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1 Introduction

This paper aims at addressing a stability problem found in the coupling between the atmospheric sur-
face layer (ASL) and a snow/ice model. An instability associated to a synchrony problem between the
snow/ice model and the surface flux computation is identified and illustrated by simple numerical experi-
ments. A somehow empirical way to suppress this type of instability is introduced and numerically tested.
The paper is structured as follows. In Sec. 2, the continuous problem is introduced, it consists of a vertical
diffusion equation representing temperature evolution in the snow complemented with a flux (Neumann)
surface boundary condition. At a discrete level, this diffusion equation is solved using an Euler backward
scheme as usually done in state-of-the-art numerical models. Sec. 3 briefly describes the way to compute
the surface flux for the snow model as a function of the atmospheric temperature. This computation is
based on the standard semi-empirical Monin-Obukhov (MO) theory. Then, two ways of numerically eval-
uating this surface flux within an Euler backward framework are presented and referred to as Explicit flux
coupling (which is the preferred way to proceed in numerical codes) and Implicit flux coupling. In Sec.
4, an idealized one-dimensional numerical experiment is used to illustrate the occurrence of a numerical
instability when an explicit flux coupling is used jointly with a very fine vertical resolution at the top of
the snow model. This instability is absent if an implicit flux coupling is used. In order to control this insta-
bility, an extrapolation in time based on physical parameters is presented in Sec. 5 to make a prediction of
the surface flux at time level n + 1 knowing the state variables of the snow model at time n. This ad-hoc
extrapolation is built on scaling arguments to estimate the propagation of a surface perturbation over one
time-step.

2 Overall quality of the paper

This paper raises a very interesting problem which occurs when a diffusion term is constrained by
boundary conditions computed using a bulk formulation arising from the MO theory. In this case, instead
of the classical Neumann or Dirichlet boundary condition we have to treat a linear combination of both
(sometimes called Robin condition). Indeed, boundary condition (3) in the paper can be written as

K∂zT + λtT = g(t), for z = 0,

with g(t) = λtTa. The paper clearly emphasizes the dilemma we get when discretizing this boundary
condition since we expect K∂zT (z = 0) and T (z = 0) to be provided at the same moment in time
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which is at time level n + 1 if a backward Euler is used. If this is not the case, a numerical instability
can occur even if an unconditionally stable implicit scheme is used to advance the diffusion term. This
type of instability is generally unnoticed in the literature because it occurs under very unusual situations.
Just for raising this issue and trying to circumvent it, this paper should be considered for publication. The
paper is well written and the simple numerical experiments are nicely chosen to illustrate the punchline
of the paper. However I recommend major revisions to make the paper less misleading and more
convincing because this issue is important for the modeling community. The following points must be
addressed, because as is the paper has a lack of arguments/proofs of numerical nature. To strengthen the
message, I personally think that those proofs should be given in this paper and not in a separate paper with
possibly different authors.

3 General comments

Some of the comments made in this section are supported by additional material presented in Appendix.
This goes beyond the normal reviewer duty but the aim is to illustrate how simple the stability analysis
could be to convincingly support the various ideas introduced in the paper.

• The manuscript considers an instability of numerical nature, in this regard we expect a stability analysis
to characterize under what circonstances the instability can occur. Following Lemarié et al. (2015) or
more simply App. A below, this type of stability analysis is technically affordable and does not require
too much theoretical efforts. An important dimensionless number is

γ =
λt∆t

∆z(ρC)

which must stay small enough to ensure stability of the coupling between the ASL and the various
type of surfaces. Of course all the hypothesis of the Von Neumann stability analysis are not met in this
particular problem but this type of analysis always provide useful hints. It could also be interesting to
provide in the paper some typical values of the parameter γ depending on the surface model (ocean,
snow, vegetation, etc) so that the reader can assess how specific to the ASL/snow coupling this problem
is. Is it standard to use a vertical resolution ∆z of the order of 10−3 m in snow models ?
• The paper could leave the impression that the temporal variation of the atmospheric temperature Ta

plays a role in the development of the instability. However it must be clear that the instability occurs even
if the atmospheric temperature is held constant in time or is simply set to zero. Hence, this instability
can occur in coupled models but also in uncoupled models forced with a bulk formulation.
• The statement in the abstract ”These (instabilities) are due to the choice of large integration time-step,

aiming at reducing computational burden” must be mitigated because it is not the only contributing
factor, the vertical resolution or the transfer coefficients value are other important parameters.
• p. 6 line 5, it is adventurous to draw any conclusion on the accuracy of the proposed method based solely

on the simple numerical experiments presented in the paper without any well established metric like an
L2 or an L∞ norm and a convergence study with spatial/temporal resolution. In this paper, the emphasis
is on stability and the current experiments or mathematical analysis do not allow any conclusion on
accuracy.
• It is not rigorous enough to assess the efficiency of the proposed empirical coupling method based only

on an idealized numerical experiment under very specific conditions. For example, in App. B it is shown
that, indeed, the proposed method allows for an unconditionally stable coupling between the ASL and
the surface model whatever the parameter values.
• Since this paper is considered for publication in GMD, it would be worthwhile to provide additional
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details about the implementation of the proposed method in a numerical model with non-uniform grid
and flow-dependent diffusion coefficients.
• In the conclusion, it could be interesting to give some comments on the expected benefits of your

approach in realistic models. Besides stability, do you expect significant differences in the physical
solutions ?

4 Technical corrections

• The way to specify units is inconsistant throughout the paper. For example, units are missing for ∆z
and ∆t in p. 5 (lines 9 to 20), sometimes units are in italic sometimes not (e.g. p. 9, lines 15-16) . . .
• In eqn (19) it should be T0 and not T n0
• p. 7 line 9, it should be ∆z � δ and not ∆z � δz
• In Figure 1, Tsk and Ta could be added (instead of T10 which is never used in the paper). λsk and λa

could also be reported on the figure.
• In figure 2 the left panels show the skin temperature Tsk whereas the left panels of Figure 5 show T1. To

facilitate the comparison, the same quantity should be plotted.
• Appendix A is relatively trivial and does not provide useful informations. It could be interesting to use

this appendix to be more specific about the elimination and back-substitution steps when solving the
tridiagonal problem. We guess a Thomas algorithm is used but it is not explicitly stated.

A Stability analysis of the explicit flux coupling

In the following we consider that Ta = 0. It must be clear that this choice does not affect the stability
analysis. For personal convenience, we consider here that the vertical grid goes from k = 1 at the bottom
of the snow model to k = N at the air-snow interface (TN is thus equivalent to T1 in the paper). Adapting
eqn (6) in the paper we obtain

T n+1
N = T nN −

∆t

∆z(ρC)

[(
λtT

n
N +

K

∆z
T n+1
N

)
−
(
K

∆z
T n+1
N−1

)]

for a constant diffusion K and grid spacing ∆z. Introducing the dimensionless coefficients

γ =
λt∆t

∆z(ρC)
, σ =

K∆t

∆z2(ρC)

where σ is the standard parabolic (diffusion) Courant number, we end up with the equivalent form

T n+1
N = T nN − γT nN − σT n+1

N + σT n+1
N−1. (A.1)

Assuming that T n+1
k = T̂ n+1e−ikθ with θ = kz∆z ∈ [0, π] a normalized wavenumber in the vertical

direction, the T̂ ’s satisfy
T̂ n+1 = T̂ n − γT̂ n − σT̂ n+1 + σT̂ n+1e−iθ,

which subsequently provides the following amplification factor A

A =
1− γ

1 + σ(1− e−iθ)
.
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The modulus of the amplification factor is less than one as long as

γ ≤ 1 +
√
1 + 2σ(1 + σ)(1− cos θ) ⇒ γ ≤ 2, for θ ∈ [0;π]

which corresponds to the stability condition of the explicit flux coupling. Note that in general this stability
limit corresponds to a conservative condition and we can expect the model to be stable with larger values
of γ because of the regularizing effect of diffusion below the surface and of the atmospheric response.

B Stability analysis of the empirical flux coupling

Using Eqns (14) and (22) in the paper, we easily find that in the empirical coupling the term γT nN in
(A.1) is replaced by γTn

N

1+αλt
with α = f(

√
σ)
√

∆t
K(ρC)

. Interestingly enough, if f is such that f(
√
σ) =

√
σ

we obtain with this modified formulation that γTn
N

1+αλt
= γTn

N

1+γ
. This means that in the case ∆z � δ (i.e.

f(x) = x) the amplification factor is

A =
1− γ/(1 + γ)

1 + σ(1− e−iθ)
whose modulus is always smaller than 1 thus indicating unconditional stability.
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