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Abstract. Coupling the atmosphere with the underlying surface presents numerical stability challenges in cost-effective model

integrations used for operational weather prediction or climate simulations. These are due to the choice of large integration

time-step compared to the physical time scale of the problem, aiming at reducing computational burden, and to an explicit flux

coupling formulation, often preferred for its simplicity and modularity. Atmospheric models therefore use the surface-layer

temperatures (representative of the uppermost soil, snow, ice, water, etc.,) at the previous integration time-step in all surface-5

atmosphere heat-flux calculations and prescribe fluxes to be used in the surface models’ integrations. Although both models

may use implicit formulations for the time stepping, the explicit flux coupling can still lead to instabilities.

In this study, idealized simulations with a fully coupled implicit system are performed to derive an empirical relation between

surface heat flux and surface temperature at the new time level. Such a relation mimics the fully implicit formulation by

allowing to estimate the surface temperature at the new time level without solving the surface heat diffusion problem. It is10

based on similarity reasoning and applies to any medium with constant heat diffusion and heat capacity parameters. The

advantage is that modularity of the code is maintained and that the heat flux can be computed in the atmospheric model in

such a way that instabilities in the snow or ice code are avoided. Applicability to snow/ice/soil models with variable density

is discussed, and the loss of accuracy turns out to be small. A formal stability analysis confirms that the parametrized implicit

flux coupling is unconditionally stable.15

1 Introduction

Coupling atmospheric models to the underlying surface model, involves both scientific and technical issues. Models of the

atmospheric circulation tend to be computer intensive and therefore often employ long time steps (up to one hour), which is

a challenge for stability and accuracy (Beljaars et al., 2004; Lemarié et al., 2015). The turbulent diffusion part of these codes

provides the coupling to the surface, has short physical time scales near the surface and therefore needs implicit numerics for20

stability. The surface may be vegetation, soil, snow, ice, or a combination of these in a tile scheme. Best et al. (2004) propose

a coupling strategy to the surface that has a clean interface between atmosphere and surface code, and allows to include the

surface or the top part of the surface in the implicit computations. This is often necessary for stability if the physical time scale

of e.g. vegetation, soil, snow or ice surface is short compared to the model time step.
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The ideal solution for stability is to combine the boundary layer heat diffusion and e.g. the snow or ice layer diffusion in a

single implicit solver. However, modularity of the code and the complication of additional processes like phase changes and

water percolation make this less practical. The standard solution is to compute fluxes at the surface on the basis of the old

time level surface temperature. It is often called "explicit flux coupling". To improve stability and accuracy, West et al. (2016)

recently proposed to move the flux coupling level one level down i.e. just below the surface. This has the advantage of including5

the fast responding surface layer in the fully implicit computations, which is beneficial for stability and accuracy.

Ongoing work at ECMWF on snow modelling raised similar issues. The existing single layer snow model (see e.g. Dutra

et al., 2010), has already a minor stability issue when the snow layer becomes very thin, e.g. during the first snowfall in the

season and at the final melt. This was addressed by introducing some empirical implicitness in the coupling by making an

educated guess of the future snow temperature. Initial experimentation with a multilayer snow model (Dutra et al., 2012)10

showed even more frequent instabilities, so more implicitness in the coupling is required for stability.

In this paper, we propose a solution, that has the simplicity and modularity of the explicit flux coupling, but still has the

stability of the fully implicit system. To derive simple solutions, the fully implicit coupled system is used as a reference. It is

shown that the tri-diagonal set of equations corresponding to the discretized diffusion equation (for snow, ice or soil) can be

converted to a relation between temperature and heat flux at the surface. The coefficients in this relation are then parametrized15

dependent on properties of the medium, time step and vertical discretization. The coefficients are put in dimensionless form,

which makes the empirical coefficients universal and applicable to any medium and any discretization.

The experimental environment in this paper, is a simple model of a near surface air layer coupled to a snow pack by turbulent

exchange. The atmosphere (e.g. at a height of 10m, typical for atmospheric models) is assumed to have a diurnal cycle, and the

response of temperature in the snow pack is considered. Although the following sections refer to snow only, the dimensionless20

framework ensures that the outcome is valid for any medium.

The following two sections (2 and 3) describe the equations for the discretized snow layer and the turbulent coupling between

atmosphere and snow. Sections 4, 5 and 6 describe the numerical solution for an idealized diurnal cycle, the parametrization of

the coefficients that relate heat flux and top layer snow temperature and the testing of the proposed scheme. Finally, the results

and their applicability are briefly discussed in the concluding section. Also the implications of non-uniform snow density are25

discussed. The numerical solver and a formal stability analysis are described in Appendix A and B respectively.

2 Implicit numerical solution of the diffusion equation

We consider the diffusion equation for temperature in snow

ρC
∂T

∂t
=
∂G

∂z
, (1)

G=K
∂T

∂z
, (2)30
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where ρ (kgm−3) is density,C (Jkg−1K−1) is heat capacity, T (K) is temperature,G (Wm−2) is heat flux, andK (Wm−1K−1)

is the diffusion coefficient for heat. The boundary conditions are:

G = G0 for z = 0 , (3)

G = 0 for z→−∞ . (4)

For numerical stability with long time steps it is necessary to use an implicit scheme. With a vertical grid defined as in Fig. 1,5

the equation can be discretized as follows

(ρC)j
Tn+1
j −Tnj

∆t
=

1

∆zj

(
Kj−1/2

Tn+1
j−1 −Tn+1

j

∆zj−1/2
−Kj+1/2

Tn+1
j −Tn+1

j+1

∆zj+1/2

)
, (5)

with boundary conditions

(ρC)1
Tn+1
1 −Tn1

∆t
=

1

∆z1

(
G0−K1+1/2

Tn+1
1 −Tn+1

2

∆z1+1/2

)
, (6)

(ρC)NL
Tn+1
NL −TnNL

∆t
=− 1

∆zNL

(
KNL−1/2

Tn+1
NL−1−Tn+1

NL

∆zNL−1/2

)
. (7)10

This set of equations forms a tri-diagonal system, with diagonals A, B and C (the coefficients are defined in Appendix A). The

matrix equations can be solved by successive elimination from the bottom upward such that the C-coefficients are replaced by

zeros. At the same time, the equations are scaled to obtain B-coefficients that are equal to 1. Arriving at the top, it provides

a solution for Tn+1
1 . The solution for the other layers can be found by successive back-substitution of the temperatures going

from top to bottom (see Appendix A for more details).15

In case G0 is not known, the elimination provides a linear relation between G0 and Tn+1
1

Tn+1
1 = αG0 +β . (8)

This relation can be used to achieve fully implicit coupling with the air/surface interaction formulation.

3 Coupling to the lowest model level of the atmosphere

To focus on stability of the atmosphere surface coupling, it is assumed that the evolution of the near atmospheric temperature20

is known, e.g. as in standalone simulations of the land surface. However, this is not a limitation in full 3D models that typically

use an implicit solver for the turbulent diffusion. In that case the atmospheric model will perform the downward elimination

process (the same way as described in Appendix B). The result is a linear relation between the n+ 1 temperature at the lowest

atmospheric level and the surface heat flux, which can be used with the air/land interaction formulae described below to achieve

fully implicit coupling.25

With a prescribed air temperature, the heat flux into the snow layer can be related to the air / surface temperature difference

in the following way

G0 = ρacpCH |U |(Ta−Tsk) , (9)
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where G0 is the heat flux into the snow pack, ρa is air density, cp is air heat capacity, CH is the transfer coefficient between

the atmospheric level and the surface, |U | is absolute wind speed, Ta is air temperature, and Tsk is temperature of the snow

surface (skin temperature).

The coupling through a transfer coefficient is standard and represents the integral profile function according to Monin

Obukhov (MO) similarity (see e.g. Brutsaert, 1982). The transfer coefficient in neutral conditions is related to the height of the5

atmospheric level, and the surface roughness lengths of momentum and heat

CH =
κ2

ln(za/zom)ln(za/zoh)
, (10)

where κ is the VonKarman constant (0.4), za is the height of the atmospheric level, zom is the surface roughness length for

momentum, and zoh is the surface roughness length for heat. Stability can be included by extending the logarithmic terms with

the integral MO stability functions.10

In the vertically discretized snow (see Fig. 1), the temperature of layer 1 is assumed to be at the midpoint which is different

from the skin temperature. Therefore, the total conductivity between the atmosphere and the first snow layer (λt) is composed

of two components: the turbulent transfer in the air above the surface (λa) and the conductivity of half of the top snow layer

(λsk). The two conductivities are in parallel, because the inverse of conductivities (resistances) are in series, leading to the

following formulation for the heat flux into the snow15

G0 = λt(Ta−T1) , (11)

with

λt =
λaλsk
λa +λsk

,

λa = ρacpCH |U | ,

λsk =
2K1−1/2

∆z1
.20

Two different time stepping procedures are considered:

i. Explicit flux coupling. This is the traditional approach where the expression for the surface flux uses the previous time

level of the surface temperature leading to the following discretization of equation (11)

G0 = λt(T
n+1
a −Tn1 ) . (12)

With the explicit specification of the flux at the surface flux, the tridiagonal system can be solved directly.25

ii. Implicit flux coupling. The discretization of equation (11) reads

G0 = λt(T
n+1
a −Tn+1

1 ) , (13)

With this fully implicit formulation, the surface heat flux can not be specified explicitly, so it has to be found as part

of the coupled atmosphere/surface system. For that purpose the tri-diagonal problem is solved in two steps. First, the
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elimination part is performed resulting in a solution for α and β in equation (8). Together with equation (13), Tn+1
1 and

G0 can be computed:

Tn+1
1 =

αλtT
n+1
a +β

1 +αλt
, (14)

G0 =
λt(T

n+1
a −β)

1 +αλt
. (15)

Finally the entire temperature profile can be resolved by performing the back-substitution in the tri-diagonal solver.5

4 Solutions with a simple multilayer snow model

In this section, solutions are considered for a 1 m thick snow layer with constant heat capacity and heat diffusion coefficients.

Idealized temperature forcing from the atmosphere is prescribed as a sinusoidal diurnal cycle. The choice of constants is

documented in Table 1. The initial temperature profile at t= 0 is set to −5oC, and a single sinusoidal diurnal cycle with an

amplitude of 1oC is imposed at the 10 m level in the atmosphere10

T10 = −5 + sin(
2πt

3600. ∗ 24.
) . (16)

The simulations are performed with different uniform vertical discretizations and different time steps. Fig. 2 shows time series

of the snow skin temperature (left column) and the ground heat flux (right column), with the two schemes. The fairly long

time step of 3600 seconds is selected to illustrate stability and time truncation issues, and a short time step of 100 seconds for

comparison. In the latter case time truncation errors are small for both schemes (convergence was verified). The three rows in15

Fig. 2 are for different vertical discretizations: 0.2, 0.02 and 0.002 m.

The first thing to note is that amplitude and phase of the skin temperature diurnal cycle only have a small dependence

on vertical resolution. This is surprising because the amplitude of diurnal cycle of layer 1 with ∆z = 0.2m is only 20% of

the amplitude with ∆z = 0.02m. The reason that the skin temperature is still reasonable is due to the conductivity between

the middle of the layer and the top (much lower with ∆z = 0.2m than with ∆z = 0.02m). So at low vertical resolution, a20

substantial part of the temperature signal at the snow skin is due to the "interpolation" between air and middle of the first snow

layer making use of the air conductivity (λa) and the snow conductivity of half the top layer (λsk). One might interpret this

result as a justification for rather low vertical resolution. However, it should be realized that the forcing has the diurnal time

scale only. With faster time scales e.g. due to moving clouds and frontal passages, a relatively thick near surface layer will not

be able to respond.25

Although it is impossible to draw general conclusions about accuracy from limited experimentation, we note that the fully

implicit solution with ∆t= 3600s is very close to the short time step solution with ∆t= 100s, so the long time step does not

compromise accuracy in this case, although the time stepping is first order accurate only. However, the solution with explicit

coupling deviates visibly from the implicit and very short time step solutions (compare the red solid curve in middle/left panel

of Fig. 2 with the blue curve). Apparently, it is the mismatch of time levels in the flux computation that is detrimental to30

accuracy. The error is particularly visible as a phase error.

5



Finally, the explicit coupling turns out to be unstable for very thin snow layers (see lower panels in Fig. 2 for ∆z = 0.002.

Also for this case the long time step solution with implicit coupling is fairly accurate as it is very close to the short time step

solution. These experimental results are confirmed by a formal stability analysis in Appendix B. The explicit flux coupling is

unstable for a particular parameter range and the implicit flux coupling is unconditionally stable.

Because of the good stability and accuracy characteristics, we develop in the next section a parametric form of α and β in5

equation (8).

5 Scaling relations for α and β

As suggested above, it is desirable to have all the flux formulations (also for the atmosphere/surface exchange) at the new time

level n+ 1. This implies the fully implicit option as described in sections 2 and 3. It also requires to perform the elimination

part of the tri-diagonal solver to find the relation between Tn+1
1 and G0 according to equation (8). Because of code modularity10

it is desirable to make a reasonable estimate of the heat flux into the snow, before the snow code is executed. Therefore, an

educated guess is made of the coefficients α and β in equation (8) without solving the tri-diagonal system, i.e. α and β are

parametrized.

For that purpose, we make use of similarity theory for the diffusion equation with constant coefficients. If we think of an

infinite medium (thick snow layer) with uniform temperature To and make a jump at the surface to Tnew at t= 0, we have to15

consider the following basic variables: the temperature change T−T0 at time t, Tnew−T0,K/(ρC), and depth z. According to

the Buckingham Pi Theorem (Stull, 1988), 5 variables with 3 dimensions (m, s, andK), lead to two independent dimensionless

groups: (T −T0)/(Tnew −T0) and z/δ, where

δ =

(
Kt

ρC

)1/2

. (17)

Length scale δ is the natural length scale of the medium for time scale t after which the temperature change at the surface20

was applied. From the physical point of view, δ is the typical depth to which the perturbation of the surface temperature has

propagated at time t. The implication is that (T −T0)/(Tnew−T0) is a universal function of z/δ. At this stage we do not care

about the form, although the solution can be found easily by transforming the equation to the new coordinate z/δ, which allows

to separate the time dependence and the depth dependence leading to an ordinary differential equations which can be solved

analytically (Carslaw and Jaeger, 1959).25

Similarly, we can apply an external forcing by suddenly applying a heat flux G0 at time 0 and look for the temperature

response. Instead of scaling the temperature with the temperature jump, we make the temperature change dimensionless with

G0 and obtain

K(T −T0)

δG0
= h

(z
δ

)
, or T =

δG0

K
h
(z
δ

)
+T0 , (18)
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where h is a universal function. For z = 0, equation (18) is of the form of equation (8). With time scale ∆t and substitution of

the expression for δ, we therefore expect the following scaling behavior for α

α∼
(

∆t

K ρC

)1/2

. (19)

It indicates the surface temperature response to a 1 W/m2 heat flux forcing over a finite time step ∆t.

The scaling arguments above apply to the continuous system. For the discretized system, the scaling behavior of α also5

depends on ∆z, which introduces a dependence on the dimensionless variable ∆z/δ. For a very fine grid (∆z << δ), the

discrete system behaves like the continuous system and equation (19) applies. For a very thick top layer (∆z >> δ), the heat

flux is simply distributed over the top layer and the following applies

α=
∆t

∆z ρC
. (20)

In general the dimensionless α should be a universal function of δ/∆z, i.e.10

α

(
KρC

∆t

)1/2

= f

(
δ

∆z

)
= f

(
(K∆t)1/2

∆z (ρC)1/2

)
. (21)

The empirical function can be "measured" by running the numerical model as in the previous section for a range of time steps

and vertical discretizations. Note that α remains constant during the time stepping and does not depend on the temperature

profile. It is just a property of the tri-diagonal matrix which only contains properties of the medium, the time step and the level

thickness. The results are shown in Fig. 3. Time steps range from 100 s to 3600 s, and layer thicknesses are used from 0.00215

m to 0.2 m, with a total snow depth of 1 m for all simulations

For small ratios of δ/∆z, the universal function should scale with equation (20) and for large values with (19). Surprisingly,

coefficient h0 turns out to be 1. An empirical fit is proposed that makes a smooth transition between the two regimes according

to (see Fig. 3)

f(x) =
x

(1 +x1.3)1/1.3
. (22)20

The exponent of 1.3 has been optimized to obtain a reasonable representation of the numerical data in the transition regime.

The second parameter for which an empirical formulation is needed is β. The physical meaning of β is clear from equation

(8): it is the temperature of the top snow layer at the new time level Tn+1
1 in case of zero heat flux. A simple approximation

would be to select the temperature of the previous time level, but this is only valid for a uniform temperature profile. For a

non-uniform temperature profile, heat diffusion will homogenize temperature, which will make β different from Tn1 at the old25

time level. Following the scaling arguments above, we know that information propagates vertically over a distance δ during

time step ∆. Therefore, we conjecture that the temperature of the old profile at depth δ is a better approximation for β than

the temperature at level 1, i.e. Tnδ is better than Tn1 . Fig. 4 indeed confirms that the temperature at depth δ is a reasonable

approximation. The temperature at z =−δ has been obtained by linear interpolation between levels, except when δ < 0.5∆z.

In the latter case, temperature Tn1 is selected. Note that, unlike α, β does change with temperature and does evolve during the30

integration.
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From Figs. 3 and 4, it is concluded that reasonable estimates can be made of α and β without actually solving the tri-diagonal

matrix. Depth scale δ and the thickness of the top layer ∆z are crucial scales to characterize the temperature evolution of the

top snow layer over a time step.

6 Simulations with the empirical formulation

With the empirical formulations for α and β, it is possible now to repeat the simulations of section 4. Instead of generating the5

fully implicit solution by solving the tri-diagonal matrix in the standard way, α and β are replaced by the empirical formulation

between the elimination and back-substitution phase. If the formulation is perfect, the solution should be the same as the fully

implicit solution. Results are shown in Fig. 5 for the skin temperature and the heat flux. Layer thicknesses of 0.2, 0.02 and

0.002 m are shown as different rows in Fig. 5. The figure confirms that the diurnal temperature cycle of the fully implicit

solution (blue curve, IMPL) is well reproduced by the solution with parametrized α and β (black solid cure, IMPPAR). The10

differences between blue and black curves are very small.

Finally, the scheme was further simplified by using the parametric form for α only and estimating β by putting it equal to

Tn1 . The advantage is that no interpolation to z =−δ is needed, but that stability of the coupling is still maintained. However,

it is clear that numerical errors are increased for thin snow layers (see dashed black curve). Such errors have to be seen in

the context of other model errors, so the use of a parametrized α only, to ensure stability, may still be sufficient for many15

applications.

7 Discussion and conclusion

Numerical stability is a critical issue for atmospheric models that are coupled to a fast responding surface e.g. through a thin

snow or ice layer. Such thin snow layers can occur in early winter after the first snow fall and during melt in spring. A fine

discretization may also be desirable to allow for a fast response of the surface temperature to changes in radiation. It is shown20

that stability can be achieved by fully implicit coupling of the heat diffusion between atmosphere and surface.

Fully implicit coupling leads to a tri-diagonal problem in which atmosphere and surface are solved simultaneously. In

practice, often so-called explicit flux coupling is applied: the atmospheric model uses the surface temperature of the previous

time level to compute the surface heat flux, which is used later as boundary condition for the heat diffusion in the surface.

Explicit surface coupling puts stability limits on the thickness of the top snow layer and on the time step. Explicit flux coupling25

is also desirable from the code modularity point of view.

Although the atmosphere / surface heat diffusion leads to a single tri-diagonal matrix problem, one can also break it up in

different steps. It is shown that the elimination part of the solver of the snow heat diffusion problem leads to a linear relation

between surface temperature and surface heat flux. This relation can be used together with the atmosphere / surface interaction

formulation to solve for the surface heat flux.30
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A simple method has been developed to approximate the coefficients in this linear relation. The coefficients are scaled with

the characteristic scales of the diffusion equation. This makes the result universal and applicable to an arbitrary medium e.g.

snow, ice or soil. The depth scale that characterizes the penetration of a perturbation over a time step, turns out to play a

crucial role. In this paper the relevant empirical function is "measured" by solving the diffusion equation for a range of vertical

resolutions and time steps.5

Finally, the empirical functions are used to solve for the coupled diffusion problem and compared with the fully implicit

computations. The results are very close. The advantage of the method is that the surface fluxes can be computed without

calling any surface code, and behaves like explicit flux coupling. The only difference is that the surface heat flux expression

has a damping term depending on the time step. This damping term is the result of the change of surface temperature related

to the heat flux, and stabilizes the result.10

The scaling argument used above, only applies for a diffusion equation with constant properties of the medium. However,

in reality there may a profile of e.g. snow density as snow becomes more and more compact in deeper layers, or vertical

resolution may be variable. The latter is numerically equivalent to a variable diffusion coefficient 1. As a simple test, a case was

selected where the profile of density is 150 kgm−3 at the surface, increases linearly to 250 kgm−3 at a depth of 0.5 m, and

remains constant below 0.5 m. The characteristic depth is again computed as in section 5, and to non-dimensionalize, the snow15

properties are taken from the middle of the top snow layer. For this case the dimensionless α and characteristic temperature

β are shown in Figs. 6 and 7. They are very close to the figures for constant snow properties (Figs. 3 and 4), which suggests

that the sensitivity to snow properties is fairly small. In general, it is to be expected that the snow properties very close to the

surface control the relation between flux and temperature over a short time step, because the penetration depth δ is small.

We conclude that making an estimate of the relation between heat flux and surface temperature is a practical solution to20

support explicit flux coupling and to combine numerical stability for long time steps with a modular code structure. A formal

stability analysis in Appendix B confirms unconditional stability of the proposed coupling method. The similarity framework

makes the method applicable to any medium, e.g. snow, ice or soil. It is also worth noting that the method does not compromise

conservation: the heat flux that is computed by the atmospheric model is later used by the surface model as boundary condition.

1In fact the aerodynamic coupling between atmosphere and snow can be interpreted as a big jump in the properties of the medium
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Appendix A: Solving the tri-diagonal matrix equations

The set of equations discussed in section 2 leads to the following tri-diagonal system

B1 C1 0 0 · · · 0

A2 B2 C2 0 · · · 0

0 A3 B3 C3 · · · 0

. . . . . . . . . . . . . . . . . .

0 · · · ANL−2 BNL−2 CNL−2 0

0 · · · 0 ANL−1 BNL−1 CNL−1

0 · · · 0 0 ANL BNL





Tn+1
1

Tn+1
2

Tn+1
3

...

Tn+1
NL−2

Tn+1
NL−1

Tn+1
NL


=



R1

R2

R3

...

RNL−2

RNL−1

RNL


(A1)

where

Aj = − Kj−1/2

∆zj∆zj−1/2
,5

Bj =
(ρC)j

∆t
+

Kj−1/2

∆zj∆zj−1/2
+

Kj+1/2

∆zj∆zj+1/2
, (A2)

Cj = − Kj+1/2

∆zj∆zj+1/2
,

Rj =
(ρC)j

∆t
Tnj ,

with boundary condition at the surface

A1 = 0 ,10

B1 =
(ρC)1

∆t
+

K1+1/2

∆z1 ∆z1+1/2
, (A3)

C1 = − K1+1/2

∆z1 ∆z1+1/2
,

R1 =
G0

∆z1
+

(ρC)1
∆t

Tn1 ,

and the no-flux condition at the bottom

ANL = − KNL−1/2

∆zNL∆zNL−1/2
,15

BNL =
(ρC)NL

∆t
+

KNL−1/2

∆zNL∆zNL−1/2
, (A4)

CNL = 0 ,

RNL =
(ρC)NL

∆t
TnNL .

The tridiagonal system is solved in two steps by standard Gaussian elimination. The first step is an upward sweep to eliminate

the C coefficients. It starts at level NL by rescaling coefficient ANL to 1. The new coefficients identified by superscript * are20

A∗NL = 1 , B∗NL =
BNL
ANL

, R∗NL =
RNL
ANL

. (A5)
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Next, coefficient CNL−1 is eliminated by multiplying A,B,C and R for level NL− 1 by B∗NL, the new coefficients for level

NL with CNL−1 (i.e. from A5), subtracting the two equations and rescaling the result to have 1 at the position of ANL−1. The

new A, B, C and R for level NL− 1 are

A∗NL−1 = 1 , B∗NL−1 =
BNL−1B

∗
NL−CNL−1

ANL−1B∗NL
, C∗NL−1 = 0 , R∗NL−1 =

RNL−1B
∗
NL−CNL−1R∗NL

ANL−1B∗NL
. (A6)

This process is repeated to the top, which results in a matrix where theA-diagonals are all 1 and the C-diagonal contains zeros.5

If the surface heat flux is specified, the top line of the matrix contains the solution for Tn+1
1 . The temperatures of all the other

levels can be computed in a downward sweep, where the temperature of level j is used to find the solution for level j+ 1 with

the equation for level j+ 1.

If the surface heat flux is not known, the first line of the matrix equation contains a linear relation between Tn−11 and G0,

which can be written in the form of equation (8).10

Appendix B: Stability analysis of the coupling schemes

In this section we present the stability properties of the three coupling methods introduced in the present study, namely the

explicit flux coupling (EXPFLX), the implicit flux coupling (IMPFLX) and the so-called parametrized implicit flux coupling

(IMPPAR). Since the numerical stability is expected to be greatly influenced by the numerical treatment of the surface boundary

condition, a classical Von Neumann stability analysis, which assumes periodic boundary conditions, would not be adequate.15

For this reason our study is based on a matrix stability analysis (e.g. Oishi et al., 2008). Assuming a constant grid spacing and

diffusion coefficients, the results are shown in terms of the dimensionless coefficients σ and γ defined as

σ =

(
δ

∆z

)2

=
K∆t

(ρC)∆z2
γ =

λt∆t

(ρC)∆z
, (B1)

where λt and δ are respectively defined in (11) and (17), with t= ∆t. The typical value of those parameters for the numerical

simulations discussed in sections 4 and 6 are given in table 2.20

B1 Numerical treatment of the surface boundary condition

Without loss of generality we consider in the following that Ta = 0 in the computation of the surface boundary condition G0

defined in (11) as well as that K, ∆z, and ρC are held constant. The only difference between the three coupling algorithms

considered here is in the treatment of the surface boundary condition (i.e. for the vertical index j = 1):

– Explicit flux coupling: the surface temperature involved in the computation of G0 is Tn1 , thus leading to the following25

counterpart of equation (6)

(1 +σ)Tn+1
1 −σTn+1

2 = (1− γ)Tn1 (B2)

– Implicit flux coupling: the surface temperature at time level n+ 1 is used to compute G0

(1 +σ+ γ)Tn+1
1 −σTn+1

2 = Tn1 . (B3)

11



– Parametrized implicit flux coupling: the temperature at time level n+ 1 is diagnosed as Tn1 /(1 +αλt)

(1 +σ)Tn+1
1 −σTn+1

2 =

(
1− γ

1 +αλt

)
Tn1 . (B4)

where α is defined in (21). Using (22) it can readily be seen that

γ

1 +αλt
=

γ

1 + γ(1 +
√
σ
1.3

)−1/1.3
, (B5)

which shows that the parametrized implicit flux coupling can be interpreted as a limiter acting on the value of γ of the5

explicit flux coupling, indeed γ(1 +αλt)
−1 ≤ γ.

B2 Matrix stability analysis

As shown in Appendix A, the Euler implicit scheme applied to the diffusion equation can be written in a general matrix form

ATn+1 = BTn, T = (T1, . . . ,TNL)t, (B6)

with10

A =



1 +σ+ θ(2θ− 1)γ −σ 0 0 . . .

−σ 1 + 2σ −σ 0 . . .

0
. . . . . . . . . 0

. . . 0 −σ 1 + 2σ −σ

. . . 0 0 −σ 1 +σ


, (B7)

B =



1 + (θ− 1)(1 + 2 1−αλt

1+αλt
θ)γ 0 0 . . . 0

0 1 0 . . . 0

0
. . . . . . . . . 0

. . . 0 0 1 0

. . . 0 0 0 1


, (B8)

where θ = 0 corresponds to the explicit flux coupling, θ = 1 to the implicit flux coupling, and θ = 1/2 to the parameterized

implicit flux coupling. The general implicit scheme (B6) is stable if all the eigenvalues of the matrix M = A−1B do not15

exceed 1 in magnitude. Therefore, the stability analysis requires the computation of the spectral radius of matrix M, i.e. its

larger eigenvalue in magnitude. For γ ≥ 0 it can be shown that the smallest eigenvalue of A is larger or equal2 to 1 meaning

that this matrix is invertible for θ ∈ {0,1/2,1}. In Fig. 8, values of the spectral radius of M obtained over a range of values of γ

2for the special cases θ = 0 and θ = 1/2, the eigenvalues λAk of matrix A are given by λAk = 1+2σ
(
1+ cos kπ

NL

)
for k = 1, . . . ,NL; therefore

λAmin = 1,∀σ ≥ 0.

12



and σ are shown for each coupling algorithm3. Gray shaded areas coincide with regions where the spectral radius is larger than

1 thus indicating parameter values for which the corresponding scheme is unstable. From those results, the only algorithm that

turns out to be conditionally stable is the explicit flux coupling whereas the implicit and parameterized implicit flux coupling

are unconditionally stable. The results are thus consistent with the numerical experiments discussed in sections 4 and 6.

Empirically, it can be found that the stability condition for the explicit flux coupling roughly behaves like γ ≤ 2 +
√
σ
1.1

5

(see figure 9). For the parametrized implicit flux coupling, γ is replaced by γ̃(σ) = γ

1+γ(1+
√
σ1.3)−1/1.3

which is always smaller

than γ̃max = (1 +
√
σ
1.3

)1/1.3. As shown in figure 9, ∀σ ≥ 0, γ̃max ≤ 2 +
√
σ
1.1 meaning that for the particular choice of

f(
√
σ) given in (22) the parameterized implicit flux coupling is unconditionally stable because it always satisfies the stability

constraint of the explicit flux coupling.

Data availability10

The data that is used in this paper has been produced with a dedicated stand-alone fortran program. ECMWF’s data policy

does not allow open access to software. However, the code can be obtained from the first author subject to license. The license

implies non-commercial use i.e. for research and education only.
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Table 1. List of parameters used in the idealized simulation of a snow layer

Parameter Description Value Units

ρ snow density 150 kgm−3

ρice ice density 920 kgm−3

C snow (and ice) heat capacity 2228 J kg−1K−1

Kice ice heat diffusion coefficient 2.2 Wm−1K−1

K snow heat diffusion coefficient Kice(ρ/ρice)
1.88 Wm−1K−1

ρa air density 1.2 kgm−3

cp air heat capacity 1005 J kg−1K−1

|U | absolute wind speed 4 ms−1

zom roughness length for momentum 0.0001 m

zoh roughness length for heat 0.0001 m

za height atmospheric forcing level 10 m

κ VonKarman constant 0.4 −

D total depth of snow layer 1 m

Table 2. Values of γ and σ defined in (B1) for various time steps ∆t and vertical discretizations ∆z, for ρ= 150 kgm−3, C =

2228 J kg−1K−1, and K =Kice(ρ/ρice)
1.88 ≈ 7.27× 10−2 Wm−1K−1.

∆t [s] 100 3600 100 3600 100 3600

∆z [m] 0.2 0.2 0.02 0.02 0.002 0.002

λt [Wm−2K−1] 0.65 0.65 3.23 3.23 5.39 5.39

γ [−] 9.6× 10−4 3.48× 10−2 4.81× 10−2 1.74 0.8 29

σ [−] 5.44× 10−4 1.96× 10−2 5.44× 10−2 1.96 5.44 195.8
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Figure 1. The numerical grid is defined by the position of the half levels, i.e. the thickness of the layers. The full levels are in the middle of

the layers, i.e. zj = (zj−1/2 +zj+1/2)/2. The surface is at z = 0. The bottom level is defined by the accumulated depth of all the layers. The

temperature is defined on full levels and the heat fluxes are defined on half levels.
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Figure 2. Diurnal cycle time series of snow skin temperature (left column) and surface heat flux (right column). The simulations were made

with 0.2, 0.02 and 0.002 m vertical resolution (top, middle and bottom panels). The blue curves refer to the fully implicit solution(IMPL);

the red curves indicate the solutions with explicit flux coupling (EXPFLX). The solid curves are with a time step of 3600 s seconds and the

dashed curves with 100 seconds.
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Figure 3. Dimensionless function f = α(KρC/∆t)1/2 as a function of x= δ/∆z. The circles and triangles are for different combinations

of ∆z and ∆t. The blue line is the asymptotic limit for small δ/∆z. The green curve is the empirical fit according to equation (22).
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Figure 4. Empirical estimates of parameter β as a function of the value found from the tri-diagonal solver. The red curve represents the

estimate according to Tn1 and the blue curve is the temperature at z =−δ, also at the previous time level n. The symbols (connected by

lines) indicate the successive time steps in the diurnal cycle. Results are plotted for vertical resolutions of 0.2, 0.02 and 0.002 m.
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Figure 5. Diurnal cycle series of skin temperature (left columns and) and surface heat flux (right columns). The simulations were made with

0.2, 0.02 and 0.002 m resolution (top, middle and bottom panels). The blue curve refers to the fully implicit solution(IMPL); the black solid

curve is the solution with parametrized α and β. The black dashes curve refers to the solution where α is parametrized and β is set equal to

the temperature of level 1 at the previous time (n). The time step is 3600 seconds.
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Figure 6. Dimensionless α as in Fig. 3, but for non-uniform snow density. The snow density is 150 kgm−3 at the surface, increases linearly

to 250 kgm−3 at a depth of 0.5 m, and remains constant below 0.5 m.
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Figure 7. Dimensionless β as in Fig. 4, but for non-uniform snow density. The snow density is 150 kgm−3 at the surface, increases linearly

to 250 kgm−3 at a depth of 0.5 m, and remains constant below 0.5 m.

Figure 8. Spectral radius of the matrix M = A−1B (defined in B7,B8) associated to the explicit flux coupling (EXPFLX), parametrized

implicit flux coupling (IMPPAR), and implicit flux coupling (IMPFLX) with respect to the dimensionless coefficients γ and σ. Gray shaded

areas correspond to regions where the spectral radius is larger than 1.
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Figure 9. Maximum value of γ with respect to the parabolic Courant number σ to guarantee stability of the explicit flux coupling (solid

gray) which roughly behaves like γ(σ) = 2 +
√
σ
1.1 (doted black line). The parametrized implicit flux coupling replaces γ by γ̃ which is

always smaller than γ̃max = (1 +
√
σ
1.3

)1/1.3 (solid black line). Since the solid black line is below the solid gray line, the implicit flux

parametrization is unconditionally stable.
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