
The authors thank both referees for the extensive reviews, constructive comments, and for providing many suggestions for
improvement. The practical relevance of this paper is clearly recognized and we appreciate the encouragement to publish after
revision.

Revisions suggested by reviewer 1

Introduction5

... a numerical instability can occur even if an unconditionally stable implicit scheme is used to advance the diffusion
term. This type of instability is generally unnoticed in the literature because it occurs under very unusual situations.
Just for raising this issue and trying to circumvent it, this paper should be considered for publication. The paper is
well written and the simple numerical experiments are nicely chosen to illustrate the punchline of the paper. However I
recommend major revisions to make the paper less misleading and more convincing because this issue is important for10
the modeling community. The following points must be addressed, because as is the paper has a lack of arguments/proofs
of numerical nature. To strengthen the message, I personally think that those proofs should be given in this paper and
not in a separate paper with possibly different authors.

The manuscript has been revised in a major way by addressing the misleading aspects, and by adding a stability analysis
in Appendix B.15

General comments, bullet 1
The manuscript considers an instability of numerical nature, in this regard we expect a stability analysis to characterize
under what circonstances the instability can occur.

It could also be interesting to provide in the paper some typical values of the parameter γ.

Is it standard to use a vertical resolution ∆z of the order of 0.001 m in snow models ?20

Reviewer 1 recognizes the practical relevance of the paper, but feels that a formal stability analysis is missing. We agree
that a stability analysis is a welcome addition to the paper. For this purpose a "matrix stability analysis" has been added
as Appendix B. It confirms that the implicit coupling and the parametrized implicit coupling are unconditionally stable.

A new table 2 with values for γ and σ has been included.

Snow models with 0.001 m vertical resolution are rare, but models must be able to cope with such thin layers, e.g. during25
the early accumulation of snow and the final melt. Reference is made now to such situations in the introduction.

General comments, bullet 2
The paper could leave the impression that the temporal variation of the atmospheric temperature Ta plays a role in the
development of the instability. However it must be clear that the instability occurs even if the atmospheric temperature is
held constant in time or is simply set to zero. Hence, this instability can occur in coupled models but also in uncoupled30
models forced with a bulk formulation.

With the stability analysis of Appendix B, it is clear now that numerical stability does not depend on the forcing, because
it assumes zero perturbations at the forcing level.

General comments, bullet 3
The statement in the abstract "These (instabilities) are due to the choice of large integration time-step, aiming at reducing35
computational burden" must be mitigated because it is not the only contributing factor, the vertical resolution or the
transfer coefficients value are other important parameters.

We agree that the statement about long time steps is not very precise. It is of course about the time step in relation to the
physical time scale of the discretized problem (which depends on vertical discretization and properties of the medium).
The abstract has been revised accordingly.40
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General comments, bullet 4
p. 6 line 5, it is adventurous to draw any conclusion on the accuracy of the proposed method based solely on the simple
numerical experiments presented in the paper ....

The statement on p.6 line 5 about accuracy is indeed not very general and limited to the case that is presented. A comment
of this nature has been added at the beginning of the previous paragraph.5

General comments, bullet 5
It is not rigorous enough to assess the efficiency of the proposed empirical coupling method based only on an idealized
numerical experiment under very specific conditions.

We agree that conclusions on stability can not be generalized on the basis of limited numerical experimentation. A
stability analysis has been added in Appendix B, to which reference is made at various places in the manuscript.10

General comments, bullet 6
Since this paper is considered for publication in GMD, it would be worthwhile to provide additional details about
the implementation of the proposed method in a numerical model with non-uniform grid and flow-dependent diffusion
coefficients.

We agree that it is of interest to consider a non-uniform grid and flow dependent diffusion coefficients. The concluding15
section already discusses the case of non-uniform diffusion coefficients, and in fact the aerodynamic coupling between
atmosphere and snow can just be seen as an extreme jump in properties of the medium. This point has been added in the
discussion.

Temperature dependent diffusion coefficients is a completely different story because it potentially introduces a non-
linear instability which is classic in atmospheric boundary layer schemes (see e.g. Kalnay and Kanamitsu 1988: "Time20
schemes for strongly nonlinear damping equations", Monthly Weather Review, 116, 1945-1958). Discussion of this issue
is beyond the scope of the paper.

General comments, bullet 7
In the conclusion, it could be interesting to give some comments on the expected benefits of your approach in realistic
models. Besides stability, do you expect significant differences in the physical solutions ?25

The benefit for real models is stability (which is an absolute requirement) and advantage can be taken from finer vertical
discretization resulting in a faster response of the surface temperature. The first paragraph of the concluding section has
been rewritten.

Technical corrections, bullet 1
The way to specify units is inconsistent throughout the paper.30

Units are italic now throughout.

Technical corrections, bullet 2
In eqn (19) it should be T0 and not Tn

0

Equation (19) has been deleted to improve clarity in response to reviewer 2.

Technical corrections, bullet 335

p. 7 line 9, it should be ∆z << δ and not ∆z << δz

Has been corrected.
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Technical corrections, bullet 4
In Figure 1, Tsk and Ta could be added (instead of T10 which is never used in the paper). λsk and λa could also be
reported on the figure.

Figure 1 has been adapted.

Technical corrections, bullet 55

In figure 2 the left panels show the skin temperature Tsk whereas the left panels of Figure 5 show T1. To facilitate the
comparison, the same quantity should be plotted.

Fig. 5 shows Tsk now.

Technical corrections, bullet 6
Appendix A is relatively trivial and does not provide useful informations. It could be interesting to use this appendix to10
be more specific about the elimination and back-substitution steps when solving the tridiagonal problem. We guess a
Thomas algorithm is used but it is not explicitly stated.

A paragraph has been added in appendix A to explain the tri-diagonal solver. It is a standard Gaussian elimination
procedure, which I think, is also called the Thomas algorithm.

Revisions suggested by reviewer 215

Introduction
I found this study reasonably well argued and set out, with clear additional evidence provided from one-dimensional
simulations, and am persuaded that the method described provides a good approximation to a semi-implicit scheme,
with significant improvements over a traditional explicit scheme. The study makes a useful addition to the literature.
My only comments relate to ways in which the method might perhaps be explained more clearly and consistently. In20
particular, I am not sure that the algorithm can be described as acting like a "fully" implicit coupling scheme (see point
2).

The suggestion to improve clarity were very helpful. The different points are described below.

1. Page 3, line 7: The matrix equations can be solved by successive elimination of the C-coefficients from the bottom
upward.25

This is a crucial step as it provides the initial linear relation between surface flux and top layer temperature; however, I
had to work through it quite carefully to understand how this produced equation (8). It is also a little confusingly written
as strictly speaking it is the variables that are eliminated, not the coefficients. I wonder if it would be worth expanding
this line to demonstrate the elimination of bottom layer temperature from the lowest pair of equations, and its result

The solution of the tri-diagonal matrix by Gaussian elimination is fairly standard. The details of the elimination process30
have been added in Appendix A.

2. Page 4, line 18: "Together with Eq.(13) Tn+1
1 and G0 can be computed:" (and following equations (14,(15)).

It is probably a trivial point, but the solution of equations (14) and (15) actually depends on the future air temperature,
Tn+1
a , already being known. I would guess that it is assumed in the method that the atmospheric simulation is solved first,

using bottom boundary conditions from the previous time step, hence Tn+1
a is known when the time comes to calculate35

the surface flux.

The availability of the forcing temperature at the new time level is a simplification for this study. However, it is not a
limitation. The coupling scheme to an atmospheric model (i.e. not just a forcing level) as described by the reviewer, is
not what we have in mind. Although it is not the topic of the paper, it is obviously a shortcoming of the paper not to
discuss it. Thanks for raising this issue.40
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The way it can be done in a fully implicit way is by doing the elimination phase of the tri-diagonal matrix for turbulent
diffusion in the atmosphere (from top to surface) exactly in same way as is done for the surface heat diffusion in this
paper. This procedure leads also to a linear relation between temperature at the lowest atmospheric model level and
the heat flux into the surface. This relation replaces the imposed temperature at the new time level. This is precisely
the coupling procedure followed in the ECMWF model and is compatible with the Best et al. (2004) approach. It is5
equivalent to solving a single tri-diagonal matrix that handles the entire atmosphere and surface as a single implicit
problem.

A paragraph has been added in the paper to discuss how the method can be applied in a fully coupled atmosphere /
surface model.

3. Page 6, line 30 - page 7, line 8 (discussion of scaling behavior of surface temperature evolution).10

This section (Section 5) contains the central idea of the study, which is impressive in its simplicity. The idea is based on
the fact that dimensional constraints on solutions to the diffusion equation mean that in the case of an initially isothermal
profile, the evolution of the surface temperature in response to any surface flux must take a very specific form, described
in equation (18) of Beljaars et al. My issue is that having derived equation (18), the authors appear to digress into a
discussion of the surface temperature simulation before arriving at equation (22), which describes the form the coefficient15
must take. I think that this is unnecessary (see below). It also appears to conflate two different concepts: the surface skin
temperature (SSKT) and top layer temperature (TLT). It is the TLT that the authors are trying to approximate using the
scaling arguments, but in equations (19) and (20) they effectively derive the form would take if they were instead trying
to approximate the SSKT. The authors then state that this form must also take account of ∆z for an approximation of
TLT, due to the system being discretized. But I think that the form must take account of ∆z for the (simpler) reason20
that it is TLT they are trying to approximate, not SSKT. It is possible that the authors view TLT as being the "discrete"
approximation to SSKT, but I think that it is much more accurate to view it as the discrete approximation to temperature
at a depth of ∆z/2

The reviewer raises an interesting point on the temporal evolution of temperature as the result of a perturbation at the
surface. It is argued that the final scaling relation can be achieved in a more logical way. Reading the manuscript again,25
we agree that the transition from the continuous to the discrete problem is vague, which does not help clarity of the
manuscript.

The simplest way of deriving a similarity relation for α is by doing a basic dimension analysis, which leads directly to
equation (19) of the revised manuscript for the continuous problem (given time scale ∆t). The discrete problem adds a
new length scale resulting in a functional dependence on (δ/∆z), i.e. equation (21) of the revised manuscript. We opted30
to start with the traditional scaling relation for the diffusion equation and then to add the complexity of the discretization.

The derivation by the reviewer is attractive, but after thinking about it more carefully, I am not sure any more. The
attractive aspect is the simplicity and the fact that function h (eq. 18 of the manuscripts) comes back as function f
(eq. 21). It is important to realize that the meaning is not necessarily the same. Function h represents the shape of the
temperature profile, whereas function f is an empirical function that describes the transition from one asymptotic scaling35
regime (the non-discretized problem) to another (the extremely coarse vertical resolution regime). The two functions
are related and perhaps even close, but I am not sure they are the same. To demonstrate the potential difference, it is
necessary to consider the average temperature (or average h) over the discretization intervals, instead of using midpoint
values, otherwise conservation is lost (I think).

The beauty of similarity theory is that we don’t need to answer this question. Function f is an empirical function and we40
can derive it from numerical experiments.

In view of the discussion above, the manuscript has been modified such that it is clear where the transition is made from
the continuous to the discrete problem.
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Abstract. Coupling the atmosphere with the underlying surface presents numerical stability challenges in cost-effective model

integrations used for operational weather prediction or climate simulations. These are due to the choice of large integration

time-step
::::::::
compared

::
to

:::
the

:::::::
physical

::::
time

::::
scale

:::
of

::
the

::::::::
problem, aiming at reducing computational burden, and to an explicit flux

coupling formulation, often preferred for its simplicity and modularity. The atmospheric
:::::::::::
Atmospheric models therefore use the

surface-layer temperatures (representative of the uppermost soil, snow, ice, water, etc.,) at
::
the

:
previous integration time-step5

in all surface-atmosphere heat-flux calculations and prescribe fluxes to be used in the surface models’ integrations. Although

both models may use implicit formulations for the time stepping, the explicit flux coupling can still lead to instabilities.

In this study, idealized simulations with a fully coupled implicit system are performed to derive an empirical relation between

surface heat flux and surface temperature at the new time level. Such a relation mimics the fully implicit formulation by

allowing to estimate the surface temperature at the new time level without solving the surface heat diffusion problem. It is10

based on similarity reasoning and applies to any medium with constant heat diffusion and heat capacity parameters. The

advantage is that modularity of the code is maintained and that the heat flux can be computed in the atmospheric model in

such a way that instabilities in the snow or ice code are avoided. Applicability to snow/ice/soil models with variable density

is discussed, and the loss of accuracy turns out to be small.
:
A

::::::
formal

:::::::
stability

:::::::
analysis

::::::::
confirms

:::
that

:::
the

:::::::::::
parametrized

:::::::
implicit

:::
flux

::::::::
coupling

:
is
::::::::::::::
unconditionally

:::::
stable.

:
15

1 Introduction

Coupling atmospheric models to the underlying surface model, involves both scientific and technical issues. Models of the

atmospheric circulation tend to be computer intensive and therefore often employ long time steps (up to one hour), which is a

challenge for stability and accuracy (Beljaars et al., 2004)
:::::::::::::::::::::::::::::::::::
(Beljaars et al., 2004; Lemarié et al., 2015) . The turbulent diffusion

part of these codes provides the coupling to the surface, has short physical time scales near the surface and therefore needs20

implicit numerics for stability. The surface may be vegetation, soil, snow, ice, or a combination of these in a tile scheme. Best

et al. (2004) propose a coupling strategy to the surface that has a clean interface between atmosphere and surface code, and

allows to include the surface or the top part of the surface in the implicit computations. This is often necessary for stability if

the physical time scale of e.g. vegetation, soil, snow or ice surface is short compared to the model time step.
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The ideal solution for stability is to combine the boundary layer heat diffusion and e.g. the snow or ice layer diffusion in a

single implicit solver. However, modularity of the code and the complication of additional processes like phase changes and

water percolation make this less practical. The standard solution is to compute fluxes at the surface on the basis of the old

time level surface temperature. It is often called "explicit flux coupling". To improve stability and accuracy, West et al. (2016)

recently proposed to move the flux coupling level one level down i.e. just below the surface. This has the advantage of including5

the fast responding surface layer in the fully implicit computations, which is beneficial for stability and accuracy.

Ongoing work at ECMWF on snow modelling raised similar issues. The existing single layer snow model (see e.g. Dutra

et al., 2010), has already a minor stability issue when the snow layer becomes very thin. ,
::::

e.g.
::::::
during

:::
the

::::
first

:::::::
snowfall

:::
in

::
the

::::::
season

::::
and

::
at

:::
the

::::
final

:::::
melt.

:
This was addressed by introducing some empirical implicitness in the coupling by making

an educated guess of the future snow temperature. Initial experimentation with a multilayer snow model (Dutra et al., 2012)10

showed even more frequent instabilities, so more implicitness in the coupling is required for stability.

In this paper, we propose a solution, that has the simplicity and modularity of the explicit flux coupling, but still has the

stability of the fully implicit system. To derive simple solutions, the fully implicit coupled system is used as a reference. It is

shown that the tri-diagonal set of equations corresponding to the discretized diffusion equation (for snow, ice or soil) can be

converted to a relation between temperature and heat flux at the surface. The coefficients in this relation are then parameterized15

::::::::::
parametrized

:
dependent on properties of the medium, time step and vertical discretization. The coefficients are put in dimen-

sionless form, which makes the empirical coefficients universal and applicable to any medium and any discretization.

The experimental environment in this paper, is a simple model of a near surface air layer coupled to a snow pack by

turbulent exchange. The atmosphere (e.g. at a height of 10 m
::
m, typical for atmospheric models) is assumed to have a diurnal

cycle, and the response of temperature in the snow pack is considered. Although the following sections refer to snow only, the20

dimensionless framework ensures that the outcome is valid for any medium.

The following two sections (2 and 3) describe the equations for the discretized snow layer and the turbulent coupling between

atmosphere and snow. Sections 4, 5 and 6 describe the numerical solution for an idealized diurnal cycle, the parametrization of

the coefficients that relate heat flux and top layer snow temperature and the testing of the proposed scheme. Finally, the results

and their applicability are briefly discussed in the concluding section. Also the implications of non-uniform snow density are25

discussed.
:::
The

::::::::
numerical

::::::
solver

:::
and

:
a
::::::
formal

:::::::
stability

:::::::
analysis

:::
are

::::::::
described

::
in

:::::::::
Appendix

::
A

:::
and

::
B

::::::::::
respectively.

:

2 Implicit numerical solution of the diffusion equation

We consider the diffusion equation for temperature in snow

ρC
∂T

∂t
=
∂G

∂z
, (1)

G=K
∂T

∂z
, (2)30
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where ρ (kgm−3) is density,C (Jkg−1K−1) is heat capacity, T (K) is temperature,G (Wm−2) is heat flux, andK (Wm−1K−1)

is the diffusion coefficient for heat. The boundary conditions are:

G = G0 for z = 0 , (3)

G = 0 for z→−∞ . (4)

For numerical stability with long time steps it is necessary to use an implicit scheme. With a vertical grid defined as in Fig. 1,5

the equation can be discretized as follows

(ρC)j
Tn+1
j −Tnj

∆t
=

1

∆zj

(
Kj−1/2

Tn+1
j−1 −Tn+1

j

∆zj−1/2
−Kj+1/2

Tn+1
j −Tn+1

j+1

∆zj+1/2

)
, (5)

with boundary conditions

(ρC)1
Tn+1
1 −Tn1

∆t
=

1

∆z1

(
G0−K1+1/2

Tn+1
1 −Tn+1

2

∆z1+1/2

)
, (6)

(ρC)NL
Tn+1
NL −TnNL

∆t
=− 1

∆zNL

(
KNL−1/2

Tn+1
NL−1−Tn+1

NL

∆zNL−1/2

)
. (7)10

This set of equations forms a tri-diagonal system, with diagonals A, B and C (the coefficients are defined in Appendix A
::
A).

The matrix equations can be solved by successive elimination of the C-coefficients from the bottom upward
::::
such

::::
that

:::
the

:::::::::::
C-coefficients

:::
are

:::::::
replaced

:::
by

:::::
zeros. At the same time, the equations are scaled such that the

::
to

:::::
obtain

:
B-coefficients become

:::
that

:::
are

:
equal to 1. Arriving at the top, it provides a solution for Tn+1

1 . The solution for the other layers can be found by

successive back-substitution of the temperatures going from top to bottom
:::
(see

::::::::
Appendix

::
A
:::
for

:::::
more

::::::
details).15

In case G0 is not known, the elimination provides a linear relation between G0 and Tn+1
1

Tn+1
1 = αG0 +β . (8)

This relation can be used to achieve fully implicit coupling with the air/surface interaction formulation.

3 Coupling to the lowest model level of the atmosphere

The heat flux
::
To

:::::
focus

::
on

:::::::
stability

::
of

:::
the

::::::::::
atmosphere

::::::
surface

::::::::
coupling,

::
it

::
is

:::::::
assumed

::::
that

:::
the

:::::::
evolution

:::
of

:::
the

:::
near

:::::::::::
atmospheric20

::::::::::
temperature

:
is
:::::::
known,

:::
e.g.

::
as

::
in
:::::::::
standalone

::::::::::
simulations

::
of

:::
the

::::
land

:::::::
surface.

::::::::
However,

::::
this

:
is
:::
not

::
a
::::::::
limitation

::
in

:::
full

:::
3D

:::::::
models

:::
that

::::::::
typically

:::
use

::
an

:::::::
implicit

:::::
solver

:::
for

:::
the

::::::::
turbulent

::::::::
diffusion.

::
In

::::
that

::::
case

::
the

:::::::::::
atmospheric

:::::
model

::::
will

:::::::
perform

:::
the

:::::::::
downward

:::::::::
elimination

:::::::
process

:::
(the

:::::
same

::::
way

::
as

::::::::
described

::
in

:::::::::
Appendix

:::
B).

:::
The

:::::
result

::
is
::
a
:::::
linear

::::::
relation

::::::::
between

:::
the

:::::
n+ 1

::::::::::
temperature

:
at
:::

the
::::::

lowest
:::::::::::
atmospheric

::::
level

::::
and

:::
the

::::::
surface

::::
heat

::::
flux,

::::::
which

:::
can

::
be

:::::
used

::::
with

:::
the

:::::::
air/land

:::::::::
interaction

:::::::
formulae

:::::::::
described

:::::
below

::
to

::::::
achieve

:::::
fully

::::::
implicit

::::::::
coupling.

:
25

::::
With

:
a
:::::::::
prescribed

:::
air

::::::::::
temperature,

:::
the

::::
heat

::::
flux into the snow layer can be related to the air / surface temperature difference

in the following way

G0 = ρacpCH |U |(Ta−Tsk) , (9)
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where G0 is the heat flux into the snow pack, ρa is air density, cp is air heat capacity, CH is the transfer coefficient between

the atmospheric level and the surface, |U | is absolute wind speed, Ta is air temperature, and Tsk is temperature of the snow

surface (skin temperature).

The coupling through a transfer coefficient is standard and represents the integral profile function according to Monin

Obukhov (MO) similarity (see e.g. Brutsaert, 1982). The transfer coefficient in neutral conditions is related to the height of the5

atmospheric level, and the surface roughness lengths of momentum and heat

CH =
κ2

ln(za/zom)ln(za/zoh)
, (10)

where κ is the VonKarman constant (0.4), za is the height of the atmospheric level, zom is the surface roughness length for

momentum, and zoh is the surface roughness length for heat. Stability can be included by extending the logarithmic terms with

the integral MO stability functions.10

In the vertically discretized snow (see Fig. 1), the temperature of layer 1 is assumed to be at the midpoint which is different

from the skin temperature. Therefore, the total conductivity between the atmosphere and the first snow layer (λt) is composed

of two components: the turbulent transfer in the air above the surface (λa) and the conductivity of half of the top snow layer

(λsk). The two conductivities are in parallel, because the inverse of conductivities (resistances) are in series, leading to the

following formulation for the heat flux into the snow15

G0 = λt(Ta−T1) , (11)

with

λt =
λaλsk
λa +λsk

,

λa = ρacpCH |U | ,

λsk =
2K1−1/2

∆z1
.20

Two different time stepping procedures are considered:

i. Explicit flux coupling. This is the traditional approach where the expression for the surface flux uses the previous time

level of the surface temperature leading to the following discretization of Eq.
:::::::
equation (11)

G0 = λt(T
n+1
a −Tn1 ) . (12)

With the explicit specification of the flux at the surface flux, the tridiagonal system can be solved directly.25

ii. Implicit flux coupling. The discretization of Eq.
::::::
equation

:
(11) reads

G0 = λt(T
n+1
a −Tn+1

1 ) , (13)

With this fully implicit formulation, the surface heat flux can not be specified explicitly, so it has to be found as part

of the coupled atmosphere/surface system. For that purpose the tri-diagonal problem is solved in two steps. First, the
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elimination part is performed resulting in a solution for α and β in Eq.
:::::::
equation

:
(8). Together with Eq.

:::::::
equation

:
(13),

Tn+1
1 and G0 can be computed:

Tn+1
1 =

αλtT
n+1
a +β

1 +αλt
, (14)

G0 =
λt(T

n+1
a −β)

1 +αλt
. (15)

Finally the entire temperature profile can be resolved by performing the back-substitution in the tri-diagonal solver.5

4 Solutions with a simple multilayer snow model

In this section, solutions are considered for a 1 m
::
m thick snow layer with constant heat capacity and heat diffusion coefficients.

Idealized temperature forcing from the atmosphere is prescribed as a sinusoidal diurnal cycle. The choice of constants is

documented in Table 1. List of parameters used in the idealized simulation of a snow layer Parameter Description Value

Units ρ snow density 150 kgm−3 ρice ice density 920 kgm−3 C snow (and ice) heat capacity 2228 J kg−1K−1 Kice ice10

heat diffusion coefficient 2.2Wm−1K−1 K snow heat diffusion coefficient Kice(ρ/ρice)
1.88Wm−1K−1 ρa air density 1.2

kgm−3 cp air heat capacity 1005 J kg−1K−1 |U | absolute wind speed 4 ms−1 zom roughness length for momentum 0.0001

m zoh roughness length for heat 0.0001 m za height atmospheric forcing level 10 m κ VonKarman constant 0.4 − D total

depth of snow layer 1 m The initial temperature profile at t= 0 is set to −5oC, and a single sinusoidal diurnal cycle with an

amplitude of 1oC is imposed at the 10m
::
10

::
m level in the atmosphere15

T10 = −5 + sin(
2πt

3600. ∗ 24.
) . (16)

The simulations are performed with different uniform vertical discretizations and different time steps. Fig. 2 shows time series

of the snow skin temperature (left column) and the ground heat flux (right column), with the two schemes. The fairly long

time step of 3600 seconds is selected to illustrate stability and time truncation issues, and a short time step of 100 seconds for

comparison. In the latter case time truncation errors are small for both schemes (convergence was verified). The three rows in20

Fig. 2 are for different vertical discretizations: 0.2, 0.02 and 0.002 m
::
m.

The first thing to note is that amplitude and phase of the skin temperature diurnal cycle only have a small dependence

on vertical resolution. This is surprising because the amplitude of diurnal cycle of layer 1 with ∆z = 0.2
::::::::::
∆z = 0.2m is

only 20% of the amplitude with ∆z = 0.02
::::::::::
∆z = 0.02m. The reason that the skin temperature is still reasonable is due to

the conductivity between the middle of the layer and the top (much lower with ∆z = 0.2 than with ∆z = 0.02
::::::::::
∆z = 0.2m25

:::
than

::::
with

::::::::::::
∆z = 0.02m). So at low vertical resolution, a substantial part of the temperature signal at the snow skin is due to the

"interpolation" between air and middle of the first snow layer making use of the air conductivity (λa) and the snow conductivity

of half the top layer (λsk). One might interpret this result as a justification for rather low vertical resolution. However, it should

be realized that the forcing has the diurnal time scale only. With faster time scales e.g. due to moving clouds and frontal

passages, a relatively thick near surface layer will not be able to respond.30
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The second result is
::::::::
Although

:
it
::
is
:::::::::
impossible

::
to
:::::
draw

::::::
general

::::::::::
conclusions

:::::
about

::::::::
accuracy

::::
from

::::::
limited

::::::::::::::
experimentation,

:::
we

:::
note

:
that the fully implicit solution with ∆t= 3600

::::::::::
∆t= 3600s is very close to

:::
the short time step solution with ∆t= 100

:::::::::
∆t= 100s,

so the long time step does not compromise accuracy in this case, although the time stepping is first order accurate only. How-

ever, the solution with explicit coupling deviates visibly from the implicit and very short time step solutions (compare the

red solid curve in middle/left panel of Fig. 2 with the blue curve). Apparently, it is the mismatch of time levels in the flux5

computation that is detrimental to accuracy. The error is particularly visible as a phase error.

Finally, the explicit coupling turns out to be unstable for very thin snow layers (see lower panels in Fig. 2 for ∆z = 0.002.

Also for this case the long time step solution with implicit coupling is fairly accurate as it is very close to the short time step

solution.
:::::
These

:::::::::::
experimental

::::::
results

:::
are

:::::::::
confirmed

::
by

::
a

::::::
formal

:::::::
stability

:::::::
analysis

::
in

::::::::
Appendix

::
B.

::::
The

:::::::
explicit

:::
flux

::::::::
coupling

::
is

:::::::
unstable

::
for

::
a
::::::::
particular

:::::::::
parameter

::::
range

::::
and

:::
the

:::::::
implicit

:::
flux

::::::::
coupling

:
is
::::::::::::::
unconditionally

:::::
stable.

:
10

Because of the good stability and accuracy characteristics, we develop in the next section a parametric form of α and β in

Eq.
:::::::
equation

:
(8).

5 Scaling relations for α and β

As suggested above, it is desirable to have all the flux formulations (also for the atmosphere/surface exchange
:
)
:
at the new time

level n+1. This implies the fully implicit option as described in sections 2 and 3. It also requires to perform the elimination part15

of the tri-diagonal solver to find the relation between Tn+1
1 and G0 according to Eq.

:::::::
equation (8). Because of code modularity

it is desirable to make a reasonable estimate of the heat flux into the snow, before the snow code is executed. Therefore, an

educated guess is made of the coefficients α and β in Eq.
:::::::
equation (8) without solving the tri-diagonal system, i.e. α and β are

parameterized
:::::::::::
parametrized.

For that purpose, we make use of similarity theory for the diffusion equation with constant coefficients. If we think of an20

infinite medium (thick snow layer) with uniform temperature To and make a jump at the surface to Tnew at t= 0, we have to

consider the following basic variables: temperature T
::
the

::::::::::
temperature

::::::
change

:::::::
T −T0 at time t, To, Tnew,

:::::::::
Tnew −T0, K/(ρC),

and depth z. According to the Buckingham Pi Theorem (Stull, 1988), 5 variables with 3 dimensions (m, s, and K), lead to two

independent dimensionless groups: (T −T0)/(Tnew −T0) and z/δ, where

δ =

(
Kt

ρC

)1/2

. (17)25

Length scale δ is the natural length scale of the medium for time scale t after which the temperature change at the surface

was applied. From the physical point of view, δ is the typical depth to which the perturbation of the surface temperature has

propagated at time t. The implication is that (T −T0)/(Tnew−T0) is a universal function of z/δ. At this stage we do not care

about the form, although the solution can be easily found
:::::
found

:::::
easily by transforming the equation to the new coordinate z/δ,

which allows to separate the time dependence and the depth dependence leading to an ordinary differential equations which30

can be solved analytically (Carslaw and Jaeger, 1959).
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Similarly, we can apply an external forcing by suddenly applying a heat flux G0 at time 0 and look for the temperature

response. Instead of scaling the temperature with Tnew −T0, we convert
::
the

:::::::::::
temperature

:::::
jump,

:::
we

:::::
make

:::
the

:::::::::::
temperature

::::::
change

:::::::::::
dimensionless

:::::
with G0 into a temperature scale and obtain

K(T −T0)

δG0
= h

(z
δ

)
, or T =

δG0

K
h
(z
δ

)
+T0 , (18)

where h is a universal function. If we are interested in the surface temperature only (i.e.
:::
For z = 0), the left hand side becomes5

a constant, which we will call h0 (which is order 1) .

This line of reasoning can also be applied to the evolution of the surface temperature during a single time step of the

diffusion problem with discrete equations. Equation (18) can be written as Eq. (8), with t= ∆t, T = Tn+1
1 , T0 = Tn1 , and

Eq. (17)
:::::::
equation

::::
(18)

::
is

::
of

:::
the

::::
form

:::
of

:::::::
equation

:::
(8).

:::::
With

::::
time

:::::
scale

:::
∆t

:::
and

::::::::::
substitution

::
of

:::
the

:::::::::
expression

:
for δ, resulting in

Therefore we
:::
we

:::::::
therefore

:
expect the following scaling behavior for α10

α∼
(

∆t

K ρC

)1/2

. (19)

It indicates the surface temperature response to a 1 W/m2 heat flux forcing over a finite time step ∆t.

The scaling arguments above apply to the continuous system. For the discretized system, the scaling behavior of α also

depends on ∆z
:
,
:::::
which

:::::::::
introduces

:
a
::::::::::
dependence

::
on

:::
the

::::::::::::
dimensionless

::::::
variable

:::::
∆z/δ. For a very fine grid (∆z << δz

::::::::
∆z << δ),

the discrete system behaves like the continuous system and Eq.
:::::::
equation (19) applies. For a very thick top layer (∆z >> δ),15

the heat flux is simply distributed over the top layer and the following applies

α=
∆t

∆z ρC
. (20)

In general the dimensionless α should be a universal function of δ/∆z, i.e.

α

(
KρC

∆t

)1/2

= f

(
δ

∆z

)
= f

(
(K∆t)1/2

∆z (ρC)1/2

)
. (21)

The empirical function can be "measured" by running the numerical model as in the previous section for a range of time steps20

and vertical discretizations. Note that α remains constant during the time stepping and does not depend on the temperature

profile. It is just a property of the tri-diagonal matrix which only contains properties of the medium, the time step and the level

thickness. The results are shown in Fig. 3. Time steps range from 100 s
:
s to 3600 ss, and layer thicknesses are used from 0.002

m
::
m to 0.2 m

::
m, with a total snow depth of 1 m

:
m

:
for all simulations

For small ratios of δ/∆z, the universal function should scale with Eq.
:::::::
equation

:
(20) and for large values with (19). Surpris-25

ingly, coefficient h0 turns out to be 1. An empirical fit is proposed that makes a smooth transition between the two regimes

according to (see Fig. 3)

f(x) =
x

(1 +x1.3)1/1.3
. (22)

The exponent of 1.3 has been optimized to obtain a reasonable representation of the numerical data in the transition regime.

The second parameter for which an empirical formulation is needed is β. The physical meaning of β is clear from Eq.30

:::::::
equation

:
(8): it is the temperature of the top snow layer at the new time level Tn+1

1 in case of zero heat flux. A simple

7



approximation would be to select the temperature of the previous time level, but this is only valid for a uniform temperature

profile. For a non-uniform temperature profile, heat diffusion will homogenize temperature, which will make β different from

Tn1 at the old time level. Following the scaling arguments above, we know that information propagates vertically over a distance

δ during time step ∆. Therefore, we conjecture that the temperature of the old profile at depth δ is a better approximation for β

than the temperature at level 1, i.e. Tnδ is better than Tn1 . Fig. 4 indeed confirms that the temperature at depth δ is a reasonable5

approximation. The temperature at z =−δ has been obtained by linear interpolation between levels, except when δ < 0.5∆z.

In the latter case, temperature Tn1 is selected. Note that, unlike α, β does change with temperature and does evolve during the

integration.

From Figs. 3 and 4, it is concluded that reasonable estimates can be made of α and β without actually solving the tri-diagonal

matrix. Depth scale δ and the thickness of the top layer ∆z are crucial scales to characterize the temperature evolution of the10

top snow layer over a time step.

6 Simulations with the empirical formulation

With the empirical formulations for α and β, it is possible now to repeat the simulations of section 4. Instead of generating the

fully implicit solution by solving the tri-diagonal matrix in the standard way, α and β are replaced by the empirical formulation

between the elimination and back-substitution phase. If the formulation is perfect, the solution should be the same as the15

fully implicit solution. Results are shown in Fig. ?? for the temperature of the top layer
:
5

:::
for

:::
the

::::
skin

::::::::::
temperature

:
and the

heat flux. Layer thicknesses of 0.2, 0.02 and 0.002 m
:
m

:
are shown as different rows in Fig. ??. In this case, the top layer

temperature is shown instead of the skin temperature. The implication is that the amplitude of the diurnal cycle increases

with the refinement of the vertical discretization, simply because with high vertical resolution, the top layer becomes a better

approximation of the skin temperature. The
:
5.

::::
The

:
figure confirms that the diurnal temperature cycle of the fully implicit20

solution (blue curve, IMPL) is well reproduced by the solution with parameterized
:::::::::::
parametrized α and β (black solid cure,

IMPPAR). The differences between blue and black curves are very small.

Finally, the scheme was further simplified by using the parametric form for α only and estimating β by putting it equal to

Tn1 . The advantage is that no interpolation to z =−δ is needed, but that stability of the coupling is still maintained. However,

it is clear that numerical errors are increased for thin snow layers (see dashed black curve). Such errors have to be seen in the25

context of other model errors, so the use of a parameterized
:::::::::::
parametrized α only, to ensure stability, may still be sufficient for

many applications.

7 Discussion and conclusion

For absolute numerical stability it is necessary to have a
:::::::::
Numerical

:::::::
stability

::
is

:
a
::::::
critical

:::::
issue

:::
for

::::::::::
atmospheric

::::::
models

::::
that

:::
are

::::::
coupled

:::
to

:
a
::::
fast

:::::::::
responding

:::::::
surface

:::
e.g.

:::::::
through

::
a

:::
thin

:::::
snow

:::
or

:::
ice

:::::
layer.

::::
Such

::::
thin

:::::
snow

:::::
layers

::::
can

:::::
occur

::
in

:::::
early

::::::
winter30

::::
after

:::
the

:::
first

:::::
snow

::::
fall

:::
and

::::::
during

::::
melt

::
in

::::::
spring.

::
A
::::

fine
:::::::::::
discretization

::::
may

::::
also

:::
be

::::::::
desirable

::
to

:::::
allow

:::
for

:
a
::::
fast

:::::::
response

:::
of

8



::
the

:::::::
surface

::::::::::
temperature

::
to

:::::::
changes

::
in

::::::::
radiation.

::
It

:
is
::::::
shown

::::
that

:::::::
stability

:::
can

::
be

::::::::
achieved

::
by

:
fully implicit coupling of the heat

diffusion between atmosphere and surface(e. g. snow). It .
:

::::
Fully

:::::::
implicit

::::::::
coupling

:
leads to a tri-diagonal problem in which atmosphere and surface are solved simultaneously. In

practice, often so-called explicit flux coupling is applied: the atmospheric model uses the surface temperature of the previous

time level to compute the surface heat flux, which is used later as boundary condition for the heat diffusion in the surface.5

Explicit surface coupling puts stability limits on the thickness of the top snow layer and on the time step. Explicit flux coupling

is also desirable from the code modularity point of view.

Although the atmosphere / surface heat diffusion leads to a single tri-diagonal matrix problem, one can also break it up in

different steps. It is shown that the elimination part of the solver of the snow heat diffusion problem leads to a linear relation

between surface temperature and surface heat flux. This relation can be used together with the atmosphere / surface interaction10

formulation to solve for the surface heat flux.

A simple method has been developed to approximate the coefficients in this linear relation. The coefficients are scaled with

the characteristic scales of the diffusion equation. This makes the result universal and applicable to an arbitrary medium e.g.

snow, ice or soil. The depth scale that characterizes the penetration of a perturbation over a time step, turns out to play a

crucial role. In this paper the relevant empirical function is "measured" by solving the diffusion equation for a range of vertical15

resolutions and time steps.

Finally, the empirical functions are used to solve for the coupled diffusion problem and compared with the fully implicit

computations. The results are very close. The advantage of the method is that the surface fluxes can be computed without

calling any surface code, and behaves like explicit flux coupling. The only difference is that the surface heat flux expression

has a damping term depending on the time step. This damping term is the result of the change of surface temperature related20

to the heat flux, and stabilizes the result.

The scaling argument used above, only applies for a diffusion equation with constant properties of the medium. However, in

reality there may a profile of e.g. snow density as snow becomes more and more compact in deeper layers
:
,
::
or

::::::
vertical

:::::::::
resolution

:::
may

:::
be

:::::::
variable.

::::
The

:::::
latter

:
is
::::::::::
numerically

:::::::::
equivalent

::
to

::
a

:::::::
variable

:::::::
diffusion

:::::::::
coefficient

:

1. As a simple test, a case was selected

where the profile of density is 150 kgm−3 at the surface, increases linearly to 250 kgm−3 at a depth of 0.5 m
::
m, and remains25

constant below 0.5 m
::
m. The characteristic depth is again computed as in section 5, and to non-dimensionalize, the snow

properties are taken from the middle of the top snow layer. For this case the dimensionless α and characteristic temperature

β are shown in Figs. 6 and 7. They are very close to the figures for constant snow properties (Figs. 3 and 4), which suggests

that the sensitivity to snow properties is fairly small. In general, it is to be expected that the snow properties very close to the

surface control the relation between flux and temperature over a short time step, because the penetration depth δ is small.30

We conclude that making an estimate of the relation between heat flux and surface temperature is a practical solution to

support explicit flux coupling and to combine numerical stability for long time steps with a modular code structure.
::
A

::::::
formal

::::::
stability

:::::::
analysis

:::
in

::::::::
Appendix

::
B

:::::::
confirms

::::::::::::
unconditional

:::::::
stability

::
of

:::
the

::::::::
proposed

::::::::
coupling

:::::::
method. The similarity framework

1
:
In
:::
fact

::
the

:::::::::
aerodynamic

::::::
coupling

::::::
between

::::::::
atmosphere

::
and

::::
snow

:::
can

::
be

:::::::
interpreted

::
as

:
a
::
big

::::
jump

:
in
:::

the
:::::::
properties

:
of
:::
the

:::::
medium

9



makes the method applicable to any medium, e.g. snow, ice or soil. It is also worth noting that the method does not compromise

conservation: the heat flux that is computed by the atmospheric model is later used by the surface model as boundary condition.

Appendix A:
::::::
Solving

:::
the

:::::::::::
tri-diagonal

::::::
matrix

:::::::::
equations

The set of equations discussed in section 2 leads to the following tri-diagonal system

B1 C1 0 0 · · · 0

A2 B2 C2 0 · · · 0

0 A3 B3 C3 · · · 0

. . . . . . . . . . . . . . . . . .

0 · · · ANL−2 BNL−2 CNL−2 0

0 · · · 0 ANL−1 BNL−1 CNL−1

0 · · · 0 0 ANL BNL





Tn+1
1

Tn+1
2

Tn+1
3

...

Tn+1
NL−2

Tn+1
NL−1

Tn+1
NL


=



R1

R2

R3

...

RNL−2

RNL−1

RNL


(A1)5

where

Aj = − Kj−1/2

∆zj∆zj−1/2
,

Bj =
(ρC)j

∆t
+

Kj−1/2

∆zj∆zj−1/2
+

Kj+1/2

∆zj∆zj+1/2
, (A2)

Cj = − Kj+1/2

∆zj∆zj+1/2
,

Rj =
(ρC)j

∆t
Tnj ,10

with boundary condition at the surface

A1 = 0 ,

B1 =
(ρC)1

∆t
+

K1+1/2

∆z1 ∆z1+1/2
, (A3)

C1 = − K1+1/2

∆z1 ∆z1+1/2
,

R1 =
G0

∆z1
+

(ρC)1
∆t

Tn1 ,15

and the no-flux condition at the bottom

ANL = − KNL−1/2

∆zNL∆zNL−1/2
,

BNL =
(ρC)NL

∆t
+

KNL−1/2

∆zNL∆zNL−1/2
, (A4)

CNL = 0 ,

RNL =
(ρC)NL

∆t
TnNL .20
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:::
The

:::::::::
tridiagonal

::::::
system

::
is
::::::
solved

::
in

:::
two

:::::
steps

::
by

::::::::
standard

:::::::
Gaussian

:::::::::::
elimination.

:::
The

::::
first

::::
step

:
is
:::
an

::::::
upward

::::::
sweep

::
to

::::::::
eliminate

::
the

:::
C

::::::::::
coefficients.

:
It
:::::
starts

::
at

::::
level

::::
NL

:::
by

:::::::
rescaling

:::::::::
coefficient

:::::
ANL ::

to
::
1.

:::
The

::::
new

::::::::::
coefficients

::::::::
identified

::
by

::::::::::
superscript

:
*
:::
are

:

A∗NL = 1 , B∗NL =
BNL
ANL

, R∗NL =
RNL
ANL

. (A5)

::::
Next,

:::::::::
coefficient

:::::::
CNL−1::

is
:::::::::
eliminated

::
by

::::::::::
multiplying

:::::::
A,B,C

:::
and

::
R

:::
for

::::
level

:::::::
NL− 1

:::
by

:::::
B∗NL,

:::
the

::::
new

::::::::::
coefficients

::
for

:::::
level

:::
NL

::::
with

:::::::
CNL−1 :::

(i.e.
:::::
from

::::
A5),

:::::::::
subtracting

:::
the

:::
two

:::::::::
equations

:::
and

::::::::
rescaling

:::
the

::::
result

:::
to

::::
have

:
1
::
at

:::
the

:::::::
position

::
of

:::::::
ANL−1.

::::
The5

:::
new

:::::::
A, B, C

::::
and

::
R

:::
for

::::
level

:::::::
NL− 1

:::
are

A∗NL−1 = 1 , B∗NL−1 =
BNL−1B

∗
NL−CNL−1

ANL−1B∗NL
, C∗NL−1 = 0 , R∗NL−1 =

RNL−1B
∗
NL−CNL−1R∗NL

ANL−1B∗NL
. (A6)

::::
This

::::::
process

::
is

:::::::
repeated

::
to

:::
the

:::
top,

::::::
which

:::::
results

::
in
::
a
:::::
matrix

::::::
where

:::
the

::::::::::
A-diagonals

:::
are

::
all

::
1

:::
and

:::
the

:::::::::
C-diagonal

::::::::
contains

:::::
zeros.

:
If
:::
the

:::::::
surface

:::
heat

::::
flux

::
is

::::::::
specified,

:::
the

:::
top

::::
line

::
of

:::
the

:::::
matrix

::::::::
contains

:::
the

:::::::
solution

::
for

::::::
Tn+1
1 .

::::
The

::::::::::
temperatures

:::
of

::
all

:::
the

:::::
other

:::::
levels

:::
can

::
be

:::::::::
computed

::
in

:
a
:::::::::
downward

::::::
sweep,

:::::
where

:::
the

::::::::::
temperature

:::
of

::::
level

:
j
::
is

::::
used

::
to

::::
find

:::
the

:::::::
solution

:::
for

::::
level

:::::
j+ 1

::::
with10

::
the

::::::::
equation

:::
for

::::
level

:::::
j+ 1.

:

:
If
:::
the

:::::::
surface

::::
heat

:::
flux

::
is
:::
not

:::::::
known,

:::
the

::::
first

:::
line

::
of

:::
the

::::::
matrix

::::::::
equation

:::::::
contains

:
a
::::::

linear
::::::
relation

::::::::
between

:::::
Tn−11 :::

and
::::
G0,

:::::
which

:::
can

:::
be

::::::
written

::
in

:::
the

::::
form

::
of

::::::::
equation

:::
(8).

Appendix B:
:::::::
Stability

:::::::
analysis

::
of

::::
the

:::::::
coupling

::::::::
schemes

::
In

:::
this

:::::::
section

::
we

:::::::
present

:::
the

:::::::
stability

:::::::::
properties

::
of

:::
the

:::::
three

:::::::
coupling

::::::::
methods

:::::::::
introduced

::
in

:::
the

:::::::
present

:::::
study,

:::::::
namely

:::
the15

::::::
explicit

::::
flux

:::::::
coupling

::::::::::
(EXPFLX),

:::
the

:::::::
implicit

::::
flux

:::::::
coupling

:::::::::
(IMPFLX)

::::
and

:::
the

::::::::
so-called

:::::::::::
parametrized

::::::
implicit

::::
flux

::::::::
coupling

:::::::::
(IMPPAR).

:::::
Since

:::
the

::::::::
numerical

:::::::
stability

::
is

:::::::
expected

::
to

::
be

::::::
greatly

:::::::::
influenced

:::
by

::
the

:::::::::
numerical

::::::::
treatment

::
of

:::
the

::::::
surface

::::::::
boundary

::::::::
condition,

::
a

:::::::
classical

::::
Von

::::::::
Neumann

:::::::
stability

::::::::
analysis,

:::::
which

:::::::
assumes

::::::::
periodic

::::::::
boundary

:::::::::
conditions,

::::::
would

:::
not

:::
be

::::::::
adequate.

:::
For

:::
this

::::::
reason

:::
our

:::::
study

::
is

:::::
based

::
on

:
a
::::::
matrix

:::::::
stability

:::::::
analysis

::::::::::::::::::::
(e.g. Oishi et al., 2008) .

:::::::::
Assuming

:
a
:::::::
constant

::::
grid

::::::
spacing

::::
and

:::::::
diffusion

::::::::::
coefficients,

:::
the

::::::
results

:::
are

::::::
shown

::
in

:::::
terms

::
of

:::
the

::::::::::::
dimensionless

:::::::::
coefficients

::
σ

:::
and

::
γ
::::::
defined

:::
as20

σ =

(
δ

∆z

)2

=
K∆t

(ρC)∆z2
γ =

λt∆t

(ρC)∆z
, (B1)

:::::
where

::
λt::::

and
:
δ
:::
are

::::::::::
respectively

:::::::
defined

::
in

:::
(11)

::::
and

::::
(17),

::::
with

:::::::
t= ∆t.

:::
The

::::::
typical

:::::
value

::
of

:::::
those

:::::::::
parameters

:::
for

:::
the

:::::::::
numerical

:::::::::
simulations

::::::::
discussed

::
in
:::::::
sections

::
4
:::
and

::
6

:::
are

:::::
given

::
in

::::
table

::
2.

:

B1
:::::::::
Numerical

:::::::::
treatment

::
of

::::
the

::::::
surface

:::::::::
boundary

:::::::::
condition

::::::
Without

::::
loss

::
of

:::::::::
generality

:::
we

:::::::
consider

::
in

:::
the

:::::::::
following

:::
that

::::::
Ta = 0

::
in
:::
the

:::::::::::
computation

::
of

:::
the

::::::
surface

:::::::::
boundary

::::::::
condition

:::
G025

::::::
defined

::
in

::::
(11)

::
as

::::
well

:::
as

:::
that

:::
K,

::::
∆z,

:::
and

::::
ρC

:::
are

::::
held

:::::::
constant.

::::
The

::::
only

:::::::::
difference

:::::::
between

:::
the

:::::
three

::::::::
coupling

:::::::::
algorithms

:::::::::
considered

::::
here

:
is
::
in
:::
the

::::::::
treatment

:::
of

:::
the

::::::
surface

::::::::
boundary

::::::::
condition

::::
(i.e.

::
for

:::
the

:::::::
vertical

:::::
index

::::::
j = 1):

11



–
::::::
Explicit

::::
flux

::::::::
coupling:

::
the

::::::
surface

:::::::::::
temperature

:::::::
involved

::
in

:::
the

:::::::::::
computation

::
of

:::
G0::

is
::::
Tn1 ,

::::
thus

::::::
leading

::
to

:::
the

:::::::::
following

:::::::::
counterpart

::
of

::::::::
equation

::
(6)

:

(1 +σ)Tn+1
1 −σTn+1

2 = (1− γ)Tn1 (B2)

–
::::::
Implicit

::::
flux

::::::::
coupling:

:::
the

::::::
surface

::::::::::
temperature

::
at

::::
time

::::
level

:::::
n+ 1

::
is

::::
used

::
to

::::::::
compute

:::
G0

(1 +σ+ γ)Tn+1
1 −σTn+1

2 = Tn1 . (B3)5

–
:::::::::::
Parametrized

::::::
implicit

::::
flux

:::::::
coupling

:
:
:::
the

::::::::::
temperature

::
at

::::
time

::::
level

:::::
n+ 1

::
is

::::::::
diagnosed

:::
as

::::::::::::
Tn1 /(1 +αλt)

(1 +σ)Tn+1
1 −σTn+1

2 =

(
1− γ

1 +αλt

)
Tn1 . (B4)

:::::
where

::
α

::
is

::::::
defined

::
in

::::
(21).

::::::
Using

:::
(22)

::
it
:::
can

::::::
readily

:::
be

::::
seen

:::
that

:

γ

1 +αλt
=

γ

1 + γ(1 +
√
σ
1.3

)−1/1.3
, (B5)

:::::
which

:::::
shows

::::
that

:::
the

:::::::::::
parametrized

:::::::
implicit

:::
flux

::::::::
coupling

:::
can

:::
be

:::::::::
interpreted

::
as

::
a
::::::
limiter

:::::
acting

:::
on

:::
the

:::::
value

::
of

:
γ
:::

of
:::
the10

::::::
explicit

::::
flux

::::::::
coupling,

:::::
indeed

::::::::::::::::
γ(1 +αλt)

−1 ≤ γ.
:

B2
::::::
Matrix

::::::::
stability

:::::::
analysis

::
As

::::::
shown

::
in

::::::::
Appendix

:::
A,

:::
the

:::::
Euler

::::::
implicit

:::::::
scheme

::::::
applied

::
to

:::
the

::::::::
diffusion

:::::::
equation

::::
can

::
be

::::::
written

::
in

::
a

::::::
general

::::::
matrix

::::
form

ATn+1 = BTn, T = (T1, . . . ,TNL)t, (B6)

::::
with15

A =



1 +σ+ θ(2θ− 1)γ −σ 0 0 . . .

−σ 1 + 2σ −σ 0 . . .

0
. . . . . . . . . 0

. . . 0 −σ 1 + 2σ −σ

. . . 0 0 −σ 1 +σ


, (B7)

B =



1 + (θ− 1)(1 + 2 1−αλt

1+αλt
θ)γ 0 0 . . . 0

0 1 0 . . . 0

0
. . . . . . . . . 0

. . . 0 0 1 0

. . . 0 0 0 1


, (B8)
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:::::
where

:::::
θ = 0

::::::::::
corresponds

::
to
:::

the
:::::::

explicit
::::
flux

::::::::
coupling,

:::::
θ = 1

::
to

:::
the

:::::::
implicit

::::
flux

::::::::
coupling,

:::
and

::::::::
θ = 1/2

::
to

:::
the

::::::::::::
parameterized

::::::
implicit

::::
flux

::::::::
coupling.

::::
The

:::::::
general

:::::::
implicit

::::::
scheme

:::::
(B6)

::
is

:::::
stable

::
if
:::

all
:::
the

::::::::::
eigenvalues

:::
of

:::
the

::::::
matrix

:::::::::::
M = A−1B

::
do

::::
not

::::::
exceed

:
1
::
in

::::::::::
magnitude.

:::::::::
Therefore,

:::
the

:::::::
stability

:::::::
analysis

:::::::
requires

:::
the

:::::::::::
computation

::
of

:::
the

:::::::
spectral

::::::
radius

::
of

::::::
matrix

:::
M,

:::
i.e.

:::
its

:::::
larger

:::::::::
eigenvalue

::
in

:::::::::
magnitude.

::::
For

:::::
γ ≥ 0

::
it

:::
can

::
be

::::::
shown

::::
that

:::
the

:::::::
smallest

:::::::::
eigenvalue

::
of

:::
A

:
is
::::::
larger

::
or

:::::
equal2

::
to

:
1
::::::::
meaning

:::
that

:::
this

::::::
matrix

::
is

::::::::
invertible

:::
for

::::::::::::
θ ∈ {0,1/2,1}.

::
In

::::
Fig.

::
8,

:::::
values

::
of

:::
the

:::::::
spectral

:::::
radius

::
of

:::
M

:::::::
obtained

::::
over

::
a

::::
range

:::
of

:::::
values

::
of

::
γ5

:::
and

::
σ

::
are

::::::
shown

:::
for

::::
each

:::::::
coupling

:::::::::
algorithm3.

::::
Gray

:::::::
shaded

::::
areas

:::::::
coincide

::::
with

:::::::
regions

:::::
where

:::
the

:::::::
spectral

:::::
radius

::
is

:::::
larger

::::
than

:
1
::::
thus

::::::::
indicating

:::::::::
parameter

:::::
values

:::
for

::::::
which

::
the

::::::::::::
corresponding

:::::::
scheme

::
is

:::::::
unstable.

:::::
From

:::::
those

::::::
results,

:::
the

::::
only

::::::::
algorithm

::::
that

::::
turns

:::
out

::
to

:::
be

:::::::::::
conditionally

:::::
stable

::
is

:::
the

::::::
explicit

::::
flux

::::::::
coupling

:::::::
whereas

:::
the

::::::
implicit

::::
and

::::::::::::
parameterized

:::::::
implicit

:::
flux

::::::::
coupling

::
are

:::::::::::::
unconditionally

::::::
stable.

::::
The

:::::
results

:::
are

::::
thus

:::::::::
consistent

::::
with

:::
the

::::::::
numerical

:::::::::::
experiments

::::::::
discussed

::
in

:::::::
sections

:
4
::::
and

::
6.

::::::::::
Empirically,

::
it

:::
can

::
be

::::::
found

:::
that

:::
the

::::::::
stability

::::::::
condition

:::
for

:::
the

::::::
explicit

::::
flux

::::::::
coupling

:::::::
roughly

:::::::
behaves

:::
like

:::::::::::::
γ ≤ 2 +

√
σ
1.1

10

:::
(see

:::::
figure

:::
9).

:::
For

:::
the

:::::::::::
parametrized

:::::::
implicit

:::
flux

::::::::
coupling,

::
γ

:
is
::::::::
replaced

::
by

::::::::::::::::::::::
γ̃(σ) = γ

1+γ(1+
√
σ1.3)−1/1.3::::::

which
:
is
::::::
always

:::::::
smaller

:::
than

::::::::::::::::::::::
γ̃max = (1 +

√
σ
1.3

)1/1.3.
:::
As

::::::
shown

::
in

:::::
figure

:::
9,

:::::::
∀σ ≥ 0,

:::::::::::::::
γ̃max ≤ 2 +

√
σ
1.1

::::::::
meaning

::::
that

:::
for

:::
the

::::::::
particular

::::::
choice

:::
of

::::::
f(
√
σ)

:::::
given

::
in

:::
(22)

:::
the

::::::::::::
parameterized

:::::::
implicit

::::
flux

:::::::
coupling

::
is

:::::::::::::
unconditionally

:::::
stable

:::::::
because

::
it

::::::
always

:::::::
satisfies

:::
the

:::::::
stability

::::::::
constraint

::
of

:::
the

::::::
explicit

::::
flux

::::::::
coupling.

Data availability15

The data that is used in this paper has been produced with a dedicated stand-alone fortran program. ECMWF’s data policy

does not allow open access to software. However, the code can be obtained from the first author subject to license. The license

implies non-commercial use i.e. for research and education only.
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2
::
for

::
the

:::::
special

::::
cases

:::::
θ = 0

:::
and

::::::
θ = 1/2,

:::
the

::::::::
eigenvalues

:::
λAk ::

of
:::::

matrix
::
A
:::

are
::::
given

::
by

::::::::::::::::::::
λAk = 1+2σ

(
1+ cos kπ

NL

)
::
for

:::::::::::
k = 1, . . . ,NL;

:::::::
therefore

::::::::::::
λAmin = 1,∀σ ≥ 0.

3
:::::::
Numerical

::::
results

:::
are

::::::
obtained

::
for

:::::::
NL= 50

:::
after

::::::
checking

:::
that

::
an

::::::
increased

::::::
number

::
of

:::::
vertical

::::
levels

:::
does

:::
not

:::::
change

::
the

:::::
results

::::::::
significantly.

:::
The

:::
use

:
of
::::
very

::
few

:::::
vertical

::::
levels

:::::::
(N ≤ 10)

::::
could

:::
lead

::
to

::::::
different

:::::
stability

:::::
results

:::::
because

:::
only

:::
very

:::
few

::::::::
eigenmodes

:::
will

::
be

::::::
properly

::::::
resolved.

::::::
However,

::
in

:::
this

:::
case

::
we

::
do

::
not

:::::
expect

::::
major

::::::
stability

::::
issues

:::
since

:::
the

::::
values

::
of

:
σ
:::

and
::
γ

::
are

:::
very

::::
small,

:::
see

:::
table

::
2.
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Table 1.
:::
List

::
of

:::::::::
parameters

:::
used

::
in

:::
the

:::::::
idealized

::::::::
simulation

::
of

:
a
::::
snow

::::
layer

:::::::
Parameter

: ::::::::
Description

: ::::
Value

: ::::
Units

:
ρ

::::
snow

:::::
density

: :::
150

::::::
kgm−3

:::
ρice ::

ice
::::::
density

:::
920

::::::
kgm−3

:
C
: ::::

snow
:::
(and

::::
ice)

:::
heat

::::::
capacity

: ::::
2228

:::::::::
J kg−1K−1

::::
Kice ::

ice
::::
heat

::::::
diffusion

::::::::
coefficient

: ::
2.2

:::::::::
Wm−1K−1

:

::
K

::::
snow

:::
heat

:::::::
diffusion

::::::::
coefficient

: :::::::::::::
Kice(ρ/ρice)

1.88
:::::::::
Wm−1K−1

:

::
ρa ::

air
::::::
density

::
1.2

: ::::::
kgm−3

::
cp ::

air
:::
heat

:::::::
capacity

::::
1005

:::::::::
J kg−1K−1

::
|U |

: ::::::
absolute

::::
wind

:::::
speed

:
4

:::::
ms−1

:::
zom :::::::

roughness
:::::
length

:::
for

::::::::
momentum

: :::::
0.0001

::
m

:::
zoh :::::::

roughness
:::::
length

:::
for

:::
heat

: :::::
0.0001

::
m

::
za :::::

height
::::::::::

atmospheric
:::::
forcing

::::
level

: ::
10

::
m

:
κ
: :::::::::

VonKarman
::::::
constant

: ::
0.4

: :
−
:

::
D

:::
total

:::::
depth

::
of

::::
snow

::::
layer

:
1

::
m

Table 2.
:::::
Values

::
of

::
γ
::::

and
::
σ
:::::::

defined
::
in

:::::
(B1)

:::
for

::::::
various

::::
time

:::::
steps

:::
∆t

::::
and

::::::
vertical

::::::::::::
discretizations

::::
∆z,

:::
for

::::::::::::::
ρ= 150 kgm−3,

:::::::::::::::::
C = 2228 J kg−1K−1,

:::
and

:::::::::::::::::::::::::::::::::::::::
K =Kice(ρ/ρice)

1.88 ≈ 7.27× 10−2 Wm−1K−1.

:::
∆t

::
[s]

: :::
100

: ::::
3600

:::
100

: ::::
3600

:::
100

:::
3600

:

:::
∆z

:::
[m]

::
0.2

::
0.2

:::
0.02

: ::::
0.02

::::
0.002

: ::::
0.002

:

:
λt: :::::::::::

[Wm−2K−1]
:::
0.65

: :::
0.65

: :::
3.23

: ::::
3.23

:::
5.39

:::
5.39

:
γ

:::
[−]

::::::::
9.6× 10−4

:::::::::
3.48× 10−2

: :::::::::
4.81× 10−2

: ::::
1.74

::
0.8

: :
29

:
σ
: :::

[−]
:::::::::
5.44× 10−4

: :::::::::
1.96× 10−2

: :::::::::
5.44× 10−2

: ::::
1.96

:::
5.44

::::
195.8

:
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Ta za

λa

z

Tsk , G0 0
λsk

∆z1T1 z1

G1+1/2 z1+1/2

Tj−1 zj−1

∆zj−1/2Gj−1/2 zj−1/2

∆zjTj zj

∆zj+1/2Gj+1/2 zj+1/2

Tj+1 zj+1

GNL−1/2 zNL−1/2

∆zNLTNL zNL

G = 0

Snow or Ice

Atmosphere

Figure 1. The numerical grid is defined by the position of the half levels, i.e. the thickness of the layers. The full levels are in the middle of

the layers, i.e. zj = (zj−1/2 +zj+1/2)/2. The surface is at z = 0. The bottom level is defined by the accumulated depth of all the layers. The

temperature is defined on full levels and the heat fluxes are defined on half levels.
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Figure 2. Diurnal cycle time series of snow skin temperature (left column) and surface heat flux (right column). The simulations were made

with 0.2, 0.02 and 0.002 m
:
m

:
vertical resolution (top, middle and bottom panels). The blue curves refer to the fully implicit solution(IMPL);

the red curves indicate the solutions with explicit flux coupling (EXPFLX). The solid curves are with a time step of 3600
:
s seconds and the

dashed curves with 100 seconds.
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Dimensionless Alpha from tri-diagonal solver (symbols) and empirical fit (green)

DZ=0.2,  variable dt
dt=3600, variable dz
dt=100,  variable dz
eq. (21)
eq. (23)

Figure 3. Dimensionless function f = α(KρC/∆t)1/2 as a function of x= δ/∆z. The circles and triangles are for different combinations

of ∆z and ∆t. The blue line is the asymptotic limit for small δ/∆z. The green curve is the empirical fit according to Eq.
:::::::
equation (22).
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Figure 4. Empirical estimates of parameter β as a function of the value found from the tri-diagonal solver. The red curve represents the

estimate according to Tn1 and the blue curve is the temperature at z =−δ, also at the previous time level n. The symbols (connected by

lines) indicate the successive time steps in the diurnal cycle. Results are plotted for vertical resolutions of 0.2, 0.02 and 0.002 m
:
m.
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Figure 5. Diurnal cycle series of top layer snow
:::
skin

:
temperature (left columns and) and surface heat flux (right columns). The simulations

were made with 0.2, 0.02 and 0.002 m
::
m resolution (top, middle and bottom panels). The blue curve refers to the fully implicit solu-

tion(IMPL); the black solid curve is the solution with parameterized
:::::::::
parametrized

:
α and β. The black dashes curve refers to the solution

where α is parameterized
:::::::::
parametrized and β is set equal to the temperature of level 1 at the previous time (n). The time step is 3600 seconds.
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Dimensionless Alpha from tri-diagonal solver (symbols) and empirical fit (green)
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Figure 6. Dimensionless α as in Fig. 3, but for non-uniform snow density. The snow density is 150 kgm−3 at the surface, increases linearly

to 250 kgm−3 at a depth of 0.5 m
:
m, and remains constant below 0.5 m

:
m.
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Figure 7. Dimensionless β as in Fig. 4, but for non-uniform snow density. The snow density is 150 kgm−3 at the surface, increases linearly

to 250 kgm−3 at a depth of 0.5 m
:
m, and remains constant below 0.5 m

:
m.

Figure 8.
:::::
Spectral

:::::
radius

:::
of

::
the

::::::
matrix

::::::::::
M = A−1B

::::::
(defined

::
in

::::::
B7,B8)

::::::::
associated

::
to

:::
the

:::::
explicit

::::
flux

:::::::
coupling

:::::::::
(EXPFLX),

::::::::::
parametrized

::::::
implicit

:::
flux

:::::::
coupling

::::::::
(IMPPAR),

:::
and

::::::
implicit

::::
flux

::::::
coupling

:::::::::
(IMPFLX)

:::
with

::::::
respect

::
to

::
the

:::::::::::
dimensionless

:::::::::
coefficients

:
γ
:::
and

::
σ.

::::
Gray

::::::
shaded

::::
areas

::::::::
correspond

::
to

::::::
regions

:::::
where

::
the

::::::
spectral

:::::
radius

::
is

::::
larger

::::
than

::
1.
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Figure 9.
:::::::
Maximum

:::::
value

::
of

:
γ
::::
with

::::::
respect

::
to

:::
the

:::::::
parabolic

::::::
Courant

::::::
number

::
σ
::
to

::::::::
guarantee

::::::
stability

::
of

:::
the

::::::
explicit

:::
flux

:::::::
coupling

:::::
(solid

::::
gray)

:::::
which

::::::
roughly

::::::
behaves

:::
like

::::::::::::::
γ(σ) = 2 +

√
σ
1.1

::::::
(doted

::::
black

::::
line).

::::
The

::::::::::
parametrized

::::::
implicit

:::
flux

:::::::
coupling

::::::
replaces

::
γ
::
by

::̃
γ
:::::
which

::
is

:::::
always

::::::
smaller

::::
than

:::::::::::::::::::
γ̃max = (1 +

√
σ
1.3

)1/1.3
:::::
(solid

::::
black

:::::
line).

::::
Since

:::
the

::::
solid

:::::
black

:::
line

::
is

:::::
below

:::
the

::::
solid

::::
gray

:::
line,

:::
the

::::::
implicit

::::
flux

:::::::::::
parametrization

::
is

::::::::::::
unconditionally

:::::
stable.
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