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This concise study addresses the problem of instability due to explicit coupling across a 

surface boundary, and proposes a method by which this instability can be greatly reduced or 

eliminated. In this method, the coupling is made effectively semi-implicit by allowing the 

surface / boundary layer solver to make an educated guess of the future bottom boundary 

condition. 

I found this study reasonably well argued and set out, with clear additional evidence 

provided from one-dimensional simulations, and am persuaded that the method described 

provides a good approximation to a semi-implicit scheme, with significant improvements over 

a traditional explicit scheme.  The study makes a useful addition to the literature. My only 

comments relate to ways in which the method might perhaps be explained more clearly and 

consistently.  In particular, I am not sure that the algorithm can be described as acting like a 

‘fully’ implicit coupling scheme (see point 2). 

 

1. Page 3, line 7: ‘The matrix equations can be solved by successive elimination 

of the C-coefficients from the bottom upward’.  

 

This is a crucial step as it provides the initial linear relation between surface flux and 

top layer temperature; however, I had to work through it quite carefully to understand 

how this produced equation (8). It is also a little confusingly written as strictly 

speaking it is the variables that are eliminated, not the coefficients.  

 

I wonder if it would be worth expanding this line to demonstrate the elimination of 

bottom layer temperature from the lowest pair of equations, and its result: 
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Which is an equation of the form 
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It is then easy to see that by repeating upwards, the linear relation ����� = ��� + � 

can be obtained, as G0 effectively takes the part of the upper boundary condition (i.e. 

instead of ‘�����’) in the topmost equation. 

 



 

2. Page 4, line 18: ‘Together with Eq. (13),  !"�! and #$ can be computed:’ (and 

following equations, (14), (15). 

It is probably a trivial point, but the solution of equations (14) and (15) actually 

depends on the future air temperature, �%���, already being known. I would guess 

that it is assumed in the method that the atmospheric simulation is solved first, using 

bottom boundary conditions from the previous timestep, hence �%��� is known when 

the time comes to calculate the surface flux.   

With this understanding, the algorithm works as follows: 

i) Atmospheric simulation is advanced one timestep, using boundary conditions 

from the previous timestep; 

ii) Implicit approximation to future surface flux is calculated, using new 

atmospheric temperature and coupling fields received from the snow below 

according to parameterisation described in Section 5; 

iii) ‘Future’ surface flux is passed to the snow model below; 

iv) Snow model is advanced one timestep, using the future surface flux as its 

upper boundary condition. 

With this algorithm, while the snow model is advanced in time using forcing valid at 

the end of the timestep, the atmosphere model is still advanced in time using forcing 

valid at the beginning of the timestep.  It may just be semantics, but I would argue 

that this method should be described as semi-implicit, rather than fully-implicit.   

The implications of this point for stability of the simulation are probably rather limited.  

Because of the different timescales under which the atmosphere and snow 

simulations work, the forcing of the snow on the atmosphere (top layer temperature) 

would probably be liable to change less rapidly than the forcing of the atmosphere on 

the snow (surface flux).  An implicitly calculated bottom boundary condition for the 

atmosphere is probably somewhat less important for stability than the top boundary 

condition for the snow.   

This objection therefore does not represent a fundamental flaw in the method, more 

really an issue with how it is described.  It would probably be good if the authors 

could state explicitly somewhere that �%��� is solved as part of the atmosphere 

simulation based on previous values of the top snow layer temperature. 

 

3. Page 6, line 30 – page 7, line 8 (discussion of scaling behaviour of surface 

temperature evolation). 

 

This section (Section 5) contains the central idea of the study, which is impressive in 

its simplicity.  The idea is based on the fact that dimensional constraints on solutions 

to the diffusion equation mean that in the case of an initially isothermal profile, the 

evolution of the surface temperature in response to any surface flux �� must take a 

very specific form, described in equation (18) of Beljaars et al. 



My issue is that having derived equation (18), the authors appear to digress into a 

discussion of the surface temperature simulation before arriving at equation (22), 

which describes the form the coefficient � must take.  I think that this is unnecessary 

(see below).  It also appears to conflate two different concepts: the surface skin 

temperature (SSKT) and top layer temperature (TLT).  It is the TLT that the authors 

are trying to approximate using the scaling arguments, but in equations (19) and (20) 

they effectively derive the form � would take if they were instead trying to 

approximate the SSKT.  The authors then state that this form must also take account 

of ∆' for an approximation of TLT, due to the system being discretised.  But I think 

that the form must take account of ∆' for the (simpler) reason that it is TLT they are 

trying to approximate, not SSKT.  It is possible that the authors view TLT as being 

the ‘discrete’ approximation to SSKT, but I think that it is much more accurate to view 

it as the discrete approximation to temperature at a depth of  
∆(

 . 

 

The same conclusions can be arrived at from equation (18) more smoothly, as 

follows: 

 

Rearranging equation (18) of Beljaars et al, and rewriting it in the notation of section 

2, leads to the form 
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, ') the midpoint of vertical layer j, and h() some 

universal function.  It should be noted that (5) still describes the evolution of the 

temperature according to the continuous diffusion equation, rather than being a 

description of the discretised solution (even though it is written in this notation). 

 

In particular, setting j=1, to estimate the TLT: 
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Equation (6) shows that in estimating the discretised solution the quantity 
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naturally takes the place of the coefficient α (the ‘2’ in the denominator of the function 

argument can be ignored, by scaling h and relabeling).  As h is dimensionless, this 

implies that α scales like / ∆2
-3�1

� 
4
 (the same conclusion as the authors reach in their 

equation (20)).  This shown, the function can be ‘measured’. 

 

 

 

 


