
Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 6 October 2016

An Approach to Computing Discrete Adjoints for
MPI-Parallelized Models Applied to the Ice Sheet
System Model 4.11
Eric Larour1 , Jean Utke2 , Anton Bovin3 , Mathieu Morlighem4 , and
Gilberto Perez5

1Jet Propulsion Laboratory - California Institute of technology, 4800 Oak Grove Drive MS
300-323, Pasadena, CA 91109-8099, USA
2Allstate Insurance Company, 2775 Sanders Rd., Northbrook, IL 60062, USA.
3The University of Chicago, Chicago, Illinois, USA.
4University of California, Irvine, Department of Earth System Science, Croul Hall, Irvine, CA
92697-3100, USA
5University of California, Irvine, School of Information and Computer Sciences, Irvine, CA
92697-3100, USA

Correspondence to: Eric Larour (eric.larour@jpl.nasa.gov)

Abstract.

Within the framework of sea-level rise projections, there is a strong need for hindcast validation

of the evolution of polar ice sheets in a way that tightly matches observational records (from radar,

gravity, and altimetry observations mainly). However, the computational requirements for making

hindcast reconstructions possible are severe and rely mainly on the evaluation of the adjoint state5

of transient ice-flow models. Here, we look at the computation of adjoints in the context of the

NASA/JPL/UCI Ice Sheet System Model, written in C++ and designed for parallel execution with

MPI. We present the adaptations required in the way the software is designed and written but also

generic adaptations in the tools facilitating the adjoint computations. We concentrate on the use of

operator overloading coupled with the AdjoinableMPI library to achieve the adjoint computation of10

ISSM. We present a comprehensive approach to 1) carry out type changing through ISSM, hence

facilitating operator overloading, 2) bind to external solvers such as MUMPS and GSL-LU and 3)

handle MPI-based parallelism to scale the capability. We demonstrate the success of the approach by

computing sensitivities of hindcast metrics such as the misfit to observed records of surface altime-

try on the North-East Greenland Ice Stream, or the misfit to observed records of surface velocities15

on Upernavik Glacier, Central West Greenland. We also provide metrics for the scalability of the

approach, and the expected performance. This approach has the potential of enabling a new gener-

ation of hindcast-validated projections that make full use of the wealth of datasets currently being

collected, or already collected in Greenland and Antarctica.

1

1 Introduction20

Constant monitoring of polar ice sheets through remote sensing, in particular since the advent of

altimeter, radar, and gravity sensors such as ICESat-1, CryoSat, RADARSAT-1, ERS-1 and ERS-

2, Envisat, and GRACE, has created a large amount of data that has yet to find its way through

Ice Sheet Models (ISMs) and hindcast reconstructions of polar ice sheet evolution. In particular, as

evidenced by the wide discrepancy between ISMs involved in the SeaRISE and Ice2Sea projects25

(Nowicki et al., 2013; Bindschadler et al., 2013) significant improvements in modeled projections

of the mass balance of polar ice sheets and their contribution to future sea-level rise has not resulted

from the increase in availability of data, but rather from improvements in the type of physics cap-

tured in forward models. One reason for this is the lack of data assimilation capabilities embedded in

the current generation of state-of-the-art ISMs. In the past 10 years, great strides have been made in30

improving model initialization by using steady-state model inversions of basal friction (MacAyeal,

1993; Morlighem et al., 2010; Larour et al., 2012; Price et al., 2011; Arthern and Gudmundsson,

2010), ice rheology (Rommelaere and MacAyeal, 1997; Larour et al., 2005; Khazendar et al., 2007)

and bedrock elevation (Morlighem et al., 2014) among others. However, these approaches aim at

improving our knowledge of poorly constrained input parameters and boundary conditions as long35

as the ice-flow regime is captured in a steady-state configuration. These inversions rely on analyti-

cally derived adjoint states of forward stress-balance or mass-transport models, but do not extend to

transient regimes of ice flow.

Applications to transient models and long temporal time series such as the ICESat/CryoSat con-

tinuous altimetry record from 2003 to present-day, have been much more rare, and to our knowledge,40

are limited to a few studies such as Heimbach and Bugnion (2009), Goldberg and Sergienko (2011),

Goldberg and Heimbach (2013), Larour et al. (2014) and Goldberg et al. (2015) among others. The

main issue here precluding widespread application of transient data assimilation lies in the diffi-

culty of deriving temporal adjoints of transient models. In many cases, the sheer amount of physical

processes being represented makes the manual derivation of the adjoint state of a forward model45

extremely cumbersome and difficult to mantain. This state of affairs can be mitigated by adopting

different approaches, such as: 1) ensemble runs, as in Applegate et al. (2012), where model runs

compatible with observations are selected; 2) methods similar to the flux-correction methods imple-

mented in Aschwanden et al. (2013); Price et al. (2011) where boundary conditions are corrected

in order to match time series of observations (tuning approach); 3) quasi-static approaches, where50

snapshot inversions are carried out in time, as in Habermann et al. (2012, 2013) and 4) sampling

methods, which have the main drawback of being computationally very expensive (each sample at

the cost of one forward run). Though this is not an exhaustive list of all available methods, the main

advantage of adjoint driven inversions is that it relies on the exact sensitivity of a forward model to

its inputs, hence ensuring a physically meaningful inversion.55

2

Understanding sensitivities of a forward ice-flow model, which is needed to physically constrain

a temporal inversion, requires computation of derivatives of model outputs to model inputs. If

such derivatives are approximated by finite-difference schemes, they are subject to the tradeoff be-

tween approximation and truncation errors for the perturbation, which is aggravated for higher-order

derivatives. If the derivatives are computed using algorithmic differentiation (AD) (Griewank and60

Walther, 2008), also known as automatic differentiation, then one can attain derivatives at a floating

point precision equivalent to that of the underlying program implementation of the numerical model,

provided it is amenable to the application of an AD tool. In particular, this approach does not depend

on the type of physics relied upon, and it is transparent to the model equations, provided each step

of the overall software is differentiable. Indeed, the AD method assumes a numerical model M that65

is a function

f : Rn → Rm

x 7→ y = f(x)
(1)

implemented as a computer program. The execution of the program implies the execution of a se-

quence of arithmetic operators such as +, −, ∗ and intrinsics sin,ex, and so forth to which the chain

rule can be applied. For each such elemental operation r = φ(a,b, . . .) with result r and arguments70

a,b, . . .1 we can write the total derivative as:

ṙ =
∂φ

∂a
ȧ+

∂φ

∂b
ḃ+ (2)

For example, if φ is the multiplication operator ∗, i.e. r = ab then one will get the product rule

ṙ = bȧ+ aḃ. Applying the above rule to each elemental operation in the sequence gives a method to

compute:

ẏ = Jẋ with the Jacobian J =

[
∂fi
∂xj

]
, i= 1 . . .m, j = 1 . . .n

without explicitly forming the Jacobian. This method applies the chain rule in the computation order

of the values in the program and is known as forward-mode AD. The opposite order of applying

the chain rule to the elemental operations, known as reverse or adjoint-mode AD, yields projections75

x̄ = JT ȳ.

This is achieved using the partial derivatives of the forward operation φ as weights in redistributing

the adjoints of the result r to the adjoints of the respective arguments a, b following the rule

ā= ā+
∂φ

∂a
r̄; b̄= b̄+

∂φ

∂b
r̄; . . . r̄ = 0 . (3)

Here v̄ denotes the adjoint corresponding to variable v. The final zeroing of the result adjoint80

r̄ corresponds to the notion that r had been assigned a new value overriding any previous value r
1 In practice most φ are uni- or bivariate.

3

might have had. Correspondingly the adjoint of r has been completely distributed and to allow the

increment formulation for the adjoint of any prior value of r it has to (re)set to 0.

For the multiplication example one therefore gets ā= ā+ br̄; b̄= b̄+ ar̄; r̄ = 0. In particular,

for applications in which m� n, the reverse mode is advantageous because its computational cost85

depends on m reverse sweeps instead of n forward sweeps. Typical problems in Cryosphere sci-

ence involve computations of diagnostics which are scalar-valued cost functions (m= 1), such as

for example the spatio-temporally averaged misfit between modeled surface elevation and observed

surface topography (Larour et al., 2014). For these cases, one can compute the gradient ∇f = JT ȳ

with ȳ = 1 as a single projection (where f is the function defined in Eq. 1). Thus, for high-resolution90

models implying very large n, the reverse mode is an enabling and potentially very efficient tech-

nique. This significant capability in AD is what makes its application to data assimilation so efficient.

Instead of evaluating a Jacobian using one forward sweep for each one of the model inputs, which

would be significantly consuming as it scales in n, the reverse mode evaluates the gradient of one

specific output of interest with respect to the model inputs in only one reverse sweep.95

Using this approach, it is possible, without manual derivation, to evaluate the derivative ∂f
∂x from

Eq. 1. In Cryosphere models, f could typically be a transient ice flow model, with inputs x taken for

example as the basal drag coefficient α at the ice/bed interface, and the output y as the cost function

J measuring the spatio-temporally averaged difference between for example surface elevation and

an altimetry record. In this case, m= 1, and n is the number of degrees of freedom of the basal drag100

input. Obtaining the sensitivity function ∂f
∂x is critical both in terms of enabling data assimilation

using inversion methods, but also in terms of understanding the sensitivity of a model to its model

inputs, as well as the impact of processes represented in the model itself. Other approaches than AD

can be relied upon to compute such a sensitivity, such as solving for the adjoint equation directly

(Morlighem et al., 2010; Larour et al., 2012; Cornford et al., 2013), but usually, a mix of forward AD105

or reverse AD is implemented for formulations where the manual derivation is difficult (Pawlowski

et al., 2012; Goldberg and Heimbach, 2013). In Pawlowski et al. (2012) for example, AD relies

on template based generic programming to compute sensitivities, while in Goldberg and Heimbach

(2013), AD is based on source to source transformation. Our approach will instead be based on so

called operator overloading, which is uniquely suited to a framework written in C++.110

Applying AD to large-scale frameworks such as ISSM (Larour et al., 2012), MITgm (Heimbach,

2008), SICOPOLIS (Heimbach and Bugnion, 2009) or DassFlow (Monnier, 2010) is a difficult

proposition, but one which enables significant improvements in the way models can be initialized

(Heimbach and Bugnion, 2009), hindcast validated (Larour et al., 2012), and calibrated (Goldberg

et al., 2015) towards better projections. Traditional approaches relying on Source-to-Source trans-115

formation have been developed, but for frameworks such as ISSM, which are C++ oriented, and

highly parallelized, this type of approach breaks down. Our goal here is to demonstrate how the so-

called operator-overloading AD approach can be implemented and validated for a framework such

4

as ISSM, and what developments were necessary to make this capablity operational. Our approach is

discussed in section 2 of this manuscript, with section 3 describing the method validation as well as120

applications with ISSM. We discuss and conclude in the last section the applicability of such an ap-

proach to other frameworks, and on the opportunities these new developments afford for Cryosphere

Science and data assimilation of remote sensing data in particular.

2 Methodology and Validation

2.1 Source to Source vs Overloaded Operators125

Distinctions among the AD implementation approaches relate to the way the derivative data in v̇ or v̄

respectively is associated with the original program variable v (data augmentation) and how the logic

for coefficient propagation is added to the original program (logic augmentation). The basic options

for the former are association by address and association by name. Association by address packs the

original and the derivative data into a new type called the active type, and all differentiated program130

variables have their type changed to that new active type. For the logic augmentation one uses source

code transformation or operator overloading. Because of the complexity of the C++ syntax and

semantics, there currently still is no comprehensive AD tool for source code transformation of C++

models and thus operator overloading remains the method of choice, implying association by address

for the data augmentation. In practice, the overloaded operators and intrinsics for the forward mode135

typically execute Eq. (2) directly for the forward mode and for the reverse mode record the sequence

of operations into a trace T (f(x)) which then is read backward by an interpreter R(T) that executes

the statements Eq. (3) for the reverse mode. The invocation of R(T) is part of the user-written logic

that then uses the derivatives. The model thus enhanced by an adjoint capability computing both f

and ∇f is denoted by M .140

2.2 Type Change to Enable Overloaded Operators

Changing to the aforementioned active type is a significant effort to be undertaken in the model code.

Among the choices to effect this type change one should select one that is transparent to the model

development process, is maintainable, and minimizes the manual effort.

The tool of choice for this paper is ADOL-C (Griewank et al., 1996; ADOL-C) and our target145

model M is the Ice Sheet System Model (ISSM, Larour et al. (2012)). The ADOL-C manual is quiet

on the practical approach to effect the type change. For models with a large C++ code base and

many contributing developers such as ISSM, not all of them aware of M but merely interested in

running M , it is important to make this process transparent and robust. The representation of M as a

computer program typically means that in the set of program variables V =A∪P there is a subset P150

of passive variables that do not carry derivative information, such as variables of non-differentiable

type (integers, strings) but also floating-point parameters, physical constants, or descriptors of the

5

problem domain. The size of the trace T is a major factor on the computational efficiency of the

adjoint. Thus, one must categorize program variables into A and P with the aim to minimize the

set A of active (i.e. type-changed) program variables. In ISSM this is accomplished by changing155

double variables to a type named for brevity e.g. TA (in ISSM IssmDouble) for variables in

A and to e.g. TP (in ISSM IssmPDouble) for variables in P , respectively. This categorization

must be performed by an expert familiar with the global data dependencies in M and the work that

has been done for M . In addition, it can be incrementally done for code contributions supplied as

double variables without breaking M . This is a key aspect of the overloaded AD approach that is160

amenable to easy maintenance and expansion of a complex C++ framework such as ISSM, and one

of the key reasons why this approach was selected to compute M in ISSM. In the end, all double

types should eventually be replaced with either TA or TP . Following good practices in C++ both

TA and TP are typedef ed in a central location switched only there via a preprocessing macro to

use the active type supplied by the AD tool or hide the distinction altogether for running the plain165

M . This implies that one cannot explicitly overload methods or define data structures for distinct

TA and TP without filtering the declaration and definition of the TA variant by the preprocessor as

well. Such code duplication introduces an undue code maintenance burden.

Instead, the recommended approach is the use of C++ template classes and methods where TA

and TP are the concrete arguments for an abstract template type T . While the use of templates may170

imply a larger up-front effort if they weren’t present in the model code before, as was the case in

ISSM, the long term benefits not only for M but also the plain M are obvious when one wants to

experiment with computation at different precision levels. Aside from ISSM, an established general

example for this kind of templating is the use of SACADO within Trilinos (The Trilinos Project;

Phipps et al., 2008). Of particular value in ISSM was the migration of data containers for arrays175

and (sparse) matrices and that of existing wrappers to malloc and free to templated wrappers

of new and delete , in ISSM called xNew and xDelete . The latter is necessary not only to

properly instantiate TA variables but also permits specializations for TA in M as explained in the

following.

Overall, the use of C++ template classes introduces an additional element of complexity to the180

code, but it also means that the same exact framework can be used to compute both the forward run

and its gradient, using the exact same code base, without the need to manage different code for the

computation of M . This in turn means that ISSM can be compiled using ADOLC and shipped to

the community in only one binary version that can accomodate both M and M , which is a critical

feature in terms of extending AD features to the wider community without having to dive into the185

intrinsic complexities of AD transformation itself.

Interpreting the trace by R(T) means that the space holding the data for the variables r,a,b ∈ V∗

(the set of instantiated program variables at run time) occurring in each operation r = φ(a,b) must

be represented by some mapping ω : V∗ 7→ N+ to pseudo addresses. In ADOL-C these addresses are

6

called locations and represent indices in a work array held by R(T). The pseudo addresses must be190

managed through the TA constructor and destructor in a fashion similar to the memory management

of the actual program variables themselves, i.e. pseudo addresses are assigned from and returned

to a pool Ω of available addresses. However, no distinction between heap and stack variables is

made and generally data locality will not be preserved. On the other hand, for special operations φA

with array arguments of size s, that is, calls to external solvers (see section 2.3) or MPI routines (see195

section 2.4), it would be counterproductive to record in T the pseudo-addresses of each of the s array

elements rather than a consecutive range. The latter, however, imposes that the pool be primed by

some call Ω(s) such that ω returns consecutive pseudo addresses when called by the constructor for

each element in the array. In ADOL-C this is done by calling ensureContiguousLocations

immediately before an active array is instantiated. Avoiding copying of array values in M as an200

efficiency measure means that any given array has a good chance of being used in φA, and to avoid

littering the code with preprocessor-guarded calls to Ω(s), we decided in ISSM to instead add a call

to ensureContiguousLocations in the TA specialization of xNew :

#if defined(_HAVE_ADOL_C_)

template <>205

adouble* xNew(unsigned int s) {

ensureContiguousLocations(s);

adouble* aT_p=new adouble[s];

assert(aT_p);

return aT_p;210

}

#endif

Thus, the use of φA means frequent calls to Ω(s). The implementation of Ω(s) searches the pool

to find a sufficiently large consecutive range or otherwise grow the pool by at least s addresses. In

ISSM, this search became a significant performance bottleneck. Minimizing the search effort and215

balancing it with pool growth has been newly implemented in ADOL-C and is controlled by setting

parameters via setStoreManagerControl for the ratio of the addresses inside and outside of

the pool and the maximal pool size to trigger searches.

2.3 Binding to External Solvers

The strength of the AD approach lies in the automated differentiation of all the parts of the model220

that are changing and expanding as the model is being developed as opposed to manually program-

ming adjoints which is error prone and implies a significant effort in terms of code development and

maintenance. However, because models reference libraries, for fixed mathematical mappings, that

may have easily programmable high-level adjoints, one can and should exploit this insight as it can

7

yield efficiency gains not obtainable by an AD tool remaining unaware that calls to some collection225

of subroutines represent a certain mathematical mapping. A good example are linear solver libraries

that may not even be written in the same programming language as the model in question. Consid-

ering the system As= b, the solver S computing s= S(A,b) needs an adjoint counterpart solving

AT t= s̄, incrementing b̄= b̄+ t and, if A ∈ A, also Ā= Ā− b̄sT . Clearly, the solve with the trans-

posed can easily be implemented reusing the solver S as in t= S(AT , s̄). However, the answers to230

the following questions affect the efficiency and ought to be considered in the context of the given

model (Giles, 2008):

Q1: Is A ∈ A which therefore requires the rank-1 update to Ā?

Q2: Are the previous values of s, r and A overwritten by S but used to compute partial derivatives

for Eq. (3) and therefore must be saved and restored?235

Q3: If S is a direct solver should one save the factors or refactorize for the adjoint solve?

Q4: How does the external function interface used byR(T) allow for efficient reuse of intermediate

buffers?

External functions fe that had been supported by ADOL-C had the signature fe(lx,x, ly,y) with

inputs x, outputs y for the original call, lx, ly their respective array lengths, and fe(ly, ȳ, lx, x̄) for240

the adjoint counterpart. In the case of a linear system with A ∈ A, the input x is packed with both

A and r while y contains the solution s of the system on return. This, however, was insufficient for

binding to solvers from the GNU Scientific Library (GSL) (Galassi, 2009) and MUMPS (Amestoy

et al., 2001) used by ISSM. The following extensions were implemented in ADOL-C to enable the

ISSM adjoints but are generic in nature and would need to be supported in some form by other tools.245

E1: Expanded the fe interface by x,y to fe(ly, ȳ, lx, x̄,x,y) to enable refactoring;

E2: added optional parameters to pass in the sparsity pattern ofA for MUMPS as a generic integer

array i of length li for both fe and fe;

E3: added controls for storing and restoring prior values of x and y;

E4: added tracking of the maximal lx, ly in sequences of fe calls.250

Regarding Q1 we know that in ISSM A ∈ A, and regarding Q2 the parameters passed to fe have

no other uses and therefore, using the controls (E3), we avoid (re)storing their values. The direct

solver from the GSL used here had no API control to back solve with the factors for the transposed

and we did not want to reverse engineer the permutation representation. Hence the refactoring was

done as a matter of convenience for the sequential reference case requiring E1. The parallel and255

therefore practically more efficient MUMPS solver operates on sparse, distributed A, therefore re-

quiring E2. MUMPS offers both the ability to store the factors to file and perform the back-solve for

the transpose. However, the MUMPS portion of the runtime is comparatively small (see section 3).

8

Table 1. Logic variants encapsulated in the ISSM MPI wrapper library

MPI AD

1 no no emulate MPI semantic, e.g. with memcpy between buffers for MPI_Reduce

2 no yes emulate MPI semantic but for differentiation need to use the overloaded assignments

instead of memcpy

3 yes no pass-through to plain MPI

4 yes yes call AMPI routines

Consequently the overhead for the file I/O when considering the factor data size after fill-in is not

expected to yield much practical benefit in this context, answering Q3. Finally, for Q4, the extension260

E4 is exploited because transient runs of ISSM need to account for changes in the system size and

a preallocation with the maximal buffer sizes therefore avoids some of the memory management

overhead.

2.4 Handling Parallelism with the AdjoinableMPI Library

As is the case with ISSM, practically relevant science problems incur a computational complexity265

that necessitates execution on parallel hardware, often using MPI as the paradigm of choice. Sending

data with MPI from a source buffer s to a target buffer t can be interpreted as a simple assignment

t= s. This implies for the adjoint an increment s̄= s̄+ t̄, that is, the adjoint of a communication

is a reversal of the data flow between buffers. Calculating the adjoint of t= s means sending back

the value of t̄ and computing s̄= s̄+ t̄. The principles for adjoining two-sided MPI communication270

have been explored in Utke et al. (2009). The development of the AdjoinableMPI (AMPI) wrapper

library AdjoinableMPI started in Fall of 2012. It is designed to provide an AD tool-independent

implementation for adjoining MPI-parallelized C, C++ and Fortran models. The wrapper interfaces

distinguish themselves from the original MPI by the prefix AMPI and have a few additional pa-

rameters where needed to enable the adjoint functionality. AMPI also provides additional types and275

predefined symbols. Discussing the internal design of AMPI is outside the scope of this paper. How-

ever, the application to ISSM is the first large scale practical use of AMPI and in the following we

will discuss the steps taken to use it in the ISSM code base.

For testing and small scale experiments, the ISSM code, as many other models, treats MPI par-

allelization as a compile-time option controlled by preprocessor macros. Furthermore, turning the280

adjoint capability on and off as suggested in section 2.2 would imply additional switching between

the original MPI and AMPI with code duplication and the potential for errors. To avoid these unde-

sirable consequences we decided to introduce in ISSM another wrapper layer (prefixed ISSM_MPI

) of calls and definitions to encapsulate completely the four functionality variants listed in Table 1.

9

1 i n t ISSM_MPI_Reduce (void * sendbuf , void * r e c v b u f , i n t count ,

2 ISSM_MPI_Datatype d a t a t y p e , ISSM_MPI_Op op , i n t r o o t ,

3 ISSM_MPI_Comm comm) {

4 i n t r c =0 ;

5 # i f d e f _HAVE_MPI_

6 # i f d e f _HAVE_AMPI_

7 r c =AMPI_Reduce (sendbuf , r e c v b u f , count , d a t a t y p e , op , r o o t , comm) ;

8 # e l s e

9 r c =MPI_Reduce (sendbuf , r e c v b u f , count , d a t a t y p e , op , r o o t , comm) ;

10 # e n d i f

11 # e l s e

12 # i f d e f _HAVE_ADOLC_

13 i f (d a t a t y p e ==ISSM_MPI_DOUBLE) {

14 IssmDouble * a c t i v e S e n d B u f =(IssmDouble *) s e n d b u f ;

15 IssmDouble * a c t i v e R e c v B u f =(IssmDouble *) r e c v b u f ;

16 f o r (i n t i =0 ; i < c o u n t ;++ i) a c t i v e R e c v B u f [i]= a c t i v e S e n d B u f [i] ;

18 }

19 e l s e

20 # e n d i f

21 memcpy (r e c v b u f , sendbuf , s i z e H e l p e r (d a t a t y p e)* c o u n t) ;

22 # e n d i f

23 re turn r c ;

24 }

Figure 1. Code for wrapping reduction

The approach is shown for MPI_Reduce in Fig. 1. Variant 1 is implemented by line 21, variant 2285

by lines 13-18 and 21, variant 3 by line 9, and variant 4 by line 7. The example code reflects some of

the simplifying assumptions being made based on the MPI usage patterns in ISSM. Examples are the

absence of MPI_IN_PLACE and user-defined MPI types as well as all active data being of double

precision. This permits the simple distinction on line 12 but of course the logic covers all other

non-differentiated MPI types that may occur. The following lines 14,15 indicate the pairing between290

the C++ type definition IssmDouble and the wrapper-defined ISSM_MPI_DOUBLE to signify

active data being communicated when AD is enabled. Mirroring in MPI the approach described in

section 2.2 with two types TA and TP , the passive type TP (concrete IssmPDouble) has an MPI

counterpart defined in the wrapper as ISSM_MPI_PDOUBLE . It too can be the value passed in via

the datatype argument at line 1 and signals to AMPI passive floating point communications. The295

definitions provided by the ISSM_MPI wrapper corresponding to types TA and TP are given in

Table 2.

The matching between the actual type of the buffer and the corresponding MPI type must extend

to the templating approach suggested for the type change in section 2.2. The main reason is to

avoid type errors, which become more common as the complexity of a code increases. Because the300

10

Table 2. Types per variant from Table 1; + active type from ADOL-C, ++ active MPI type from AMPI

ISSM_MPI_DOUBLE IssmDouble (=TA) ISSM_MPI_PDOUBLE IssmPDouble (=TP)

#define to typedef to #define to typedef to

1 2 double 3 double

2 2 adouble + 3 double

3 MPI_DOUBLE double MPI_DOUBLE double

4 AMPI_ADOUBLE ++ adouble + MPI_DOUBLE double

MPI standard keeps the definition of MPI_Datatype opaque and MPI types can be created at

runtime, the value of MPI_Datatype cannot be used as the value template parameter itself (as it

may not be a compile time constant). Therefore, a template buffer type T must be paired with the

corresponding MPI type value declared as a pointer parameter, as show in Fig. 2. Assuming many

AMPI calls in foo , this confines the code locations where type errors may be introduced to the305

template instantiations themselves.

/ / t h i s d e c l a r a t i o n comes from t h e wrapper :

e x t er n ISSM_MPI_Datatype ourISSM_MPI_DOUBLEVal , ourISSM_MPI_DOUBLEVal ;

t empla te < c l a s s T , ISSM_MPI_Datatype *mt_p > void foo (T * t) {

ISSM_MPI_Reduce (t , . . . , ,* mt_p , . .) ;

}

void b a r (IssmDouble *x , IssmPDouble *p) {

foo <IssmDouble ,&ourISSM_MPI_DOUBLEVal >(x) ;

foo <IssmPDouble ,&ourISSM_MPI_PDOUBLEVal >(p) ;

}

Figure 2. Code snippets for templating with corresponding MPI data types

Finally, a practical concern for using the parallelized adjoint is the handling of sensitivities to

quantities that are uniformly initialized across ranks, such as parameters. Frequently, as was the

case within ISSM, these quantities are initialized from files or otherwise per process in the parallel

case the same way as in the sequential case. In the parallel case that implies a replication of the310

same quantity across ranks. However, to obtain the correct sensitivities, the quantity q in question,

should be unique, in other words that quantity must be uniquely initialized at one root rank and then

broadcast to the other ranks. Otherwise, for r ranks, then at each rank one would obtain only a part

q̄i of the total q̄ and would have to “manually” sum up q̄ =
∑
q̄i. With an initial broadcast of q ,

however, the corresponding adjoint provided through AMPI by using AMPI_Bcast is that exact315

sum reduction andR(T) yields the correct adjoint at the broadcast root. This notion similarly applies

11

to any situation where a conceptually unique quantity of active type is implicitly replicated on some

ranks.

2.5 Validation

ISSM is validated in AD mode by continuously running a test suite within the Jenkins (Smart, 2011)320

integration and development framework (available here at http://issm.jpl.nasa.gov/developers/) . A

detailed description of the suite of benchmarks is given in Table 3) The aim is to 1) compare forward

runs in ISSM with their counterparts when overloaded operators are switched on. The results should

be identical within double precision tolerances; and 2) compare forward and reverse runs carried

out with ISSM AD on and off, using the GSL and MUMPS solvers. Comparisons of gradients325

computed in AD mode with standard forward differences methods are also carried out to make sure

the gradients computed (essentially in reverse scalar mode, which is the mode of predilection in

ISSM for data assimilation) in AD mode are accurate.

3 Application

3.1 Application330

The ongoing use of adjoint computations includes sensitivity studies and state estimation problems

for transient model runs. Because this paper concentrates on technical aspects, we show, only as

exemplary evidence of the practical usefulness, some sensitivities of cost functions calibrated for two

sensors commonly encountered in Cryosphere Science, altimeters (that measure surface elevation),

and radars (that measure surface displacement, or velocity). In Fig. 3, the sensitivity (gradient) of a335

cost function related to ICESat-1 altimetry with respect to Surface Mass Balance (SMB) is shown

for three epochs, September 2003, June 2006 and February 2009. The cost function JAltimetry is the

spatio-temporal average of the misfit between modeled surface elevations (from the mass-transport

module of the transient solution in ISSM), and the corresponding ICESat-1 altimetry record. This

cost function was used within an inversion method to reconstruct SMB over the entire ICESat-1 time340

record (Larour et al., 2014). This example would correspond to the case where function f from Eq.

1 is a transient ice-flow model (including mass transport and stress-balance, no thermal, described in

Larour et al. (2014)), fully non-linear in its treatment of the material rheology, and highly resolved

both spatially (km resolution at the coastline) and temporally (two-week time step). The final output

(corresponding to y in Eq. 1) of the model is the altimetry cost function JAltimetry itself and the345

model input SMB (corresponding to x in Eq. 1). The sensitivity displayed in Fig.3 is therefore the

AD computed ∂JAltimetry

∂SMB at different time steps corresponding to the transient model input SMB.

A second type of observations garnering considerable interest is temporally resolved time series

of radar observations (using speckle-tracking, or InSAR to infer surface deformation of the ice) to

measure variations of surface velocity on a seasonal time scale (one observation every 2 months, as350

12

http://issm.jpl.nasa.gov/developers/

Table 3. ISSM AD validation suite integrated within Jenkins for continuous integration and delivery (Smart,

2011). Tests 3001 to 3010 and 3101 to 3110 test the repeatability of forward runs with and without ADOL-C

compiled, but with no AD drivers specifically called. The forward runs involved are the standard stress balance,

mass transport and thermal solutions, with 2D SSA (Shelfy-Stream Approximation MacAyeal (1989)), 3D SSA,

3D HO (Higher-Order, (Blatter, 1995; Pattyn, 1996)), 3D Full-Stokes (Stokes, 1845) and DG (Discontinuous-

Galerkin) formulations. Test 3015 tests the AD GSL capability, by comparing the AD Forward Scalar mode

(where we compute the gradient of ice volume with respect to ice thickness at one vertex of the mesh) against

a simple forward differences computation on the same gradient. Test 3019 validates the AD GSL capability

in Reverse Scalar mode (where we compute ice volume gradient with respect to thickness at all vertices of the

mesh) vs the Forward Vectorial mode. Both gradients should be identical. Finally, test3119 validates the parallel

capabilities (AD MUMPS) by comparing reverse scalar computations with GSL and MUMPS.

Test Solution Sequence Formulation Solver Description

3001/3101 Stress Balance 2D SSA GSL/MUMPS Equal runs with overload on and off

3002/3102 Stress Balance 3D SSA GSL/MUMPS Equal runs with overload on and off

3003/3103 Stress Balance 3D HO GSL/MUMPS Equal runs with overload on and off

3004/3104 Stress Balance 3D FS GSL/MUMPS Equal runs with overload on and off

3005/3105 Mass Transport 2D GSL/MUMPS Equal runs with overload on and off

3006/3106 Mass Transport 2D (DG) GSL/MUMPS Equal runs with overload on and off

3007/3107 Mass Transport 3D GSL/MUMPS Equal runs with overload on and off

3008/3108 Thermal Steady State 3D GSL/MUMPS Equal runs with overload on and off

3009/3109 Thermal Transient 3D GSL/MUMPS Equal runs with overload on and off

3010/3110 Transient 2D 2D GSL/MUMPS Equal runs with overload on and off

3015 Mass Transport 2D 2D GSL AD Forward Scalar vs Forward Differences

3019 Thermal Transient 3D GSL AD Reverse Scalar vs AD Forward Vectorial

3119 Thermal Transient 3D MUMPS vs GSL AD Reverse Scalar (MUMPS vs GSL)Scalar

in Moon et al. (2015)). Temporally inverting for such time series, trying to reconstruct for example

basal friction is a topic of interest due to its relevance in terms of understanding the dynamics of

calving, basal slip and shear softening, and associated feedback mechanisms. In Fig. 4, we demon-

strate the feasibility of such inversions by computing the gradient of a cost function JV elocity related

to the Moon et al. (2015) time series with respect to basal drag α at epochs 2008, 2010 and 2013. The355

cost function is the spatio-temporal average of the misfit between modeled surface velocity (from

the stress-balance module of the transient solution in ISSM) and observed surface velocities. This

example would correspond to the case where function f from Eq. 1 is the same transient ice-flow

model described previously, the final output (corresponding to y in Eq. 1) of the model is the ve-

locity cost function JV elocity itself and the model input basal friction α (corresponding to x in Eq.360

1). The sensitivity displayed in Fig.4 is therefore the AD computed ∂JV elocity

∂α at different time steps

corresponding to the transient model input α.

13

Figure 3. Gradient of surface altimetry cost function (spatio temporal average of the misfit between the 6

year record of observed ICESat altimetry and modeled surface elevation) with respect to SMB (in years). The

gradient is computed for every time step of a two-week interval time series between 2003 and 2009. We only

show three periods (September 2003, June 2006 and February 2009) in the entire interval. The location for

the study is North-East Greenland Ice Stream, and the gradient is taken from an inversion study of the surface

forcings necessary to best fit the ICESat altimetry record (Larour et al., 2014).

3.2 Benchmarking

Currently, these adjoint computations are performed on the Pleiades cluster at the NASA Advanced

Supercomputing Center. Given the fact that the effort for computing the adjoint ∇f relies on one365

reverse sweep, the practical question becomes what the actual runtime overhead of computing both

f and ∇f when compared to computing just the original f is. Here in particular one considers the

effects of compiler optimization on the original code for f using the built-in floating point operations

on one side and in contrast to that the overhead incurred by calling the overloaded operators as well

as the creation, storage, and interpretation of the trace T (as the means to compute∇f) on the other.370

Aside from the fact that the tuning of the ISSM adjoint is a work in progress we want to highlight

the overwhelming impact of the application specific aspects on the runtime ratio. Therefore, we

emphasize that exhibiting any particular overhead number as the ultimate result of scenario-specific

tuning is of little use to the practitioner wanting to answer science questions. Rather, using examples

from the ISSM work we want to show what may prevent achieving a satisfactory overhead.375

The earliest ISSM adjoint computations took place before the MPI wrapper library was introduced

and therefore were done sequentially with the GSL solvers. To evaluate the performance, a represen-

14

2008 2010 2013

Figure 4. Gradient of surface velocity cost function (spatio temporal average of the misfit between a 5 year

time series of observed surface velocities and the modelled surface velocity) with respect to the basal drag

coefficient (in yr1/2/m5/2). The gradient is computed for every time step of a two-week interval time series

between 2008 and 2013. We only show three periods (2008, 2010 and 2013) in the entire interval. The location

for the study is Upernavik Glacier, Central West Greenland, and the gradient is taken from an inversion study

of the basal forcings required to match observed RADAR time series of surface velocites and calving front

positions (Larour et al, 2016, in preparation).

tative test case was chosen from the ISSM regression test suite, test 101. This test models the steady

state stress balance of a square ice shelf of size 50km x 50km and thickness 1000 m (at the grounding

line) to 300 m (at the ice front). The ice shelf is clamped at the grounding line, free to flow at the ice380

front (one one side only), with non-linear viscosity dependent on Glen’s law Glen (1955, 1958). The

formulation relies on the Shelfy-Stream Approximation (SSA, MacAyeal (1989)), and is inherently

non-linear, relying on a Picard iteration for convergence. For more details on this test, we refer the

reader to Larour et al. (2012). For benchmarking, the problem size was indirectly set by specifying

a measure for the maximal resolution of the generated mesh, thus increasing the number of mesh385

elements generated for a smaller resolution parameter. The parallel runs were carried out using 8

cpus. The overhead factors are shown separately for the overloading as such and the generation of T

and R(T) as wall-clock comparisons to the unmodified model compiled with default optimization

(-O2) in Fig. 5 (upper frame). While this plot indicates a small overhead factor of≈ 4.5 in particular

for the largest mesh case (distance 12.5 km) the reason for this becomes apparent in the plot on390

the lower frame. It shows that the majority of the run time is consumed by the GSL solver (libgsl)

completely overshadowing any of the overhead caused by the adjoint for the largest mesh. We want

to emphasize that GSL was chosen not for its efficiency but for the simplicity of the setup which

quickly enabled adjoint computations. Introducing AMPI and thereby moving to a more appropriate

solver (MUMPS) causes the adjoint overhead to become more prominent. The most consequential395

change necessitated by the use of MPI is the forced contiguity of the pseudo addresses (see section

2.2).

15

 0

 2

 4

 6

 8

 10

 12

 14

100 50 25 12.5

overloading overhead
trace overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

100 50 25 12.5

libadolc
libgsl

I/O

Figure 5. Test problem setup with sequential GSL solver; plots over max mesh distance show overhead factors

(upper frame), and approximate run-time portions of the model execution with adjoint computation (lower

frame)

16

In combination with the much reduced impact of the solver, the overhead factor for equivalent

test problems reached temporarily up to 145 which clearly was not acceptable. Subsequent changes

to the ADOL-C tool included improvements in the internal address management. Changes to the400

model included modifications of the sparse data format, enabling the control of the I/O buffering for

the trace T and the ADOL-C address manager via the ISSM configuration specific to the setup to be

computed. The combination of these changes led to regaining better performance and effective over-

all overheads between 10 and 30. Analyzing the details of the performance shows that the overhead

factor for the trace creation and interpretation does not change significantly (see Fig. 6 bottom) with405

the mesh size in accordance with the theoretical result for the adjoint computation. The large major-

ity of the total overhead, evidenced by the runtime portion for libadolc in Fig. 6 (top) still originates

in the internal address management. While the overall overhead factors are sufficiently small for the

practical use of the adjoints for science problems further improvements in the addressing scheme are

clearly warranted and subject of ongoing work.410

 0

 0.2

 0.4

 0.6

 0.8

 1

100 50 25 12.5

libadolc
libmumps

I/O

 0.5

 1

 1.5

 2

100 50 25 12.5

trace overhead

Figure 6. Test problem setup with parallel MUMPS solver; plots over max mesh distance show approximate

run-time portions of the model execution with adjoint computation (upper frame) and overhead factors for the

trace creation and interpretation (lower frame)

17

4 Conclusions

We developed a new adjoint capability in ISSM, based on the ADOL-C framework and the Ad-

joinableMPI library, which is to our knowledge the first time this type of approach has been sys-

tematically applied to a software framework of this size and complexity. Despite the difficulties

encountered rewriting the software, the overloaded approach is transparent to the user, which is crit-415

ical given the size of the larger Cryosphere Science community that is not familiar with the adjoint

work, and for which classic approaches such as source-to-source transformation may not be applica-

ble, or may prove prove more cumbersome. The flexibility of this approach allows in particular for

quick turn-around in developing adjoint models of new parameterizations which are not easily hand

derived. This is a major advantage in that it opens this approach to the wider community. This, given420

the large amount of remote sensing data currently being collected and under-utilized, could prove

paramount if we are to hindcast validate projections of sea-level rise. Further work is of course re-

quired to bring in additional observations such as gravity sensors, or radar stratigraphy observations,

which will involve development of new cost functions, and scalability in 3D. Though this is complex

in that it requires integrated resiliency and adjoint checkpointing schemes for long running transient425

modeling scenarios, our approach has proven flexible, and should lead to a brand new set of data

assimilation capabilities that have already been available to other Earth Science communities for a

long time. Indeed, by allowing temporal data assimilation for a large number of sensors and models,

such as demonstrated here with the use of altimetry and radar sensors for mass transport and stress

balance models respectively, ISSM paves the way for wider integration between the modeling and430

observational Cryosphere community.

5 Code Availability

The ISSM code and its AD components are available at http://issm.jpl.nasa.gov. The instructions for

the compilation of ISSM in AD mode, along with test cases is presented in the supplement attached

to this manuscript.435

Acknowledgements. DE-AC02-06CH11357. Larour and Utke were supported by the Jet Propulsion Labora-

tory, California Institute of Technology under a contract with the NASA Cryospheric Sciences and Modeling

and Analysis Program. Gilberto Perez was supported by a subcontract from the Jet Propulsion Laboratory to

University of California at Irvine and Mathieu Morlighem was supported under a contract with the NASA

IceBridge Research Program.440

18

References

AdjoinableMPI: ://trac.mcs.anl.gov/projects/AdjoinableMPI/wiki.

ADOL-C: http://www.coin-or.org/projects/ADOL-C.xml.

Amestoy, P. R., Duff, I. S., Koster, J., and L’Excellent, J.-Y.: A Fully Asynchronous Multifrontal Solver Using

Distributed Dynamic Scheduling, SIAM J. Matrix Anal. Appl., 23, 15–41, 2001.445

Applegate, P., Kirchner, N., Stone, E., Keller, K., and Greve, R.: An assessment of key model parametric uncer-

tainties in projections of Greenland Ice Sheet behavior, Cryosphere, 6, 589–606, 2012.

Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem,

J. Glaciol., 56, 527–533, 2010.

Aschwanden, A., Adalgeirsdottir, G., and Khroulev, C.: Hindcasting to measure ice sheet model sensitivity to450

inital states, Cryosphere, 7, 1083–1093, doi:10.5194/tc-7-1083-2013, 2013.

Bindschadler, R., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve,

R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W.,

Martin, M., Morlighem, M., Parizek, B., Pollard, D., Price, S., Ren, D., Saito, F.and Sato, T., Seddik, H.,

Seroussi, H., Takahashi, K., Walker, R., and Wang, W.: Ice-Sheet Model Sensitivities to Environmental455

Forcing and Their Use in Projecting Future Sea-Level (The SeaRISE Project), J. Glaciol., 59, 195–224,

doi:10.3189/2013JoG12J125, 2013.

Blatter, H.: Velocity And Stress-Fields In Grounded Glaciers: A Simple Algorithm For Including Deviatoric

Stress Gradients, J. Glaciol., 41, 333–344, 1995.

Cornford, S., Martin, D., Graves, D., Ranken, D. F., Le Brocq, A. M., Gladstone, R., Payne, A., Ng, E., and460

Lipscomb, W.: Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549,

doi:10.1016/j.jcp.2012.08.037, 2013.

Galassi, M. e. a.: GNU Scientific Library Reference Manual, Network Theory Ltd, 3rd ed edn., http://www.

gnu.org/software/gsl/manual/gsl-ref.ps.gz, 2009.

Giles, M.: Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation, in:465

Advances in Automatic Differentiation, pp. 35–44, Springer Berling Heidelberg, Berling,Heidelberg, 2008.

Glen, J.: The creep of polycrystalline ice, Proc. R. Soc. A, 228, 519–538, 1955.

Glen, J.: The flow law of ice: A discussion of the assumptions made in glacier theory, their experimental

foundations and consequences, IASH Publ, 47, 171–183, 1958.

Goldberg, D. and Sergienko, O.: Data assimilation using a hybrid ice flow model, Cryosphere, 5, 315–327,470

doi:10.5194/tc-5-315-2011, 2011.

Goldberg, D. N. and Heimbach, P.: Parameter and state estimation with a time-dependent adjoint ma-

rine ice sheet model, Cryosphere, 17, 1659–1678, http://www.the-cryosphere-discuss.net/7/2845/2013/

tcd-7-2845-2013.pdf, 2013.

Goldberg, D. N., Heimbach, P., Joughin, I., and Smith, B.: Committed retreat of Smith, Pope, and Kohler475

Glaciers over the next 30 years inferred by transient model calibration, The Cryosphere, 9, 2429–2446,

2015.

Griewank, A. and Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-

tion, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edn., 2008.

19

://trac.mcs.anl.gov/projects/AdjoinableMPI/wiki
http://www.coin-or.org/projects/ADOL-C.xml
http://dx.doi.org/10.5194/tc-7-1083-2013
http://dx.doi.org/10.3189/2013JoG12J125
http://dx.doi.org/10.1016/j.jcp.2012.08.037
http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz
http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz
http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz
http://dx.doi.org/10.5194/tc-5-315-2011
http://www.the-cryosphere-discuss.net/7/2845/2013/tcd-7-2845-2013.pdf
http://www.the-cryosphere-discuss.net/7/2845/2013/tcd-7-2845-2013.pdf
http://www.the-cryosphere-discuss.net/7/2845/2013/tcd-7-2845-2013.pdf

Griewank, A., Juedes, D., Mitev, H., Utke, J., Vogel, O., and Walther, A.: ADOL-C: A Package for the Auto-480

matic Differentiation of Algorithms Written in C/C++; this is the updated version of the paper published in

ACM TOMS, vol. 22 (2), June 1996, Algor, 755, 131–167, 1996.

Habermann, M., Maxwell, D., and Truffer, M.: Reconstruction of basal properties in ice sheets using iterative

inverse methods, J. Glaciol., 58, 795–807, doi:10.3189/2012JoG11J168, 2012.

Habermann, M., Truffer, M., and Maxwell, D.: Changing basal conditions during the speed-up of Jakob-485

shavn Isbrae, Greenland, Cryosphere, 7, 1679–1692, doi:10.5194/tc-7-1679-2013, http://dx.doi.org/10.5194/

tc-7-1679-2013, 2013.

Heimbach, P.: The MITgcm/ECCO adjoint modelling infrastructure, CLIVAR Exchanges, 44 (Volume 13,

No. 1), 13–17, http://scholar.google.com/scholar?q=related:M8_kkL0Y1rUJ:scholar.google.com/&hl=en&

num=20&as_sdt=0,5, 2008.490

Heimbach, P. and Bugnion, V.: Greenland ice-sheet volume sensitivity to basal, surface and initial conditions

derived from an adjoint model, Ann. Glaciol., 50, 67–80, 2009.

Khazendar, A., Rignot, E., and Larour, E.: Larsen B Ice Shelf rheology preceding its disintegration inferred by

a control method, Geophys. Res. Lett., 34, 1–6, doi:10.1029/2007GL030980, 2007.

Larour, E., Rignot, E., Joughin, I., and Aubry, D.: Rheology of the Ronne Ice Shelf, Antarctica, inferred495

from satellite radar interferometry data using an inverse control method, Geophys. Res. Lett., 32, 1–4,

doi:10.1029/2004GL021693, 2005.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial res-

olution, ice sheet modeling using the Ice Sheet System Model (ISSM), J. Geophys. Res., 117, 1–20,

doi:10.1029/2011JF002140, 2012.500

Larour, E., Utke, J., Csatho, B., Schenk, A., Seroussi, H., Morlighem, M., Rignot, E., Schlegel, N., and Khazen-

dar, A.: Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data

assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet

System Model), Cryosphere, 8, 2335–2351, doi:10.5194/tc-8-2335-2014, http://www.the-cryosphere.net/8/

2335/2014/, 2014.505

MacAyeal, D.: Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B,

Antarctica, J. Geophys. Res., 94, 4071–4087, 1989.

MacAyeal, D.: A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 91–98, 1993.

Monnier, J.: DassFlow: Data Assimilation for Free Surface Flows, http://www.math.univ-toulouse.fr/DassFlow,

2010.510

Moon, T., Joughin, I., and Smith, B.: Seasonal to multiyear variability of glacier surface velocity, terminus

position, and sea ice/ice mélange in northwest Greenland, Journal of Geophysical Research: Earth Surface,

120, 818–833, 2015.

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry, D.: Spatial patterns of basal

drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West515

Antarctica, Geophys. Res. Lett., 37, 1–6, doi:10.1029/2010GL043853, 2010.

Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: High-resolution ice thickness mapping

in South Greenland, Ann. Glaciol., 55, 64–70, doi:10.3189/2014AoG67A088, 2014.

20

http://dx.doi.org/{10.3189/2012JoG11J168}
http://dx.doi.org/10.5194/tc-7-1679-2013
http://dx.doi.org/10.5194/tc-7-1679-2013
http://dx.doi.org/10.5194/tc-7-1679-2013
http://dx.doi.org/10.5194/tc-7-1679-2013
http://scholar.google.com/scholar?q=related:M8_kkL0Y1rUJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:M8_kkL0Y1rUJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:M8_kkL0Y1rUJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://dx.doi.org/10.1029/2007GL030980
http://dx.doi.org/10.1029/2004GL021693
http://dx.doi.org/10.1029/2011JF002140
http://dx.doi.org/10.5194/tc-8-2335-2014
http://www.the-cryosphere.net/8/2335/2014/
http://www.the-cryosphere.net/8/2335/2014/
http://www.the-cryosphere.net/8/2335/2014/
http://www.math.univ-toulouse.fr/DassFlow
http://dx.doi.org/10.1029/2010GL043853
http://dx.doi.org/10.3189/2014AoG67A088

Nowicki, S., Bindschadler, R., Abe-Ouchi, A., Aschwanden, A., Bueler, E., Choi, H., Fastook, J., Granzow, G.,

Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Larour, E., Levermann, A.,520

Lipscomb, W., Martin, M., Morlighem, M., Parizek, B., Pollard, D., Price, S., Ren, D., Rignot, E., Saito, F.,

Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W.: Insights into spatial sensitivities

of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica, J.

Geophys. Res., 118, 1–23, doi:10.1002/jgrf.20081, 2013.

Pattyn, F.: Numerical modelling of a fast-flowing outlet glacier: experiments with different basal conditions,525

Ann. Glaciol., 23, 237–246, 1996.

Pawlowski, R. P., Phipps, E. T., and Salinger, A. G.: Automating embedded analysis, CoRR, abs/1205.0790,

http://arxiv.org/abs/1205.0790, 2012.

Phipps, E. T., Bartlett, R. A., Gay, D. M., and Hoekstra, R. J.: Large-Scale Transient Sensitivity Analysis of a

Radiation-Damaged Bipolar Junction Transistor via Automatic Differentiation, in: Advances in Automatic530

Differentiation, pp. 351–362, Springer Berlin Heidelberg, 2008.

Price, S., Payne, A., Howat, I., and Smith, B.: Committed sea-level rise for the next century from Greenland ice

sheet dynamics during the past decade, P. Natl. Acad. Sci. USA, 108, 8978–8983, 2011.

Rommelaere, V. and MacAyeal, D.: Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a

control method, Ann. Glaciol., 24, 43–48, 1997.535

Smart, J. F.: Jenkins: The Definitive Guide, O’Reilly Media, Inc., 2011.

Stokes, G.: On the theories of internal friction of fluids in motion, Trans. Cambridge Philos. Soc., 8, 287–305,

1845.

The Trilinos Project: http://trilinos.sandia.gov/.

Utke, J., Hascoët, L., Heimbach, P., Hill, C., Hovland, P., and Naumann, U.: Toward adjoinable MPI, 2009540

IEEE International Symposium on Parallel & Distributed Processing, pp. 1–8, 2009.

21

http://dx.doi.org/10.1002/jgrf.20081
http://arxiv.org/abs/1205.0790
http://trilinos.sandia.gov/

