating the start of the pollen season with mean temperatures preceding the 73 

pollen event) and often rely on regression models or time series modeling (Scheifinger et al. 2013). Time series 74 

modeling utilizes observations to define the deterministic and stochastic variability of pollen count observations and 75 

is frequently used in aerobiological studies (Moseholm et al. 1987; Box et al. 1994). Regression models, either using 76 

a single or multiple explanatory variable(s), exploit past relationships to define the magnitude of emissions as well 77 

as timing variables such as the start date and duration of the pollen season (Emberlin et al. 1999; M. Smith and 78 

Emberlin 2005; Galán et al. 2008). Using local pollen count data, Zhang et al. (2015b) completed a regional 79 

phenological analysis using multiple linear regressions for pollen in Southern California for six taxa. Olsson and 80 

Jönsson (2014) show that empirical models based solely on spring temperature perform just as well as process-based 81 

models using the temperature forcing concept, and better than those including a chilling or dormancy-breaking 82 

requirement. 83 

Observation-based methods assume stationarity, or the likelihood that the statistics of pollen counts or climate 84 

variables are not changing over time.  For these models to apply outside of calibration period, they require that the 85 

driving pattern or relationship is maintained in the future (or past).  For example, as the Earth’s climate changes, 86 

these models do not represent the complex connections between pollen emissions and a warming world aside from 87 

the relationships determined empirically. However, these models provide clear and often simple formulations that 88 

have predictable behaviors and forgo the nuance of fitting ambiguous and uncertain parameters. We therefore 89 

choose to employ elements of the observational methods for this pollen emissions model formulation, as described 90 

in Section 4. 91 

In addition to understanding the release of pollen grains, a second consideration is the large-scale transport of pollen. 92 

Once emitted to the atmosphere, pollen is mixed within the atmospheric boundary layer by turbulence, and 93 

depending on large-scale conditions, can be transported far from the emission source.  Prior studies have used both 94 

Lagrangian (Hunt et al. 2002; Hidalgo et al. 2002) and Eulerian techniques to simulate the transport of pollen, with 95 

the former typically used for studies of crop germination and the latter primarily for allergen forecasting. For 96 

example, Helbig et al. (2004) used the meteorological model KAMM (Karlsruher Meteorologisches Modell) with 97 

the DRAIS (Dreidimensionales Ausbreitungs- und Immissions-Simulationsmodell) turbulence component to 98 

simulate daily pollen counts for region over Europe. Schueler and Schlünzen (2006) use a mesoscale atmospheric 99 
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model (METRAS) to quantify the release, transport and deposition of oak pollen for a two-day period over Europe.  100 

Sofiev et al. (2013) includes the long-range transport of birch pollen over Western Europe by developing a birch 101 

pollen map and a flowering model to trigger release in the Finnish System for Integrated modeling of Atmospheric 102 

coMposition (SILAM). Efstathiou et al. (2011) developed a pollen emissions model for use within the regional air 103 

quality model (the Community Multi-scale Air Quality model (CMAQ)), and tested their model with birch and 104 

ragweed taxa.  Zhang et al. (2014) implements a similar pollen emissions scheme with a regional numerical weather 105 

prediction model (the Weather Research and Forecasting (WRF) modeling system).  Zink et al. (2013) developed a 106 

generic pollen modeling parameterization for use with a numerical weather prediction model (COSMO-ART) that is 107 

flexible to include differing pollen taxa. Collectively, these relatively new developments suggest a growing interest 108 

in the prognostic estimation of pollen on the short-term for seasonal allergen forecasting on the weather (e.g., one to 109 

two weeks) time scale. 110 

In this manuscript, we build on these coupled emissions-transport models and develop a comprehensive emissions 111 

model (Pollen Emissions for Climate Models; PECM) for use at climate model time scales that covers the majority 112 

of pollen sources in sub-tropical to temperate climes, including woody plants, grasses and ragweed. First, we 113 

summarize the spatial distribution and seasonality of pollen counts for various taxa in the United States based on 114 

current observations (Section 2). Then we develop new pollen emissions parameterization for climate studies 115 

(Section 4), transport these emissions over the continental United States (CONUS) using the Regional Climate 116 

Model version 4 (RegCM4) (Giorgi et al. 2012), and evaluate the results using eight years of observed pollen count 117 

data (Section 5). We implement two different land cover classification schemes to illustrate the uncertainties 118 

associated with vegetation representation for trees including: (1) detailed family- or genus- level tree distributions 119 

over CONUS, and (2) the use of plant functional type (PFT) level distributions, which groups vegetation types by 120 

physiological characteristics (Section 3). As the latter provides a greater opportunity for expansion into regional and 121 

global scale climate models over multiple domains, we discuss the effects that the PFT-based categorization has on 122 

the total estimated source strength of pollen. Finally, the limitations of this emissions framework and suggestions for 123 

future developments are included (Section 6). 124 

2 Observed pollen Phenology 125 

2.1 Data description 126 

The National Allergy Bureau (NAB) of the American Academy of Allergy, Asthma and Immunology (AAAAI) 127 

conducts daily pollen counts at 96 sites in cities across the United States (US), its territories and several locations in 128 

southern Canada.  All NAB sites implement a volumetric air sampler and certified pollen count experts to conduct 129 

daily pollen counts (grains m-3) for up to 42 plant taxa at either the family level (e.g., Cupressaceae, Poaceae), genus 130 

level (e.g., Acer, Quercus), or for four generic categories termed “Other Grass Pollen,” “Other Tree Pollen,” “Other 131 

Weed Pollen” or “Unidentified.”  We use NAB pollen count data ranging from 2003-2010 at all stations in the 132 

continental United States (Figure 1) for selected taxa to develop and evaluate PECM, and to determine the 133 

phenology of wind-driven pollen.  Individual station locations and descriptions are included in Table S1. 134 
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We evaluate the observed pollen counts to determine the vegetation types that emit the largest magnitude of pollen 135 

over the continental United States.  Since many of the taxa reported at the 96 NAB sites frequently have very low 136 

pollen counts (e.g., less than 10 grains m-3), a threshold for the grain count is set to select the taxa with the highest 137 

pollen counts. We calculate the average of the annual maximum pollen count across all years (2003-2010), Pavgmax, 138 

at each site for each counted taxon.  We then select taxa to include in PECM using two criteria: (1) the maximum of 139 

Pavgmax among all stations exceeds 100 grains m-3, and (2) the average Pavgmax among all stations exceeds 70 grains m-140 
3 (Table S2). Using these two criteria, 13 taxa are selected for inclusion in the model, including Acer, Alnus, 141 

Ambrosia, Betula, Cupressaceae, Fraxinus, Poaceae, Morus, Pinaceae, Platanus, Populus, Quercus and Ulnus. 142 

These thirteen taxa account for about 77% of the total pollen counted across the United States during 2003-2010. 143 

The 13 dominant pollen types are grouped into four main categories by plant functional type:  deciduous broadleaf 144 

forest (DBF), evergreen needle-leaf forest (ENF), grasses (GRA) and ragweed (RAG).  Plant functional type is a 145 

land cover classification commonly used in the land surface component of climate models, and this categorization 146 

will allow flexibility to apply the emissions model to other climate models.  The DBF category includes 9 genus-147 

level taxa (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, and Ulmus) and the ENF category 148 

includes two family-level taxa (Cupressaceae and Pinaceae).  The grass PFT utilizes pollen count data from the 149 

Poaceae family, although we note that the grass PFT classification may include herbs and other non-woody species 150 

that may emit pollen as well. Ambrosia (ragweed) is segregated as its own category (RAG), due to its high pollen 151 

counts in the early autumn and unique land cover features. Daily pollen counts were summed for each PFT prior to 152 

calculating an 8-year average pollen time series.  153 

 154 

2.2 Observed seasonality of pollen emissions  155 

Pollen counts are analyzed over five subregions based on their climatic differences (Figure 1; Table S1) to identify 156 

emissions patterns over the continental United States.  These five subregions are the Northeast (temperate; 38°-48ºN 157 

and 70º-100°W; 34 stations), the Southeast (temperate, subtropical; 25-38°N and 70º-100°W; 29 stations), Mountain 158 

(varied climate; 25º-48ºN and 100º-116°W; 9 stations), California (Mediterranean, varied climate; 25º-40ºN and 159 

116°-125ºW; 13 stations) and the Pacific Northwest (temperate rainforest; west of 116°W and north of 40°N; 4 160 

stations). Figure 2 shows the observed average PFT daily pollen counts averaged over all stations within the defined 161 

subregions.  162 

For deciduous broadleaf forest (DBF) taxa, the Southeast has the highest average pollen maximum reaching up to 163 

about 700-1200 grains m-3 around day 100.  In the Northeast, DBF is the dominant PFT, reaching up to an average 164 

of 400 grains m-3 and peaking slightly later (around day 120) than the Southeast. California sites show an average 165 

peak around 150 grains m-3 occurring slightly earlier around day 80. A sharp maximum of 775 grains m-3 appears in 166 

the Mountain subregion at about day 80, with a secondary emission reaching around 150 grains m-3 on day 125.  In 167 

the Northwest, DBF pollen has the earliest maximum (day 70) at about the same magnitude as California (~200 168 

grains m-3). In some locations, there is a secondary DBF peak in the late summer and early fall due to the late 169 

flowering of Ulmus crassifolia and Ulmus parvifolia, located predominantly in the Southeast and California (Lewis, 170 
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et al.1983).  In the Southeast this occurs between days 225 and 300, while in California this occurs twice around day 171 

245 and day 265. 172 

The two ENF families exhibit pollen release at two distinct but overlapping times, with Cupressaceae peaking before 173 

Pinaceae. Cupressaceae in the Southeast emits pollen earlier than in other subregions, with a maxima at just over 174 

400 grains m-3 around day 10 and counts above 200 grains m-3 in December of the prior year. Cupressaceae 175 

dominates the total emissions for the Southeast, with a smaller maximum from Pinaceae of about 180 grains m-3 176 

near day 110.  In the Northeast, the bimodality of ENF is evident with the Cupressacaeae family reaching a 177 

maximum of 100 grains m-3 near day 85 with a secondary Pinaceae maximum approximately 65 days later at about 178 

half the magnitude (~50 grains m-3). In the Mountain and Pacific Northwest subregions, the maximum occurs around 179 

day 50-80 and can reach up to 350 grains m-3 in the Mountain subregion, but in both subregions is generally much 180 

lower than the eastern United States (approximately 50 grains m-3).  In the California subregion, ENF emissions are 181 

comparatively low (< 50 grains m-3) which is likely due to the bias in sampling locations.   182 

The grasses (Poaceae) have comparatively low average pollen counts (<25 grains m-3) throughout the season in all 183 

subregions except the Northwest, where the maximum reaches 75 grains m-3.  However, the average maximum 184 

Poaceae pollen count at individual stations is close to 100 grains m-3, with the individual annual maxima reaching 185 

several hundreds of pollen grains m-3. In the AAAAI data, there are two distinct maxima in the Northeast Poaceae 186 

count, and we attribute the first seasonal maximum to C3 grasses (peak around day 155) and the second grass 187 

maximum mainly to C4 grasses (peak around day 250). Observations by Craine et al. (2011) of Poaceae in an 188 

American prairie have indicated that C3 and C4 grass flowering occurs at distinctly different times, with C3 in the 189 

late spring and C4 in mid- to late summer. Similarly, Medek et al. (2016) observed two grass pollen peaks in 190 

Australia, with a stronger, late-summer peak at lower Southern latitudes where there is higher incidence of C4 grass. 191 

However, the authors note that sometimes this may be due to a second flowering of some C3 grass species. Although 192 

the C3-C4 separation cannot be confirmed in the AAAAI pollen count data because they are not distinguished during 193 

pollen identification, this distinction is included in the model as discussed in Sections 3.1 and 4.2 below.  In the 194 

Southeast, this separation of the Poaeceae pollen counts is less apparent because both of the emission maxima are 195 

broader and intersect one another.  In the Southeast, the first observed pollen maximum (assessed as C3 grass pollen) 196 

peaks earlier around day 140, while the second maximum (assessed as C4 grasses) have a similar, yet smaller value 197 

around day 250. In the Mountain subregion, the first grass maximum occurs later in the year (day 175) and the 198 

second grass maximum occurs around day 250 in the late summer. Pollen counts in California are only substantial 199 

during the earlier flowering time (C3 grasses) and have a similar duration to the Northeast, peaking at around day 200 

135.  For the Pacific Northwest, there is one strong early peak of grass pollen in the middle of the summer (day 170) 201 

and a secondary maximum is negligible, although counts below 10 grains m-3 register around days 250-270. 202 

Ragweed (Ambrosia) pollen is segregated from other grasses and herbs because of the strong allergic response in 203 

humans to this specific species and the unique timing of emissions.  Because it is a short-day plant (i.e. its 204 

phenology driven by a shortening photoperiod and cold temperatures (Deen et al. 1998)), ragweed pollen seasons 205 

are generally constrained to the late summer with the exception of the Mountain region where some counts occur in 206 

the spring. Emissions in the Northeast reach a maximum around day 240 at 60 grains m-3 while they occur slightly 207 
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later in the Southeast, peaking around day 270 with twice the magnitude (120 grains m-3). Ragweed pollen in the 208 

Mountain subregion with an expected peak at around day 245, but also an earlier peak at around day 130 with no 209 

confirmed cause. Ambrosia is not detected in the station averages for California and the Pacific Northwest, although 210 

some individual sites in these regions record relatively low counts on the order of 10 grains m-3. 211 

 212 

3 Model input data 213 

3.1 Land cover data 214 

With a goal of developing regional to global pollen emissions, one of the greatest limitations is the description of 215 

vegetation at the appropriate taxonomic level and spatial resolution.  While land cover databases specific to species 216 

level are available for some regions, they are not available globally. Alternatively, vegetation land cover in regional 217 

to global models can be represented by classifications based on biophysical characteristics. For climate models, a 218 

common approach to represent land cover is with plant functional types (PFT), and global PFT data is readily 219 

available and used by many regional and global climate models to describe a variety of terrestrial emissions 220 

(Guenther et al. 2006) and biophysical processes in land-atmosphere exchange models. The creation of a pollen 221 

emissions model with PFT categorization would be of use at a broad range of spatial scales and domains while 222 

integrating more readily with climate models.  In the pollen emissions model development and evaluation (Sections 223 

4 and 5), we compare two different vegetation descriptions of broadleaf deciduous and evergreen needleleaf trees 224 

including (1) family- or genus-specific land cover and (2) land cover categorized by PFT.   225 

The Biogenic Emissions Landuse Database version 3 (BELD) provides vegetation species distributions at 1 km 226 

resolution over the continental United States based on satellite imagery, aerial photography and ground surveys, as 227 

well as other land cover classification data such as geographical boundaries (Kinnee et al. 1997; 228 

https://www.epa.gov/air-emissions-modeling/biogenic-emissions-landuse-database-version-3-beld3). The BELD 229 

database includes 230 different tree, shrub and crop taxa across the United States as a fraction of the grid cell area at 230 

either the genus or species level.  For family and genus level pollen emissions, the BELD land cover fraction for the 231 

11 dominant pollen-emitting tree taxa identified in Section 2.1 is utilized (Table 1; Figure 3).  For species level land 232 

cover data, land cover fraction is calculated as the aggregate of all species within a family or genus.  233 

For the PFT land cover, we use the Community Land Model 4 (CLM4) (Oleson et al. 2010) surface dataset that 234 

employs a 0.05º resolution satellite-derived land cover fraction from the International Geosphere Biosphere 235 

Programme (IGBP) classification (Lawrence and Chase 2007). We sum all three biome PFT categories (temperate, 236 

tropical and boreal) for deciduous broadleaf forests (DBF) and two biome PFT categories (boreal and temperate) for 237 

evergreen needleaf forests (ENF) to produce the model PFT land cover. 238 

Figures 4a-d compare the BELD land cover (summed by PFT) and CLM4 land cover for the two tree PFTs. Region 239 

by region comparison of land cover for all BELD taxa and each tree PFT (from both BELD and CLM4) is given in 240 

Table 2. An important distinction is that CLM4 land cover extends beyond U.S. borders because it is derived from a 241 

global dataset, whereas BELD is constrained to the continental United States. BELD and CLM4 land cover show 242 
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general agreement on the regional distribution of both tree PFTs. DBF is predominantly in the eastern portion of the 243 

United States with a gap in the Midwestern corn belt. ENF is present in the Southeast, the Northeast along the U.S.-244 

Canadian border, along the Cascade and Coastal mountain ranges and throughout the northern Rockies.  A notable 245 

difference is the CLM4 representation of ENF, which shows a strong, dense band extending from the Sierra Nevadas 246 

through the Canadian Rockies. The BELD ENF broadly covers the Rocky Mountain Range, yet more diffusely (land 247 

cover percentage up to 76%), whereas the CLM4 dataset shows sparser and dense ENF land cover (e.g., up to 100%) 248 

in the same range. For the DBF category, another notable difference is that the strong band of oaks around the 249 

Central Valley of California, which is evident in BELD but missing from the CLM4 data set. Additionally, the 250 

CLM4 has far greater densities of DBF along the Appalachian range than BELD.  Overall, the CLM4 land cover 251 

fractions for forest PFTs are higher on average than the summed BELD taxa, about 2 to 10 times as much in each 252 

region, with the exception of California subregion DBF where CLM4 landcover is about half of that in the BELD 253 

dataset (Table 2). 254 

Grass spatial distributions are given by C3 (non-arctic) and C4 grass PFT land cover classes from CLM4 (Figure 255 

4e,f), which correspond to the observed family-level Poaceae pollen subdivided into C3 and C4 categories (described 256 

in Section 2.2). C3 coverage is evident across the United States, with broad coverage throughout the Southeast, 257 

Midwest, and northern Great Plains (Fig. 4e). C4 coverage is concentrated in the Southeast and Southern Great 258 

Plains at lower densities (Fig. 4f).  259 

Ragweed requires a different land cover treatment, as land cover distributions are not available for ragweed across 260 

the entire continental United States. Ragweed is known to arise in areas of human disturbances (Forman and 261 

Alexander 1998; Larson 2003), and is found mainly in disturbed or developed areas such as cities and farms (Katz et 262 

al. 2014; Clay et al. 2006).  Ambrosia land cover (Figure 4g) is derived from the urban and crop categories of the 263 

CLM4 land cover, which are sourced from LandScan 2004 (Jackson et al. 2010) and the CLM4 datasets, 264 

respectively. The urban data is subdivided by urban intensity, which is determined by population density. We 265 

assume that ragweed is unlikely to grow in the densest of urban areas (such as city centers), and utilize the lowest 266 

urban density category that is also the most widespread. Ragweed land cover (plants m-2) in urban areas is 267 

determined by multiplying the average urban ragweed stemdensity given by Katz et al. (2014) by the urban land 268 

cover fraction. For crops, the CLM4 subdivides land cover fraction into categories including corn and soybean 269 

crops, and Clay et al. (2006) provide ragweed stem densities in soybean and corn cropland. Thus, we calculate the 270 

ragweed land cover in stems m-2 (frag): 271 

1      𝑓!"# = 𝛼 𝑑!"#𝑓!"# + 𝑑!"#$𝑓!"#$ + 𝛽(𝑑!"#𝑓!"#) 

where dsoy, dcorn and durb represent the stem density (stems m-2) of ragweed in soybean, corn and urban areas, 272 

respectively, and the fsoy, fcorn and furb represent the fractional land cover for soybean, corn and urban, respectively. α 273 

and β are tuning parameters to that are determined by a preliminary evaluation between modeled and observed 274 

ragweed pollen counts, where α= 0.01 for crop and β= 0.1 . Zink et al. (2017) show that a ragweed land cover 275 

representation developed by combining land use and local pollen count information evaluates better against 276 

observed pollen counts than even ragweed ecological models, giving confidence to this choice of land cover 277 

representation. 278 
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All land cover data are regridded to a 25 km resolution across the United States to provide emissions at the same 279 

spatial resolution as the regional climate model (see Section 5). 280 

 281 

3.2 Meteorological data for phenology 282 

To develop the emissions model, we use two sources of meteorological data.  The first is a high-resolution 283 

meteorological dataset to develop the phenological relationships for the timing of pollen release. Because reliable 284 

measurements are not available at all pollen count stations and there is uncertainty in the siting of these stations 285 

(e.g., they may be in urban areas with highly heterogeneous temperature), we use a gridded observational 286 

meteorological product for consistency across all sites (Maurer et al. 2002).  The gridded Maurer dataset interpolates 287 

station data to a 1/8º grid across the continental United States on a daily basis, representing a high spatial resolution 288 

gridded data product where data from each meteorological station has been subject to consistent quality control. 289 

Higher resolution DayMet temperatures (daily 1 km) (Thornton et al. 2014) were used in lieu of Maurer data at 290 

NAB sites where the Maurer dataset did not provide information at the collocated grid cell (Table S1). For offline 291 

emission calculations input into the regional climate model, we use annual-average temperatures computed from 292 

monthly Climate Research Unit (CRU) temperature data (Harris et al. 2014). This data was interpolated from a 293 

0.5ºx0.5º grid to the 25 km regional climate model grid used for pollen transport.  294 

 295 

4 PECM model description 296 

4.1 Emission potential 297 

The pollen emissions model is a prognostic description of the potential emissions flux of pollen (Epot; grains m-2 d-1) 298 

for an individual taxon i: 299 

2     𝐸!"#,! 𝑥, 𝑦, 𝑡 = 𝑓!(𝑥, 𝑦)
𝑝!""#!$,!

𝛾!!!",! 𝑥, 𝑦, 𝑡  𝑑𝑡!"#
!

𝛾!!!",! 𝑥, 𝑦, 𝑡  

for a model grid cell of location x and y at time t.  In this expression, f(x,y) is the vegetation land cover fraction 300 

(Section 2.1; m2 vegetated m-2 total area), pannual is the daily production factor (grains m-2 yr-1), and 𝛾phen is the 301 

phenological evolution of pollen emissions that controls the release of pollen (description below).  Equation 2 can 302 

apply to either a single taxa or PFT, depending on the prescription of land cover through f(x,y).  In the simulations 303 

described here, emissions are calculated offline based on this equation and provided as input to a regional climate 304 

model (RCM).  This emission potential is later adjusted based on meteorological factors in the RCM where the 305 

pollen grains are transported as aerosol tracers (Section 5.1.1).  In the future, Equation 2 can be coupled directly 306 

within the climate model for online calculation of emissions.  The phenological and production factors are described 307 

in greater detail below.   308 
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4.2 Phenological factor (γphen) 309 

Based on the observed pollen counts, a Gaussian distribution is used to model the phenological timing of pollen 310 

release (γphen):  311 

3     𝛾!!!",! 𝑥, 𝑦, 𝑡 = 𝑒
!(!!! !,! )!

!!(!,!)!  

where µ(x,y) and 𝜎(x,y) are the mean and half-width of the Gaussian, respectively, and can be determined based on 312 

the start day-of-year (sDOY) and end day-of-year (eDOY) calculated by an empirical phenological model: 313 

4     𝜇 𝑥, 𝑦 =
𝑠𝐷𝑂𝑌 𝑥, 𝑦 + 𝑒𝐷𝑂𝑌(𝑥, 𝑦)

2
 

5     𝜎 𝑥, 𝑦 =
𝑒𝐷𝑂𝑌 𝑥, 𝑦 − 𝑠𝐷𝑂𝑌(𝑥, 𝑦)

𝑎
 

The fit parameter, a, accounts for the conversion between the empirical phenological dates based on a pollen count 314 

threshold and the equivalent width of the emissions curve. Based on evaluation versus observations, a = 3 was 315 

selected for initial offline simulations. 316 

Linear regressions of observed sDOY and eDOY from individual pollen count stations versus temperature are used 317 

to empirically determine sDOY and eDOY that drive γphen. An important criteria is the grain count used to determine 318 

the sDOY and eDOY, and we utilize a count threshold adaptable to bimodal emission patterns such as those noted 319 

for Ulmus and Poaceae. Sofiev et al. (2013) selected dates on which the 5th and 95th percentile of the annual index 320 

(annual sum of pollen counts) were reached, while Liu et al. (2016) combined a 5 grains m-3 threshold with the 321 

additional condition that 2.5% (97.5%) of the annual sum of pollen was reached before the start (end) date.  Here, 322 

we implement a pollen count threshold of 5 grains m-3 and found this was sufficient to reproduce the observed 323 

seasonal cycle. To account for smaller signals that may be due to count errors (e.g., an exceedance of the 5 grains m-324 
3 threshold but not followed by an increase in emissions), we used a moving window with a threshold of 25 grains 325 

m-3 for the sum of pollen counts in the nearest 10 neighboring days; when the sum of the neighbors failed to meet 326 

this threshold, the data point was omitted.  In this manner, we calculated the sDOY and eDOY for the full 8-year 327 

time series for each taxon at each station. If more than one start or end date was found in a single year at a single 328 

station for a taxon that was not clearly bimodal, only the first set of dates was retained for the linear regression. For 329 

taxa with an observed bi-modal peak, the second peak was treated as a separate taxon (e.g. early and late Ulmus, C3 330 

and C4 Poaceae) with a separate phenology. Once the sDOY and eDOY were determined, outliers in these dates 331 

were determined by bounding the data for each taxon at four times the mean absolute deviation of sDOY and eDOY. 332 

Near surface atmospheric temperature (e.g., 2m height) is an important factor of vegetation phenology. In the 333 

interest of having a regional model of emissions that prognostically calculates the start dates, the previous year 334 

annual average temperature (PYAAT) based on near-surface atmospheric temperature from Maurer et al. (2002) and 335 

Thornton et al. (2014) (Section 2.2) is the explanatory variable in the linear regressions.  For example, for a start 336 

date of February 2, 2007, the PYAAT would be the mean temperature for the year 2006. For Pinus and 337 

Cupressaceae, PYAAT is calculated differently from July 1, 2005 - June 30, 2006 because emissions of these 338 

families begin in the early winter (December).  Prior studies have shown that the meteorology of the year previous 339 

to the pollen season influences pollen production, especially temperature, suggesting that PYAAT may be a good 340 
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predictor variable (Menzel and Jochner 2016). While emissions in this study are calculated using offline 341 

meteorological data, this also could be coupled to a dynamic land surface model to predict reasonably accurate 342 

pollen phenological dates. 343 

To exemplify this method, Figure 5 shows the phenological dates and regression lines for the Betula (birch) genus, 344 

with all 13 modeled taxon shown in Figures S1 and S2.  The sDOY and eDOY of the pollen season show a moderate 345 

and considerable trend with temperature for most taxa and PFTs (Table 1; Figures S1 & S2). The linear regression 346 

models for sDOY explain 41% of the variance on average for DBF taxa, 47% on average for ENF taxa, 48% for C3 347 

Poaceae, and 8% for Ambrosia while having a negligible R2 for C4 Poaceae. For eDOY, the linear regression models 348 

explain 21% of the variance on average for DBF taxa, 29% for ENF, 4% for C3 Poaceae, 32% for C4 Poaceae, and 349 

37% for Ambrosia. All trends except C4 Poaceae, late elm, and Ambrosia are negative, indicating that warmer 350 

previous-year temperatures result in earlier start and end dates. For most tree taxa, the trend of both sDOY and 351 

eDOY are negatively correlated with PYAAT, with a steeper negative slope for sDOY. The correlation for the 352 

duration of the pollen season (eDOY – sDOY) is then positive for all taxa except Cupressaceae. This suggests that 353 

warmer climates have earlier pollen season start and end dates but longer season lengths.  354 

Trends for grass in Australasia show that the correlation of the end date of the pollen season with average spring 355 

temperature is positive, while the same relationship for the start date is negative, suggesting also that season start 356 

dates are earlier and season duration increases with warmer climates (Medek et al. 2016). The apparent trend in the 357 

season end date for Ambrosia with PYAAT could be due to the increased number of frost-free days, consistent with 358 

global warming, and a strong relationship between frost-free days and changes of ragweed season length (Easterling 359 

2002; Ziska et al. 2011). 360 

This agrees with earlier findings that suggest the pollen season will, on average, start earlier with a warmer global 361 

climate and have a longer duration (Confalonieri et al. 2007). The spatiotemporal heterogeneity of climate change 362 

may affect which regions and seasons will be most influenced by climate change (Ziska 2016). In fact, there is 363 

imperfect agreement that earlier start dates and longer seasons will occur unanimously throughout the United States 364 

region, at least for trees (Yue et al. 2015). It is understood that photoperiod and the dormancy-breaking process 365 

controlled by chilling temperatures play a significant role in the phenology of trees (Myking and Heide 1995; Ziska 366 

2016), and it is generally accepted that a plethora of other factors, such as plant age, mortality, and nutrient 367 

availability also affect observed phenological dates  (Jochner et al. 2013). However, even without these factors, the 368 

current phenological model is applicable to large regions and provides a clear response of plants to inter-annual 369 

climate variability as well as long-term climate changes.  For this first assessment of PECM, we assume that the 370 

pollen production factor (pannual) does not change with time and that the phenological model described above 371 

captures the main features of pollen emissions. 372 

4.3 Annual pollen production (pannual) 373 

Annual production factors (grains m-2 year-1, where m-2 refers to vegetated area, or grains stem-1 year-1 for ragweed) 374 

for each modeled taxon are provided in Table 1. The annual pollen production factor (pannual) defines the amount of 375 

pollen produced per vegetation biomass per year based on literature values. Tormo Molina et al. (1996) report the 376 
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annual pollen productivity in grains tree-1 year-1 measured from three representative trees from several taxa. Morus 377 

has no known reference for production factor and was assumed to be 10x107 grains m-2 year-1, conservatively at the 378 

low end of the range for other deciduous broadleaf taxa. Other tree taxa and grasses are reported in grains m-2 year-1, 379 

while ragweed is reported in grains stem-1 year-1 (Helbig et al. 2004; Jato, Rodríguez-Rajo, and Aira 2007; Hidalgo, 380 

Galán, and Domínguez 1999; Prieto-Baena et al. 2003; Fumanal, Chauvel, and Bretagnolle 2007). To convert the 381 

production factors from Tormo Molina et al. (1996) (grains tree-1 year-1), the production factors for each 382 

representative tree are multiplied by the tree crown area, calculated as the circular area of the tree crown diameter 383 

given in Table II of Tormo Molina et al. (1996). The resulting individual production factors (grains m-2 year-1) are 384 

then averaged for each taxa.  385 

 After sensitivity experiments of running pollen emissions in RegCM4, we find that the literature value of 386 

pannual for Poaceae provides better agreement with observations for C4 grass when reduced by a factor of 10, thus we 387 

use this value. To obtain the coefficient of daily pollen production over the duration of the phenological curve, 𝛾phen, 388 

the integral of the daily pollen production is normalized to pannual as demonstrated by Equation 2. 389 

4.4 Offline emissions simulations 390 

We calculate emissions offline for two versions of PECM that differ in the land cover input data for woody plants. 391 

The first uses the detailed BELD tree database (Figure 3) for tree pollen emissions (hereinafter the “BELD” 392 

simulation), and the second uses globally based PFT data for tree pollen emissions (Figures 4b and 4d) (hereinafter 393 

the “PFT” simulation). For the grass and ragweed taxa, the emissions calculations are identical between the two 394 

simulations as the input land cover is the same for these two categories.  While the family and genus level is useful 395 

for the allergen community, the respective taxon land cover databases needed to develop a global, adaptable model 396 

are not always available. While many plant traits are found to vary quite strongly within individual PFTs (Reichstein 397 

et al. 2014), the PFT convention is accepted and remains in use in climate models, particularly because of the lack of 398 

species-level land cover data at large scales. For the PFT version, pollen counts from individual taxa were summed 399 

within each PFT prior to calculation of the phenological regression (Table 1). We exclude the bimodality in Ulmus 400 

for the PFT version because it is the only tree taxon that exhibits this behavior, and late Ulmus pollen emissions are 401 

relatively small compared to the major DBF season. The production factors for each PFT are calculated as the 402 

unweighted average of the production factors for all the taxa within the PFT (Table 1).   403 

Figures 6-11 show the monthly averages of the 2003-2010 emissions potential calculated by the offline models 404 

described in Section 4.1 (Epot; Equation 2). The seasonal cycle can be clearly identified in the emissions potential, 405 

with the onset of pollen emissions beginning in the warmer south and moving northward along the gradient of 406 

annual average temperature. Colder locales such as those at high elevations can interrupt this general trend. Though 407 

pollen seasons generally end later in the colder parts of the domain just as they start later, modeled pollen emission 408 

seasons tend to be shorter at colder locations for most taxa (about 1 day per 1ºC, on average). The highest maximum 409 

emissions for DBF occur over the Appalachian range between April and May for both the BELD and PFT versions 410 

(Figures 6 and 7). For ENF, the maximum occurs in April in the American West for the BELD version where 411 

Cupressaceae land cover is dominant, while it is consistent in magnitude between the Southeast and West Coast for 412 
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the PFT-based version (Figures 8 and 9).  The grass PFT maximum emissions occur in June in the northern Rockies 413 

for C3 and in September in the South-Central Great Plains for C4 (Figure 10). Ragweed pollen emissions reach their 414 

maximum during September throughout the Corn Belt where soybean and corn crops dominate the land surface, 415 

with local maxima apparent in urban centers (Figure 11). 416 

 417 

5 Emissions implementation and evaluation 418 

5.1 Emissions implementation in a regional climate model 419 

To evaluate PECM, emissions calculated offline are included within a regional climate model to compare simulated 420 

atmospheric pollen concentrations with ground-based observations from the NAB pollen network. The two 421 

phenological pollen emissions estimates (BELD and PFT) described above are prescribed as daily emissions, after 422 

which they are scaled by meteorological factors and undergo atmospheric transport. We use the Regional Climate 423 

Model version 4 (Giorgi et al. 2012), which is a limited-area climate model that includes a coupled aerosol tracer 424 

module (Solmon et al. 2006) that readily accommodates pollen tracers (Liu et al. 2016). The pollen tracer transport 425 

scheme is extended from one to four bins in this study to simulate the four PFTs (DBF, ENF, GRA, and RAG), with 426 

tracer bin particle effective diameters of 28 µm, 40 µm, 35 µm and 20µm, respectively. Additionally, the temporal 427 

emissions input is updated to accommodate daily pollen emissions (grains m-2 day-1). 428 

RegCM4 is based on the hydrostatic version of the Penn State/NCAR mesoscale model MM5 (Grell et al. 1994) and 429 

configured for long-term climate simulations. In our RegCM4 configuration, we use the Community Land Model 430 

version 4.5 (CLM4.5; (Oleson et al. 2010)), the Emanuel cumulus precipitation scheme over land and ocean 431 

(Emanuel 1991), and the SUBEX resolvable scale precipitation (Pal et al. 2000). The horizontal resolution is 25-km 432 

with 144x243 grid cells on a Lambert Conformal Projection centered on 39ºN, 100ºW with parallels at 30ºN and 433 

60ºN (Figure 1). The vertical resolution includes 18 vertical sigma levels. Boundary conditions are driven by ERA-434 

Interim Reanalysis while sea surface temperatures are prescribed from NOAA Optimum Interpolation SSTs (Dee et 435 

al. 2011; Smith et al. 2008). Two 8-year simulations of pollen emissions and transport in RegCM4 were conducted 436 

from 2003-2010 with the BELD and PFT version of the offline emissions model. Six months of spin-up (July-437 

December 2002) are run for both simulations that we exclude from the following analysis.  438 

In the model, we calculate the fate of four pollen tracers corresponding to the four PFTs (DBF, ENF, GRA and 439 

RAG) from the PECM offline emissions.  Because individual tracers add to the computational cost of the 440 

simulations, BELD-based tree emissions are summed into DBF and ENF PFTs before they are emitted into the 441 

model atmosphere.  To calculate the emissions, the emission potential calculated offline for each PFT (Epot) is scaled 442 

according to surface meteorology following the methods of Sofiev et al. (2013): 443 

5     𝐸!"##$%,! 𝑥, 𝑦, 𝑡 = 𝐸!"#,! 𝑥, 𝑦, 𝑡 𝑓!𝑓!𝑓! 

6     𝑓! = 1.5 − 𝑒!(!!"!!!"#$)/! 

 444 

 445 
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7     𝑓! =

1, 𝑝𝑟 < 𝑝𝑟!"#
𝑝𝑟!!"! − 𝑝𝑟
𝑝𝑟!!"! − 𝑝𝑟!"#

,  𝑝𝑟!"# < 𝑝𝑟 < 𝑝𝑟!!"!

0, 𝑝𝑟 > 𝑝𝑟!!"!

 

8     𝑓! =

1, 𝑟ℎ < 𝑟ℎ!"#
𝑟ℎ!!"! − 𝑟ℎ
𝑟ℎ!!"! − 𝑟ℎ!"#

,  𝑟ℎ!"# < 𝑟ℎ < 𝑟ℎ!!"!

0, 𝑟ℎ > 𝑟ℎ!!"!

 

where fw, fr, and fh are the wind, precipitation and humidity factors, respectively. The meteorological parameters in 446 

these equations are from online RegCM variables, including u10 and uconv as the 10-meter horizontal wind speed and 447 

vertical wind speed, and pr and rh are precipitation and relative humidity with low and high thresholds. These 448 

scaling factors account for the effects of wind, precipitation and humidity on the emission of pollen from flowers 449 

and cones. The humidity and precipitation factors are piecewise linear functions of the near-surface (10 m) RH and 450 

total precipitation and range from 0 (high precipitation or humidity) to 1 (no precipitation or low humidity). The 451 

wind factor ranges from 0.5 to 1.5, as even in calm conditions turbulent motions can trigger pollen release with high 452 

winds releasing more pollen. These scaled emissions are then transported according to the tracer transport equation 453 

(Equation 9) of Solmon et al. (2006) that includes advection, horizontal and vertical diffusion (FH and FV), 454 

convective transport (Tc), as well as wet (RWls and RWc, representing large scale and convective precipitation 455 

removal) and dry deposition (Dd) of an individual tracer (χ), represented by i = 1 to 4 for each PFT pollen emission: 456 

9      
𝜕𝜒!

𝜕𝑡
= 𝑉 ⋅ ∇𝜒! + 𝐹!! + 𝐹!! + 𝑇!! + 𝑆! − 𝑅!!"# − 𝑅!!" − 𝐷!! 

5.1 Model evaluation against observations 457 

We evaluate the efficacy of PECM in simulating the timing and magnitude of pollen emissions across the 458 

continental United States by evaluating RegCM4 tracer concentrations versus observations. We compare the average 459 

daily simulated near-surface pollen counts and observed, ground-based pollen counts for each of the four modeled 460 

PFTs (Figure 12). The observed pollen time series in Figure 12 are the spatial average of the average daily pollen 461 

counts at all pollen counting stations comprising each of the five major U.S. subregions (Section 2.2) and are 462 

compared with the modeled average daily pollen counts, which averages the individual grid cells that contain the 463 

pollen counting stations. Interannual variability is assessed using the relative mean absolute deviation for each day 464 

of the average time series. The inter-annual variability in observed daily pollen counts throughout the year is, on 465 

average, 81, 78, 78 and 77% of the mean (DBF, ENF, grass and ragweed, respectively), while this variability from 466 

the simulations is 53% for the BELD version of the DBF model and 61% for the PFT version, 55% and 92% for the 467 

BELD and PFT versions of the ENF model, 43% for grasses, and 49% for ragweed (Figure 12). This indicates that 468 

the model is capturing the relative inter-annual variability of the pollen counts between PFTs, but not all of the 469 

variability in pollen counts from season to season. The unexplained variability in pollen concentrations could be due 470 

to the lack of sensitivity of annual pollen production factor to the environment, as this may be closely tied with 471 

precipitation (Duhl et al. 2013) or temperature (Jochner et al. 2013). Additionally the average observed and 472 

simulated pollen counts are analyzed using box-and-whisker plots to assess the models’ representivity of pollen 473 
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count magnitude in spite of phenology (Figure 13).  These metrics are discussed in detail by PFT and U.S. subregion 474 

below. 475 

5.2.1 DBF 476 

In the Northeast, the BELD model captures both the observed seasonal timing and the magnitude of DBF pollen 477 

counts (Figure 12a). Observed DBF phenology is also simulated by the PFT-based emissions with even greater 478 

statistical accuracy in reproducing the observed pollen counts, though the BELD model more accurately reproduces 479 

the annual maximum (Figure 13a). The accuracy in this subregion is not surprising, as Northeastern pollen counting 480 

stations contributed the greatest number of data points to the phenological regression analyses. Observed DBF 481 

pollen counts in the Southeast have a large maximum that is greater than the average seasonal maximum of all four 482 

other subregions and all three other PFTs (Figure 12b), which is predominantly from Quercus. Neither the BELD 483 

nor PFT version of the simulation recreates this sharp peak, but they do simulate a large majority of the pollen count 484 

distribution (Figure 13b), especially the PFT-based model for which the lower 75% of simulated average pollen 485 

counts agrees well with the lower 75% of observed average pollen counts. The PFT model does not specifically 486 

resolve Quercus, and while the BELD model does resolve Quercus, it fails to model this maximum.  This may be 487 

because the linear regression producing the phenological dates is an average, where a longer season may result from 488 

earlier start dates and/or later end dates that will reduce the maximum of the Gaussian distribution of pollen counts 489 

in the time series. In the Mountain region, there is an observed maximum early in the spring that is not simulated by 490 

either model because the DBF phenology at several cold Mountain sites is exceptionally early, and falls well below 491 

the regression lines (Figures S1, S2). However, both the BELD and PFT model simulate the second Mountain 492 

subregion peak with the correct magnitude. The BELD simulated maximum DBF in California is about 40 days later 493 

than the observed peak, also due to the regionally anomalous phenology in California as compared with the rest of 494 

the U.S., and though the PFT model peaks much closer to the observations, it underestimates DBF pollen counts. In 495 

the Pacific Northwest, the observed pattern is quite similar to the DBF pollen phenology in the Mountain subregion 496 

with only a slightly weaker early spring peak due to low-elevation pollen. The observed phenological pattern (Fig. 497 

12e) and pollen count magnitudes (Fig. 12e) are both more accurately simulated by the BELD model, likely due to 498 

the earlier spring maximum that does not appear in the PFT simulation.  499 

5.2.2 ENF 500 

Like DBF, the BELD ENF in the Northeast is well represented by simulating two distinct Cupressaceae and 501 

Pinaceae maxima, although the model slightly underestimates observed Pinaceae pollen counts (Figure 12f). The 502 

PFT model ENF phenology emits from the start of the earlier Cupressaceae season to the end of the later Pinaceae 503 

season, while overestimating the maximum pollen count by about a factor of 2. In the Southeast, the winter peak is 504 

not captured by the model phenology (Figure 12g). However, the spring Pinaceae maximum is accurately captured 505 

by the BELD simulation. The PFT model follows the observed Pinaceae phenology more closely, though 506 

overestimating pollen counts by a factor of 2 to 3 and estimating a later ending date by about 40 days. In the 507 

Mountain subregion, ENF start and end dates are simulated by the BELD model with improved accuracy than the 508 
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DBF phenology in this subregion, though the predicted spring maximum is later than observed (Figure 12h). As with 509 

DBF, there is good agreement between the BELD model with the later part of the season in this subregion. The PFT 510 

model, again, simulates the peak ENF emissions in the later part of the season and overpredicts the pollen counts by 511 

a factor of 2 to 3. In the California subregion, the tails of the pollen distributions by both models closely resemble 512 

the pollen count magnitudes, yet the majority of these pollen counts (the top 75%, Figure 13i) lie above the observed 513 

maximum (Figure 12i). Finally, in the Pacific Northwest, the BELD model phenology shows some agreement with 514 

the model mean (Figure 13j), with the simulated pollen count showing a stronger Gaussian distribution than 515 

observed (Figure 12j).  In contrast, the PFT model grossly overpredicts the observed pollen counts by up to a factor 516 

of 10 at its maximum, likely due to the greater representation of the ENF PFT than the BELD model in this region. 517 

The simulated average start date of the PFT model is within a few days of the observed average start date, while the 518 

end date is about 20 days later than observed. 519 

5.2.3 Grasses  520 

Grass phenology across all subregions for both C3 and C4 types is captured by the emissions estimates (Figure 12 k-521 

o). However, the pollen count magnitude in Northeastern C3 grass peak is overestimated by about a factor of seven, 522 

even when using the minimum value of the annual production factor in the range estimated by Prieto-Baena (2003) 523 

(Figure 12k).  The secondary peak, which we attribute to C4 grasses and is only about half as large, is well-524 

represented. In the Southeast, the simulated pollen count magnitudes are much closer to observations, while the C3 525 

peak is overestimated here by only a factor of 2 and the C4 peak is within 5 grains m-3 (Figure 12l).   In this region, 526 

the observed duration of the pollen emissions is not fully captured by the simulated grass phenology in the 527 

Southeast, and this is probably due to the non-Gaussian shape of the observed time series. In the Mountain 528 

subregion, the C3 pollen count is overestimated by the model, but the phenology is represented by a gradual rise in 529 

low emissions beginning in March to match the maximum burst of emissions in June (Figure 12m). C4 grass pollen 530 

counts are not simulated in the Mountain region due to the relatively low C4 land cover in the CLM4 dataset (Figure 531 

4f). In California there is a single observed grass peak, which the model attributes to C3 pollen, and the peak count 532 

in the simulation is about 5 days late and about 2 to 10 times too large (Figure 12n). In the Pacific Northwest, the 533 

average C3 season is accurately simulated with the exception that the phenology is shifted 20 days earlier than 534 

observed  (Figure 12o). A small C4 peak in the observations at around day 260 is not simulated in this region due to 535 

negligible land cover for C4 grasses in the CLM4 land cover data (Figure 4f). 536 

5.2.4 Ragweed  537 

Simulated ragweed phenology in the Northeast, Southeast, and Mountain subregions follows the observed 538 

phenology of late-summer ragweed very closely, where the peaks of both the simulated and the observed time series 539 

averages occur within a day of each other (Figures 12p-t). Close evaluation of each regional phenological time series 540 

reveals that many of the observed features, like those determined by the rate of increase or decrease of the pollen 541 

count, are reproduced by the model. The magnitude of the modeled ragweed maxima in the Northeast and Mountain 542 

subregions is slightly greater than observed (Figures 12p and 12r), while there is a clear underestimation by a factor 543 
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of 4 or 5 in the Southeast (Figure 12q). There is a yet unidentified observed spring peak of ragweed pollen at about 544 

day 125 in the Mountain subregion, possibly due to an identification error. The observed average ragweed pollen 545 

counts in California and the Pacific Northwest are negligible, though the simulation predicts them to be similar in 546 

magnitude and timing to the other three subregions (Figure 12s and 12t).  These discrepencies may be due to the 547 

land use description developed for ragweed (Section 3.1), which may overestimate the ragweed potential in the 548 

western United States, or potentially the relatively spare observational stations in these regions may be poorly placed 549 

relative to emissions sources. 550 

 551 

6 Conclusions 552 

We have developed a climate-flexible pollen emissions model (PECM) for the 13 most prevalent wind-pollinating 553 

taxa in the United States based on observed pollen counts. PECM was adapted to the PFT categorization common to 554 

climate and Earth system models with four major temperate-zone PFTs (DBF, ENF, grasses and ragweed), thus it is 555 

possible to apply this model to larger geographic regions where specific taxon-level data is unavailable. We 556 

evaluated PECM using a regional climate model (RegCM4) to transport emissions and evaluated resulting pollen 557 

counts versus observations. PECM generally captures the observed phenology, and observed surface pollen 558 

concentrations can be simulated within an order of magnitude. While many emissions models to date have focused 559 

on smaller geographical regions with more detailed land cover information and pollen information, this model 560 

represents the first of its kind to simulate multiple taxa over broad spatial areas.  This transition to a larger scale does 561 

have its disadvantages, and we define several major sources of uncertainty to consider when scaling up pollen 562 

emissions to the regional or global scale: (1) pollen production factors, (2) climatic sensitivities in phenological 563 

timing, (3) land cover data, and (4) taxa specificity.  We discuss each of these uncertainties in greater detail. 564 

A large source of uncertainty is the use of a constant annual production factor for pollen (Section 4.3). It has been 565 

reported that wind-driven pollen production has increased historically and is expected, potentially, to increase in the 566 

near future (R. Zhang et al. 2014; Lake et al. 2017; Confalonieri et al. 2007; Ziello et al. 2012). Some of more 567 

effective improvements to the emission model would be to create a pollen production model that is sensitive to 568 

multiple environmental factors such as soil moisture, temperature and nutrient status (Jochner et al. 2013). The 569 

interannual variability in observed daily pollen counts is, on average, substantially greater than that of the modeled 570 

pollen counts, which is likely due to this lack of production sensitivity. The current production factors for woody 571 

plants could be enhanced by studies that extend the number of representative units (i.e. individual trees) of 572 

vegetation used to determine the average pollen production. In a PFT representation, there is an inevitable limitation 573 

to the accuracy of any single PFT’s ability to account for taxa differences within the PFT. Furthermore, the current 574 

model also assumes that there are no interspecies differences that affect the performance of the BELD model as well 575 

as the PFT model, whereas in reality it may vary by an order of magnitude within a genus (Duhl et al. 2013). 576 

However, despite the assumption of a constant production factor, observed surface pollen counts for all PFTs are 577 

typically reproduced within a single order of magnitude, as apparent in emission model evaluation.  578 
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Second, the use of observed relationships between pollen count and temperature to determine the phenological 579 

pollen start and end date also adds uncertainty to our modeling framework. Firstly, we assume stationarity in the 580 

phenological relationships, and this assumption may be violated. Secondly, based on the subregions defined for the 581 

analysis, there appears to be a bias in the linear regressions toward subregions with more available pollen counting 582 

stations, therefore affecting performance differences in these regions. Lastly, even though generally the Gaussian 583 

time series model of the pollen phenology performs well in our analysis, in the PFT representation the Gaussian 584 

absorbs or misses some of the phenological details in the observed pollen seasonality, and in some cases taxa (e.g. 585 

grasses in the Southeast subregion) may not be captured by the existing phenology. 586 

Third, the specificity of land cover data provides an important constraint in the overall simulation of emissions. The 587 

representation of land cover is a key factor to accurately capturing regional features, especially in areas with a high 588 

degree of topographical variation and therefore greater variance in the land cover.  For example, we notice large 589 

differences in the two model simulations when considering tree-specific taxa, such as in the western United States 590 

for ENF (Section 5.2.2).  Also, our definition of the land cover available for ragweed used assumptions based on 591 

crop cover and urban area, which overestimated emissions in the western United States (Section 5.2.4). 592 

Interestingly, even though ragweed lacks an exact spatial distribution, distinct observed features of the ragweed 593 

phenology in three of the five subregions emerged using the current ragweed land cover parameterization.   594 

Fourth, the aggregation of emissions to the PFT level affects the representativeness of the production factors, 595 

phenology and land cover.  When comparing the two models of the tree pollen (BELD versus PFT), the individual 596 

phenology of each of the 11 tree taxa are resolved by the BELD simulation, whereas they are either folded into or 597 

excluded from the single phenology modeled by the PFT simulation. This results from either treating the taxa in the 598 

phenological regressions individually, as in the BELD model, or as a sum, as in the PFT model. With a few 599 

exceptions (e.g., the ENF family distinctions), the PFT model does generally reproduce the regional phenology 600 

throughout the United States domain, which is a priority of this study. 601 

Despite these limitations, the empirical formulation presented here is the first of its kind to predict a broad range of 602 

different pollen emissions across a large geographic region. Even with univariate phenology and invariable pollen 603 

production factors, the model includes seasonal dynamics sensitive to climate change consistent with observations 604 

and is also able to simulate observed pollen magnitudes.  As a result, the model can be useful for estimation of how 605 

allergenic risk or plant reproductive potential will be redistributed by climate change, as well as studying pollen as 606 

an aerosol in the climate system. While the empirical phenological models can be reproduced for any set of regional 607 

pollen counting stations, PECM as a whole can be easily adapted to various community climate and earth system 608 

models, global and regional, to extend research on the relationships and interactions between pollen and climate. 609 

 610 

7 Code and Data Availability 611 

Source code for Pollen Emissions for Climate Models (PECM) is written as FORTRAN90 (*.f90) and available in 612 

the supplementary material as plain text. Input data is explained in Section 3 of this manuscript. 613 

 614 
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 842 
Figure 1.  Locations of AAAAI station locations and geographic regions used in this study:  Northeast (NE; 38°-843 

48ºN, 70º-100°W) in blue, Southeast (SE; 25º-38°N, 70º-100°W) in green, Mountain (MT; 25º-48ºN, 100°-116°W) 844 

in  red, California (CA; 25º-40°N, 116°-125ºW) in orange, and Pacific Northwest (PNW; 40°-48ºN, 116°-125ºW) in 845 

dark grey. 846 
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 848 

Figure 2.  Daily observed average time series of daily pollen count data (2003-2010) for the four representative 849 

plant functional types (DBF, ENF, grasses, ragweed) averaged over the five regions in Figure 1: (a) Northeast, (b) 850 

Southeast, (c) Mountain, (d) California, and (e) Pacific Northwest. 851 

 852 

 853 
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 855 
Figure 3.  Land cover fraction (% coverage) for 11 tree taxa from the Biogenic Emissions Landuse Database 856 

(BELD3) regridded to a 25km resolution grid, including:  a) Acer (maple), b) Alnus (alder), c) Betula (birch), d) 857 

Cupressaceae (cedar/juniper), e) Fraxinus (ash), f) Morus (mulberry), g) Pinaceae (pine), h) Platanus (sycamore), i) 858 

Populus (poplar/aspen), j) Quercus (oak), k) Ulmus (elm). 859 
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 861 
Figure 4.  BELD3 (a, c) and CLM4 (b, d, e, f) land cover for the four PFT categories that produce pollen emissions, 862 

including (1) deciduous broadleaf forest for (a) BELD3 and (b) CLM4, (2) evergreen needleaf forest for (c) BELD3 863 

and (d) CLM4, (3) grasses, including (e) C3 grasses and (f) C4 grasses, and (g) ragweed, represented by crop and 864 

urban CLM4 categories. 865 
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 867 
Figure 5. Phenological regressions for Betula (birch) pollen for (a) Start Day of Year (sDOY) and (b) End Day of 868 

Year (eDOY) versus previous year annual average temperature (PYAAT; ºC).  Each point signifies one station per 869 

year for pollen count data from 2003-2010 (total denoted as N). 870 
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 872 
Figure 6. Monthly average emissions potential (E; Equation 1) for BELD model DBF (2003-2010), in grains m-2 873 

day-1. a) January, b) February, c) March, d) April, e) May, f) June, g) July, h) August, i) September, j) October, k) 874 

November, l) December. 875 
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 877 
Figure 7. Same as Figure 6, but for PFT model DBF. 878 
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 880 
Figure 8. Same as Figure 6, but for BELD model ENF. 881 
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 883 
Figure 9. Same as Figure 6, but for PFT model ENF. 884 
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 886 
Figure 10. Same as Figure 6, but for C3 + C4 grass. 887 
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 889 
Figure 11. Same as Figure 6, but for ragweed. 890 
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 892 
Figure 12.  Average (2003-2010) time series of daily pollen counts comparing model and observations for four 893 

PFTs (a-e, deciduous broadleaf, DBF; f-j, evergreen needleleaf, ENF; k-o, grasses, GRA; p-t, ragweed, RAG) across 894 

5 U.S. subregions (columns from left to right: Northeast, NE; Southeast, SE; Mountain, MT; California; Pacific 895 

Northwest, PNW).   Shading for the observations and model represents the mean absolute deviation from the 896 

average for each day of the time series. Note: scale of y-axes varies by region and PFT. 897 

 898 
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 899 
Figure 13. Box-and-whisker plots showing the statistical spread of the pollen count magnitudes from the regional averages presented in Figure 12. Columns 900 

from left to right: Northeast, NE (a,f); Southeast, SE (b, g) ; Mountain, MT (c,h); California (d,i); Pacific Northwest, PNW (e,j). DBF and ENF PFTs are shown 901 

in the top row (a-e) and grass and ragweed PFTs are shown in the bottom row (f-j). Box and whiskers from bottom to top represent the minimum, lower quartile, 902 

median, upper quartile, and maximum. Maxima that are not visible in panels b, c and e are 1,177 grains m-3, 1,233 grains m-3, and 766 gains m-3 respectively. All 903 

y-axes are the same scale for each row. 904 
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 905 
 906 

aAmbrosia production factor in107 grains plant-1. 907 

Table 1: Production factors (P) and phenological regression coefficients for the start day of year (sDOY) and end 908 

day of year (eDOY) as a function of temperature for the 13 individual pollen-producing taxa.  Individual taxa and 909 

Taxon or PFT 

P 

107 grains m-2 

year-1 

Reference for 

P 

sDOY 

(slope/R2) 

days ºC-1 

eDOY 

(slope/R2) 

days ºC-1 

Deciduous Broadleaf Forest (DBF) 

Acer 89.1 
Tormo Molina 

et al. 1996 
-1.78/0.15 -1.56/0.06 

Alnus 210 
Helbig et al. 

2004 
-8.82/0.46 -4.88/0.26 

Betula 140 Jato et al. 2007 -3.46/0.54 -3.45/0.35 

Fraxinus 45.1 
Tormo Molina 

et al. 1996 
-4.69/0.50 -2.92/0.32 

Morus 10 N/A -4.00/0.53 -2.97/0.29 

Platanus 121 
Tormo Molina 

et al. 1996 
-4.47/0.40 -2.65/0.20 

Populus 24.2 
Tormo Molina 

et al. 1996 
-2.23/0.24 -0.31/<0.01 

Quercus 78 
Tormo Molina 

et al. 1996 
-4.09/0.53 -2.03/0.19 

Ulmus (early,late) 3.55 
Tormo Molina 

et al. 1996 

-4.61/0.59, 

3.06/0.12 

-2.37/0.16, 

5.12/0.29 

DBF 80.1  -4.55/0.46 -1.94/0.13 

  Evergreen Needleleaf Forest (ENF) 

Cupressaceae 363 
Hidalgo et al. 

1999 
-5.67/0.48 -2.67/0.17 

Pinaceae 22.2 
Tormo Molina 

et al. 1996 
-5.72/0.45 -5.03/0.41 

ENF 193  -5.95/0.40 -4.96/0.33 

  Grasses (GRA) 

Poaceae (C3,C4) 8.5, 0.85 
Prieto-Baena 

et al. 2003 

-4.76/0.48, 

0.05/<0.01 

-1.08/0.04, 

2.96/0.32 

  Ragweed (RAG) 

Ambrosia  119 a 
Fumanal et al. 

2007 
1.08/0.08 3.42/0.37 
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families are organized into the four PFTs, with the two aggregated tree PFTs denoted as DBF and ENF. Regression 910 

slope (days/ºC) and coefficient of determination are provided for both sDOY and eDOY (slope/R2).911 
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Land cover 
class NE SE MT CA PNW 

Acer 6.79E+04 2.88E+04 1.89E+03 1.97E+02 3.09E+03 

Alnus 3.37E+00 1.23E-01 6.49E+01 1.71E+02 9.56E+03 

Betula 2.99E+04 2.68E+03 2.78E+02 2.64E+00 4.82E+02 

Fraxinus 3.96E+04 1.10E+04 3.14E+03 3.94E+01 2.76E+02 

Morus 3.99E+03 2.25E+03 3.89E+01 0.00E+00 0.00E+00 

Platanus 3.18E+03 3.38E+03 1.33E+01 1.44E+02 0.00E+00 

Populus 5.48E+04 1.23E+03 4.37E+04 1.96E+02 1.55E+03 

Quercus 1.30E+05 2.25E+05 2.51E+04 2.82E+04 1.40E+04 

Ulmus 4.96E+04 2.81E+04 1.37E+03 0.00E+00 0.00E+00 

BELD DBF 3.79E+05 3.03E+05 7.56E+04 2.90E+04 2.90E+04 

CLM DBF 6.67E+05 4.03E+05 1.72E+05 7.93E+03 4.18E+04 

Cupressaceae 1.85E+04 2.11E+04 7.84E+04 9.64E+03 2.35E+04 

Pinaceae 8.34E+04 1.58E+05 1.79E+05 2.95E+04 1.10E+05 

BELD ENF 1.02E+05 1.79E+05 2.58E+05 3.91E+04 1.34E+05 

CLM ENF 1.44E+06 4.26E+05 4.66E+05 4.57E+04 5.34E+05 

Table 2: Total spatial coverage (km2) of tree taxa and PFTs from BELD and CLM land cover datasets in the 5 U.S. 912 

subregions (Northeast, NE; Southeast, SE; Mountain, MT; California; Pacific Northwest, PNW). All individual tree 913 

taxa are from the BELD database. BELD DBF and ENF land cover are the sums of the land cover of the taxa 914 

belonging to each PFT. 915 

 916 
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